Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / esp_scsi.c
blob9e5d3f7d29ae7ec47c8a70bc984de1bea6c92adb
1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
30 #include "esp_scsi.h"
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
52 #define ESP_DEBUG_EVENT 0x00000800
53 #define ESP_DEBUG_COMMAND 0x00001000
55 #define esp_log_intr(f, a...) \
56 do { if (esp_debug & ESP_DEBUG_INTR) \
57 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
58 } while (0)
60 #define esp_log_reset(f, a...) \
61 do { if (esp_debug & ESP_DEBUG_RESET) \
62 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
63 } while (0)
65 #define esp_log_msgin(f, a...) \
66 do { if (esp_debug & ESP_DEBUG_MSGIN) \
67 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
68 } while (0)
70 #define esp_log_msgout(f, a...) \
71 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
72 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
73 } while (0)
75 #define esp_log_cmddone(f, a...) \
76 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
77 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
78 } while (0)
80 #define esp_log_disconnect(f, a...) \
81 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
82 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
83 } while (0)
85 #define esp_log_datastart(f, a...) \
86 do { if (esp_debug & ESP_DEBUG_DATASTART) \
87 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
88 } while (0)
90 #define esp_log_datadone(f, a...) \
91 do { if (esp_debug & ESP_DEBUG_DATADONE) \
92 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
93 } while (0)
95 #define esp_log_reconnect(f, a...) \
96 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
97 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
98 } while (0)
100 #define esp_log_autosense(f, a...) \
101 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
102 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
103 } while (0)
105 #define esp_log_event(f, a...) \
106 do { if (esp_debug & ESP_DEBUG_EVENT) \
107 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
108 } while (0)
110 #define esp_log_command(f, a...) \
111 do { if (esp_debug & ESP_DEBUG_COMMAND) \
112 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
113 } while (0)
115 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
116 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
118 static void esp_log_fill_regs(struct esp *esp,
119 struct esp_event_ent *p)
121 p->sreg = esp->sreg;
122 p->seqreg = esp->seqreg;
123 p->sreg2 = esp->sreg2;
124 p->ireg = esp->ireg;
125 p->select_state = esp->select_state;
126 p->event = esp->event;
129 void scsi_esp_cmd(struct esp *esp, u8 val)
131 struct esp_event_ent *p;
132 int idx = esp->esp_event_cur;
134 p = &esp->esp_event_log[idx];
135 p->type = ESP_EVENT_TYPE_CMD;
136 p->val = val;
137 esp_log_fill_regs(esp, p);
139 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
141 esp_log_command("cmd[%02x]\n", val);
142 esp_write8(val, ESP_CMD);
144 EXPORT_SYMBOL(scsi_esp_cmd);
146 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
148 if (esp->flags & ESP_FLAG_USE_FIFO) {
149 int i;
151 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
152 for (i = 0; i < len; i++)
153 esp_write8(esp->command_block[i], ESP_FDATA);
154 scsi_esp_cmd(esp, cmd);
155 } else {
156 if (esp->rev == FASHME)
157 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
158 cmd |= ESP_CMD_DMA;
159 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
160 len, max_len, 0, cmd);
164 static void esp_event(struct esp *esp, u8 val)
166 struct esp_event_ent *p;
167 int idx = esp->esp_event_cur;
169 p = &esp->esp_event_log[idx];
170 p->type = ESP_EVENT_TYPE_EVENT;
171 p->val = val;
172 esp_log_fill_regs(esp, p);
174 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
176 esp->event = val;
179 static void esp_dump_cmd_log(struct esp *esp)
181 int idx = esp->esp_event_cur;
182 int stop = idx;
184 shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
185 do {
186 struct esp_event_ent *p = &esp->esp_event_log[idx];
188 shost_printk(KERN_INFO, esp->host,
189 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
190 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
191 idx,
192 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
193 p->val, p->sreg, p->seqreg,
194 p->sreg2, p->ireg, p->select_state, p->event);
196 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
197 } while (idx != stop);
200 static void esp_flush_fifo(struct esp *esp)
202 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 if (esp->rev == ESP236) {
204 int lim = 1000;
206 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
207 if (--lim == 0) {
208 shost_printk(KERN_ALERT, esp->host,
209 "ESP_FF_BYTES will not clear!\n");
210 break;
212 udelay(1);
217 static void hme_read_fifo(struct esp *esp)
219 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
220 int idx = 0;
222 while (fcnt--) {
223 esp->fifo[idx++] = esp_read8(ESP_FDATA);
224 esp->fifo[idx++] = esp_read8(ESP_FDATA);
226 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
227 esp_write8(0, ESP_FDATA);
228 esp->fifo[idx++] = esp_read8(ESP_FDATA);
229 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
231 esp->fifo_cnt = idx;
234 static void esp_set_all_config3(struct esp *esp, u8 val)
236 int i;
238 for (i = 0; i < ESP_MAX_TARGET; i++)
239 esp->target[i].esp_config3 = val;
242 /* Reset the ESP chip, _not_ the SCSI bus. */
243 static void esp_reset_esp(struct esp *esp)
245 u8 family_code, version;
247 /* Now reset the ESP chip */
248 scsi_esp_cmd(esp, ESP_CMD_RC);
249 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
250 if (esp->rev == FAST)
251 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
252 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
254 /* This is the only point at which it is reliable to read
255 * the ID-code for a fast ESP chip variants.
257 esp->max_period = ((35 * esp->ccycle) / 1000);
258 if (esp->rev == FAST) {
259 version = esp_read8(ESP_UID);
260 family_code = (version & 0xf8) >> 3;
261 if (family_code == 0x02)
262 esp->rev = FAS236;
263 else if (family_code == 0x0a)
264 esp->rev = FASHME; /* Version is usually '5'. */
265 else
266 esp->rev = FAS100A;
267 esp->min_period = ((4 * esp->ccycle) / 1000);
268 } else {
269 esp->min_period = ((5 * esp->ccycle) / 1000);
271 if (esp->rev == FAS236) {
273 * The AM53c974 chip returns the same ID as FAS236;
274 * try to configure glitch eater.
276 u8 config4 = ESP_CONFIG4_GE1;
277 esp_write8(config4, ESP_CFG4);
278 config4 = esp_read8(ESP_CFG4);
279 if (config4 & ESP_CONFIG4_GE1) {
280 esp->rev = PCSCSI;
281 esp_write8(esp->config4, ESP_CFG4);
284 esp->max_period = (esp->max_period + 3)>>2;
285 esp->min_period = (esp->min_period + 3)>>2;
287 esp_write8(esp->config1, ESP_CFG1);
288 switch (esp->rev) {
289 case ESP100:
290 /* nothing to do */
291 break;
293 case ESP100A:
294 esp_write8(esp->config2, ESP_CFG2);
295 break;
297 case ESP236:
298 /* Slow 236 */
299 esp_write8(esp->config2, ESP_CFG2);
300 esp->prev_cfg3 = esp->target[0].esp_config3;
301 esp_write8(esp->prev_cfg3, ESP_CFG3);
302 break;
304 case FASHME:
305 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
306 /* fallthrough... */
308 case FAS236:
309 case PCSCSI:
310 /* Fast 236, AM53c974 or HME */
311 esp_write8(esp->config2, ESP_CFG2);
312 if (esp->rev == FASHME) {
313 u8 cfg3 = esp->target[0].esp_config3;
315 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
316 if (esp->scsi_id >= 8)
317 cfg3 |= ESP_CONFIG3_IDBIT3;
318 esp_set_all_config3(esp, cfg3);
319 } else {
320 u32 cfg3 = esp->target[0].esp_config3;
322 cfg3 |= ESP_CONFIG3_FCLK;
323 esp_set_all_config3(esp, cfg3);
325 esp->prev_cfg3 = esp->target[0].esp_config3;
326 esp_write8(esp->prev_cfg3, ESP_CFG3);
327 if (esp->rev == FASHME) {
328 esp->radelay = 80;
329 } else {
330 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
331 esp->radelay = 0;
332 else
333 esp->radelay = 96;
335 break;
337 case FAS100A:
338 /* Fast 100a */
339 esp_write8(esp->config2, ESP_CFG2);
340 esp_set_all_config3(esp,
341 (esp->target[0].esp_config3 |
342 ESP_CONFIG3_FCLOCK));
343 esp->prev_cfg3 = esp->target[0].esp_config3;
344 esp_write8(esp->prev_cfg3, ESP_CFG3);
345 esp->radelay = 32;
346 break;
348 default:
349 break;
352 /* Reload the configuration registers */
353 esp_write8(esp->cfact, ESP_CFACT);
355 esp->prev_stp = 0;
356 esp_write8(esp->prev_stp, ESP_STP);
358 esp->prev_soff = 0;
359 esp_write8(esp->prev_soff, ESP_SOFF);
361 esp_write8(esp->neg_defp, ESP_TIMEO);
363 /* Eat any bitrot in the chip */
364 esp_read8(ESP_INTRPT);
365 udelay(100);
368 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
370 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
371 struct scatterlist *sg = scsi_sglist(cmd);
372 int dir = cmd->sc_data_direction;
373 int total, i;
375 if (dir == DMA_NONE)
376 return;
378 spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
379 spriv->cur_residue = sg_dma_len(sg);
380 spriv->cur_sg = sg;
382 total = 0;
383 for (i = 0; i < spriv->u.num_sg; i++)
384 total += sg_dma_len(&sg[i]);
385 spriv->tot_residue = total;
388 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
389 struct scsi_cmnd *cmd)
391 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
393 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
394 return ent->sense_dma +
395 (ent->sense_ptr - cmd->sense_buffer);
398 return sg_dma_address(p->cur_sg) +
399 (sg_dma_len(p->cur_sg) -
400 p->cur_residue);
403 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
404 struct scsi_cmnd *cmd)
406 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
408 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
409 return SCSI_SENSE_BUFFERSIZE -
410 (ent->sense_ptr - cmd->sense_buffer);
412 return p->cur_residue;
415 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
416 struct scsi_cmnd *cmd, unsigned int len)
418 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
420 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
421 ent->sense_ptr += len;
422 return;
425 p->cur_residue -= len;
426 p->tot_residue -= len;
427 if (p->cur_residue < 0 || p->tot_residue < 0) {
428 shost_printk(KERN_ERR, esp->host,
429 "Data transfer overflow.\n");
430 shost_printk(KERN_ERR, esp->host,
431 "cur_residue[%d] tot_residue[%d] len[%u]\n",
432 p->cur_residue, p->tot_residue, len);
433 p->cur_residue = 0;
434 p->tot_residue = 0;
436 if (!p->cur_residue && p->tot_residue) {
437 p->cur_sg++;
438 p->cur_residue = sg_dma_len(p->cur_sg);
442 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
444 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
445 int dir = cmd->sc_data_direction;
447 if (dir == DMA_NONE)
448 return;
450 esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
453 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
455 struct scsi_cmnd *cmd = ent->cmd;
456 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
458 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
459 ent->saved_sense_ptr = ent->sense_ptr;
460 return;
462 ent->saved_cur_residue = spriv->cur_residue;
463 ent->saved_cur_sg = spriv->cur_sg;
464 ent->saved_tot_residue = spriv->tot_residue;
467 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
469 struct scsi_cmnd *cmd = ent->cmd;
470 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
472 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
473 ent->sense_ptr = ent->saved_sense_ptr;
474 return;
476 spriv->cur_residue = ent->saved_cur_residue;
477 spriv->cur_sg = ent->saved_cur_sg;
478 spriv->tot_residue = ent->saved_tot_residue;
481 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
483 if (cmd->cmd_len == 6 ||
484 cmd->cmd_len == 10 ||
485 cmd->cmd_len == 12) {
486 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
487 } else {
488 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
492 static void esp_write_tgt_config3(struct esp *esp, int tgt)
494 if (esp->rev > ESP100A) {
495 u8 val = esp->target[tgt].esp_config3;
497 if (val != esp->prev_cfg3) {
498 esp->prev_cfg3 = val;
499 esp_write8(val, ESP_CFG3);
504 static void esp_write_tgt_sync(struct esp *esp, int tgt)
506 u8 off = esp->target[tgt].esp_offset;
507 u8 per = esp->target[tgt].esp_period;
509 if (off != esp->prev_soff) {
510 esp->prev_soff = off;
511 esp_write8(off, ESP_SOFF);
513 if (per != esp->prev_stp) {
514 esp->prev_stp = per;
515 esp_write8(per, ESP_STP);
519 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
521 if (esp->rev == FASHME) {
522 /* Arbitrary segment boundaries, 24-bit counts. */
523 if (dma_len > (1U << 24))
524 dma_len = (1U << 24);
525 } else {
526 u32 base, end;
528 /* ESP chip limits other variants by 16-bits of transfer
529 * count. Actually on FAS100A and FAS236 we could get
530 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
531 * in the ESP_CFG2 register but that causes other unwanted
532 * changes so we don't use it currently.
534 if (dma_len > (1U << 16))
535 dma_len = (1U << 16);
537 /* All of the DMA variants hooked up to these chips
538 * cannot handle crossing a 24-bit address boundary.
540 base = dma_addr & ((1U << 24) - 1U);
541 end = base + dma_len;
542 if (end > (1U << 24))
543 end = (1U <<24);
544 dma_len = end - base;
546 return dma_len;
549 static int esp_need_to_nego_wide(struct esp_target_data *tp)
551 struct scsi_target *target = tp->starget;
553 return spi_width(target) != tp->nego_goal_width;
556 static int esp_need_to_nego_sync(struct esp_target_data *tp)
558 struct scsi_target *target = tp->starget;
560 /* When offset is zero, period is "don't care". */
561 if (!spi_offset(target) && !tp->nego_goal_offset)
562 return 0;
564 if (spi_offset(target) == tp->nego_goal_offset &&
565 spi_period(target) == tp->nego_goal_period)
566 return 0;
568 return 1;
571 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
572 struct esp_lun_data *lp)
574 if (!ent->orig_tag[0]) {
575 /* Non-tagged, slot already taken? */
576 if (lp->non_tagged_cmd)
577 return -EBUSY;
579 if (lp->hold) {
580 /* We are being held by active tagged
581 * commands.
583 if (lp->num_tagged)
584 return -EBUSY;
586 /* Tagged commands completed, we can unplug
587 * the queue and run this untagged command.
589 lp->hold = 0;
590 } else if (lp->num_tagged) {
591 /* Plug the queue until num_tagged decreases
592 * to zero in esp_free_lun_tag.
594 lp->hold = 1;
595 return -EBUSY;
598 lp->non_tagged_cmd = ent;
599 return 0;
602 /* Tagged command. Check that it isn't blocked by a non-tagged one. */
603 if (lp->non_tagged_cmd || lp->hold)
604 return -EBUSY;
606 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
608 lp->tagged_cmds[ent->orig_tag[1]] = ent;
609 lp->num_tagged++;
611 return 0;
614 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
615 struct esp_lun_data *lp)
617 if (ent->orig_tag[0]) {
618 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
619 lp->tagged_cmds[ent->orig_tag[1]] = NULL;
620 lp->num_tagged--;
621 } else {
622 BUG_ON(lp->non_tagged_cmd != ent);
623 lp->non_tagged_cmd = NULL;
627 /* When a contingent allegiance conditon is created, we force feed a
628 * REQUEST_SENSE command to the device to fetch the sense data. I
629 * tried many other schemes, relying on the scsi error handling layer
630 * to send out the REQUEST_SENSE automatically, but this was difficult
631 * to get right especially in the presence of applications like smartd
632 * which use SG_IO to send out their own REQUEST_SENSE commands.
634 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
636 struct scsi_cmnd *cmd = ent->cmd;
637 struct scsi_device *dev = cmd->device;
638 int tgt, lun;
639 u8 *p, val;
641 tgt = dev->id;
642 lun = dev->lun;
645 if (!ent->sense_ptr) {
646 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
647 tgt, lun);
649 ent->sense_ptr = cmd->sense_buffer;
650 ent->sense_dma = esp->ops->map_single(esp,
651 ent->sense_ptr,
652 SCSI_SENSE_BUFFERSIZE,
653 DMA_FROM_DEVICE);
655 ent->saved_sense_ptr = ent->sense_ptr;
657 esp->active_cmd = ent;
659 p = esp->command_block;
660 esp->msg_out_len = 0;
662 *p++ = IDENTIFY(0, lun);
663 *p++ = REQUEST_SENSE;
664 *p++ = ((dev->scsi_level <= SCSI_2) ?
665 (lun << 5) : 0);
666 *p++ = 0;
667 *p++ = 0;
668 *p++ = SCSI_SENSE_BUFFERSIZE;
669 *p++ = 0;
671 esp->select_state = ESP_SELECT_BASIC;
673 val = tgt;
674 if (esp->rev == FASHME)
675 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
676 esp_write8(val, ESP_BUSID);
678 esp_write_tgt_sync(esp, tgt);
679 esp_write_tgt_config3(esp, tgt);
681 val = (p - esp->command_block);
683 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
686 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
688 struct esp_cmd_entry *ent;
690 list_for_each_entry(ent, &esp->queued_cmds, list) {
691 struct scsi_cmnd *cmd = ent->cmd;
692 struct scsi_device *dev = cmd->device;
693 struct esp_lun_data *lp = dev->hostdata;
695 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
696 ent->tag[0] = 0;
697 ent->tag[1] = 0;
698 return ent;
701 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
702 ent->tag[0] = 0;
703 ent->tag[1] = 0;
705 ent->orig_tag[0] = ent->tag[0];
706 ent->orig_tag[1] = ent->tag[1];
708 if (esp_alloc_lun_tag(ent, lp) < 0)
709 continue;
711 return ent;
714 return NULL;
717 static void esp_maybe_execute_command(struct esp *esp)
719 struct esp_target_data *tp;
720 struct esp_lun_data *lp;
721 struct scsi_device *dev;
722 struct scsi_cmnd *cmd;
723 struct esp_cmd_entry *ent;
724 int tgt, lun, i;
725 u32 val, start_cmd;
726 u8 *p;
728 if (esp->active_cmd ||
729 (esp->flags & ESP_FLAG_RESETTING))
730 return;
732 ent = find_and_prep_issuable_command(esp);
733 if (!ent)
734 return;
736 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
737 esp_autosense(esp, ent);
738 return;
741 cmd = ent->cmd;
742 dev = cmd->device;
743 tgt = dev->id;
744 lun = dev->lun;
745 tp = &esp->target[tgt];
746 lp = dev->hostdata;
748 list_move(&ent->list, &esp->active_cmds);
750 esp->active_cmd = ent;
752 esp_map_dma(esp, cmd);
753 esp_save_pointers(esp, ent);
755 esp_check_command_len(esp, cmd);
757 p = esp->command_block;
759 esp->msg_out_len = 0;
760 if (tp->flags & ESP_TGT_CHECK_NEGO) {
761 /* Need to negotiate. If the target is broken
762 * go for synchronous transfers and non-wide.
764 if (tp->flags & ESP_TGT_BROKEN) {
765 tp->flags &= ~ESP_TGT_DISCONNECT;
766 tp->nego_goal_period = 0;
767 tp->nego_goal_offset = 0;
768 tp->nego_goal_width = 0;
769 tp->nego_goal_tags = 0;
772 /* If the settings are not changing, skip this. */
773 if (spi_width(tp->starget) == tp->nego_goal_width &&
774 spi_period(tp->starget) == tp->nego_goal_period &&
775 spi_offset(tp->starget) == tp->nego_goal_offset) {
776 tp->flags &= ~ESP_TGT_CHECK_NEGO;
777 goto build_identify;
780 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
781 esp->msg_out_len =
782 spi_populate_width_msg(&esp->msg_out[0],
783 (tp->nego_goal_width ?
784 1 : 0));
785 tp->flags |= ESP_TGT_NEGO_WIDE;
786 } else if (esp_need_to_nego_sync(tp)) {
787 esp->msg_out_len =
788 spi_populate_sync_msg(&esp->msg_out[0],
789 tp->nego_goal_period,
790 tp->nego_goal_offset);
791 tp->flags |= ESP_TGT_NEGO_SYNC;
792 } else {
793 tp->flags &= ~ESP_TGT_CHECK_NEGO;
796 /* Process it like a slow command. */
797 if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
798 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
801 build_identify:
802 /* If we don't have a lun-data struct yet, we're probing
803 * so do not disconnect. Also, do not disconnect unless
804 * we have a tag on this command.
806 if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
807 *p++ = IDENTIFY(1, lun);
808 else
809 *p++ = IDENTIFY(0, lun);
811 if (ent->tag[0] && esp->rev == ESP100) {
812 /* ESP100 lacks select w/atn3 command, use select
813 * and stop instead.
815 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
818 if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
819 start_cmd = ESP_CMD_SELA;
820 if (ent->tag[0]) {
821 *p++ = ent->tag[0];
822 *p++ = ent->tag[1];
824 start_cmd = ESP_CMD_SA3;
827 for (i = 0; i < cmd->cmd_len; i++)
828 *p++ = cmd->cmnd[i];
830 esp->select_state = ESP_SELECT_BASIC;
831 } else {
832 esp->cmd_bytes_left = cmd->cmd_len;
833 esp->cmd_bytes_ptr = &cmd->cmnd[0];
835 if (ent->tag[0]) {
836 for (i = esp->msg_out_len - 1;
837 i >= 0; i--)
838 esp->msg_out[i + 2] = esp->msg_out[i];
839 esp->msg_out[0] = ent->tag[0];
840 esp->msg_out[1] = ent->tag[1];
841 esp->msg_out_len += 2;
844 start_cmd = ESP_CMD_SELAS;
845 esp->select_state = ESP_SELECT_MSGOUT;
847 val = tgt;
848 if (esp->rev == FASHME)
849 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
850 esp_write8(val, ESP_BUSID);
852 esp_write_tgt_sync(esp, tgt);
853 esp_write_tgt_config3(esp, tgt);
855 val = (p - esp->command_block);
857 if (esp_debug & ESP_DEBUG_SCSICMD) {
858 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
859 for (i = 0; i < cmd->cmd_len; i++)
860 printk("%02x ", cmd->cmnd[i]);
861 printk("]\n");
864 esp_send_dma_cmd(esp, val, 16, start_cmd);
867 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
869 struct list_head *head = &esp->esp_cmd_pool;
870 struct esp_cmd_entry *ret;
872 if (list_empty(head)) {
873 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
874 } else {
875 ret = list_entry(head->next, struct esp_cmd_entry, list);
876 list_del(&ret->list);
877 memset(ret, 0, sizeof(*ret));
879 return ret;
882 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
884 list_add(&ent->list, &esp->esp_cmd_pool);
887 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
888 struct scsi_cmnd *cmd, unsigned int result)
890 struct scsi_device *dev = cmd->device;
891 int tgt = dev->id;
892 int lun = dev->lun;
894 esp->active_cmd = NULL;
895 esp_unmap_dma(esp, cmd);
896 esp_free_lun_tag(ent, dev->hostdata);
897 cmd->result = result;
899 if (ent->eh_done) {
900 complete(ent->eh_done);
901 ent->eh_done = NULL;
904 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
905 esp->ops->unmap_single(esp, ent->sense_dma,
906 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
907 ent->sense_ptr = NULL;
909 /* Restore the message/status bytes to what we actually
910 * saw originally. Also, report that we are providing
911 * the sense data.
913 cmd->result = ((DRIVER_SENSE << 24) |
914 (DID_OK << 16) |
915 (COMMAND_COMPLETE << 8) |
916 (SAM_STAT_CHECK_CONDITION << 0));
918 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
919 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
920 int i;
922 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
923 esp->host->unique_id, tgt, lun);
924 for (i = 0; i < 18; i++)
925 printk("%02x ", cmd->sense_buffer[i]);
926 printk("]\n");
930 cmd->scsi_done(cmd);
932 list_del(&ent->list);
933 esp_put_ent(esp, ent);
935 esp_maybe_execute_command(esp);
938 static unsigned int compose_result(unsigned int status, unsigned int message,
939 unsigned int driver_code)
941 return (status | (message << 8) | (driver_code << 16));
944 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
946 struct scsi_device *dev = ent->cmd->device;
947 struct esp_lun_data *lp = dev->hostdata;
949 scsi_track_queue_full(dev, lp->num_tagged - 1);
952 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
954 struct scsi_device *dev = cmd->device;
955 struct esp *esp = shost_priv(dev->host);
956 struct esp_cmd_priv *spriv;
957 struct esp_cmd_entry *ent;
959 ent = esp_get_ent(esp);
960 if (!ent)
961 return SCSI_MLQUEUE_HOST_BUSY;
963 ent->cmd = cmd;
965 cmd->scsi_done = done;
967 spriv = ESP_CMD_PRIV(cmd);
968 spriv->u.dma_addr = ~(dma_addr_t)0x0;
970 list_add_tail(&ent->list, &esp->queued_cmds);
972 esp_maybe_execute_command(esp);
974 return 0;
977 static DEF_SCSI_QCMD(esp_queuecommand)
979 static int esp_check_gross_error(struct esp *esp)
981 if (esp->sreg & ESP_STAT_SPAM) {
982 /* Gross Error, could be one of:
983 * - top of fifo overwritten
984 * - top of command register overwritten
985 * - DMA programmed with wrong direction
986 * - improper phase change
988 shost_printk(KERN_ERR, esp->host,
989 "Gross error sreg[%02x]\n", esp->sreg);
990 /* XXX Reset the chip. XXX */
991 return 1;
993 return 0;
996 static int esp_check_spur_intr(struct esp *esp)
998 switch (esp->rev) {
999 case ESP100:
1000 case ESP100A:
1001 /* The interrupt pending bit of the status register cannot
1002 * be trusted on these revisions.
1004 esp->sreg &= ~ESP_STAT_INTR;
1005 break;
1007 default:
1008 if (!(esp->sreg & ESP_STAT_INTR)) {
1009 if (esp->ireg & ESP_INTR_SR)
1010 return 1;
1012 /* If the DMA is indicating interrupt pending and the
1013 * ESP is not, the only possibility is a DMA error.
1015 if (!esp->ops->dma_error(esp)) {
1016 shost_printk(KERN_ERR, esp->host,
1017 "Spurious irq, sreg=%02x.\n",
1018 esp->sreg);
1019 return -1;
1022 shost_printk(KERN_ERR, esp->host, "DMA error\n");
1024 /* XXX Reset the chip. XXX */
1025 return -1;
1027 break;
1030 return 0;
1033 static void esp_schedule_reset(struct esp *esp)
1035 esp_log_reset("esp_schedule_reset() from %pf\n",
1036 __builtin_return_address(0));
1037 esp->flags |= ESP_FLAG_RESETTING;
1038 esp_event(esp, ESP_EVENT_RESET);
1041 /* In order to avoid having to add a special half-reconnected state
1042 * into the driver we just sit here and poll through the rest of
1043 * the reselection process to get the tag message bytes.
1045 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1046 struct esp_lun_data *lp)
1048 struct esp_cmd_entry *ent;
1049 int i;
1051 if (!lp->num_tagged) {
1052 shost_printk(KERN_ERR, esp->host,
1053 "Reconnect w/num_tagged==0\n");
1054 return NULL;
1057 esp_log_reconnect("reconnect tag, ");
1059 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1060 if (esp->ops->irq_pending(esp))
1061 break;
1063 if (i == ESP_QUICKIRQ_LIMIT) {
1064 shost_printk(KERN_ERR, esp->host,
1065 "Reconnect IRQ1 timeout\n");
1066 return NULL;
1069 esp->sreg = esp_read8(ESP_STATUS);
1070 esp->ireg = esp_read8(ESP_INTRPT);
1072 esp_log_reconnect("IRQ(%d:%x:%x), ",
1073 i, esp->ireg, esp->sreg);
1075 if (esp->ireg & ESP_INTR_DC) {
1076 shost_printk(KERN_ERR, esp->host,
1077 "Reconnect, got disconnect.\n");
1078 return NULL;
1081 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1082 shost_printk(KERN_ERR, esp->host,
1083 "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1084 return NULL;
1087 /* DMA in the tag bytes... */
1088 esp->command_block[0] = 0xff;
1089 esp->command_block[1] = 0xff;
1090 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1091 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1093 /* ACK the message. */
1094 scsi_esp_cmd(esp, ESP_CMD_MOK);
1096 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1097 if (esp->ops->irq_pending(esp)) {
1098 esp->sreg = esp_read8(ESP_STATUS);
1099 esp->ireg = esp_read8(ESP_INTRPT);
1100 if (esp->ireg & ESP_INTR_FDONE)
1101 break;
1103 udelay(1);
1105 if (i == ESP_RESELECT_TAG_LIMIT) {
1106 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1107 return NULL;
1109 esp->ops->dma_drain(esp);
1110 esp->ops->dma_invalidate(esp);
1112 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1113 i, esp->ireg, esp->sreg,
1114 esp->command_block[0],
1115 esp->command_block[1]);
1117 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1118 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1119 shost_printk(KERN_ERR, esp->host,
1120 "Reconnect, bad tag type %02x.\n",
1121 esp->command_block[0]);
1122 return NULL;
1125 ent = lp->tagged_cmds[esp->command_block[1]];
1126 if (!ent) {
1127 shost_printk(KERN_ERR, esp->host,
1128 "Reconnect, no entry for tag %02x.\n",
1129 esp->command_block[1]);
1130 return NULL;
1133 return ent;
1136 static int esp_reconnect(struct esp *esp)
1138 struct esp_cmd_entry *ent;
1139 struct esp_target_data *tp;
1140 struct esp_lun_data *lp;
1141 struct scsi_device *dev;
1142 int target, lun;
1144 BUG_ON(esp->active_cmd);
1145 if (esp->rev == FASHME) {
1146 /* FASHME puts the target and lun numbers directly
1147 * into the fifo.
1149 target = esp->fifo[0];
1150 lun = esp->fifo[1] & 0x7;
1151 } else {
1152 u8 bits = esp_read8(ESP_FDATA);
1154 /* Older chips put the lun directly into the fifo, but
1155 * the target is given as a sample of the arbitration
1156 * lines on the bus at reselection time. So we should
1157 * see the ID of the ESP and the one reconnecting target
1158 * set in the bitmap.
1160 if (!(bits & esp->scsi_id_mask))
1161 goto do_reset;
1162 bits &= ~esp->scsi_id_mask;
1163 if (!bits || (bits & (bits - 1)))
1164 goto do_reset;
1166 target = ffs(bits) - 1;
1167 lun = (esp_read8(ESP_FDATA) & 0x7);
1169 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1170 if (esp->rev == ESP100) {
1171 u8 ireg = esp_read8(ESP_INTRPT);
1172 /* This chip has a bug during reselection that can
1173 * cause a spurious illegal-command interrupt, which
1174 * we simply ACK here. Another possibility is a bus
1175 * reset so we must check for that.
1177 if (ireg & ESP_INTR_SR)
1178 goto do_reset;
1180 scsi_esp_cmd(esp, ESP_CMD_NULL);
1183 esp_write_tgt_sync(esp, target);
1184 esp_write_tgt_config3(esp, target);
1186 scsi_esp_cmd(esp, ESP_CMD_MOK);
1188 if (esp->rev == FASHME)
1189 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1190 ESP_BUSID);
1192 tp = &esp->target[target];
1193 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1194 if (!dev) {
1195 shost_printk(KERN_ERR, esp->host,
1196 "Reconnect, no lp tgt[%u] lun[%u]\n",
1197 target, lun);
1198 goto do_reset;
1200 lp = dev->hostdata;
1202 ent = lp->non_tagged_cmd;
1203 if (!ent) {
1204 ent = esp_reconnect_with_tag(esp, lp);
1205 if (!ent)
1206 goto do_reset;
1209 esp->active_cmd = ent;
1211 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1212 esp_restore_pointers(esp, ent);
1213 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1214 return 1;
1216 do_reset:
1217 esp_schedule_reset(esp);
1218 return 0;
1221 static int esp_finish_select(struct esp *esp)
1223 struct esp_cmd_entry *ent;
1224 struct scsi_cmnd *cmd;
1226 /* No longer selecting. */
1227 esp->select_state = ESP_SELECT_NONE;
1229 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1230 ent = esp->active_cmd;
1231 cmd = ent->cmd;
1233 if (esp->ops->dma_error(esp)) {
1234 /* If we see a DMA error during or as a result of selection,
1235 * all bets are off.
1237 esp_schedule_reset(esp);
1238 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1239 return 0;
1242 esp->ops->dma_invalidate(esp);
1244 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1245 struct esp_target_data *tp = &esp->target[cmd->device->id];
1247 /* Carefully back out of the selection attempt. Release
1248 * resources (such as DMA mapping & TAG) and reset state (such
1249 * as message out and command delivery variables).
1251 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1252 esp_unmap_dma(esp, cmd);
1253 esp_free_lun_tag(ent, cmd->device->hostdata);
1254 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1255 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1256 esp->cmd_bytes_ptr = NULL;
1257 esp->cmd_bytes_left = 0;
1258 } else {
1259 esp->ops->unmap_single(esp, ent->sense_dma,
1260 SCSI_SENSE_BUFFERSIZE,
1261 DMA_FROM_DEVICE);
1262 ent->sense_ptr = NULL;
1265 /* Now that the state is unwound properly, put back onto
1266 * the issue queue. This command is no longer active.
1268 list_move(&ent->list, &esp->queued_cmds);
1269 esp->active_cmd = NULL;
1271 /* Return value ignored by caller, it directly invokes
1272 * esp_reconnect().
1274 return 0;
1277 if (esp->ireg == ESP_INTR_DC) {
1278 struct scsi_device *dev = cmd->device;
1280 /* Disconnect. Make sure we re-negotiate sync and
1281 * wide parameters if this target starts responding
1282 * again in the future.
1284 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1286 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1287 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1288 return 1;
1291 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1292 /* Selection successful. On pre-FAST chips we have
1293 * to do a NOP and possibly clean out the FIFO.
1295 if (esp->rev <= ESP236) {
1296 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1298 scsi_esp_cmd(esp, ESP_CMD_NULL);
1300 if (!fcnt &&
1301 (!esp->prev_soff ||
1302 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1303 esp_flush_fifo(esp);
1306 /* If we are doing a slow command, negotiation, etc.
1307 * we'll do the right thing as we transition to the
1308 * next phase.
1310 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1311 return 0;
1314 shost_printk(KERN_INFO, esp->host,
1315 "Unexpected selection completion ireg[%x]\n", esp->ireg);
1316 esp_schedule_reset(esp);
1317 return 0;
1320 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1321 struct scsi_cmnd *cmd)
1323 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1325 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1326 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1327 fifo_cnt <<= 1;
1329 ecount = 0;
1330 if (!(esp->sreg & ESP_STAT_TCNT)) {
1331 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1332 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1333 if (esp->rev == FASHME)
1334 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1335 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1336 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1339 bytes_sent = esp->data_dma_len;
1340 bytes_sent -= ecount;
1341 bytes_sent -= esp->send_cmd_residual;
1344 * The am53c974 has a DMA 'pecularity'. The doc states:
1345 * In some odd byte conditions, one residual byte will
1346 * be left in the SCSI FIFO, and the FIFO Flags will
1347 * never count to '0 '. When this happens, the residual
1348 * byte should be retrieved via PIO following completion
1349 * of the BLAST operation.
1351 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1352 size_t count = 1;
1353 size_t offset = bytes_sent;
1354 u8 bval = esp_read8(ESP_FDATA);
1356 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1357 ent->sense_ptr[bytes_sent] = bval;
1358 else {
1359 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1360 u8 *ptr;
1362 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->u.num_sg,
1363 &offset, &count);
1364 if (likely(ptr)) {
1365 *(ptr + offset) = bval;
1366 scsi_kunmap_atomic_sg(ptr);
1369 bytes_sent += fifo_cnt;
1370 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1372 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1373 bytes_sent -= fifo_cnt;
1375 flush_fifo = 0;
1376 if (!esp->prev_soff) {
1377 /* Synchronous data transfer, always flush fifo. */
1378 flush_fifo = 1;
1379 } else {
1380 if (esp->rev == ESP100) {
1381 u32 fflags, phase;
1383 /* ESP100 has a chip bug where in the synchronous data
1384 * phase it can mistake a final long REQ pulse from the
1385 * target as an extra data byte. Fun.
1387 * To detect this case we resample the status register
1388 * and fifo flags. If we're still in a data phase and
1389 * we see spurious chunks in the fifo, we return error
1390 * to the caller which should reset and set things up
1391 * such that we only try future transfers to this
1392 * target in synchronous mode.
1394 esp->sreg = esp_read8(ESP_STATUS);
1395 phase = esp->sreg & ESP_STAT_PMASK;
1396 fflags = esp_read8(ESP_FFLAGS);
1398 if ((phase == ESP_DOP &&
1399 (fflags & ESP_FF_ONOTZERO)) ||
1400 (phase == ESP_DIP &&
1401 (fflags & ESP_FF_FBYTES)))
1402 return -1;
1404 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1405 flush_fifo = 1;
1408 if (flush_fifo)
1409 esp_flush_fifo(esp);
1411 return bytes_sent;
1414 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1415 u8 scsi_period, u8 scsi_offset,
1416 u8 esp_stp, u8 esp_soff)
1418 spi_period(tp->starget) = scsi_period;
1419 spi_offset(tp->starget) = scsi_offset;
1420 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1422 if (esp_soff) {
1423 esp_stp &= 0x1f;
1424 esp_soff |= esp->radelay;
1425 if (esp->rev >= FAS236) {
1426 u8 bit = ESP_CONFIG3_FSCSI;
1427 if (esp->rev >= FAS100A)
1428 bit = ESP_CONFIG3_FAST;
1430 if (scsi_period < 50) {
1431 if (esp->rev == FASHME)
1432 esp_soff &= ~esp->radelay;
1433 tp->esp_config3 |= bit;
1434 } else {
1435 tp->esp_config3 &= ~bit;
1437 esp->prev_cfg3 = tp->esp_config3;
1438 esp_write8(esp->prev_cfg3, ESP_CFG3);
1442 tp->esp_period = esp->prev_stp = esp_stp;
1443 tp->esp_offset = esp->prev_soff = esp_soff;
1445 esp_write8(esp_soff, ESP_SOFF);
1446 esp_write8(esp_stp, ESP_STP);
1448 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1450 spi_display_xfer_agreement(tp->starget);
1453 static void esp_msgin_reject(struct esp *esp)
1455 struct esp_cmd_entry *ent = esp->active_cmd;
1456 struct scsi_cmnd *cmd = ent->cmd;
1457 struct esp_target_data *tp;
1458 int tgt;
1460 tgt = cmd->device->id;
1461 tp = &esp->target[tgt];
1463 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1464 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1466 if (!esp_need_to_nego_sync(tp)) {
1467 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1468 scsi_esp_cmd(esp, ESP_CMD_RATN);
1469 } else {
1470 esp->msg_out_len =
1471 spi_populate_sync_msg(&esp->msg_out[0],
1472 tp->nego_goal_period,
1473 tp->nego_goal_offset);
1474 tp->flags |= ESP_TGT_NEGO_SYNC;
1475 scsi_esp_cmd(esp, ESP_CMD_SATN);
1477 return;
1480 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1481 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1482 tp->esp_period = 0;
1483 tp->esp_offset = 0;
1484 esp_setsync(esp, tp, 0, 0, 0, 0);
1485 scsi_esp_cmd(esp, ESP_CMD_RATN);
1486 return;
1489 shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
1490 esp_schedule_reset(esp);
1493 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1495 u8 period = esp->msg_in[3];
1496 u8 offset = esp->msg_in[4];
1497 u8 stp;
1499 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1500 goto do_reject;
1502 if (offset > 15)
1503 goto do_reject;
1505 if (offset) {
1506 int one_clock;
1508 if (period > esp->max_period) {
1509 period = offset = 0;
1510 goto do_sdtr;
1512 if (period < esp->min_period)
1513 goto do_reject;
1515 one_clock = esp->ccycle / 1000;
1516 stp = DIV_ROUND_UP(period << 2, one_clock);
1517 if (stp && esp->rev >= FAS236) {
1518 if (stp >= 50)
1519 stp--;
1521 } else {
1522 stp = 0;
1525 esp_setsync(esp, tp, period, offset, stp, offset);
1526 return;
1528 do_reject:
1529 esp->msg_out[0] = MESSAGE_REJECT;
1530 esp->msg_out_len = 1;
1531 scsi_esp_cmd(esp, ESP_CMD_SATN);
1532 return;
1534 do_sdtr:
1535 tp->nego_goal_period = period;
1536 tp->nego_goal_offset = offset;
1537 esp->msg_out_len =
1538 spi_populate_sync_msg(&esp->msg_out[0],
1539 tp->nego_goal_period,
1540 tp->nego_goal_offset);
1541 scsi_esp_cmd(esp, ESP_CMD_SATN);
1544 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1546 int size = 8 << esp->msg_in[3];
1547 u8 cfg3;
1549 if (esp->rev != FASHME)
1550 goto do_reject;
1552 if (size != 8 && size != 16)
1553 goto do_reject;
1555 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1556 goto do_reject;
1558 cfg3 = tp->esp_config3;
1559 if (size == 16) {
1560 tp->flags |= ESP_TGT_WIDE;
1561 cfg3 |= ESP_CONFIG3_EWIDE;
1562 } else {
1563 tp->flags &= ~ESP_TGT_WIDE;
1564 cfg3 &= ~ESP_CONFIG3_EWIDE;
1566 tp->esp_config3 = cfg3;
1567 esp->prev_cfg3 = cfg3;
1568 esp_write8(cfg3, ESP_CFG3);
1570 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1572 spi_period(tp->starget) = 0;
1573 spi_offset(tp->starget) = 0;
1574 if (!esp_need_to_nego_sync(tp)) {
1575 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1576 scsi_esp_cmd(esp, ESP_CMD_RATN);
1577 } else {
1578 esp->msg_out_len =
1579 spi_populate_sync_msg(&esp->msg_out[0],
1580 tp->nego_goal_period,
1581 tp->nego_goal_offset);
1582 tp->flags |= ESP_TGT_NEGO_SYNC;
1583 scsi_esp_cmd(esp, ESP_CMD_SATN);
1585 return;
1587 do_reject:
1588 esp->msg_out[0] = MESSAGE_REJECT;
1589 esp->msg_out_len = 1;
1590 scsi_esp_cmd(esp, ESP_CMD_SATN);
1593 static void esp_msgin_extended(struct esp *esp)
1595 struct esp_cmd_entry *ent = esp->active_cmd;
1596 struct scsi_cmnd *cmd = ent->cmd;
1597 struct esp_target_data *tp;
1598 int tgt = cmd->device->id;
1600 tp = &esp->target[tgt];
1601 if (esp->msg_in[2] == EXTENDED_SDTR) {
1602 esp_msgin_sdtr(esp, tp);
1603 return;
1605 if (esp->msg_in[2] == EXTENDED_WDTR) {
1606 esp_msgin_wdtr(esp, tp);
1607 return;
1610 shost_printk(KERN_INFO, esp->host,
1611 "Unexpected extended msg type %x\n", esp->msg_in[2]);
1613 esp->msg_out[0] = MESSAGE_REJECT;
1614 esp->msg_out_len = 1;
1615 scsi_esp_cmd(esp, ESP_CMD_SATN);
1618 /* Analyze msgin bytes received from target so far. Return non-zero
1619 * if there are more bytes needed to complete the message.
1621 static int esp_msgin_process(struct esp *esp)
1623 u8 msg0 = esp->msg_in[0];
1624 int len = esp->msg_in_len;
1626 if (msg0 & 0x80) {
1627 /* Identify */
1628 shost_printk(KERN_INFO, esp->host,
1629 "Unexpected msgin identify\n");
1630 return 0;
1633 switch (msg0) {
1634 case EXTENDED_MESSAGE:
1635 if (len == 1)
1636 return 1;
1637 if (len < esp->msg_in[1] + 2)
1638 return 1;
1639 esp_msgin_extended(esp);
1640 return 0;
1642 case IGNORE_WIDE_RESIDUE: {
1643 struct esp_cmd_entry *ent;
1644 struct esp_cmd_priv *spriv;
1645 if (len == 1)
1646 return 1;
1648 if (esp->msg_in[1] != 1)
1649 goto do_reject;
1651 ent = esp->active_cmd;
1652 spriv = ESP_CMD_PRIV(ent->cmd);
1654 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1655 spriv->cur_sg--;
1656 spriv->cur_residue = 1;
1657 } else
1658 spriv->cur_residue++;
1659 spriv->tot_residue++;
1660 return 0;
1662 case NOP:
1663 return 0;
1664 case RESTORE_POINTERS:
1665 esp_restore_pointers(esp, esp->active_cmd);
1666 return 0;
1667 case SAVE_POINTERS:
1668 esp_save_pointers(esp, esp->active_cmd);
1669 return 0;
1671 case COMMAND_COMPLETE:
1672 case DISCONNECT: {
1673 struct esp_cmd_entry *ent = esp->active_cmd;
1675 ent->message = msg0;
1676 esp_event(esp, ESP_EVENT_FREE_BUS);
1677 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1678 return 0;
1680 case MESSAGE_REJECT:
1681 esp_msgin_reject(esp);
1682 return 0;
1684 default:
1685 do_reject:
1686 esp->msg_out[0] = MESSAGE_REJECT;
1687 esp->msg_out_len = 1;
1688 scsi_esp_cmd(esp, ESP_CMD_SATN);
1689 return 0;
1693 static int esp_process_event(struct esp *esp)
1695 int write, i;
1697 again:
1698 write = 0;
1699 esp_log_event("process event %d phase %x\n",
1700 esp->event, esp->sreg & ESP_STAT_PMASK);
1701 switch (esp->event) {
1702 case ESP_EVENT_CHECK_PHASE:
1703 switch (esp->sreg & ESP_STAT_PMASK) {
1704 case ESP_DOP:
1705 esp_event(esp, ESP_EVENT_DATA_OUT);
1706 break;
1707 case ESP_DIP:
1708 esp_event(esp, ESP_EVENT_DATA_IN);
1709 break;
1710 case ESP_STATP:
1711 esp_flush_fifo(esp);
1712 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1713 esp_event(esp, ESP_EVENT_STATUS);
1714 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1715 return 1;
1717 case ESP_MOP:
1718 esp_event(esp, ESP_EVENT_MSGOUT);
1719 break;
1721 case ESP_MIP:
1722 esp_event(esp, ESP_EVENT_MSGIN);
1723 break;
1725 case ESP_CMDP:
1726 esp_event(esp, ESP_EVENT_CMD_START);
1727 break;
1729 default:
1730 shost_printk(KERN_INFO, esp->host,
1731 "Unexpected phase, sreg=%02x\n",
1732 esp->sreg);
1733 esp_schedule_reset(esp);
1734 return 0;
1736 goto again;
1738 case ESP_EVENT_DATA_IN:
1739 write = 1;
1740 /* fallthru */
1742 case ESP_EVENT_DATA_OUT: {
1743 struct esp_cmd_entry *ent = esp->active_cmd;
1744 struct scsi_cmnd *cmd = ent->cmd;
1745 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1746 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1748 if (esp->rev == ESP100)
1749 scsi_esp_cmd(esp, ESP_CMD_NULL);
1751 if (write)
1752 ent->flags |= ESP_CMD_FLAG_WRITE;
1753 else
1754 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1756 if (esp->ops->dma_length_limit)
1757 dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1758 dma_len);
1759 else
1760 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1762 esp->data_dma_len = dma_len;
1764 if (!dma_len) {
1765 shost_printk(KERN_ERR, esp->host,
1766 "DMA length is zero!\n");
1767 shost_printk(KERN_ERR, esp->host,
1768 "cur adr[%08llx] len[%08x]\n",
1769 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1770 esp_cur_dma_len(ent, cmd));
1771 esp_schedule_reset(esp);
1772 return 0;
1775 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1776 (unsigned long long)dma_addr, dma_len, write);
1778 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1779 write, ESP_CMD_DMA | ESP_CMD_TI);
1780 esp_event(esp, ESP_EVENT_DATA_DONE);
1781 break;
1783 case ESP_EVENT_DATA_DONE: {
1784 struct esp_cmd_entry *ent = esp->active_cmd;
1785 struct scsi_cmnd *cmd = ent->cmd;
1786 int bytes_sent;
1788 if (esp->ops->dma_error(esp)) {
1789 shost_printk(KERN_INFO, esp->host,
1790 "data done, DMA error, resetting\n");
1791 esp_schedule_reset(esp);
1792 return 0;
1795 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1796 /* XXX parity errors, etc. XXX */
1798 esp->ops->dma_drain(esp);
1800 esp->ops->dma_invalidate(esp);
1802 if (esp->ireg != ESP_INTR_BSERV) {
1803 /* We should always see exactly a bus-service
1804 * interrupt at the end of a successful transfer.
1806 shost_printk(KERN_INFO, esp->host,
1807 "data done, not BSERV, resetting\n");
1808 esp_schedule_reset(esp);
1809 return 0;
1812 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1814 esp_log_datadone("data done flgs[%x] sent[%d]\n",
1815 ent->flags, bytes_sent);
1817 if (bytes_sent < 0) {
1818 /* XXX force sync mode for this target XXX */
1819 esp_schedule_reset(esp);
1820 return 0;
1823 esp_advance_dma(esp, ent, cmd, bytes_sent);
1824 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1825 goto again;
1828 case ESP_EVENT_STATUS: {
1829 struct esp_cmd_entry *ent = esp->active_cmd;
1831 if (esp->ireg & ESP_INTR_FDONE) {
1832 ent->status = esp_read8(ESP_FDATA);
1833 ent->message = esp_read8(ESP_FDATA);
1834 scsi_esp_cmd(esp, ESP_CMD_MOK);
1835 } else if (esp->ireg == ESP_INTR_BSERV) {
1836 ent->status = esp_read8(ESP_FDATA);
1837 ent->message = 0xff;
1838 esp_event(esp, ESP_EVENT_MSGIN);
1839 return 0;
1842 if (ent->message != COMMAND_COMPLETE) {
1843 shost_printk(KERN_INFO, esp->host,
1844 "Unexpected message %x in status\n",
1845 ent->message);
1846 esp_schedule_reset(esp);
1847 return 0;
1850 esp_event(esp, ESP_EVENT_FREE_BUS);
1851 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1852 break;
1854 case ESP_EVENT_FREE_BUS: {
1855 struct esp_cmd_entry *ent = esp->active_cmd;
1856 struct scsi_cmnd *cmd = ent->cmd;
1858 if (ent->message == COMMAND_COMPLETE ||
1859 ent->message == DISCONNECT)
1860 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1862 if (ent->message == COMMAND_COMPLETE) {
1863 esp_log_cmddone("Command done status[%x] message[%x]\n",
1864 ent->status, ent->message);
1865 if (ent->status == SAM_STAT_TASK_SET_FULL)
1866 esp_event_queue_full(esp, ent);
1868 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1869 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1870 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1871 esp_autosense(esp, ent);
1872 } else {
1873 esp_cmd_is_done(esp, ent, cmd,
1874 compose_result(ent->status,
1875 ent->message,
1876 DID_OK));
1878 } else if (ent->message == DISCONNECT) {
1879 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1880 cmd->device->id,
1881 ent->tag[0], ent->tag[1]);
1883 esp->active_cmd = NULL;
1884 esp_maybe_execute_command(esp);
1885 } else {
1886 shost_printk(KERN_INFO, esp->host,
1887 "Unexpected message %x in freebus\n",
1888 ent->message);
1889 esp_schedule_reset(esp);
1890 return 0;
1892 if (esp->active_cmd)
1893 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1894 break;
1896 case ESP_EVENT_MSGOUT: {
1897 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1899 if (esp_debug & ESP_DEBUG_MSGOUT) {
1900 int i;
1901 printk("ESP: Sending message [ ");
1902 for (i = 0; i < esp->msg_out_len; i++)
1903 printk("%02x ", esp->msg_out[i]);
1904 printk("]\n");
1907 if (esp->rev == FASHME) {
1908 int i;
1910 /* Always use the fifo. */
1911 for (i = 0; i < esp->msg_out_len; i++) {
1912 esp_write8(esp->msg_out[i], ESP_FDATA);
1913 esp_write8(0, ESP_FDATA);
1915 scsi_esp_cmd(esp, ESP_CMD_TI);
1916 } else {
1917 if (esp->msg_out_len == 1) {
1918 esp_write8(esp->msg_out[0], ESP_FDATA);
1919 scsi_esp_cmd(esp, ESP_CMD_TI);
1920 } else if (esp->flags & ESP_FLAG_USE_FIFO) {
1921 for (i = 0; i < esp->msg_out_len; i++)
1922 esp_write8(esp->msg_out[i], ESP_FDATA);
1923 scsi_esp_cmd(esp, ESP_CMD_TI);
1924 } else {
1925 /* Use DMA. */
1926 memcpy(esp->command_block,
1927 esp->msg_out,
1928 esp->msg_out_len);
1930 esp->ops->send_dma_cmd(esp,
1931 esp->command_block_dma,
1932 esp->msg_out_len,
1933 esp->msg_out_len,
1935 ESP_CMD_DMA|ESP_CMD_TI);
1938 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1939 break;
1941 case ESP_EVENT_MSGOUT_DONE:
1942 if (esp->rev == FASHME) {
1943 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1944 } else {
1945 if (esp->msg_out_len > 1)
1946 esp->ops->dma_invalidate(esp);
1948 /* XXX if the chip went into disconnected mode,
1949 * we can't run the phase state machine anyway.
1951 if (!(esp->ireg & ESP_INTR_DC))
1952 scsi_esp_cmd(esp, ESP_CMD_NULL);
1955 esp->msg_out_len = 0;
1957 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1958 goto again;
1959 case ESP_EVENT_MSGIN:
1960 if (esp->ireg & ESP_INTR_BSERV) {
1961 if (esp->rev == FASHME) {
1962 if (!(esp_read8(ESP_STATUS2) &
1963 ESP_STAT2_FEMPTY))
1964 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1965 } else {
1966 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1967 if (esp->rev == ESP100)
1968 scsi_esp_cmd(esp, ESP_CMD_NULL);
1970 scsi_esp_cmd(esp, ESP_CMD_TI);
1971 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1972 return 1;
1974 if (esp->ireg & ESP_INTR_FDONE) {
1975 u8 val;
1977 if (esp->rev == FASHME)
1978 val = esp->fifo[0];
1979 else
1980 val = esp_read8(ESP_FDATA);
1981 esp->msg_in[esp->msg_in_len++] = val;
1983 esp_log_msgin("Got msgin byte %x\n", val);
1985 if (!esp_msgin_process(esp))
1986 esp->msg_in_len = 0;
1988 if (esp->rev == FASHME)
1989 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1991 scsi_esp_cmd(esp, ESP_CMD_MOK);
1993 /* Check whether a bus reset is to be done next */
1994 if (esp->event == ESP_EVENT_RESET)
1995 return 0;
1997 if (esp->event != ESP_EVENT_FREE_BUS)
1998 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1999 } else {
2000 shost_printk(KERN_INFO, esp->host,
2001 "MSGIN neither BSERV not FDON, resetting");
2002 esp_schedule_reset(esp);
2003 return 0;
2005 break;
2006 case ESP_EVENT_CMD_START:
2007 memcpy(esp->command_block, esp->cmd_bytes_ptr,
2008 esp->cmd_bytes_left);
2009 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2010 esp_event(esp, ESP_EVENT_CMD_DONE);
2011 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2012 break;
2013 case ESP_EVENT_CMD_DONE:
2014 esp->ops->dma_invalidate(esp);
2015 if (esp->ireg & ESP_INTR_BSERV) {
2016 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2017 goto again;
2019 esp_schedule_reset(esp);
2020 return 0;
2022 case ESP_EVENT_RESET:
2023 scsi_esp_cmd(esp, ESP_CMD_RS);
2024 break;
2026 default:
2027 shost_printk(KERN_INFO, esp->host,
2028 "Unexpected event %x, resetting\n", esp->event);
2029 esp_schedule_reset(esp);
2030 return 0;
2032 return 1;
2035 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2037 struct scsi_cmnd *cmd = ent->cmd;
2039 esp_unmap_dma(esp, cmd);
2040 esp_free_lun_tag(ent, cmd->device->hostdata);
2041 cmd->result = DID_RESET << 16;
2043 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
2044 esp->ops->unmap_single(esp, ent->sense_dma,
2045 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
2046 ent->sense_ptr = NULL;
2049 cmd->scsi_done(cmd);
2050 list_del(&ent->list);
2051 esp_put_ent(esp, ent);
2054 static void esp_clear_hold(struct scsi_device *dev, void *data)
2056 struct esp_lun_data *lp = dev->hostdata;
2058 BUG_ON(lp->num_tagged);
2059 lp->hold = 0;
2062 static void esp_reset_cleanup(struct esp *esp)
2064 struct esp_cmd_entry *ent, *tmp;
2065 int i;
2067 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2068 struct scsi_cmnd *cmd = ent->cmd;
2070 list_del(&ent->list);
2071 cmd->result = DID_RESET << 16;
2072 cmd->scsi_done(cmd);
2073 esp_put_ent(esp, ent);
2076 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2077 if (ent == esp->active_cmd)
2078 esp->active_cmd = NULL;
2079 esp_reset_cleanup_one(esp, ent);
2082 BUG_ON(esp->active_cmd != NULL);
2084 /* Force renegotiation of sync/wide transfers. */
2085 for (i = 0; i < ESP_MAX_TARGET; i++) {
2086 struct esp_target_data *tp = &esp->target[i];
2088 tp->esp_period = 0;
2089 tp->esp_offset = 0;
2090 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2091 ESP_CONFIG3_FSCSI |
2092 ESP_CONFIG3_FAST);
2093 tp->flags &= ~ESP_TGT_WIDE;
2094 tp->flags |= ESP_TGT_CHECK_NEGO;
2096 if (tp->starget)
2097 __starget_for_each_device(tp->starget, NULL,
2098 esp_clear_hold);
2100 esp->flags &= ~ESP_FLAG_RESETTING;
2103 /* Runs under host->lock */
2104 static void __esp_interrupt(struct esp *esp)
2106 int finish_reset, intr_done;
2107 u8 phase;
2110 * Once INTRPT is read STATUS and SSTEP are cleared.
2112 esp->sreg = esp_read8(ESP_STATUS);
2113 esp->seqreg = esp_read8(ESP_SSTEP);
2114 esp->ireg = esp_read8(ESP_INTRPT);
2116 if (esp->flags & ESP_FLAG_RESETTING) {
2117 finish_reset = 1;
2118 } else {
2119 if (esp_check_gross_error(esp))
2120 return;
2122 finish_reset = esp_check_spur_intr(esp);
2123 if (finish_reset < 0)
2124 return;
2127 if (esp->ireg & ESP_INTR_SR)
2128 finish_reset = 1;
2130 if (finish_reset) {
2131 esp_reset_cleanup(esp);
2132 if (esp->eh_reset) {
2133 complete(esp->eh_reset);
2134 esp->eh_reset = NULL;
2136 return;
2139 phase = (esp->sreg & ESP_STAT_PMASK);
2140 if (esp->rev == FASHME) {
2141 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2142 esp->select_state == ESP_SELECT_NONE &&
2143 esp->event != ESP_EVENT_STATUS &&
2144 esp->event != ESP_EVENT_DATA_DONE) ||
2145 (esp->ireg & ESP_INTR_RSEL)) {
2146 esp->sreg2 = esp_read8(ESP_STATUS2);
2147 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2148 (esp->sreg2 & ESP_STAT2_F1BYTE))
2149 hme_read_fifo(esp);
2153 esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2154 "sreg2[%02x] ireg[%02x]\n",
2155 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2157 intr_done = 0;
2159 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2160 shost_printk(KERN_INFO, esp->host,
2161 "unexpected IREG %02x\n", esp->ireg);
2162 if (esp->ireg & ESP_INTR_IC)
2163 esp_dump_cmd_log(esp);
2165 esp_schedule_reset(esp);
2166 } else {
2167 if (esp->ireg & ESP_INTR_RSEL) {
2168 if (esp->active_cmd)
2169 (void) esp_finish_select(esp);
2170 intr_done = esp_reconnect(esp);
2171 } else {
2172 /* Some combination of FDONE, BSERV, DC. */
2173 if (esp->select_state != ESP_SELECT_NONE)
2174 intr_done = esp_finish_select(esp);
2177 while (!intr_done)
2178 intr_done = esp_process_event(esp);
2181 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2183 struct esp *esp = dev_id;
2184 unsigned long flags;
2185 irqreturn_t ret;
2187 spin_lock_irqsave(esp->host->host_lock, flags);
2188 ret = IRQ_NONE;
2189 if (esp->ops->irq_pending(esp)) {
2190 ret = IRQ_HANDLED;
2191 for (;;) {
2192 int i;
2194 __esp_interrupt(esp);
2195 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2196 break;
2197 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2199 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2200 if (esp->ops->irq_pending(esp))
2201 break;
2203 if (i == ESP_QUICKIRQ_LIMIT)
2204 break;
2207 spin_unlock_irqrestore(esp->host->host_lock, flags);
2209 return ret;
2211 EXPORT_SYMBOL(scsi_esp_intr);
2213 static void esp_get_revision(struct esp *esp)
2215 u8 val;
2217 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2218 if (esp->config2 == 0) {
2219 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2220 esp_write8(esp->config2, ESP_CFG2);
2222 val = esp_read8(ESP_CFG2);
2223 val &= ~ESP_CONFIG2_MAGIC;
2225 esp->config2 = 0;
2226 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2228 * If what we write to cfg2 does not come back,
2229 * cfg2 is not implemented.
2230 * Therefore this must be a plain esp100.
2232 esp->rev = ESP100;
2233 return;
2237 esp_set_all_config3(esp, 5);
2238 esp->prev_cfg3 = 5;
2239 esp_write8(esp->config2, ESP_CFG2);
2240 esp_write8(0, ESP_CFG3);
2241 esp_write8(esp->prev_cfg3, ESP_CFG3);
2243 val = esp_read8(ESP_CFG3);
2244 if (val != 5) {
2245 /* The cfg2 register is implemented, however
2246 * cfg3 is not, must be esp100a.
2248 esp->rev = ESP100A;
2249 } else {
2250 esp_set_all_config3(esp, 0);
2251 esp->prev_cfg3 = 0;
2252 esp_write8(esp->prev_cfg3, ESP_CFG3);
2254 /* All of cfg{1,2,3} implemented, must be one of
2255 * the fas variants, figure out which one.
2257 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2258 esp->rev = FAST;
2259 esp->sync_defp = SYNC_DEFP_FAST;
2260 } else {
2261 esp->rev = ESP236;
2266 static void esp_init_swstate(struct esp *esp)
2268 int i;
2270 INIT_LIST_HEAD(&esp->queued_cmds);
2271 INIT_LIST_HEAD(&esp->active_cmds);
2272 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2274 /* Start with a clear state, domain validation (via ->slave_configure,
2275 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2276 * commands.
2278 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2279 esp->target[i].flags = 0;
2280 esp->target[i].nego_goal_period = 0;
2281 esp->target[i].nego_goal_offset = 0;
2282 esp->target[i].nego_goal_width = 0;
2283 esp->target[i].nego_goal_tags = 0;
2287 /* This places the ESP into a known state at boot time. */
2288 static void esp_bootup_reset(struct esp *esp)
2290 u8 val;
2292 /* Reset the DMA */
2293 esp->ops->reset_dma(esp);
2295 /* Reset the ESP */
2296 esp_reset_esp(esp);
2298 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2299 val = esp_read8(ESP_CFG1);
2300 val |= ESP_CONFIG1_SRRDISAB;
2301 esp_write8(val, ESP_CFG1);
2303 scsi_esp_cmd(esp, ESP_CMD_RS);
2304 udelay(400);
2306 esp_write8(esp->config1, ESP_CFG1);
2308 /* Eat any bitrot in the chip and we are done... */
2309 esp_read8(ESP_INTRPT);
2312 static void esp_set_clock_params(struct esp *esp)
2314 int fhz;
2315 u8 ccf;
2317 /* This is getting messy but it has to be done correctly or else
2318 * you get weird behavior all over the place. We are trying to
2319 * basically figure out three pieces of information.
2321 * a) Clock Conversion Factor
2323 * This is a representation of the input crystal clock frequency
2324 * going into the ESP on this machine. Any operation whose timing
2325 * is longer than 400ns depends on this value being correct. For
2326 * example, you'll get blips for arbitration/selection during high
2327 * load or with multiple targets if this is not set correctly.
2329 * b) Selection Time-Out
2331 * The ESP isn't very bright and will arbitrate for the bus and try
2332 * to select a target forever if you let it. This value tells the
2333 * ESP when it has taken too long to negotiate and that it should
2334 * interrupt the CPU so we can see what happened. The value is
2335 * computed as follows (from NCR/Symbios chip docs).
2337 * (Time Out Period) * (Input Clock)
2338 * STO = ----------------------------------
2339 * (8192) * (Clock Conversion Factor)
2341 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2343 * c) Imperical constants for synchronous offset and transfer period
2344 * register values
2346 * This entails the smallest and largest sync period we could ever
2347 * handle on this ESP.
2349 fhz = esp->cfreq;
2351 ccf = ((fhz / 1000000) + 4) / 5;
2352 if (ccf == 1)
2353 ccf = 2;
2355 /* If we can't find anything reasonable, just assume 20MHZ.
2356 * This is the clock frequency of the older sun4c's where I've
2357 * been unable to find the clock-frequency PROM property. All
2358 * other machines provide useful values it seems.
2360 if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2361 fhz = 20000000;
2362 ccf = 4;
2365 esp->cfact = (ccf == 8 ? 0 : ccf);
2366 esp->cfreq = fhz;
2367 esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2368 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2369 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2370 esp->sync_defp = SYNC_DEFP_SLOW;
2373 static const char *esp_chip_names[] = {
2374 "ESP100",
2375 "ESP100A",
2376 "ESP236",
2377 "FAS236",
2378 "FAS100A",
2379 "FAST",
2380 "FASHME",
2381 "AM53C974",
2384 static struct scsi_transport_template *esp_transport_template;
2386 int scsi_esp_register(struct esp *esp, struct device *dev)
2388 static int instance;
2389 int err;
2391 if (!esp->num_tags)
2392 esp->num_tags = ESP_DEFAULT_TAGS;
2393 esp->host->transportt = esp_transport_template;
2394 esp->host->max_lun = ESP_MAX_LUN;
2395 esp->host->cmd_per_lun = 2;
2396 esp->host->unique_id = instance;
2398 esp_set_clock_params(esp);
2400 esp_get_revision(esp);
2402 esp_init_swstate(esp);
2404 esp_bootup_reset(esp);
2406 dev_printk(KERN_INFO, dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2407 esp->host->unique_id, esp->regs, esp->dma_regs,
2408 esp->host->irq);
2409 dev_printk(KERN_INFO, dev,
2410 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2411 esp->host->unique_id, esp_chip_names[esp->rev],
2412 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2414 /* Let the SCSI bus reset settle. */
2415 ssleep(esp_bus_reset_settle);
2417 err = scsi_add_host(esp->host, dev);
2418 if (err)
2419 return err;
2421 instance++;
2423 scsi_scan_host(esp->host);
2425 return 0;
2427 EXPORT_SYMBOL(scsi_esp_register);
2429 void scsi_esp_unregister(struct esp *esp)
2431 scsi_remove_host(esp->host);
2433 EXPORT_SYMBOL(scsi_esp_unregister);
2435 static int esp_target_alloc(struct scsi_target *starget)
2437 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2438 struct esp_target_data *tp = &esp->target[starget->id];
2440 tp->starget = starget;
2442 return 0;
2445 static void esp_target_destroy(struct scsi_target *starget)
2447 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2448 struct esp_target_data *tp = &esp->target[starget->id];
2450 tp->starget = NULL;
2453 static int esp_slave_alloc(struct scsi_device *dev)
2455 struct esp *esp = shost_priv(dev->host);
2456 struct esp_target_data *tp = &esp->target[dev->id];
2457 struct esp_lun_data *lp;
2459 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2460 if (!lp)
2461 return -ENOMEM;
2462 dev->hostdata = lp;
2464 spi_min_period(tp->starget) = esp->min_period;
2465 spi_max_offset(tp->starget) = 15;
2467 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2468 spi_max_width(tp->starget) = 1;
2469 else
2470 spi_max_width(tp->starget) = 0;
2472 return 0;
2475 static int esp_slave_configure(struct scsi_device *dev)
2477 struct esp *esp = shost_priv(dev->host);
2478 struct esp_target_data *tp = &esp->target[dev->id];
2480 if (dev->tagged_supported)
2481 scsi_change_queue_depth(dev, esp->num_tags);
2483 tp->flags |= ESP_TGT_DISCONNECT;
2485 if (!spi_initial_dv(dev->sdev_target))
2486 spi_dv_device(dev);
2488 return 0;
2491 static void esp_slave_destroy(struct scsi_device *dev)
2493 struct esp_lun_data *lp = dev->hostdata;
2495 kfree(lp);
2496 dev->hostdata = NULL;
2499 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2501 struct esp *esp = shost_priv(cmd->device->host);
2502 struct esp_cmd_entry *ent, *tmp;
2503 struct completion eh_done;
2504 unsigned long flags;
2506 /* XXX This helps a lot with debugging but might be a bit
2507 * XXX much for the final driver.
2509 spin_lock_irqsave(esp->host->host_lock, flags);
2510 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2511 cmd, cmd->cmnd[0]);
2512 ent = esp->active_cmd;
2513 if (ent)
2514 shost_printk(KERN_ERR, esp->host,
2515 "Current command [%p:%02x]\n",
2516 ent->cmd, ent->cmd->cmnd[0]);
2517 list_for_each_entry(ent, &esp->queued_cmds, list) {
2518 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2519 ent->cmd, ent->cmd->cmnd[0]);
2521 list_for_each_entry(ent, &esp->active_cmds, list) {
2522 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2523 ent->cmd, ent->cmd->cmnd[0]);
2525 esp_dump_cmd_log(esp);
2526 spin_unlock_irqrestore(esp->host->host_lock, flags);
2528 spin_lock_irqsave(esp->host->host_lock, flags);
2530 ent = NULL;
2531 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2532 if (tmp->cmd == cmd) {
2533 ent = tmp;
2534 break;
2538 if (ent) {
2539 /* Easiest case, we didn't even issue the command
2540 * yet so it is trivial to abort.
2542 list_del(&ent->list);
2544 cmd->result = DID_ABORT << 16;
2545 cmd->scsi_done(cmd);
2547 esp_put_ent(esp, ent);
2549 goto out_success;
2552 init_completion(&eh_done);
2554 ent = esp->active_cmd;
2555 if (ent && ent->cmd == cmd) {
2556 /* Command is the currently active command on
2557 * the bus. If we already have an output message
2558 * pending, no dice.
2560 if (esp->msg_out_len)
2561 goto out_failure;
2563 /* Send out an abort, encouraging the target to
2564 * go to MSGOUT phase by asserting ATN.
2566 esp->msg_out[0] = ABORT_TASK_SET;
2567 esp->msg_out_len = 1;
2568 ent->eh_done = &eh_done;
2570 scsi_esp_cmd(esp, ESP_CMD_SATN);
2571 } else {
2572 /* The command is disconnected. This is not easy to
2573 * abort. For now we fail and let the scsi error
2574 * handling layer go try a scsi bus reset or host
2575 * reset.
2577 * What we could do is put together a scsi command
2578 * solely for the purpose of sending an abort message
2579 * to the target. Coming up with all the code to
2580 * cook up scsi commands, special case them everywhere,
2581 * etc. is for questionable gain and it would be better
2582 * if the generic scsi error handling layer could do at
2583 * least some of that for us.
2585 * Anyways this is an area for potential future improvement
2586 * in this driver.
2588 goto out_failure;
2591 spin_unlock_irqrestore(esp->host->host_lock, flags);
2593 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2594 spin_lock_irqsave(esp->host->host_lock, flags);
2595 ent->eh_done = NULL;
2596 spin_unlock_irqrestore(esp->host->host_lock, flags);
2598 return FAILED;
2601 return SUCCESS;
2603 out_success:
2604 spin_unlock_irqrestore(esp->host->host_lock, flags);
2605 return SUCCESS;
2607 out_failure:
2608 /* XXX This might be a good location to set ESP_TGT_BROKEN
2609 * XXX since we know which target/lun in particular is
2610 * XXX causing trouble.
2612 spin_unlock_irqrestore(esp->host->host_lock, flags);
2613 return FAILED;
2616 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2618 struct esp *esp = shost_priv(cmd->device->host);
2619 struct completion eh_reset;
2620 unsigned long flags;
2622 init_completion(&eh_reset);
2624 spin_lock_irqsave(esp->host->host_lock, flags);
2626 esp->eh_reset = &eh_reset;
2628 /* XXX This is too simple... We should add lots of
2629 * XXX checks here so that if we find that the chip is
2630 * XXX very wedged we return failure immediately so
2631 * XXX that we can perform a full chip reset.
2633 esp->flags |= ESP_FLAG_RESETTING;
2634 scsi_esp_cmd(esp, ESP_CMD_RS);
2636 spin_unlock_irqrestore(esp->host->host_lock, flags);
2638 ssleep(esp_bus_reset_settle);
2640 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2641 spin_lock_irqsave(esp->host->host_lock, flags);
2642 esp->eh_reset = NULL;
2643 spin_unlock_irqrestore(esp->host->host_lock, flags);
2645 return FAILED;
2648 return SUCCESS;
2651 /* All bets are off, reset the entire device. */
2652 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2654 struct esp *esp = shost_priv(cmd->device->host);
2655 unsigned long flags;
2657 spin_lock_irqsave(esp->host->host_lock, flags);
2658 esp_bootup_reset(esp);
2659 esp_reset_cleanup(esp);
2660 spin_unlock_irqrestore(esp->host->host_lock, flags);
2662 ssleep(esp_bus_reset_settle);
2664 return SUCCESS;
2667 static const char *esp_info(struct Scsi_Host *host)
2669 return "esp";
2672 struct scsi_host_template scsi_esp_template = {
2673 .module = THIS_MODULE,
2674 .name = "esp",
2675 .info = esp_info,
2676 .queuecommand = esp_queuecommand,
2677 .target_alloc = esp_target_alloc,
2678 .target_destroy = esp_target_destroy,
2679 .slave_alloc = esp_slave_alloc,
2680 .slave_configure = esp_slave_configure,
2681 .slave_destroy = esp_slave_destroy,
2682 .eh_abort_handler = esp_eh_abort_handler,
2683 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2684 .eh_host_reset_handler = esp_eh_host_reset_handler,
2685 .can_queue = 7,
2686 .this_id = 7,
2687 .sg_tablesize = SG_ALL,
2688 .use_clustering = ENABLE_CLUSTERING,
2689 .max_sectors = 0xffff,
2690 .skip_settle_delay = 1,
2692 EXPORT_SYMBOL(scsi_esp_template);
2694 static void esp_get_signalling(struct Scsi_Host *host)
2696 struct esp *esp = shost_priv(host);
2697 enum spi_signal_type type;
2699 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2700 type = SPI_SIGNAL_HVD;
2701 else
2702 type = SPI_SIGNAL_SE;
2704 spi_signalling(host) = type;
2707 static void esp_set_offset(struct scsi_target *target, int offset)
2709 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2710 struct esp *esp = shost_priv(host);
2711 struct esp_target_data *tp = &esp->target[target->id];
2713 if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2714 tp->nego_goal_offset = 0;
2715 else
2716 tp->nego_goal_offset = offset;
2717 tp->flags |= ESP_TGT_CHECK_NEGO;
2720 static void esp_set_period(struct scsi_target *target, int period)
2722 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2723 struct esp *esp = shost_priv(host);
2724 struct esp_target_data *tp = &esp->target[target->id];
2726 tp->nego_goal_period = period;
2727 tp->flags |= ESP_TGT_CHECK_NEGO;
2730 static void esp_set_width(struct scsi_target *target, int width)
2732 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2733 struct esp *esp = shost_priv(host);
2734 struct esp_target_data *tp = &esp->target[target->id];
2736 tp->nego_goal_width = (width ? 1 : 0);
2737 tp->flags |= ESP_TGT_CHECK_NEGO;
2740 static struct spi_function_template esp_transport_ops = {
2741 .set_offset = esp_set_offset,
2742 .show_offset = 1,
2743 .set_period = esp_set_period,
2744 .show_period = 1,
2745 .set_width = esp_set_width,
2746 .show_width = 1,
2747 .get_signalling = esp_get_signalling,
2750 static int __init esp_init(void)
2752 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2753 sizeof(struct esp_cmd_priv));
2755 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2756 if (!esp_transport_template)
2757 return -ENODEV;
2759 return 0;
2762 static void __exit esp_exit(void)
2764 spi_release_transport(esp_transport_template);
2767 MODULE_DESCRIPTION("ESP SCSI driver core");
2768 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2769 MODULE_LICENSE("GPL");
2770 MODULE_VERSION(DRV_VERSION);
2772 module_param(esp_bus_reset_settle, int, 0);
2773 MODULE_PARM_DESC(esp_bus_reset_settle,
2774 "ESP scsi bus reset delay in seconds");
2776 module_param(esp_debug, int, 0);
2777 MODULE_PARM_DESC(esp_debug,
2778 "ESP bitmapped debugging message enable value:\n"
2779 " 0x00000001 Log interrupt events\n"
2780 " 0x00000002 Log scsi commands\n"
2781 " 0x00000004 Log resets\n"
2782 " 0x00000008 Log message in events\n"
2783 " 0x00000010 Log message out events\n"
2784 " 0x00000020 Log command completion\n"
2785 " 0x00000040 Log disconnects\n"
2786 " 0x00000080 Log data start\n"
2787 " 0x00000100 Log data done\n"
2788 " 0x00000200 Log reconnects\n"
2789 " 0x00000400 Log auto-sense data\n"
2792 module_init(esp_init);
2793 module_exit(esp_exit);