2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list
*t
)
46 struct sas_task_slow
*slow
= from_timer(slow
, t
, timer
);
47 struct sas_task
*task
= slow
->task
;
50 spin_lock_irqsave(&task
->task_state_lock
, flags
);
51 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
52 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
53 complete(&task
->slow_task
->completion
);
55 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
58 static void smp_task_done(struct sas_task
*task
)
60 del_timer(&task
->slow_task
->timer
);
61 complete(&task
->slow_task
->completion
);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task_sg(struct domain_device
*dev
,
68 struct scatterlist
*req
, struct scatterlist
*resp
)
71 struct sas_task
*task
= NULL
;
72 struct sas_internal
*i
=
73 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
75 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
76 for (retry
= 0; retry
< 3; retry
++) {
77 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
82 task
= sas_alloc_slow_task(GFP_KERNEL
);
88 task
->task_proto
= dev
->tproto
;
89 task
->smp_task
.smp_req
= *req
;
90 task
->smp_task
.smp_resp
= *resp
;
92 task
->task_done
= smp_task_done
;
94 task
->slow_task
->timer
.function
= smp_task_timedout
;
95 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
96 add_timer(&task
->slow_task
->timer
);
98 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
101 del_timer(&task
->slow_task
->timer
);
102 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
106 wait_for_completion(&task
->slow_task
->completion
);
108 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
109 SAS_DPRINTK("smp task timed out or aborted\n");
110 i
->dft
->lldd_abort_task(task
);
111 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
112 SAS_DPRINTK("SMP task aborted and not done\n");
116 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
117 task
->task_status
.stat
== SAM_STAT_GOOD
) {
121 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
122 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
123 /* no error, but return the number of bytes of
125 res
= task
->task_status
.residual
;
128 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
129 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
133 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
134 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 "status 0x%x\n", __func__
,
139 SAS_ADDR(dev
->sas_addr
),
140 task
->task_status
.resp
,
141 task
->task_status
.stat
);
146 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
148 BUG_ON(retry
== 3 && task
!= NULL
);
153 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
154 void *resp
, int resp_size
)
156 struct scatterlist req_sg
;
157 struct scatterlist resp_sg
;
159 sg_init_one(&req_sg
, req
, req_size
);
160 sg_init_one(&resp_sg
, resp
, resp_size
);
161 return smp_execute_task_sg(dev
, &req_sg
, &resp_sg
);
164 /* ---------- Allocations ---------- */
166 static inline void *alloc_smp_req(int size
)
168 u8
*p
= kzalloc(size
, GFP_KERNEL
);
174 static inline void *alloc_smp_resp(int size
)
176 return kzalloc(size
, GFP_KERNEL
);
179 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
181 switch (phy
->routing_attr
) {
183 if (dev
->ex_dev
.t2t_supp
)
189 case SUBTRACTIVE_ROUTING
:
196 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
198 /* This is detecting a failure to transmit initial dev to host
199 * FIS as described in section J.5 of sas-2 r16
201 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
202 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
203 return SAS_SATA_PENDING
;
205 return dr
->attached_dev_type
;
208 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
210 enum sas_device_type dev_type
;
211 enum sas_linkrate linkrate
;
212 u8 sas_addr
[SAS_ADDR_SIZE
];
213 struct smp_resp
*resp
= rsp
;
214 struct discover_resp
*dr
= &resp
->disc
;
215 struct sas_ha_struct
*ha
= dev
->port
->ha
;
216 struct expander_device
*ex
= &dev
->ex_dev
;
217 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
218 struct sas_rphy
*rphy
= dev
->rphy
;
219 bool new_phy
= !phy
->phy
;
223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
225 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
227 /* FIXME: error_handling */
231 switch (resp
->result
) {
232 case SMP_RESP_PHY_VACANT
:
233 phy
->phy_state
= PHY_VACANT
;
236 phy
->phy_state
= PHY_NOT_PRESENT
;
238 case SMP_RESP_FUNC_ACC
:
239 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
243 /* check if anything important changed to squelch debug */
244 dev_type
= phy
->attached_dev_type
;
245 linkrate
= phy
->linkrate
;
246 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
248 /* Handle vacant phy - rest of dr data is not valid so skip it */
249 if (phy
->phy_state
== PHY_VACANT
) {
250 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
251 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
253 phy
->phy_id
= phy_id
;
259 phy
->attached_dev_type
= to_dev_type(dr
);
260 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
262 phy
->phy_id
= phy_id
;
263 phy
->linkrate
= dr
->linkrate
;
264 phy
->attached_sata_host
= dr
->attached_sata_host
;
265 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
266 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
267 phy
->attached_iproto
= dr
->iproto
<< 1;
268 phy
->attached_tproto
= dr
->tproto
<< 1;
269 /* help some expanders that fail to zero sas_address in the 'no
272 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
273 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
274 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
276 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
277 phy
->attached_phy_id
= dr
->attached_phy_id
;
278 phy
->phy_change_count
= dr
->change_count
;
279 phy
->routing_attr
= dr
->routing_attr
;
280 phy
->virtual = dr
->virtual;
281 phy
->last_da_index
= -1;
283 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
284 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
285 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
286 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
287 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
288 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
289 phy
->phy
->identify
.phy_identifier
= phy_id
;
290 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
291 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
292 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
293 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
294 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
295 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
299 if (sas_phy_add(phy
->phy
)) {
300 sas_phy_free(phy
->phy
);
305 switch (phy
->attached_dev_type
) {
306 case SAS_SATA_PENDING
:
307 type
= "stp pending";
313 if (phy
->attached_iproto
) {
314 if (phy
->attached_tproto
)
315 type
= "host+target";
319 if (dr
->attached_sata_dev
)
325 case SAS_EDGE_EXPANDER_DEVICE
:
326 case SAS_FANOUT_EXPANDER_DEVICE
:
333 /* this routine is polled by libata error recovery so filter
334 * unimportant messages
336 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
337 phy
->linkrate
!= linkrate
||
338 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
343 /* if the attached device type changed and ata_eh is active,
344 * make sure we run revalidation when eh completes (see:
345 * sas_enable_revalidation)
347 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
348 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
352 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
353 sas_route_char(dev
, phy
), phy
->linkrate
,
354 SAS_ADDR(phy
->attached_sas_addr
), type
);
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
360 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
361 struct domain_device
*dev
;
362 struct sas_rphy
*rphy
;
367 rphy
= ex_phy
->port
->rphy
;
371 dev
= sas_find_dev_by_rphy(rphy
);
373 if (dev
&& dev_is_sata(dev
))
379 #define DISCOVER_REQ_SIZE 16
380 #define DISCOVER_RESP_SIZE 56
382 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
383 u8
*disc_resp
, int single
)
385 struct discover_resp
*dr
;
388 disc_req
[9] = single
;
390 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
391 disc_resp
, DISCOVER_RESP_SIZE
);
394 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
395 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
396 sas_printk("Found loopback topology, just ignore it!\n");
399 sas_set_ex_phy(dev
, single
, disc_resp
);
403 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
405 struct expander_device
*ex
= &dev
->ex_dev
;
410 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
414 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
420 disc_req
[1] = SMP_DISCOVER
;
422 if (0 <= single
&& single
< ex
->num_phys
) {
423 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
427 for (i
= 0; i
< ex
->num_phys
; i
++) {
428 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
440 static int sas_expander_discover(struct domain_device
*dev
)
442 struct expander_device
*ex
= &dev
->ex_dev
;
445 ex
->ex_phy
= kcalloc(ex
->num_phys
, sizeof(*ex
->ex_phy
), GFP_KERNEL
);
449 res
= sas_ex_phy_discover(dev
, -1);
460 #define MAX_EXPANDER_PHYS 128
462 static void ex_assign_report_general(struct domain_device
*dev
,
463 struct smp_resp
*resp
)
465 struct report_general_resp
*rg
= &resp
->rg
;
467 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
468 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
469 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
470 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
471 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
472 dev
->ex_dev
.configuring
= rg
->configuring
;
473 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
476 #define RG_REQ_SIZE 8
477 #define RG_RESP_SIZE 32
479 static int sas_ex_general(struct domain_device
*dev
)
482 struct smp_resp
*rg_resp
;
486 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
490 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
496 rg_req
[1] = SMP_REPORT_GENERAL
;
498 for (i
= 0; i
< 5; i
++) {
499 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 SAS_ADDR(dev
->sas_addr
), res
);
506 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
509 res
= rg_resp
->result
;
513 ex_assign_report_general(dev
, rg_resp
);
515 if (dev
->ex_dev
.configuring
) {
516 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 SAS_ADDR(dev
->sas_addr
));
518 schedule_timeout_interruptible(5*HZ
);
528 static void ex_assign_manuf_info(struct domain_device
*dev
, void
531 u8
*mi_resp
= _mi_resp
;
532 struct sas_rphy
*rphy
= dev
->rphy
;
533 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
535 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
536 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
537 memcpy(edev
->product_rev
, mi_resp
+ 36,
538 SAS_EXPANDER_PRODUCT_REV_LEN
);
540 if (mi_resp
[8] & 1) {
541 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
543 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
544 edev
->component_revision_id
= mi_resp
[50];
548 #define MI_REQ_SIZE 8
549 #define MI_RESP_SIZE 64
551 static int sas_ex_manuf_info(struct domain_device
*dev
)
557 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
561 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
567 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
569 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 SAS_ADDR(dev
->sas_addr
), res
);
574 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
580 ex_assign_manuf_info(dev
, mi_resp
);
587 #define PC_REQ_SIZE 44
588 #define PC_RESP_SIZE 8
590 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
591 enum phy_func phy_func
,
592 struct sas_phy_linkrates
*rates
)
598 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
602 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
608 pc_req
[1] = SMP_PHY_CONTROL
;
610 pc_req
[10]= phy_func
;
612 pc_req
[32] = rates
->minimum_linkrate
<< 4;
613 pc_req
[33] = rates
->maximum_linkrate
<< 4;
616 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
618 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
619 SAS_ADDR(dev
->sas_addr
), phy_id
, res
);
620 } else if (pc_resp
[2] != SMP_RESP_FUNC_ACC
) {
621 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
622 SAS_ADDR(dev
->sas_addr
), phy_id
, pc_resp
[2]);
630 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
632 struct expander_device
*ex
= &dev
->ex_dev
;
633 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
635 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
636 phy
->linkrate
= SAS_PHY_DISABLED
;
639 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
641 struct expander_device
*ex
= &dev
->ex_dev
;
644 for (i
= 0; i
< ex
->num_phys
; i
++) {
645 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
647 if (phy
->phy_state
== PHY_VACANT
||
648 phy
->phy_state
== PHY_NOT_PRESENT
)
651 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
652 sas_ex_disable_phy(dev
, i
);
656 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
659 struct domain_device
*dev
;
661 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
663 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
664 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
670 #define RPEL_REQ_SIZE 16
671 #define RPEL_RESP_SIZE 32
672 int sas_smp_get_phy_events(struct sas_phy
*phy
)
677 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
678 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
680 req
= alloc_smp_req(RPEL_REQ_SIZE
);
684 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
690 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
691 req
[9] = phy
->number
;
693 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
694 resp
, RPEL_RESP_SIZE
);
699 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
700 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
701 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
702 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
711 #ifdef CONFIG_SCSI_SAS_ATA
713 #define RPS_REQ_SIZE 16
714 #define RPS_RESP_SIZE 60
716 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
717 struct smp_resp
*rps_resp
)
720 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
721 u8
*resp
= (u8
*)rps_resp
;
726 rps_req
[1] = SMP_REPORT_PHY_SATA
;
729 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
730 rps_resp
, RPS_RESP_SIZE
);
732 /* 0x34 is the FIS type for the D2H fis. There's a potential
733 * standards cockup here. sas-2 explicitly specifies the FIS
734 * should be encoded so that FIS type is in resp[24].
735 * However, some expanders endian reverse this. Undo the
737 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
740 for (i
= 0; i
< 5; i
++) {
745 resp
[j
+ 0] = resp
[j
+ 3];
746 resp
[j
+ 1] = resp
[j
+ 2];
757 static void sas_ex_get_linkrate(struct domain_device
*parent
,
758 struct domain_device
*child
,
759 struct ex_phy
*parent_phy
)
761 struct expander_device
*parent_ex
= &parent
->ex_dev
;
762 struct sas_port
*port
;
767 port
= parent_phy
->port
;
769 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
770 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
772 if (phy
->phy_state
== PHY_VACANT
||
773 phy
->phy_state
== PHY_NOT_PRESENT
)
776 if (SAS_ADDR(phy
->attached_sas_addr
) ==
777 SAS_ADDR(child
->sas_addr
)) {
779 child
->min_linkrate
= min(parent
->min_linkrate
,
781 child
->max_linkrate
= max(parent
->max_linkrate
,
784 sas_port_add_phy(port
, phy
->phy
);
787 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
788 child
->pathways
= min(child
->pathways
, parent
->pathways
);
791 static struct domain_device
*sas_ex_discover_end_dev(
792 struct domain_device
*parent
, int phy_id
)
794 struct expander_device
*parent_ex
= &parent
->ex_dev
;
795 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
796 struct domain_device
*child
= NULL
;
797 struct sas_rphy
*rphy
;
800 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
803 child
= sas_alloc_device();
807 kref_get(&parent
->kref
);
808 child
->parent
= parent
;
809 child
->port
= parent
->port
;
810 child
->iproto
= phy
->attached_iproto
;
811 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
812 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
814 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
815 if (unlikely(!phy
->port
))
817 if (unlikely(sas_port_add(phy
->port
) != 0)) {
818 sas_port_free(phy
->port
);
822 sas_ex_get_linkrate(parent
, child
, phy
);
823 sas_device_set_phy(child
, phy
->port
);
825 #ifdef CONFIG_SCSI_SAS_ATA
826 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
827 if (child
->linkrate
> parent
->min_linkrate
) {
828 struct sas_phy_linkrates rates
= {
829 .maximum_linkrate
= parent
->min_linkrate
,
830 .minimum_linkrate
= parent
->min_linkrate
,
834 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
835 SAS_ADDR(child
->sas_addr
), phy_id
);
836 ret
= sas_smp_phy_control(parent
, phy_id
,
837 PHY_FUNC_LINK_RESET
, &rates
);
839 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
840 SAS_ADDR(child
->sas_addr
), phy_id
, ret
);
843 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
844 SAS_ADDR(child
->sas_addr
), phy_id
);
845 child
->linkrate
= child
->min_linkrate
;
847 res
= sas_get_ata_info(child
, phy
);
852 res
= sas_ata_init(child
);
855 rphy
= sas_end_device_alloc(phy
->port
);
858 rphy
->identify
.phy_identifier
= phy_id
;
861 get_device(&rphy
->dev
);
863 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
865 res
= sas_discover_sata(child
);
867 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
868 "%016llx:0x%x returned 0x%x\n",
869 SAS_ADDR(child
->sas_addr
),
870 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
875 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
876 child
->dev_type
= SAS_END_DEVICE
;
877 rphy
= sas_end_device_alloc(phy
->port
);
878 /* FIXME: error handling */
881 child
->tproto
= phy
->attached_tproto
;
885 get_device(&rphy
->dev
);
886 rphy
->identify
.phy_identifier
= phy_id
;
887 sas_fill_in_rphy(child
, rphy
);
889 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
891 res
= sas_discover_end_dev(child
);
893 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
894 "at %016llx:0x%x returned 0x%x\n",
895 SAS_ADDR(child
->sas_addr
),
896 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
900 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
901 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
906 list_add_tail(&child
->siblings
, &parent_ex
->children
);
910 sas_rphy_free(child
->rphy
);
911 list_del(&child
->disco_list_node
);
912 spin_lock_irq(&parent
->port
->dev_list_lock
);
913 list_del(&child
->dev_list_node
);
914 spin_unlock_irq(&parent
->port
->dev_list_lock
);
916 sas_port_delete(phy
->port
);
919 sas_put_device(child
);
923 /* See if this phy is part of a wide port */
924 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
926 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
929 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
930 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
935 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
936 SAS_ADDR_SIZE
) && ephy
->port
) {
937 sas_port_add_phy(ephy
->port
, phy
->phy
);
938 phy
->port
= ephy
->port
;
939 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
947 static struct domain_device
*sas_ex_discover_expander(
948 struct domain_device
*parent
, int phy_id
)
950 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
951 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
952 struct domain_device
*child
= NULL
;
953 struct sas_rphy
*rphy
;
954 struct sas_expander_device
*edev
;
955 struct asd_sas_port
*port
;
958 if (phy
->routing_attr
== DIRECT_ROUTING
) {
959 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
961 SAS_ADDR(parent
->sas_addr
), phy_id
,
962 SAS_ADDR(phy
->attached_sas_addr
),
963 phy
->attached_phy_id
);
966 child
= sas_alloc_device();
970 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
971 /* FIXME: better error handling */
972 BUG_ON(sas_port_add(phy
->port
) != 0);
975 switch (phy
->attached_dev_type
) {
976 case SAS_EDGE_EXPANDER_DEVICE
:
977 rphy
= sas_expander_alloc(phy
->port
,
978 SAS_EDGE_EXPANDER_DEVICE
);
980 case SAS_FANOUT_EXPANDER_DEVICE
:
981 rphy
= sas_expander_alloc(phy
->port
,
982 SAS_FANOUT_EXPANDER_DEVICE
);
985 rphy
= NULL
; /* shut gcc up */
990 get_device(&rphy
->dev
);
991 edev
= rphy_to_expander_device(rphy
);
992 child
->dev_type
= phy
->attached_dev_type
;
993 kref_get(&parent
->kref
);
994 child
->parent
= parent
;
996 child
->iproto
= phy
->attached_iproto
;
997 child
->tproto
= phy
->attached_tproto
;
998 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
999 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
1000 sas_ex_get_linkrate(parent
, child
, phy
);
1001 edev
->level
= parent_ex
->level
+ 1;
1002 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
1004 sas_init_dev(child
);
1005 sas_fill_in_rphy(child
, rphy
);
1008 spin_lock_irq(&parent
->port
->dev_list_lock
);
1009 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
1010 spin_unlock_irq(&parent
->port
->dev_list_lock
);
1012 res
= sas_discover_expander(child
);
1014 sas_rphy_delete(rphy
);
1015 spin_lock_irq(&parent
->port
->dev_list_lock
);
1016 list_del(&child
->dev_list_node
);
1017 spin_unlock_irq(&parent
->port
->dev_list_lock
);
1018 sas_put_device(child
);
1019 sas_port_delete(phy
->port
);
1023 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
1027 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
1029 struct expander_device
*ex
= &dev
->ex_dev
;
1030 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
1031 struct domain_device
*child
= NULL
;
1035 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
1036 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
1037 res
= sas_ex_phy_discover(dev
, phy_id
);
1042 /* Parent and domain coherency */
1043 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1044 SAS_ADDR(dev
->port
->sas_addr
))) {
1045 sas_add_parent_port(dev
, phy_id
);
1048 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1049 SAS_ADDR(dev
->parent
->sas_addr
))) {
1050 sas_add_parent_port(dev
, phy_id
);
1051 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1052 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1056 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1057 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1059 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1060 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1061 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1062 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1065 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1068 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1069 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1070 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1071 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1072 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1073 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1074 SAS_ADDR(dev
->sas_addr
),
1079 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1081 SAS_DPRINTK("configure routing for dev %016llx "
1082 "reported 0x%x. Forgotten\n",
1083 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1084 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1088 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1089 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1090 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1094 switch (ex_phy
->attached_dev_type
) {
1095 case SAS_END_DEVICE
:
1096 case SAS_SATA_PENDING
:
1097 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1099 case SAS_FANOUT_EXPANDER_DEVICE
:
1100 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1101 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1102 "attached to ex %016llx phy 0x%x\n",
1103 SAS_ADDR(ex_phy
->attached_sas_addr
),
1104 ex_phy
->attached_phy_id
,
1105 SAS_ADDR(dev
->sas_addr
),
1107 sas_ex_disable_phy(dev
, phy_id
);
1110 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1111 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1113 case SAS_EDGE_EXPANDER_DEVICE
:
1114 child
= sas_ex_discover_expander(dev
, phy_id
);
1123 for (i
= 0; i
< ex
->num_phys
; i
++) {
1124 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1125 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1128 * Due to races, the phy might not get added to the
1129 * wide port, so we add the phy to the wide port here.
1131 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1132 SAS_ADDR(child
->sas_addr
)) {
1133 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1134 if (sas_ex_join_wide_port(dev
, i
))
1135 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1136 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1145 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1147 struct expander_device
*ex
= &dev
->ex_dev
;
1150 for (i
= 0; i
< ex
->num_phys
; i
++) {
1151 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1153 if (phy
->phy_state
== PHY_VACANT
||
1154 phy
->phy_state
== PHY_NOT_PRESENT
)
1157 if ((phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1158 phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) &&
1159 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1161 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1169 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1171 struct expander_device
*ex
= &dev
->ex_dev
;
1172 struct domain_device
*child
;
1173 u8 sub_addr
[8] = {0, };
1175 list_for_each_entry(child
, &ex
->children
, siblings
) {
1176 if (child
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1177 child
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1179 if (sub_addr
[0] == 0) {
1180 sas_find_sub_addr(child
, sub_addr
);
1185 if (sas_find_sub_addr(child
, s2
) &&
1186 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1188 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1189 "diverges from subtractive "
1190 "boundary %016llx\n",
1191 SAS_ADDR(dev
->sas_addr
),
1192 SAS_ADDR(child
->sas_addr
),
1194 SAS_ADDR(sub_addr
));
1196 sas_ex_disable_port(child
, s2
);
1203 * sas_ex_discover_devices - discover devices attached to this expander
1204 * @dev: pointer to the expander domain device
1205 * @single: if you want to do a single phy, else set to -1;
1207 * Configure this expander for use with its devices and register the
1208 * devices of this expander.
1210 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1212 struct expander_device
*ex
= &dev
->ex_dev
;
1213 int i
= 0, end
= ex
->num_phys
;
1216 if (0 <= single
&& single
< end
) {
1221 for ( ; i
< end
; i
++) {
1222 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1224 if (ex_phy
->phy_state
== PHY_VACANT
||
1225 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1226 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1229 switch (ex_phy
->linkrate
) {
1230 case SAS_PHY_DISABLED
:
1231 case SAS_PHY_RESET_PROBLEM
:
1232 case SAS_SATA_PORT_SELECTOR
:
1235 res
= sas_ex_discover_dev(dev
, i
);
1243 sas_check_level_subtractive_boundary(dev
);
1248 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1250 struct expander_device
*ex
= &dev
->ex_dev
;
1252 u8
*sub_sas_addr
= NULL
;
1254 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1257 for (i
= 0; i
< ex
->num_phys
; i
++) {
1258 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1260 if (phy
->phy_state
== PHY_VACANT
||
1261 phy
->phy_state
== PHY_NOT_PRESENT
)
1264 if ((phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
||
1265 phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
) &&
1266 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1269 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1270 else if (SAS_ADDR(sub_sas_addr
) !=
1271 SAS_ADDR(phy
->attached_sas_addr
)) {
1273 SAS_DPRINTK("ex %016llx phy 0x%x "
1274 "diverges(%016llx) on subtractive "
1275 "boundary(%016llx). Disabled\n",
1276 SAS_ADDR(dev
->sas_addr
), i
,
1277 SAS_ADDR(phy
->attached_sas_addr
),
1278 SAS_ADDR(sub_sas_addr
));
1279 sas_ex_disable_phy(dev
, i
);
1286 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1287 struct ex_phy
*parent_phy
,
1288 struct ex_phy
*child_phy
)
1290 static const char *ex_type
[] = {
1291 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1292 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1294 struct domain_device
*parent
= child
->parent
;
1296 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1297 "phy 0x%x has %c:%c routing link!\n",
1299 ex_type
[parent
->dev_type
],
1300 SAS_ADDR(parent
->sas_addr
),
1303 ex_type
[child
->dev_type
],
1304 SAS_ADDR(child
->sas_addr
),
1307 sas_route_char(parent
, parent_phy
),
1308 sas_route_char(child
, child_phy
));
1311 static int sas_check_eeds(struct domain_device
*child
,
1312 struct ex_phy
*parent_phy
,
1313 struct ex_phy
*child_phy
)
1316 struct domain_device
*parent
= child
->parent
;
1318 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1320 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1321 "phy S:0x%x, while there is a fanout ex %016llx\n",
1322 SAS_ADDR(parent
->sas_addr
),
1324 SAS_ADDR(child
->sas_addr
),
1326 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1327 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1328 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1330 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1332 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1333 SAS_ADDR(parent
->sas_addr
)) ||
1334 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1335 SAS_ADDR(child
->sas_addr
)))
1337 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1338 SAS_ADDR(parent
->sas_addr
)) ||
1339 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1340 SAS_ADDR(child
->sas_addr
))))
1344 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1345 "phy 0x%x link forms a third EEDS!\n",
1346 SAS_ADDR(parent
->sas_addr
),
1348 SAS_ADDR(child
->sas_addr
),
1355 /* Here we spill over 80 columns. It is intentional.
1357 static int sas_check_parent_topology(struct domain_device
*child
)
1359 struct expander_device
*child_ex
= &child
->ex_dev
;
1360 struct expander_device
*parent_ex
;
1367 if (child
->parent
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1368 child
->parent
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1371 parent_ex
= &child
->parent
->ex_dev
;
1373 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1374 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1375 struct ex_phy
*child_phy
;
1377 if (parent_phy
->phy_state
== PHY_VACANT
||
1378 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1381 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1384 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1386 switch (child
->parent
->dev_type
) {
1387 case SAS_EDGE_EXPANDER_DEVICE
:
1388 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1389 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1390 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1391 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1394 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1395 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1396 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1397 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1398 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1401 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1402 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1403 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1404 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1407 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1412 case SAS_FANOUT_EXPANDER_DEVICE
:
1413 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1414 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1415 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1427 #define RRI_REQ_SIZE 16
1428 #define RRI_RESP_SIZE 44
1430 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1431 u8
*sas_addr
, int *index
, int *present
)
1434 struct expander_device
*ex
= &dev
->ex_dev
;
1435 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1442 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1446 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1452 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1453 rri_req
[9] = phy_id
;
1455 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1456 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1457 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1462 if (res
== SMP_RESP_NO_INDEX
) {
1463 SAS_DPRINTK("overflow of indexes: dev %016llx "
1464 "phy 0x%x index 0x%x\n",
1465 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1467 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1468 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1469 "result 0x%x\n", __func__
,
1470 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1473 if (SAS_ADDR(sas_addr
) != 0) {
1474 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1476 if ((rri_resp
[12] & 0x80) == 0x80)
1481 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1486 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1487 phy
->last_da_index
< i
) {
1488 phy
->last_da_index
= i
;
1501 #define CRI_REQ_SIZE 44
1502 #define CRI_RESP_SIZE 8
1504 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1505 u8
*sas_addr
, int index
, int include
)
1511 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1515 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1521 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1522 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1523 cri_req
[9] = phy_id
;
1524 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1525 cri_req
[12] |= 0x80;
1526 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1528 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1533 if (res
== SMP_RESP_NO_INDEX
) {
1534 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1536 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1544 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1545 u8
*sas_addr
, int include
)
1551 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1554 if (include
^ present
)
1555 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1561 * sas_configure_parent - configure routing table of parent
1562 * @parent: parent expander
1563 * @child: child expander
1564 * @sas_addr: SAS port identifier of device directly attached to child
1565 * @include: whether or not to include @child in the expander routing table
1567 static int sas_configure_parent(struct domain_device
*parent
,
1568 struct domain_device
*child
,
1569 u8
*sas_addr
, int include
)
1571 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1575 if (parent
->parent
) {
1576 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1582 if (ex_parent
->conf_route_table
== 0) {
1583 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1584 SAS_ADDR(parent
->sas_addr
));
1588 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1589 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1591 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1592 (SAS_ADDR(phy
->attached_sas_addr
) ==
1593 SAS_ADDR(child
->sas_addr
))) {
1594 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1604 * sas_configure_routing - configure routing
1605 * @dev: expander device
1606 * @sas_addr: port identifier of device directly attached to the expander device
1608 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1611 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1615 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1618 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1623 * sas_discover_expander - expander discovery
1624 * @dev: pointer to expander domain device
1626 * See comment in sas_discover_sata().
1628 static int sas_discover_expander(struct domain_device
*dev
)
1632 res
= sas_notify_lldd_dev_found(dev
);
1636 res
= sas_ex_general(dev
);
1639 res
= sas_ex_manuf_info(dev
);
1643 res
= sas_expander_discover(dev
);
1645 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1646 SAS_ADDR(dev
->sas_addr
), res
);
1650 sas_check_ex_subtractive_boundary(dev
);
1651 res
= sas_check_parent_topology(dev
);
1656 sas_notify_lldd_dev_gone(dev
);
1660 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1663 struct domain_device
*dev
;
1665 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1666 if (dev
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1667 dev
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1668 struct sas_expander_device
*ex
=
1669 rphy_to_expander_device(dev
->rphy
);
1671 if (level
== ex
->level
)
1672 res
= sas_ex_discover_devices(dev
, -1);
1674 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1682 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1688 level
= port
->disc
.max_level
;
1689 res
= sas_ex_level_discovery(port
, level
);
1691 } while (level
< port
->disc
.max_level
);
1696 int sas_discover_root_expander(struct domain_device
*dev
)
1699 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1701 res
= sas_rphy_add(dev
->rphy
);
1705 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1706 res
= sas_discover_expander(dev
);
1710 sas_ex_bfs_disc(dev
->port
);
1715 sas_rphy_remove(dev
->rphy
);
1720 /* ---------- Domain revalidation ---------- */
1722 static int sas_get_phy_discover(struct domain_device
*dev
,
1723 int phy_id
, struct smp_resp
*disc_resp
)
1728 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1732 disc_req
[1] = SMP_DISCOVER
;
1733 disc_req
[9] = phy_id
;
1735 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1736 disc_resp
, DISCOVER_RESP_SIZE
);
1739 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1740 res
= disc_resp
->result
;
1748 static int sas_get_phy_change_count(struct domain_device
*dev
,
1749 int phy_id
, int *pcc
)
1752 struct smp_resp
*disc_resp
;
1754 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1758 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1760 *pcc
= disc_resp
->disc
.change_count
;
1766 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1767 u8
*sas_addr
, enum sas_device_type
*type
)
1770 struct smp_resp
*disc_resp
;
1771 struct discover_resp
*dr
;
1773 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1776 dr
= &disc_resp
->disc
;
1778 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1780 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1781 *type
= to_dev_type(dr
);
1783 memset(sas_addr
, 0, 8);
1789 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1790 int from_phy
, bool update
)
1792 struct expander_device
*ex
= &dev
->ex_dev
;
1796 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1797 int phy_change_count
= 0;
1799 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1801 case SMP_RESP_PHY_VACANT
:
1802 case SMP_RESP_NO_PHY
:
1804 case SMP_RESP_FUNC_ACC
:
1810 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1812 ex
->ex_phy
[i
].phy_change_count
=
1821 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1825 struct smp_resp
*rg_resp
;
1827 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1831 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1837 rg_req
[1] = SMP_REPORT_GENERAL
;
1839 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1843 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1844 res
= rg_resp
->result
;
1848 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1855 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1856 * @dev:domain device to be detect.
1857 * @src_dev: the device which originated BROADCAST(CHANGE).
1859 * Add self-configuration expander support. Suppose two expander cascading,
1860 * when the first level expander is self-configuring, hotplug the disks in
1861 * second level expander, BROADCAST(CHANGE) will not only be originated
1862 * in the second level expander, but also be originated in the first level
1863 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1864 * expander changed count in two level expanders will all increment at least
1865 * once, but the phy which chang count has changed is the source device which
1869 static int sas_find_bcast_dev(struct domain_device
*dev
,
1870 struct domain_device
**src_dev
)
1872 struct expander_device
*ex
= &dev
->ex_dev
;
1873 int ex_change_count
= -1;
1876 struct domain_device
*ch
;
1878 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1881 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1882 /* Just detect if this expander phys phy change count changed,
1883 * in order to determine if this expander originate BROADCAST,
1884 * and do not update phy change count field in our structure.
1886 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1889 ex
->ex_change_count
= ex_change_count
;
1890 SAS_DPRINTK("Expander phy change count has changed\n");
1893 SAS_DPRINTK("Expander phys DID NOT change\n");
1895 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1896 if (ch
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
|| ch
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1897 res
= sas_find_bcast_dev(ch
, src_dev
);
1906 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1908 struct expander_device
*ex
= &dev
->ex_dev
;
1909 struct domain_device
*child
, *n
;
1911 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1912 set_bit(SAS_DEV_GONE
, &child
->state
);
1913 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1914 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1915 sas_unregister_ex_tree(port
, child
);
1917 sas_unregister_dev(port
, child
);
1919 sas_unregister_dev(port
, dev
);
1922 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1923 int phy_id
, bool last
)
1925 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1926 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1927 struct domain_device
*child
, *n
, *found
= NULL
;
1929 list_for_each_entry_safe(child
, n
,
1930 &ex_dev
->children
, siblings
) {
1931 if (SAS_ADDR(child
->sas_addr
) ==
1932 SAS_ADDR(phy
->attached_sas_addr
)) {
1933 set_bit(SAS_DEV_GONE
, &child
->state
);
1934 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1935 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1936 sas_unregister_ex_tree(parent
->port
, child
);
1938 sas_unregister_dev(parent
->port
, child
);
1943 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1945 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1947 sas_port_delete_phy(phy
->port
, phy
->phy
);
1948 sas_device_set_phy(found
, phy
->port
);
1949 if (phy
->port
->num_phys
== 0)
1950 list_add_tail(&phy
->port
->del_list
,
1951 &parent
->port
->sas_port_del_list
);
1956 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1959 struct expander_device
*ex_root
= &root
->ex_dev
;
1960 struct domain_device
*child
;
1963 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1964 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1965 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1966 struct sas_expander_device
*ex
=
1967 rphy_to_expander_device(child
->rphy
);
1969 if (level
> ex
->level
)
1970 res
= sas_discover_bfs_by_root_level(child
,
1972 else if (level
== ex
->level
)
1973 res
= sas_ex_discover_devices(child
, -1);
1979 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1982 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1983 int level
= ex
->level
+1;
1985 res
= sas_ex_discover_devices(dev
, -1);
1989 res
= sas_discover_bfs_by_root_level(dev
, level
);
1992 } while (level
<= dev
->port
->disc
.max_level
);
1997 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1999 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
2000 struct domain_device
*child
;
2003 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
2004 SAS_ADDR(dev
->sas_addr
), phy_id
);
2005 res
= sas_ex_phy_discover(dev
, phy_id
);
2009 if (sas_ex_join_wide_port(dev
, phy_id
))
2012 res
= sas_ex_discover_devices(dev
, phy_id
);
2015 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
2016 if (SAS_ADDR(child
->sas_addr
) ==
2017 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
2018 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
2019 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
2020 res
= sas_discover_bfs_by_root(child
);
2027 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
2032 /* treat device directed resets as flutter, if we went
2033 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2035 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
2036 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
2042 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
2044 struct expander_device
*ex
= &dev
->ex_dev
;
2045 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
2046 enum sas_device_type type
= SAS_PHY_UNUSED
;
2050 memset(sas_addr
, 0, 8);
2051 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2053 case SMP_RESP_NO_PHY
:
2054 phy
->phy_state
= PHY_NOT_PRESENT
;
2055 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2057 case SMP_RESP_PHY_VACANT
:
2058 phy
->phy_state
= PHY_VACANT
;
2059 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2061 case SMP_RESP_FUNC_ACC
:
2069 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2070 phy
->phy_state
= PHY_EMPTY
;
2071 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2073 * Even though the PHY is empty, for convenience we discover
2074 * the PHY to update the PHY info, like negotiated linkrate.
2076 sas_ex_phy_discover(dev
, phy_id
);
2078 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2079 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2080 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2083 sas_ex_phy_discover(dev
, phy_id
);
2085 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2086 action
= ", needs recovery";
2087 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2088 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2092 /* we always have to delete the old device when we went here */
2093 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2094 SAS_ADDR(dev
->sas_addr
), phy_id
,
2095 SAS_ADDR(phy
->attached_sas_addr
));
2096 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2098 return sas_discover_new(dev
, phy_id
);
2102 * sas_rediscover - revalidate the domain.
2103 * @dev:domain device to be detect.
2104 * @phy_id: the phy id will be detected.
2106 * NOTE: this process _must_ quit (return) as soon as any connection
2107 * errors are encountered. Connection recovery is done elsewhere.
2108 * Discover process only interrogates devices in order to discover the
2109 * domain.For plugging out, we un-register the device only when it is
2110 * the last phy in the port, for other phys in this port, we just delete it
2111 * from the port.For inserting, we do discovery when it is the
2112 * first phy,for other phys in this port, we add it to the port to
2113 * forming the wide-port.
2115 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2117 struct expander_device
*ex
= &dev
->ex_dev
;
2118 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2121 bool last
= true; /* is this the last phy of the port */
2123 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2124 SAS_ADDR(dev
->sas_addr
), phy_id
);
2126 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2127 for (i
= 0; i
< ex
->num_phys
; i
++) {
2128 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2132 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2133 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2134 SAS_DPRINTK("phy%d part of wide port with "
2135 "phy%d\n", phy_id
, i
);
2140 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2142 res
= sas_discover_new(dev
, phy_id
);
2147 * sas_ex_revalidate_domain - revalidate the domain
2148 * @port_dev: port domain device.
2150 * NOTE: this process _must_ quit (return) as soon as any connection
2151 * errors are encountered. Connection recovery is done elsewhere.
2152 * Discover process only interrogates devices in order to discover the
2155 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2158 struct domain_device
*dev
= NULL
;
2160 res
= sas_find_bcast_dev(port_dev
, &dev
);
2161 if (res
== 0 && dev
) {
2162 struct expander_device
*ex
= &dev
->ex_dev
;
2167 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2170 res
= sas_rediscover(dev
, phy_id
);
2172 } while (i
< ex
->num_phys
);
2177 void sas_smp_handler(struct bsg_job
*job
, struct Scsi_Host
*shost
,
2178 struct sas_rphy
*rphy
)
2180 struct domain_device
*dev
;
2181 unsigned int rcvlen
= 0;
2184 /* no rphy means no smp target support (ie aic94xx host) */
2186 return sas_smp_host_handler(job
, shost
);
2188 switch (rphy
->identify
.device_type
) {
2189 case SAS_EDGE_EXPANDER_DEVICE
:
2190 case SAS_FANOUT_EXPANDER_DEVICE
:
2193 printk("%s: can we send a smp request to a device?\n",
2198 dev
= sas_find_dev_by_rphy(rphy
);
2200 printk("%s: fail to find a domain_device?\n", __func__
);
2204 /* do we need to support multiple segments? */
2205 if (job
->request_payload
.sg_cnt
> 1 ||
2206 job
->reply_payload
.sg_cnt
> 1) {
2207 printk("%s: multiple segments req %u, rsp %u\n",
2208 __func__
, job
->request_payload
.payload_len
,
2209 job
->reply_payload
.payload_len
);
2213 ret
= smp_execute_task_sg(dev
, job
->request_payload
.sg_list
,
2214 job
->reply_payload
.sg_list
);
2216 /* bsg_job_done() requires the length received */
2217 rcvlen
= job
->reply_payload
.payload_len
- ret
;
2222 bsg_job_done(job
, ret
, rcvlen
);