Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / aic94xx / aic94xx_sds.c
blobc831e30411fa12c0e87714a09c9f6c1bf108fd38
1 /*
2 * Aic94xx SAS/SATA driver access to shared data structures and memory
3 * maps.
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 * This file is licensed under GPLv2.
10 * This file is part of the aic94xx driver.
12 * The aic94xx driver is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; version 2 of the
15 * License.
17 * The aic94xx driver is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with the aic94xx driver; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
32 #include "aic94xx.h"
33 #include "aic94xx_reg.h"
34 #include "aic94xx_sds.h"
36 /* ---------- OCM stuff ---------- */
38 struct asd_ocm_dir_ent {
39 u8 type;
40 u8 offs[3];
41 u8 _r1;
42 u8 size[3];
43 } __attribute__ ((packed));
45 struct asd_ocm_dir {
46 char sig[2];
47 u8 _r1[2];
48 u8 major; /* 0 */
49 u8 minor; /* 0 */
50 u8 _r2;
51 u8 num_de;
52 struct asd_ocm_dir_ent entry[15];
53 } __attribute__ ((packed));
55 #define OCM_DE_OCM_DIR 0x00
56 #define OCM_DE_WIN_DRVR 0x01
57 #define OCM_DE_BIOS_CHIM 0x02
58 #define OCM_DE_RAID_ENGN 0x03
59 #define OCM_DE_BIOS_INTL 0x04
60 #define OCM_DE_BIOS_CHIM_OSM 0x05
61 #define OCM_DE_BIOS_CHIM_DYNAMIC 0x06
62 #define OCM_DE_ADDC2C_RES0 0x07
63 #define OCM_DE_ADDC2C_RES1 0x08
64 #define OCM_DE_ADDC2C_RES2 0x09
65 #define OCM_DE_ADDC2C_RES3 0x0A
67 #define OCM_INIT_DIR_ENTRIES 5
68 /***************************************************************************
69 * OCM directory default
70 ***************************************************************************/
71 static struct asd_ocm_dir OCMDirInit =
73 .sig = {0x4D, 0x4F}, /* signature */
74 .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */
77 /***************************************************************************
78 * OCM directory Entries default
79 ***************************************************************************/
80 static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
83 .type = (OCM_DE_ADDC2C_RES0), /* Entry type */
84 .offs = {128}, /* Offset */
85 .size = {0, 4}, /* size */
88 .type = (OCM_DE_ADDC2C_RES1), /* Entry type */
89 .offs = {128, 4}, /* Offset */
90 .size = {0, 4}, /* size */
93 .type = (OCM_DE_ADDC2C_RES2), /* Entry type */
94 .offs = {128, 8}, /* Offset */
95 .size = {0, 4}, /* size */
98 .type = (OCM_DE_ADDC2C_RES3), /* Entry type */
99 .offs = {128, 12}, /* Offset */
100 .size = {0, 4}, /* size */
103 .type = (OCM_DE_WIN_DRVR), /* Entry type */
104 .offs = {128, 16}, /* Offset */
105 .size = {128, 235, 1}, /* size */
109 struct asd_bios_chim_struct {
110 char sig[4];
111 u8 major; /* 1 */
112 u8 minor; /* 0 */
113 u8 bios_major;
114 u8 bios_minor;
115 __le32 bios_build;
116 u8 flags;
117 u8 pci_slot;
118 __le16 ue_num;
119 __le16 ue_size;
120 u8 _r[14];
121 /* The unit element array is right here.
123 } __attribute__ ((packed));
126 * asd_read_ocm_seg - read an on chip memory (OCM) segment
127 * @asd_ha: pointer to the host adapter structure
128 * @buffer: where to write the read data
129 * @offs: offset into OCM where to read from
130 * @size: how many bytes to read
132 * Return the number of bytes not read. Return 0 on success.
134 static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
135 u32 offs, int size)
137 u8 *p = buffer;
138 if (unlikely(asd_ha->iospace))
139 asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
140 else {
141 for ( ; size > 0; size--, offs++, p++)
142 *p = asd_read_ocm_byte(asd_ha, offs);
144 return size;
147 static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
148 struct asd_ocm_dir *dir, u32 offs)
150 int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
151 if (err) {
152 ASD_DPRINTK("couldn't read ocm segment\n");
153 return err;
156 if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
157 ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
158 dir->sig[0], dir->sig[1]);
159 return -ENOENT;
161 if (dir->major != 0) {
162 asd_printk("unsupported major version of ocm dir:0x%x\n",
163 dir->major);
164 return -ENOENT;
166 dir->num_de &= 0xf;
167 return 0;
171 * asd_write_ocm_seg - write an on chip memory (OCM) segment
172 * @asd_ha: pointer to the host adapter structure
173 * @buffer: where to read the write data
174 * @offs: offset into OCM to write to
175 * @size: how many bytes to write
177 * Return the number of bytes not written. Return 0 on success.
179 static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
180 u32 offs, int size)
182 u8 *p = buffer;
183 if (unlikely(asd_ha->iospace))
184 asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
185 else {
186 for ( ; size > 0; size--, offs++, p++)
187 asd_write_ocm_byte(asd_ha, offs, *p);
189 return;
192 #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
194 static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
195 u32 *offs, u32 *size)
197 int i;
198 struct asd_ocm_dir_ent *ent;
200 for (i = 0; i < dir->num_de; i++) {
201 if (dir->entry[i].type == type)
202 break;
204 if (i >= dir->num_de)
205 return -ENOENT;
206 ent = &dir->entry[i];
207 *offs = (u32) THREE_TO_NUM(ent->offs);
208 *size = (u32) THREE_TO_NUM(ent->size);
209 return 0;
212 #define OCM_BIOS_CHIM_DE 2
213 #define BC_BIOS_PRESENT 1
215 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
216 struct asd_ocm_dir *dir)
218 int err;
219 struct asd_bios_chim_struct *bc_struct;
220 u32 offs, size;
222 err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
223 if (err) {
224 ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
225 goto out;
227 err = -ENOMEM;
228 bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
229 if (!bc_struct) {
230 asd_printk("no memory for bios_chim struct\n");
231 goto out;
233 err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
234 sizeof(*bc_struct));
235 if (err) {
236 ASD_DPRINTK("couldn't read ocm segment\n");
237 goto out2;
239 if (strncmp(bc_struct->sig, "SOIB", 4)
240 && strncmp(bc_struct->sig, "IPSA", 4)) {
241 ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
242 bc_struct->sig[0], bc_struct->sig[1],
243 bc_struct->sig[2], bc_struct->sig[3]);
244 err = -ENOENT;
245 goto out2;
247 if (bc_struct->major != 1) {
248 asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
249 bc_struct->major);
250 err = -ENOENT;
251 goto out2;
253 if (bc_struct->flags & BC_BIOS_PRESENT) {
254 asd_ha->hw_prof.bios.present = 1;
255 asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
256 asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
257 asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
258 ASD_DPRINTK("BIOS present (%d,%d), %d\n",
259 asd_ha->hw_prof.bios.maj,
260 asd_ha->hw_prof.bios.min,
261 asd_ha->hw_prof.bios.bld);
263 asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
264 asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
265 ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
266 asd_ha->hw_prof.ue.size);
267 size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
268 if (size > 0) {
269 err = -ENOMEM;
270 asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
271 if (!asd_ha->hw_prof.ue.area)
272 goto out2;
273 err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
274 offs + sizeof(*bc_struct), size);
275 if (err) {
276 kfree(asd_ha->hw_prof.ue.area);
277 asd_ha->hw_prof.ue.area = NULL;
278 asd_ha->hw_prof.ue.num = 0;
279 asd_ha->hw_prof.ue.size = 0;
280 ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
283 out2:
284 kfree(bc_struct);
285 out:
286 return err;
289 static void
290 asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
292 int i;
294 /* Zero OCM */
295 for (i = 0; i < OCM_MAX_SIZE; i += 4)
296 asd_write_ocm_dword(asd_ha, i, 0);
298 /* Write Dir */
299 asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
300 sizeof(struct asd_ocm_dir));
302 /* Write Dir Entries */
303 for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
304 asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
305 sizeof(struct asd_ocm_dir) +
306 (i * sizeof(struct asd_ocm_dir_ent))
307 , sizeof(struct asd_ocm_dir_ent));
311 static int
312 asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
314 struct pci_dev *pcidev = asd_ha->pcidev;
315 u32 reg;
316 int err = 0;
317 u32 v;
319 /* check if OCM has been initialized by BIOS */
320 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
322 if (!(reg & OCMINITIALIZED)) {
323 err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
324 if (err) {
325 asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
326 pci_name(pcidev));
327 goto out;
330 printk(KERN_INFO "OCM is not initialized by BIOS,"
331 "reinitialize it and ignore it, current IntrptStatus"
332 "is 0x%x\n", v);
334 if (v)
335 err = pci_write_config_dword(pcidev,
336 PCIC_INTRPT_STAT, v);
337 if (err) {
338 asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
339 pci_name(pcidev));
340 goto out;
343 asd_hwi_initialize_ocm_dir(asd_ha);
346 out:
347 return err;
351 * asd_read_ocm - read on chip memory (OCM)
352 * @asd_ha: pointer to the host adapter structure
354 int asd_read_ocm(struct asd_ha_struct *asd_ha)
356 int err;
357 struct asd_ocm_dir *dir;
359 if (asd_hwi_check_ocm_access(asd_ha))
360 return -1;
362 dir = kmalloc(sizeof(*dir), GFP_KERNEL);
363 if (!dir) {
364 asd_printk("no memory for ocm dir\n");
365 return -ENOMEM;
368 err = asd_read_ocm_dir(asd_ha, dir, 0);
369 if (err)
370 goto out;
372 err = asd_get_bios_chim(asd_ha, dir);
373 out:
374 kfree(dir);
375 return err;
378 /* ---------- FLASH stuff ---------- */
380 #define FLASH_RESET 0xF0
382 #define ASD_FLASH_SIZE 0x200000
383 #define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** "
384 #define FLASH_NEXT_ENTRY_OFFS 0x2000
385 #define FLASH_MAX_DIR_ENTRIES 32
387 #define FLASH_DE_TYPE_MASK 0x3FFFFFFF
388 #define FLASH_DE_MS 0x120
389 #define FLASH_DE_CTRL_A_USER 0xE0
391 struct asd_flash_de {
392 __le32 type;
393 __le32 offs;
394 __le32 pad_size;
395 __le32 image_size;
396 __le32 chksum;
397 u8 _r[12];
398 u8 version[32];
399 } __attribute__ ((packed));
401 struct asd_flash_dir {
402 u8 cookie[32];
403 __le32 rev; /* 2 */
404 __le32 chksum;
405 __le32 chksum_antidote;
406 __le32 bld;
407 u8 bld_id[32]; /* build id data */
408 u8 ver_data[32]; /* date and time of build */
409 __le32 ae_mask;
410 __le32 v_mask;
411 __le32 oc_mask;
412 u8 _r[20];
413 struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
414 } __attribute__ ((packed));
416 struct asd_manuf_sec {
417 char sig[2]; /* 'S', 'M' */
418 u16 offs_next;
419 u8 maj; /* 0 */
420 u8 min; /* 0 */
421 u16 chksum;
422 u16 size;
423 u8 _r[6];
424 u8 sas_addr[SAS_ADDR_SIZE];
425 u8 pcba_sn[ASD_PCBA_SN_SIZE];
426 /* Here start the other segments */
427 u8 linked_list[0];
428 } __attribute__ ((packed));
430 struct asd_manuf_phy_desc {
431 u8 state; /* low 4 bits */
432 #define MS_PHY_STATE_ENABLED 0
433 #define MS_PHY_STATE_REPORTED 1
434 #define MS_PHY_STATE_HIDDEN 2
435 u8 phy_id;
436 u16 _r;
437 u8 phy_control_0; /* mode 5 reg 0x160 */
438 u8 phy_control_1; /* mode 5 reg 0x161 */
439 u8 phy_control_2; /* mode 5 reg 0x162 */
440 u8 phy_control_3; /* mode 5 reg 0x163 */
441 } __attribute__ ((packed));
443 struct asd_manuf_phy_param {
444 char sig[2]; /* 'P', 'M' */
445 u16 next;
446 u8 maj; /* 0 */
447 u8 min; /* 2 */
448 u8 num_phy_desc; /* 8 */
449 u8 phy_desc_size; /* 8 */
450 u8 _r[3];
451 u8 usage_model_id;
452 u32 _r2;
453 struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
454 } __attribute__ ((packed));
456 #if 0
457 static const char *asd_sb_type[] = {
458 "unknown",
459 "SGPIO",
460 [2 ... 0x7F] = "unknown",
461 [0x80] = "ADPT_I2C",
462 [0x81 ... 0xFF] = "VENDOR_UNIQUExx"
464 #endif
466 struct asd_ms_sb_desc {
467 u8 type;
468 u8 node_desc_index;
469 u8 conn_desc_index;
470 u8 _recvd[0];
471 } __attribute__ ((packed));
473 #if 0
474 static const char *asd_conn_type[] = {
475 [0 ... 7] = "unknown",
476 "SFF8470",
477 "SFF8482",
478 "SFF8484",
479 [0x80] = "PCIX_DAUGHTER0",
480 [0x81] = "SAS_DAUGHTER0",
481 [0x82 ... 0xFF] = "VENDOR_UNIQUExx"
484 static const char *asd_conn_location[] = {
485 "unknown",
486 "internal",
487 "external",
488 "board_to_board",
490 #endif
492 struct asd_ms_conn_desc {
493 u8 type;
494 u8 location;
495 u8 num_sideband_desc;
496 u8 size_sideband_desc;
497 u32 _resvd;
498 u8 name[16];
499 struct asd_ms_sb_desc sb_desc[0];
500 } __attribute__ ((packed));
502 struct asd_nd_phy_desc {
503 u8 vp_attch_type;
504 u8 attch_specific[0];
505 } __attribute__ ((packed));
507 #if 0
508 static const char *asd_node_type[] = {
509 "IOP",
510 "IO_CONTROLLER",
511 "EXPANDER",
512 "PORT_MULTIPLIER",
513 "PORT_MULTIPLEXER",
514 "MULTI_DROP_I2C_BUS",
516 #endif
518 struct asd_ms_node_desc {
519 u8 type;
520 u8 num_phy_desc;
521 u8 size_phy_desc;
522 u8 _resvd;
523 u8 name[16];
524 struct asd_nd_phy_desc phy_desc[0];
525 } __attribute__ ((packed));
527 struct asd_ms_conn_map {
528 char sig[2]; /* 'M', 'C' */
529 __le16 next;
530 u8 maj; /* 0 */
531 u8 min; /* 0 */
532 __le16 cm_size; /* size of this struct */
533 u8 num_conn;
534 u8 conn_size;
535 u8 num_nodes;
536 u8 usage_model_id;
537 u32 _resvd;
538 struct asd_ms_conn_desc conn_desc[0];
539 struct asd_ms_node_desc node_desc[0];
540 } __attribute__ ((packed));
542 struct asd_ctrla_phy_entry {
543 u8 sas_addr[SAS_ADDR_SIZE];
544 u8 sas_link_rates; /* max in hi bits, min in low bits */
545 u8 flags;
546 u8 sata_link_rates;
547 u8 _r[5];
548 } __attribute__ ((packed));
550 struct asd_ctrla_phy_settings {
551 u8 id0; /* P'h'y */
552 u8 _r;
553 u16 next;
554 u8 num_phys; /* number of PHYs in the PCI function */
555 u8 _r2[3];
556 struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
557 } __attribute__ ((packed));
559 struct asd_ll_el {
560 u8 id0;
561 u8 id1;
562 __le16 next;
563 u8 something_here[0];
564 } __attribute__ ((packed));
566 static int asd_poll_flash(struct asd_ha_struct *asd_ha)
568 int c;
569 u8 d;
571 for (c = 5000; c > 0; c--) {
572 d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
573 d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
574 if (!d)
575 return 0;
576 udelay(5);
578 return -ENOENT;
581 static int asd_reset_flash(struct asd_ha_struct *asd_ha)
583 int err;
585 err = asd_poll_flash(asd_ha);
586 if (err)
587 return err;
588 asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
589 err = asd_poll_flash(asd_ha);
591 return err;
594 static int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
595 void *buffer, u32 offs, int size)
597 asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
598 size);
599 return 0;
603 * asd_find_flash_dir - finds and reads the flash directory
604 * @asd_ha: pointer to the host adapter structure
605 * @flash_dir: pointer to flash directory structure
607 * If found, the flash directory segment will be copied to
608 * @flash_dir. Return 1 if found, 0 if not.
610 static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
611 struct asd_flash_dir *flash_dir)
613 u32 v;
614 for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
615 asd_read_flash_seg(asd_ha, flash_dir, v,
616 sizeof(FLASH_DIR_COOKIE)-1);
617 if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
618 sizeof(FLASH_DIR_COOKIE)-1) == 0) {
619 asd_ha->hw_prof.flash.dir_offs = v;
620 asd_read_flash_seg(asd_ha, flash_dir, v,
621 sizeof(*flash_dir));
622 return 1;
625 return 0;
628 static int asd_flash_getid(struct asd_ha_struct *asd_ha)
630 int err = 0;
631 u32 reg;
633 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
635 if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
636 &asd_ha->hw_prof.flash.bar)) {
637 asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
638 pci_name(asd_ha->pcidev));
639 return -ENOENT;
641 asd_ha->hw_prof.flash.present = 1;
642 asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
643 err = asd_reset_flash(asd_ha);
644 if (err) {
645 ASD_DPRINTK("couldn't reset flash(%d)\n", err);
646 return err;
648 return 0;
651 static u16 asd_calc_flash_chksum(u16 *p, int size)
653 u16 chksum = 0;
655 while (size-- > 0)
656 chksum += *p++;
658 return chksum;
662 static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
663 u32 *offs, u32 *size)
665 int i;
666 struct asd_flash_de *de;
668 for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
669 u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
671 type &= FLASH_DE_TYPE_MASK;
672 if (type == entry_type)
673 break;
675 if (i >= FLASH_MAX_DIR_ENTRIES)
676 return -ENOENT;
677 de = &flash_dir->dir_entry[i];
678 *offs = le32_to_cpu(de->offs);
679 *size = le32_to_cpu(de->pad_size);
680 return 0;
683 static int asd_validate_ms(struct asd_manuf_sec *ms)
685 if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
686 ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
687 ms->sig[0], ms->sig[1]);
688 return -ENOENT;
690 if (ms->maj != 0) {
691 asd_printk("unsupported manuf. sector. major version:%x\n",
692 ms->maj);
693 return -ENOENT;
695 ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
696 ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
697 ms->size = le16_to_cpu((__force __le16) ms->size);
699 if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
700 asd_printk("failed manuf sector checksum\n");
703 return 0;
706 static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
707 struct asd_manuf_sec *ms)
709 memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
710 return 0;
713 static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
714 struct asd_manuf_sec *ms)
716 memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
717 asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
718 return 0;
722 * asd_find_ll_by_id - find a linked list entry by its id
723 * @start: void pointer to the first element in the linked list
724 * @id0: the first byte of the id (offs 0)
725 * @id1: the second byte of the id (offs 1)
727 * @start has to be the _base_ element start, since the
728 * linked list entries's offset is from this pointer.
729 * Some linked list entries use only the first id, in which case
730 * you can pass 0xFF for the second.
732 static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
734 struct asd_ll_el *el = start;
736 do {
737 switch (id1) {
738 default:
739 if (el->id1 == id1)
740 case 0xFF:
741 if (el->id0 == id0)
742 return el;
744 el = start + le16_to_cpu(el->next);
745 } while (el != start);
747 return NULL;
751 * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
752 * @asd_ha: pointer to the host adapter structure
753 * @manuf_sec: pointer to the manufacturing sector
755 * The manufacturing sector contans also the linked list of sub-segments,
756 * since when it was read, its size was taken from the flash directory,
757 * not from the structure size.
759 * HIDDEN phys do not count in the total count. REPORTED phys cannot
760 * be enabled but are reported and counted towards the total.
761 * ENABLED phys are enabled by default and count towards the total.
762 * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys
763 * merely specifies the number of phys the host adapter decided to
764 * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
765 * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED.
766 * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
767 * are actually enabled (enabled by default, max number of phys
768 * enableable in this case).
770 static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
771 struct asd_manuf_sec *manuf_sec)
773 int i;
774 int en_phys = 0;
775 int rep_phys = 0;
776 struct asd_manuf_phy_param *phy_param;
777 struct asd_manuf_phy_param dflt_phy_param;
779 phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
780 if (!phy_param) {
781 ASD_DPRINTK("ms: no phy parameters found\n");
782 ASD_DPRINTK("ms: Creating default phy parameters\n");
783 dflt_phy_param.sig[0] = 'P';
784 dflt_phy_param.sig[1] = 'M';
785 dflt_phy_param.maj = 0;
786 dflt_phy_param.min = 2;
787 dflt_phy_param.num_phy_desc = 8;
788 dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
789 for (i =0; i < ASD_MAX_PHYS; i++) {
790 dflt_phy_param.phy_desc[i].state = 0;
791 dflt_phy_param.phy_desc[i].phy_id = i;
792 dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
793 dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
794 dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
795 dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
798 phy_param = &dflt_phy_param;
802 if (phy_param->maj != 0) {
803 asd_printk("unsupported manuf. phy param major version:0x%x\n",
804 phy_param->maj);
805 return -ENOENT;
808 ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
809 asd_ha->hw_prof.enabled_phys = 0;
810 for (i = 0; i < phy_param->num_phy_desc; i++) {
811 struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
812 switch (pd->state & 0xF) {
813 case MS_PHY_STATE_HIDDEN:
814 ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
815 continue;
816 case MS_PHY_STATE_REPORTED:
817 ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
818 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
819 rep_phys++;
820 continue;
821 case MS_PHY_STATE_ENABLED:
822 ASD_DPRINTK("ms: phy%d: ENABLED\n", i);
823 asd_ha->hw_prof.enabled_phys |= (1 << i);
824 en_phys++;
825 break;
827 asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
828 asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
829 asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
830 asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
832 asd_ha->hw_prof.max_phys = rep_phys + en_phys;
833 asd_ha->hw_prof.num_phys = en_phys;
834 ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
835 asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
836 ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
837 return 0;
840 static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
841 struct asd_manuf_sec *manuf_sec)
843 struct asd_ms_conn_map *cm;
845 cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
846 if (!cm) {
847 ASD_DPRINTK("ms: no connector map found\n");
848 return 0;
851 if (cm->maj != 0) {
852 ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
853 "\n", cm->maj);
854 return -ENOENT;
857 /* XXX */
859 return 0;
864 * asd_process_ms - find and extract information from the manufacturing sector
865 * @asd_ha: pointer to the host adapter structure
866 * @flash_dir: pointer to the flash directory
868 static int asd_process_ms(struct asd_ha_struct *asd_ha,
869 struct asd_flash_dir *flash_dir)
871 int err;
872 struct asd_manuf_sec *manuf_sec;
873 u32 offs, size;
875 err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
876 if (err) {
877 ASD_DPRINTK("Couldn't find the manuf. sector\n");
878 goto out;
881 if (size == 0)
882 goto out;
884 err = -ENOMEM;
885 manuf_sec = kmalloc(size, GFP_KERNEL);
886 if (!manuf_sec) {
887 ASD_DPRINTK("no mem for manuf sector\n");
888 goto out;
891 err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
892 if (err) {
893 ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
894 offs, size);
895 goto out2;
898 err = asd_validate_ms(manuf_sec);
899 if (err) {
900 ASD_DPRINTK("couldn't validate manuf sector\n");
901 goto out2;
904 err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
905 if (err) {
906 ASD_DPRINTK("couldn't read the SAS_ADDR\n");
907 goto out2;
909 ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
910 SAS_ADDR(asd_ha->hw_prof.sas_addr));
912 err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
913 if (err) {
914 ASD_DPRINTK("couldn't read the PCBA SN\n");
915 goto out2;
917 ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
919 err = asd_ms_get_phy_params(asd_ha, manuf_sec);
920 if (err) {
921 ASD_DPRINTK("ms: couldn't get phy parameters\n");
922 goto out2;
925 err = asd_ms_get_connector_map(asd_ha, manuf_sec);
926 if (err) {
927 ASD_DPRINTK("ms: couldn't get connector map\n");
928 goto out2;
931 out2:
932 kfree(manuf_sec);
933 out:
934 return err;
937 static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
938 struct asd_ctrla_phy_settings *ps)
940 int i;
941 for (i = 0; i < ps->num_phys; i++) {
942 struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
944 if (!PHY_ENABLED(asd_ha, i))
945 continue;
946 if (*(u64 *)pe->sas_addr == 0) {
947 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
948 continue;
950 /* This is the SAS address which should be sent in IDENTIFY. */
951 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
952 SAS_ADDR_SIZE);
953 asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
954 (pe->sas_link_rates & 0xF0) >> 4;
955 asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
956 (pe->sas_link_rates & 0x0F);
957 asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
958 (pe->sata_link_rates & 0xF0) >> 4;
959 asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
960 (pe->sata_link_rates & 0x0F);
961 asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
962 ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
963 " sata rate:0x%x-0x%x, flags:0x%x\n",
965 SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
966 asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
967 asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
968 asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
969 asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
970 asd_ha->hw_prof.phy_desc[i].flags);
973 return 0;
977 * asd_process_ctrl_a_user - process CTRL-A user settings
978 * @asd_ha: pointer to the host adapter structure
979 * @flash_dir: pointer to the flash directory
981 static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
982 struct asd_flash_dir *flash_dir)
984 int err, i;
985 u32 offs, size;
986 struct asd_ll_el *el = NULL;
987 struct asd_ctrla_phy_settings *ps;
988 struct asd_ctrla_phy_settings dflt_ps;
990 err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
991 if (err) {
992 ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
993 ASD_DPRINTK("Creating default CTRL-A user settings section\n");
995 dflt_ps.id0 = 'h';
996 dflt_ps.num_phys = 8;
997 for (i =0; i < ASD_MAX_PHYS; i++) {
998 memcpy(dflt_ps.phy_ent[i].sas_addr,
999 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
1000 dflt_ps.phy_ent[i].sas_link_rates = 0x98;
1001 dflt_ps.phy_ent[i].flags = 0x0;
1002 dflt_ps.phy_ent[i].sata_link_rates = 0x0;
1005 size = sizeof(struct asd_ctrla_phy_settings);
1006 ps = &dflt_ps;
1007 goto out_process;
1010 if (size == 0)
1011 goto out;
1013 err = -ENOMEM;
1014 el = kmalloc(size, GFP_KERNEL);
1015 if (!el) {
1016 ASD_DPRINTK("no mem for ctrla user settings section\n");
1017 goto out;
1020 err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1021 if (err) {
1022 ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1023 goto out2;
1026 err = -ENOENT;
1027 ps = asd_find_ll_by_id(el, 'h', 0xFF);
1028 if (!ps) {
1029 ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1030 goto out2;
1032 out_process:
1033 err = asd_process_ctrla_phy_settings(asd_ha, ps);
1034 if (err) {
1035 ASD_DPRINTK("couldn't process ctrla phy settings\n");
1036 goto out2;
1038 out2:
1039 kfree(el);
1040 out:
1041 return err;
1045 * asd_read_flash - read flash memory
1046 * @asd_ha: pointer to the host adapter structure
1048 int asd_read_flash(struct asd_ha_struct *asd_ha)
1050 int err;
1051 struct asd_flash_dir *flash_dir;
1053 err = asd_flash_getid(asd_ha);
1054 if (err)
1055 return err;
1057 flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1058 if (!flash_dir)
1059 return -ENOMEM;
1061 err = -ENOENT;
1062 if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1063 ASD_DPRINTK("couldn't find flash directory\n");
1064 goto out;
1067 if (le32_to_cpu(flash_dir->rev) != 2) {
1068 asd_printk("unsupported flash dir version:0x%x\n",
1069 le32_to_cpu(flash_dir->rev));
1070 goto out;
1073 err = asd_process_ms(asd_ha, flash_dir);
1074 if (err) {
1075 ASD_DPRINTK("couldn't process manuf sector settings\n");
1076 goto out;
1079 err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1080 if (err) {
1081 ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1082 goto out;
1085 out:
1086 kfree(flash_dir);
1087 return err;
1091 * asd_verify_flash_seg - verify data with flash memory
1092 * @asd_ha: pointer to the host adapter structure
1093 * @src: pointer to the source data to be verified
1094 * @dest_offset: offset from flash memory
1095 * @bytes_to_verify: total bytes to verify
1097 int asd_verify_flash_seg(struct asd_ha_struct *asd_ha,
1098 const void *src, u32 dest_offset, u32 bytes_to_verify)
1100 const u8 *src_buf;
1101 u8 flash_char;
1102 int err;
1103 u32 nv_offset, reg, i;
1105 reg = asd_ha->hw_prof.flash.bar;
1106 src_buf = NULL;
1108 err = FLASH_OK;
1109 nv_offset = dest_offset;
1110 src_buf = (const u8 *)src;
1111 for (i = 0; i < bytes_to_verify; i++) {
1112 flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i);
1113 if (flash_char != src_buf[i]) {
1114 err = FAIL_VERIFY;
1115 break;
1118 return err;
1122 * asd_write_flash_seg - write data into flash memory
1123 * @asd_ha: pointer to the host adapter structure
1124 * @src: pointer to the source data to be written
1125 * @dest_offset: offset from flash memory
1126 * @bytes_to_write: total bytes to write
1128 int asd_write_flash_seg(struct asd_ha_struct *asd_ha,
1129 const void *src, u32 dest_offset, u32 bytes_to_write)
1131 const u8 *src_buf;
1132 u32 nv_offset, reg, i;
1133 int err;
1135 reg = asd_ha->hw_prof.flash.bar;
1136 src_buf = NULL;
1138 err = asd_check_flash_type(asd_ha);
1139 if (err) {
1140 ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err);
1141 return err;
1144 nv_offset = dest_offset;
1145 err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write);
1146 if (err) {
1147 ASD_DPRINTK("Erase failed at offset:0x%x\n",
1148 nv_offset);
1149 return err;
1152 err = asd_reset_flash(asd_ha);
1153 if (err) {
1154 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1155 return err;
1158 src_buf = (const u8 *)src;
1159 for (i = 0; i < bytes_to_write; i++) {
1160 /* Setup program command sequence */
1161 switch (asd_ha->hw_prof.flash.method) {
1162 case FLASH_METHOD_A:
1164 asd_write_reg_byte(asd_ha,
1165 (reg + 0xAAA), 0xAA);
1166 asd_write_reg_byte(asd_ha,
1167 (reg + 0x555), 0x55);
1168 asd_write_reg_byte(asd_ha,
1169 (reg + 0xAAA), 0xA0);
1170 asd_write_reg_byte(asd_ha,
1171 (reg + nv_offset + i),
1172 (*(src_buf + i)));
1173 break;
1175 case FLASH_METHOD_B:
1177 asd_write_reg_byte(asd_ha,
1178 (reg + 0x555), 0xAA);
1179 asd_write_reg_byte(asd_ha,
1180 (reg + 0x2AA), 0x55);
1181 asd_write_reg_byte(asd_ha,
1182 (reg + 0x555), 0xA0);
1183 asd_write_reg_byte(asd_ha,
1184 (reg + nv_offset + i),
1185 (*(src_buf + i)));
1186 break;
1188 default:
1189 break;
1191 if (asd_chk_write_status(asd_ha,
1192 (nv_offset + i), 0) != 0) {
1193 ASD_DPRINTK("aicx: Write failed at offset:0x%x\n",
1194 reg + nv_offset + i);
1195 return FAIL_WRITE_FLASH;
1199 err = asd_reset_flash(asd_ha);
1200 if (err) {
1201 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1202 return err;
1204 return 0;
1207 int asd_chk_write_status(struct asd_ha_struct *asd_ha,
1208 u32 sector_addr, u8 erase_flag)
1210 u32 reg;
1211 u32 loop_cnt;
1212 u8 nv_data1, nv_data2;
1213 u8 toggle_bit1;
1216 * Read from DQ2 requires sector address
1217 * while it's dont care for DQ6
1219 reg = asd_ha->hw_prof.flash.bar;
1221 for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) {
1222 nv_data1 = asd_read_reg_byte(asd_ha, reg);
1223 nv_data2 = asd_read_reg_byte(asd_ha, reg);
1225 toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1226 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1228 if (toggle_bit1 == 0) {
1229 return 0;
1230 } else {
1231 if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) {
1232 nv_data1 = asd_read_reg_byte(asd_ha,
1233 reg);
1234 nv_data2 = asd_read_reg_byte(asd_ha,
1235 reg);
1236 toggle_bit1 =
1237 ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1238 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1240 if (toggle_bit1 == 0)
1241 return 0;
1246 * ERASE is a sector-by-sector operation and requires
1247 * more time to finish while WRITE is byte-byte-byte
1248 * operation and takes lesser time to finish.
1250 * For some strange reason a reduced ERASE delay gives different
1251 * behaviour across different spirit boards. Hence we set
1252 * a optimum balance of 50mus for ERASE which works well
1253 * across all boards.
1255 if (erase_flag) {
1256 udelay(FLASH_STATUS_ERASE_DELAY_COUNT);
1257 } else {
1258 udelay(FLASH_STATUS_WRITE_DELAY_COUNT);
1261 return -1;
1265 * asd_hwi_erase_nv_sector - Erase the flash memory sectors.
1266 * @asd_ha: pointer to the host adapter structure
1267 * @flash_addr: pointer to offset from flash memory
1268 * @size: total bytes to erase.
1270 int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size)
1272 u32 reg;
1273 u32 sector_addr;
1275 reg = asd_ha->hw_prof.flash.bar;
1277 /* sector staring address */
1278 sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK;
1281 * Erasing an flash sector needs to be done in six consecutive
1282 * write cyles.
1284 while (sector_addr < flash_addr+size) {
1285 switch (asd_ha->hw_prof.flash.method) {
1286 case FLASH_METHOD_A:
1287 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1288 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1289 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80);
1290 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1291 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1292 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1293 break;
1294 case FLASH_METHOD_B:
1295 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1296 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1297 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80);
1298 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1299 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1300 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1301 break;
1302 default:
1303 break;
1306 if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0)
1307 return FAIL_ERASE_FLASH;
1309 sector_addr += FLASH_SECTOR_SIZE;
1312 return 0;
1315 int asd_check_flash_type(struct asd_ha_struct *asd_ha)
1317 u8 manuf_id;
1318 u8 dev_id;
1319 u8 sec_prot;
1320 u32 inc;
1321 u32 reg;
1322 int err;
1324 /* get Flash memory base address */
1325 reg = asd_ha->hw_prof.flash.bar;
1327 /* Determine flash info */
1328 err = asd_reset_flash(asd_ha);
1329 if (err) {
1330 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1331 return err;
1334 asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN;
1335 asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN;
1336 asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN;
1338 /* Get flash info. This would most likely be AMD Am29LV family flash.
1339 * First try the sequence for word mode. It is the same as for
1340 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
1342 inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
1343 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
1344 asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
1345 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
1346 manuf_id = asd_read_reg_byte(asd_ha, reg);
1347 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1348 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1349 /* Get out of autoselect mode. */
1350 err = asd_reset_flash(asd_ha);
1351 if (err) {
1352 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1353 return err;
1355 ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) "
1356 "sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot);
1357 err = asd_reset_flash(asd_ha);
1358 if (err != 0)
1359 return err;
1361 switch (manuf_id) {
1362 case FLASH_MANUF_ID_AMD:
1363 switch (sec_prot) {
1364 case FLASH_DEV_ID_AM29LV800DT:
1365 case FLASH_DEV_ID_AM29LV640MT:
1366 case FLASH_DEV_ID_AM29F800B:
1367 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1368 break;
1369 default:
1370 break;
1372 break;
1373 case FLASH_MANUF_ID_ST:
1374 switch (sec_prot) {
1375 case FLASH_DEV_ID_STM29W800DT:
1376 case FLASH_DEV_ID_STM29LV640:
1377 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1378 break;
1379 default:
1380 break;
1382 break;
1383 case FLASH_MANUF_ID_FUJITSU:
1384 switch (sec_prot) {
1385 case FLASH_DEV_ID_MBM29LV800TE:
1386 case FLASH_DEV_ID_MBM29DL800TA:
1387 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1388 break;
1390 break;
1391 case FLASH_MANUF_ID_MACRONIX:
1392 switch (sec_prot) {
1393 case FLASH_DEV_ID_MX29LV800BT:
1394 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1395 break;
1397 break;
1400 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) {
1401 err = asd_reset_flash(asd_ha);
1402 if (err) {
1403 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1404 return err;
1407 /* Issue Unlock sequence for AM29LV008BT */
1408 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1409 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1410 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90);
1411 manuf_id = asd_read_reg_byte(asd_ha, reg);
1412 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1413 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1415 ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot"
1416 "(0x%x)\n", manuf_id, dev_id, sec_prot);
1418 err = asd_reset_flash(asd_ha);
1419 if (err != 0) {
1420 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1421 return err;
1424 switch (manuf_id) {
1425 case FLASH_MANUF_ID_AMD:
1426 switch (dev_id) {
1427 case FLASH_DEV_ID_AM29LV008BT:
1428 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1429 break;
1430 default:
1431 break;
1433 break;
1434 case FLASH_MANUF_ID_ST:
1435 switch (dev_id) {
1436 case FLASH_DEV_ID_STM29008:
1437 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1438 break;
1439 default:
1440 break;
1442 break;
1443 case FLASH_MANUF_ID_FUJITSU:
1444 switch (dev_id) {
1445 case FLASH_DEV_ID_MBM29LV008TA:
1446 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1447 break;
1449 break;
1450 case FLASH_MANUF_ID_INTEL:
1451 switch (dev_id) {
1452 case FLASH_DEV_ID_I28LV00TAT:
1453 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1454 break;
1456 break;
1457 case FLASH_MANUF_ID_MACRONIX:
1458 switch (dev_id) {
1459 case FLASH_DEV_ID_I28LV00TAT:
1460 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1461 break;
1463 break;
1464 default:
1465 return FAIL_FIND_FLASH_ID;
1469 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN)
1470 return FAIL_FIND_FLASH_ID;
1472 asd_ha->hw_prof.flash.manuf = manuf_id;
1473 asd_ha->hw_prof.flash.dev_id = dev_id;
1474 asd_ha->hw_prof.flash.sec_prot = sec_prot;
1475 return 0;