Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / aacraid / commctrl.c
blob25f6600d6c090c45e9dfb6c7aabaadc7ffa72662
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 * Module Name:
27 * commctrl.c
29 * Abstract: Contains all routines for control of the AFA comm layer
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h> /* ssleep prototype */
43 #include <linux/kthread.h>
44 #include <linux/semaphore.h>
45 #include <linux/uaccess.h>
46 #include <scsi/scsi_host.h>
48 #include "aacraid.h"
50 /**
51 * ioctl_send_fib - send a FIB from userspace
52 * @dev: adapter is being processed
53 * @arg: arguments to the ioctl call
55 * This routine sends a fib to the adapter on behalf of a user level
56 * program.
58 # define AAC_DEBUG_PREAMBLE KERN_INFO
59 # define AAC_DEBUG_POSTAMBLE
61 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
63 struct hw_fib * kfib;
64 struct fib *fibptr;
65 struct hw_fib * hw_fib = (struct hw_fib *)0;
66 dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
67 unsigned int size, osize;
68 int retval;
70 if (dev->in_reset) {
71 return -EBUSY;
73 fibptr = aac_fib_alloc(dev);
74 if(fibptr == NULL) {
75 return -ENOMEM;
78 kfib = fibptr->hw_fib_va;
80 * First copy in the header so that we can check the size field.
82 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
83 aac_fib_free(fibptr);
84 return -EFAULT;
87 * Since we copy based on the fib header size, make sure that we
88 * will not overrun the buffer when we copy the memory. Return
89 * an error if we would.
91 osize = size = le16_to_cpu(kfib->header.Size) +
92 sizeof(struct aac_fibhdr);
93 if (size < le16_to_cpu(kfib->header.SenderSize))
94 size = le16_to_cpu(kfib->header.SenderSize);
95 if (size > dev->max_fib_size) {
96 dma_addr_t daddr;
98 if (size > 2048) {
99 retval = -EINVAL;
100 goto cleanup;
103 kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
104 GFP_KERNEL);
105 if (!kfib) {
106 retval = -ENOMEM;
107 goto cleanup;
110 /* Highjack the hw_fib */
111 hw_fib = fibptr->hw_fib_va;
112 hw_fib_pa = fibptr->hw_fib_pa;
113 fibptr->hw_fib_va = kfib;
114 fibptr->hw_fib_pa = daddr;
115 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
116 memcpy(kfib, hw_fib, dev->max_fib_size);
119 if (copy_from_user(kfib, arg, size)) {
120 retval = -EFAULT;
121 goto cleanup;
124 /* Sanity check the second copy */
125 if ((osize != le16_to_cpu(kfib->header.Size) +
126 sizeof(struct aac_fibhdr))
127 || (size < le16_to_cpu(kfib->header.SenderSize))) {
128 retval = -EINVAL;
129 goto cleanup;
132 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
133 aac_adapter_interrupt(dev);
135 * Since we didn't really send a fib, zero out the state to allow
136 * cleanup code not to assert.
138 kfib->header.XferState = 0;
139 } else {
140 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
141 le16_to_cpu(kfib->header.Size) , FsaNormal,
142 1, 1, NULL, NULL);
143 if (retval) {
144 goto cleanup;
146 if (aac_fib_complete(fibptr) != 0) {
147 retval = -EINVAL;
148 goto cleanup;
152 * Make sure that the size returned by the adapter (which includes
153 * the header) is less than or equal to the size of a fib, so we
154 * don't corrupt application data. Then copy that size to the user
155 * buffer. (Don't try to add the header information again, since it
156 * was already included by the adapter.)
159 retval = 0;
160 if (copy_to_user(arg, (void *)kfib, size))
161 retval = -EFAULT;
162 cleanup:
163 if (hw_fib) {
164 dma_free_coherent(&dev->pdev->dev, size, kfib,
165 fibptr->hw_fib_pa);
166 fibptr->hw_fib_pa = hw_fib_pa;
167 fibptr->hw_fib_va = hw_fib;
169 if (retval != -ERESTARTSYS)
170 aac_fib_free(fibptr);
171 return retval;
175 * open_getadapter_fib - Get the next fib
177 * This routine will get the next Fib, if available, from the AdapterFibContext
178 * passed in from the user.
181 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
183 struct aac_fib_context * fibctx;
184 int status;
186 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
187 if (fibctx == NULL) {
188 status = -ENOMEM;
189 } else {
190 unsigned long flags;
191 struct list_head * entry;
192 struct aac_fib_context * context;
194 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
195 fibctx->size = sizeof(struct aac_fib_context);
197 * Yes yes, I know this could be an index, but we have a
198 * better guarantee of uniqueness for the locked loop below.
199 * Without the aid of a persistent history, this also helps
200 * reduce the chance that the opaque context would be reused.
202 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
204 * Initialize the mutex used to wait for the next AIF.
206 sema_init(&fibctx->wait_sem, 0);
207 fibctx->wait = 0;
209 * Initialize the fibs and set the count of fibs on
210 * the list to 0.
212 fibctx->count = 0;
213 INIT_LIST_HEAD(&fibctx->fib_list);
214 fibctx->jiffies = jiffies/HZ;
216 * Now add this context onto the adapter's
217 * AdapterFibContext list.
219 spin_lock_irqsave(&dev->fib_lock, flags);
220 /* Ensure that we have a unique identifier */
221 entry = dev->fib_list.next;
222 while (entry != &dev->fib_list) {
223 context = list_entry(entry, struct aac_fib_context, next);
224 if (context->unique == fibctx->unique) {
225 /* Not unique (32 bits) */
226 fibctx->unique++;
227 entry = dev->fib_list.next;
228 } else {
229 entry = entry->next;
232 list_add_tail(&fibctx->next, &dev->fib_list);
233 spin_unlock_irqrestore(&dev->fib_lock, flags);
234 if (copy_to_user(arg, &fibctx->unique,
235 sizeof(fibctx->unique))) {
236 status = -EFAULT;
237 } else {
238 status = 0;
241 return status;
245 * next_getadapter_fib - get the next fib
246 * @dev: adapter to use
247 * @arg: ioctl argument
249 * This routine will get the next Fib, if available, from the AdapterFibContext
250 * passed in from the user.
253 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
255 struct fib_ioctl f;
256 struct fib *fib;
257 struct aac_fib_context *fibctx;
258 int status;
259 struct list_head * entry;
260 unsigned long flags;
262 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
263 return -EFAULT;
265 * Verify that the HANDLE passed in was a valid AdapterFibContext
267 * Search the list of AdapterFibContext addresses on the adapter
268 * to be sure this is a valid address
270 spin_lock_irqsave(&dev->fib_lock, flags);
271 entry = dev->fib_list.next;
272 fibctx = NULL;
274 while (entry != &dev->fib_list) {
275 fibctx = list_entry(entry, struct aac_fib_context, next);
277 * Extract the AdapterFibContext from the Input parameters.
279 if (fibctx->unique == f.fibctx) { /* We found a winner */
280 break;
282 entry = entry->next;
283 fibctx = NULL;
285 if (!fibctx) {
286 spin_unlock_irqrestore(&dev->fib_lock, flags);
287 dprintk ((KERN_INFO "Fib Context not found\n"));
288 return -EINVAL;
291 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
292 (fibctx->size != sizeof(struct aac_fib_context))) {
293 spin_unlock_irqrestore(&dev->fib_lock, flags);
294 dprintk ((KERN_INFO "Fib Context corrupt?\n"));
295 return -EINVAL;
297 status = 0;
299 * If there are no fibs to send back, then either wait or return
300 * -EAGAIN
302 return_fib:
303 if (!list_empty(&fibctx->fib_list)) {
305 * Pull the next fib from the fibs
307 entry = fibctx->fib_list.next;
308 list_del(entry);
310 fib = list_entry(entry, struct fib, fiblink);
311 fibctx->count--;
312 spin_unlock_irqrestore(&dev->fib_lock, flags);
313 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
314 kfree(fib->hw_fib_va);
315 kfree(fib);
316 return -EFAULT;
319 * Free the space occupied by this copy of the fib.
321 kfree(fib->hw_fib_va);
322 kfree(fib);
323 status = 0;
324 } else {
325 spin_unlock_irqrestore(&dev->fib_lock, flags);
326 /* If someone killed the AIF aacraid thread, restart it */
327 status = !dev->aif_thread;
328 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
329 /* Be paranoid, be very paranoid! */
330 kthread_stop(dev->thread);
331 ssleep(1);
332 dev->aif_thread = 0;
333 dev->thread = kthread_run(aac_command_thread, dev,
334 "%s", dev->name);
335 ssleep(1);
337 if (f.wait) {
338 if(down_interruptible(&fibctx->wait_sem) < 0) {
339 status = -ERESTARTSYS;
340 } else {
341 /* Lock again and retry */
342 spin_lock_irqsave(&dev->fib_lock, flags);
343 goto return_fib;
345 } else {
346 status = -EAGAIN;
349 fibctx->jiffies = jiffies/HZ;
350 return status;
353 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
355 struct fib *fib;
358 * First free any FIBs that have not been consumed.
360 while (!list_empty(&fibctx->fib_list)) {
361 struct list_head * entry;
363 * Pull the next fib from the fibs
365 entry = fibctx->fib_list.next;
366 list_del(entry);
367 fib = list_entry(entry, struct fib, fiblink);
368 fibctx->count--;
370 * Free the space occupied by this copy of the fib.
372 kfree(fib->hw_fib_va);
373 kfree(fib);
376 * Remove the Context from the AdapterFibContext List
378 list_del(&fibctx->next);
380 * Invalidate context
382 fibctx->type = 0;
384 * Free the space occupied by the Context
386 kfree(fibctx);
387 return 0;
391 * close_getadapter_fib - close down user fib context
392 * @dev: adapter
393 * @arg: ioctl arguments
395 * This routine will close down the fibctx passed in from the user.
398 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
400 struct aac_fib_context *fibctx;
401 int status;
402 unsigned long flags;
403 struct list_head * entry;
406 * Verify that the HANDLE passed in was a valid AdapterFibContext
408 * Search the list of AdapterFibContext addresses on the adapter
409 * to be sure this is a valid address
412 entry = dev->fib_list.next;
413 fibctx = NULL;
415 while(entry != &dev->fib_list) {
416 fibctx = list_entry(entry, struct aac_fib_context, next);
418 * Extract the fibctx from the input parameters
420 if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
421 break;
422 entry = entry->next;
423 fibctx = NULL;
426 if (!fibctx)
427 return 0; /* Already gone */
429 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
430 (fibctx->size != sizeof(struct aac_fib_context)))
431 return -EINVAL;
432 spin_lock_irqsave(&dev->fib_lock, flags);
433 status = aac_close_fib_context(dev, fibctx);
434 spin_unlock_irqrestore(&dev->fib_lock, flags);
435 return status;
439 * check_revision - close down user fib context
440 * @dev: adapter
441 * @arg: ioctl arguments
443 * This routine returns the driver version.
444 * Under Linux, there have been no version incompatibilities, so this is
445 * simple!
448 static int check_revision(struct aac_dev *dev, void __user *arg)
450 struct revision response;
451 char *driver_version = aac_driver_version;
452 u32 version;
454 response.compat = 1;
455 version = (simple_strtol(driver_version,
456 &driver_version, 10) << 24) | 0x00000400;
457 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
458 version += simple_strtol(driver_version + 1, NULL, 10);
459 response.version = cpu_to_le32(version);
460 # ifdef AAC_DRIVER_BUILD
461 response.build = cpu_to_le32(AAC_DRIVER_BUILD);
462 # else
463 response.build = cpu_to_le32(9999);
464 # endif
466 if (copy_to_user(arg, &response, sizeof(response)))
467 return -EFAULT;
468 return 0;
474 * aac_send_raw_scb
478 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
480 struct fib* srbfib;
481 int status;
482 struct aac_srb *srbcmd = NULL;
483 struct aac_hba_cmd_req *hbacmd = NULL;
484 struct user_aac_srb *user_srbcmd = NULL;
485 struct user_aac_srb __user *user_srb = arg;
486 struct aac_srb_reply __user *user_reply;
487 u32 chn;
488 u32 fibsize = 0;
489 u32 flags = 0;
490 s32 rcode = 0;
491 u32 data_dir;
492 void __user *sg_user[HBA_MAX_SG_EMBEDDED];
493 void *sg_list[HBA_MAX_SG_EMBEDDED];
494 u32 sg_count[HBA_MAX_SG_EMBEDDED];
495 u32 sg_indx = 0;
496 u32 byte_count = 0;
497 u32 actual_fibsize64, actual_fibsize = 0;
498 int i;
499 int is_native_device;
500 u64 address;
503 if (dev->in_reset) {
504 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
505 return -EBUSY;
507 if (!capable(CAP_SYS_ADMIN)){
508 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
509 return -EPERM;
512 * Allocate and initialize a Fib then setup a SRB command
514 if (!(srbfib = aac_fib_alloc(dev))) {
515 return -ENOMEM;
518 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
519 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
520 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
521 rcode = -EFAULT;
522 goto cleanup;
525 if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
526 (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
527 rcode = -EINVAL;
528 goto cleanup;
531 user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
532 if (!user_srbcmd) {
533 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
534 rcode = -ENOMEM;
535 goto cleanup;
537 if(copy_from_user(user_srbcmd, user_srb,fibsize)){
538 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
539 rcode = -EFAULT;
540 goto cleanup;
543 flags = user_srbcmd->flags; /* from user in cpu order */
544 switch (flags & (SRB_DataIn | SRB_DataOut)) {
545 case SRB_DataOut:
546 data_dir = DMA_TO_DEVICE;
547 break;
548 case (SRB_DataIn | SRB_DataOut):
549 data_dir = DMA_BIDIRECTIONAL;
550 break;
551 case SRB_DataIn:
552 data_dir = DMA_FROM_DEVICE;
553 break;
554 default:
555 data_dir = DMA_NONE;
557 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
558 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
559 user_srbcmd->sg.count));
560 rcode = -EINVAL;
561 goto cleanup;
563 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
564 dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
565 rcode = -EINVAL;
566 goto cleanup;
568 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
569 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
570 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
571 (sizeof(struct sgentry64) - sizeof(struct sgentry));
572 /* User made a mistake - should not continue */
573 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
574 dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
575 "Raw SRB command calculated fibsize=%lu;%lu "
576 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
577 "issued fibsize=%d\n",
578 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
579 sizeof(struct aac_srb), sizeof(struct sgentry),
580 sizeof(struct sgentry64), fibsize));
581 rcode = -EINVAL;
582 goto cleanup;
585 chn = user_srbcmd->channel;
586 if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
587 dev->hba_map[chn][user_srbcmd->id].devtype ==
588 AAC_DEVTYPE_NATIVE_RAW) {
589 is_native_device = 1;
590 hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
591 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
593 /* iu_type is a parameter of aac_hba_send */
594 switch (data_dir) {
595 case DMA_TO_DEVICE:
596 hbacmd->byte1 = 2;
597 break;
598 case DMA_FROM_DEVICE:
599 case DMA_BIDIRECTIONAL:
600 hbacmd->byte1 = 1;
601 break;
602 case DMA_NONE:
603 default:
604 break;
606 hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
607 hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
610 * we fill in reply_qid later in aac_src_deliver_message
611 * we fill in iu_type, request_id later in aac_hba_send
612 * we fill in emb_data_desc_count, data_length later
613 * in sg list build
616 memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
618 address = (u64)srbfib->hw_error_pa;
619 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
620 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
621 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
622 hbacmd->emb_data_desc_count =
623 cpu_to_le32(user_srbcmd->sg.count);
624 srbfib->hbacmd_size = 64 +
625 user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
627 } else {
628 is_native_device = 0;
629 aac_fib_init(srbfib);
631 /* raw_srb FIB is not FastResponseCapable */
632 srbfib->hw_fib_va->header.XferState &=
633 ~cpu_to_le32(FastResponseCapable);
635 srbcmd = (struct aac_srb *) fib_data(srbfib);
637 // Fix up srb for endian and force some values
639 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
640 srbcmd->channel = cpu_to_le32(user_srbcmd->channel);
641 srbcmd->id = cpu_to_le32(user_srbcmd->id);
642 srbcmd->lun = cpu_to_le32(user_srbcmd->lun);
643 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout);
644 srbcmd->flags = cpu_to_le32(flags);
645 srbcmd->retry_limit = 0; // Obsolete parameter
646 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
647 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
650 byte_count = 0;
651 if (is_native_device) {
652 struct user_sgmap *usg32 = &user_srbcmd->sg;
653 struct user_sgmap64 *usg64 =
654 (struct user_sgmap64 *)&user_srbcmd->sg;
656 for (i = 0; i < usg32->count; i++) {
657 void *p;
658 u64 addr;
660 sg_count[i] = (actual_fibsize64 == fibsize) ?
661 usg64->sg[i].count : usg32->sg[i].count;
662 if (sg_count[i] >
663 (dev->scsi_host_ptr->max_sectors << 9)) {
664 pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
665 i, sg_count[i],
666 dev->scsi_host_ptr->max_sectors << 9);
667 rcode = -EINVAL;
668 goto cleanup;
671 p = kmalloc(sg_count[i], GFP_KERNEL);
672 if (!p) {
673 rcode = -ENOMEM;
674 goto cleanup;
677 if (actual_fibsize64 == fibsize) {
678 addr = (u64)usg64->sg[i].addr[0];
679 addr += ((u64)usg64->sg[i].addr[1]) << 32;
680 } else {
681 addr = (u64)usg32->sg[i].addr;
684 sg_user[i] = (void __user *)(uintptr_t)addr;
685 sg_list[i] = p; // save so we can clean up later
686 sg_indx = i;
688 if (flags & SRB_DataOut) {
689 if (copy_from_user(p, sg_user[i],
690 sg_count[i])) {
691 rcode = -EFAULT;
692 goto cleanup;
695 addr = pci_map_single(dev->pdev, p, sg_count[i],
696 data_dir);
697 hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
698 hbacmd->sge[i].addr_lo = cpu_to_le32(
699 (u32)(addr & 0xffffffff));
700 hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
701 hbacmd->sge[i].flags = 0;
702 byte_count += sg_count[i];
705 if (usg32->count > 0) /* embedded sglist */
706 hbacmd->sge[usg32->count-1].flags =
707 cpu_to_le32(0x40000000);
708 hbacmd->data_length = cpu_to_le32(byte_count);
710 status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
711 NULL, NULL);
713 } else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
714 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
715 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
718 * This should also catch if user used the 32 bit sgmap
720 if (actual_fibsize64 == fibsize) {
721 actual_fibsize = actual_fibsize64;
722 for (i = 0; i < upsg->count; i++) {
723 u64 addr;
724 void* p;
726 sg_count[i] = upsg->sg[i].count;
727 if (sg_count[i] >
728 ((dev->adapter_info.options &
729 AAC_OPT_NEW_COMM) ?
730 (dev->scsi_host_ptr->max_sectors << 9) :
731 65536)) {
732 rcode = -EINVAL;
733 goto cleanup;
736 p = kmalloc(sg_count[i], GFP_KERNEL);
737 if(!p) {
738 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
739 sg_count[i], i, upsg->count));
740 rcode = -ENOMEM;
741 goto cleanup;
743 addr = (u64)upsg->sg[i].addr[0];
744 addr += ((u64)upsg->sg[i].addr[1]) << 32;
745 sg_user[i] = (void __user *)(uintptr_t)addr;
746 sg_list[i] = p; // save so we can clean up later
747 sg_indx = i;
749 if (flags & SRB_DataOut) {
750 if (copy_from_user(p, sg_user[i],
751 sg_count[i])){
752 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
753 rcode = -EFAULT;
754 goto cleanup;
757 addr = pci_map_single(dev->pdev, p,
758 sg_count[i], data_dir);
760 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
761 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
762 byte_count += sg_count[i];
763 psg->sg[i].count = cpu_to_le32(sg_count[i]);
765 } else {
766 struct user_sgmap* usg;
767 usg = kmemdup(upsg,
768 actual_fibsize - sizeof(struct aac_srb)
769 + sizeof(struct sgmap), GFP_KERNEL);
770 if (!usg) {
771 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
772 rcode = -ENOMEM;
773 goto cleanup;
775 actual_fibsize = actual_fibsize64;
777 for (i = 0; i < usg->count; i++) {
778 u64 addr;
779 void* p;
781 sg_count[i] = usg->sg[i].count;
782 if (sg_count[i] >
783 ((dev->adapter_info.options &
784 AAC_OPT_NEW_COMM) ?
785 (dev->scsi_host_ptr->max_sectors << 9) :
786 65536)) {
787 kfree(usg);
788 rcode = -EINVAL;
789 goto cleanup;
792 p = kmalloc(sg_count[i], GFP_KERNEL);
793 if(!p) {
794 dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
795 sg_count[i], i, usg->count));
796 kfree(usg);
797 rcode = -ENOMEM;
798 goto cleanup;
800 sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
801 sg_list[i] = p; // save so we can clean up later
802 sg_indx = i;
804 if (flags & SRB_DataOut) {
805 if (copy_from_user(p, sg_user[i],
806 sg_count[i])) {
807 kfree (usg);
808 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
809 rcode = -EFAULT;
810 goto cleanup;
813 addr = pci_map_single(dev->pdev, p,
814 sg_count[i], data_dir);
816 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
817 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
818 byte_count += sg_count[i];
819 psg->sg[i].count = cpu_to_le32(sg_count[i]);
821 kfree (usg);
823 srbcmd->count = cpu_to_le32(byte_count);
824 if (user_srbcmd->sg.count)
825 psg->count = cpu_to_le32(sg_indx+1);
826 else
827 psg->count = 0;
828 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
829 } else {
830 struct user_sgmap* upsg = &user_srbcmd->sg;
831 struct sgmap* psg = &srbcmd->sg;
833 if (actual_fibsize64 == fibsize) {
834 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
835 for (i = 0; i < upsg->count; i++) {
836 uintptr_t addr;
837 void* p;
839 sg_count[i] = usg->sg[i].count;
840 if (sg_count[i] >
841 ((dev->adapter_info.options &
842 AAC_OPT_NEW_COMM) ?
843 (dev->scsi_host_ptr->max_sectors << 9) :
844 65536)) {
845 rcode = -EINVAL;
846 goto cleanup;
848 p = kmalloc(sg_count[i], GFP_KERNEL);
849 if (!p) {
850 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
851 sg_count[i], i, usg->count));
852 rcode = -ENOMEM;
853 goto cleanup;
855 addr = (u64)usg->sg[i].addr[0];
856 addr += ((u64)usg->sg[i].addr[1]) << 32;
857 sg_user[i] = (void __user *)addr;
858 sg_list[i] = p; // save so we can clean up later
859 sg_indx = i;
861 if (flags & SRB_DataOut) {
862 if (copy_from_user(p, sg_user[i],
863 sg_count[i])){
864 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
865 rcode = -EFAULT;
866 goto cleanup;
869 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
871 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
872 byte_count += usg->sg[i].count;
873 psg->sg[i].count = cpu_to_le32(sg_count[i]);
875 } else {
876 for (i = 0; i < upsg->count; i++) {
877 dma_addr_t addr;
878 void* p;
880 sg_count[i] = upsg->sg[i].count;
881 if (sg_count[i] >
882 ((dev->adapter_info.options &
883 AAC_OPT_NEW_COMM) ?
884 (dev->scsi_host_ptr->max_sectors << 9) :
885 65536)) {
886 rcode = -EINVAL;
887 goto cleanup;
889 p = kmalloc(sg_count[i], GFP_KERNEL);
890 if (!p) {
891 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
892 sg_count[i], i, upsg->count));
893 rcode = -ENOMEM;
894 goto cleanup;
896 sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
897 sg_list[i] = p; // save so we can clean up later
898 sg_indx = i;
900 if (flags & SRB_DataOut) {
901 if (copy_from_user(p, sg_user[i],
902 sg_count[i])) {
903 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
904 rcode = -EFAULT;
905 goto cleanup;
908 addr = pci_map_single(dev->pdev, p,
909 sg_count[i], data_dir);
911 psg->sg[i].addr = cpu_to_le32(addr);
912 byte_count += sg_count[i];
913 psg->sg[i].count = cpu_to_le32(sg_count[i]);
916 srbcmd->count = cpu_to_le32(byte_count);
917 if (user_srbcmd->sg.count)
918 psg->count = cpu_to_le32(sg_indx+1);
919 else
920 psg->count = 0;
921 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
924 if (status == -ERESTARTSYS) {
925 rcode = -ERESTARTSYS;
926 goto cleanup;
929 if (status != 0) {
930 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
931 rcode = -ENXIO;
932 goto cleanup;
935 if (flags & SRB_DataIn) {
936 for(i = 0 ; i <= sg_indx; i++){
937 if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
938 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
939 rcode = -EFAULT;
940 goto cleanup;
946 user_reply = arg + fibsize;
947 if (is_native_device) {
948 struct aac_hba_resp *err =
949 &((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
950 struct aac_srb_reply reply;
952 memset(&reply, 0, sizeof(reply));
953 reply.status = ST_OK;
954 if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
955 /* fast response */
956 reply.srb_status = SRB_STATUS_SUCCESS;
957 reply.scsi_status = 0;
958 reply.data_xfer_length = byte_count;
959 reply.sense_data_size = 0;
960 memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
961 } else {
962 reply.srb_status = err->service_response;
963 reply.scsi_status = err->status;
964 reply.data_xfer_length = byte_count -
965 le32_to_cpu(err->residual_count);
966 reply.sense_data_size = err->sense_response_data_len;
967 memcpy(reply.sense_data, err->sense_response_buf,
968 AAC_SENSE_BUFFERSIZE);
970 if (copy_to_user(user_reply, &reply,
971 sizeof(struct aac_srb_reply))) {
972 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
973 rcode = -EFAULT;
974 goto cleanup;
976 } else {
977 struct aac_srb_reply *reply;
979 reply = (struct aac_srb_reply *) fib_data(srbfib);
980 if (copy_to_user(user_reply, reply,
981 sizeof(struct aac_srb_reply))) {
982 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
983 rcode = -EFAULT;
984 goto cleanup;
988 cleanup:
989 kfree(user_srbcmd);
990 if (rcode != -ERESTARTSYS) {
991 for (i = 0; i <= sg_indx; i++)
992 kfree(sg_list[i]);
993 aac_fib_complete(srbfib);
994 aac_fib_free(srbfib);
997 return rcode;
1000 struct aac_pci_info {
1001 u32 bus;
1002 u32 slot;
1006 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1008 struct aac_pci_info pci_info;
1010 pci_info.bus = dev->pdev->bus->number;
1011 pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1013 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1014 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1015 return -EFAULT;
1017 return 0;
1020 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1022 struct aac_hba_info hbainfo;
1024 memset(&hbainfo, 0, sizeof(hbainfo));
1025 hbainfo.adapter_number = (u8) dev->id;
1026 hbainfo.system_io_bus_number = dev->pdev->bus->number;
1027 hbainfo.device_number = (dev->pdev->devfn >> 3);
1028 hbainfo.function_number = (dev->pdev->devfn & 0x0007);
1030 hbainfo.vendor_id = dev->pdev->vendor;
1031 hbainfo.device_id = dev->pdev->device;
1032 hbainfo.sub_vendor_id = dev->pdev->subsystem_vendor;
1033 hbainfo.sub_system_id = dev->pdev->subsystem_device;
1035 if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1036 dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1037 return -EFAULT;
1040 return 0;
1043 struct aac_reset_iop {
1044 u8 reset_type;
1047 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1049 struct aac_reset_iop reset;
1050 int retval;
1052 if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1053 return -EFAULT;
1055 dev->adapter_shutdown = 1;
1057 mutex_unlock(&dev->ioctl_mutex);
1058 retval = aac_reset_adapter(dev, 0, reset.reset_type);
1059 mutex_lock(&dev->ioctl_mutex);
1061 return retval;
1064 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
1066 int status;
1068 mutex_lock(&dev->ioctl_mutex);
1070 if (dev->adapter_shutdown) {
1071 status = -EACCES;
1072 goto cleanup;
1076 * HBA gets first crack
1079 status = aac_dev_ioctl(dev, cmd, arg);
1080 if (status != -ENOTTY)
1081 goto cleanup;
1083 switch (cmd) {
1084 case FSACTL_MINIPORT_REV_CHECK:
1085 status = check_revision(dev, arg);
1086 break;
1087 case FSACTL_SEND_LARGE_FIB:
1088 case FSACTL_SENDFIB:
1089 status = ioctl_send_fib(dev, arg);
1090 break;
1091 case FSACTL_OPEN_GET_ADAPTER_FIB:
1092 status = open_getadapter_fib(dev, arg);
1093 break;
1094 case FSACTL_GET_NEXT_ADAPTER_FIB:
1095 status = next_getadapter_fib(dev, arg);
1096 break;
1097 case FSACTL_CLOSE_GET_ADAPTER_FIB:
1098 status = close_getadapter_fib(dev, arg);
1099 break;
1100 case FSACTL_SEND_RAW_SRB:
1101 status = aac_send_raw_srb(dev,arg);
1102 break;
1103 case FSACTL_GET_PCI_INFO:
1104 status = aac_get_pci_info(dev,arg);
1105 break;
1106 case FSACTL_GET_HBA_INFO:
1107 status = aac_get_hba_info(dev, arg);
1108 break;
1109 case FSACTL_RESET_IOP:
1110 status = aac_send_reset_adapter(dev, arg);
1111 break;
1113 default:
1114 status = -ENOTTY;
1115 break;
1118 cleanup:
1119 mutex_unlock(&dev->ioctl_mutex);
1121 return status;