Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blob3e74fe92576179711929aac49b6cf5846e639dc9
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list *t)
46 struct sas_task_slow *slow = from_timer(slow, t, timer);
47 struct sas_task *task = slow->task;
48 unsigned long flags;
50 spin_lock_irqsave(&task->task_state_lock, flags);
51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 complete(&task->slow_task->completion);
55 spin_unlock_irqrestore(&task->task_state_lock, flags);
58 static void smp_task_done(struct sas_task *task)
60 del_timer(&task->slow_task->timer);
61 complete(&task->slow_task->completion);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task_sg(struct domain_device *dev,
68 struct scatterlist *req, struct scatterlist *resp)
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 task->smp_task.smp_req = *req;
90 task->smp_task.smp_resp = *resp;
92 task->task_done = smp_task_done;
94 task->slow_task->timer.function = smp_task_timedout;
95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 add_timer(&task->slow_task->timer);
98 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 if (res) {
101 del_timer(&task->slow_task->timer);
102 SAS_DPRINTK("executing SMP task failed:%d\n", res);
103 break;
106 wait_for_completion(&task->slow_task->completion);
107 res = -ECOMM;
108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 SAS_DPRINTK("smp task timed out or aborted\n");
110 i->dft->lldd_abort_task(task);
111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 SAS_DPRINTK("SMP task aborted and not done\n");
113 break;
116 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 task->task_status.stat == SAM_STAT_GOOD) {
118 res = 0;
119 break;
121 if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 task->task_status.stat == SAS_DATA_UNDERRUN) {
123 /* no error, but return the number of bytes of
124 * underrun */
125 res = task->task_status.residual;
126 break;
128 if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 task->task_status.stat == SAS_DATA_OVERRUN) {
130 res = -EMSGSIZE;
131 break;
133 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 break;
136 else {
137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 "status 0x%x\n", __func__,
139 SAS_ADDR(dev->sas_addr),
140 task->task_status.resp,
141 task->task_status.stat);
142 sas_free_task(task);
143 task = NULL;
146 mutex_unlock(&dev->ex_dev.cmd_mutex);
148 BUG_ON(retry == 3 && task != NULL);
149 sas_free_task(task);
150 return res;
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 void *resp, int resp_size)
156 struct scatterlist req_sg;
157 struct scatterlist resp_sg;
159 sg_init_one(&req_sg, req, req_size);
160 sg_init_one(&resp_sg, resp, resp_size);
161 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
164 /* ---------- Allocations ---------- */
166 static inline void *alloc_smp_req(int size)
168 u8 *p = kzalloc(size, GFP_KERNEL);
169 if (p)
170 p[0] = SMP_REQUEST;
171 return p;
174 static inline void *alloc_smp_resp(int size)
176 return kzalloc(size, GFP_KERNEL);
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 switch (phy->routing_attr) {
182 case TABLE_ROUTING:
183 if (dev->ex_dev.t2t_supp)
184 return 'U';
185 else
186 return 'T';
187 case DIRECT_ROUTING:
188 return 'D';
189 case SUBTRACTIVE_ROUTING:
190 return 'S';
191 default:
192 return '?';
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 /* This is detecting a failure to transmit initial dev to host
199 * FIS as described in section J.5 of sas-2 r16
201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 return SAS_SATA_PENDING;
204 else
205 return dr->attached_dev_type;
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 enum sas_device_type dev_type;
211 enum sas_linkrate linkrate;
212 u8 sas_addr[SAS_ADDR_SIZE];
213 struct smp_resp *resp = rsp;
214 struct discover_resp *dr = &resp->disc;
215 struct sas_ha_struct *ha = dev->port->ha;
216 struct expander_device *ex = &dev->ex_dev;
217 struct ex_phy *phy = &ex->ex_phy[phy_id];
218 struct sas_rphy *rphy = dev->rphy;
219 bool new_phy = !phy->phy;
220 char *type;
222 if (new_phy) {
223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 return;
225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227 /* FIXME: error_handling */
228 BUG_ON(!phy->phy);
231 switch (resp->result) {
232 case SMP_RESP_PHY_VACANT:
233 phy->phy_state = PHY_VACANT;
234 break;
235 default:
236 phy->phy_state = PHY_NOT_PRESENT;
237 break;
238 case SMP_RESP_FUNC_ACC:
239 phy->phy_state = PHY_EMPTY; /* do not know yet */
240 break;
243 /* check if anything important changed to squelch debug */
244 dev_type = phy->attached_dev_type;
245 linkrate = phy->linkrate;
246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248 /* Handle vacant phy - rest of dr data is not valid so skip it */
249 if (phy->phy_state == PHY_VACANT) {
250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 phy->attached_dev_type = SAS_PHY_UNUSED;
252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 phy->phy_id = phy_id;
254 goto skip;
255 } else
256 goto out;
259 phy->attached_dev_type = to_dev_type(dr);
260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 goto out;
262 phy->phy_id = phy_id;
263 phy->linkrate = dr->linkrate;
264 phy->attached_sata_host = dr->attached_sata_host;
265 phy->attached_sata_dev = dr->attached_sata_dev;
266 phy->attached_sata_ps = dr->attached_sata_ps;
267 phy->attached_iproto = dr->iproto << 1;
268 phy->attached_tproto = dr->tproto << 1;
269 /* help some expanders that fail to zero sas_address in the 'no
270 * device' case
272 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 else
276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 phy->attached_phy_id = dr->attached_phy_id;
278 phy->phy_change_count = dr->change_count;
279 phy->routing_attr = dr->routing_attr;
280 phy->virtual = dr->virtual;
281 phy->last_da_index = -1;
283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 phy->phy->identify.device_type = dr->attached_dev_type;
285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 if (!phy->attached_tproto && dr->attached_sata_dev)
288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 phy->phy->identify.phy_identifier = phy_id;
290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 phy->phy->negotiated_linkrate = phy->linkrate;
295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297 skip:
298 if (new_phy)
299 if (sas_phy_add(phy->phy)) {
300 sas_phy_free(phy->phy);
301 return;
304 out:
305 switch (phy->attached_dev_type) {
306 case SAS_SATA_PENDING:
307 type = "stp pending";
308 break;
309 case SAS_PHY_UNUSED:
310 type = "no device";
311 break;
312 case SAS_END_DEVICE:
313 if (phy->attached_iproto) {
314 if (phy->attached_tproto)
315 type = "host+target";
316 else
317 type = "host";
318 } else {
319 if (dr->attached_sata_dev)
320 type = "stp";
321 else
322 type = "ssp";
324 break;
325 case SAS_EDGE_EXPANDER_DEVICE:
326 case SAS_FANOUT_EXPANDER_DEVICE:
327 type = "smp";
328 break;
329 default:
330 type = "unknown";
333 /* this routine is polled by libata error recovery so filter
334 * unimportant messages
336 if (new_phy || phy->attached_dev_type != dev_type ||
337 phy->linkrate != linkrate ||
338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 /* pass */;
340 else
341 return;
343 /* if the attached device type changed and ata_eh is active,
344 * make sure we run revalidation when eh completes (see:
345 * sas_enable_revalidation)
347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 SAS_ADDR(dev->sas_addr), phy->phy_id,
353 sas_route_char(dev, phy), phy->linkrate,
354 SAS_ADDR(phy->attached_sas_addr), type);
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 struct domain_device *dev;
362 struct sas_rphy *rphy;
364 if (!ex_phy->port)
365 return NULL;
367 rphy = ex_phy->port->rphy;
368 if (!rphy)
369 return NULL;
371 dev = sas_find_dev_by_rphy(rphy);
373 if (dev && dev_is_sata(dev))
374 return dev;
376 return NULL;
379 #define DISCOVER_REQ_SIZE 16
380 #define DISCOVER_RESP_SIZE 56
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 u8 *disc_resp, int single)
385 struct discover_resp *dr;
386 int res;
388 disc_req[9] = single;
390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 disc_resp, DISCOVER_RESP_SIZE);
392 if (res)
393 return res;
394 dr = &((struct smp_resp *)disc_resp)->disc;
395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 sas_printk("Found loopback topology, just ignore it!\n");
397 return 0;
399 sas_set_ex_phy(dev, single, disc_resp);
400 return 0;
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 struct expander_device *ex = &dev->ex_dev;
406 int res = 0;
407 u8 *disc_req;
408 u8 *disc_resp;
410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 if (!disc_req)
412 return -ENOMEM;
414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 if (!disc_resp) {
416 kfree(disc_req);
417 return -ENOMEM;
420 disc_req[1] = SMP_DISCOVER;
422 if (0 <= single && single < ex->num_phys) {
423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 } else {
425 int i;
427 for (i = 0; i < ex->num_phys; i++) {
428 res = sas_ex_phy_discover_helper(dev, disc_req,
429 disc_resp, i);
430 if (res)
431 goto out_err;
434 out_err:
435 kfree(disc_resp);
436 kfree(disc_req);
437 return res;
440 static int sas_expander_discover(struct domain_device *dev)
442 struct expander_device *ex = &dev->ex_dev;
443 int res = -ENOMEM;
445 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446 if (!ex->ex_phy)
447 return -ENOMEM;
449 res = sas_ex_phy_discover(dev, -1);
450 if (res)
451 goto out_err;
453 return 0;
454 out_err:
455 kfree(ex->ex_phy);
456 ex->ex_phy = NULL;
457 return res;
460 #define MAX_EXPANDER_PHYS 128
462 static void ex_assign_report_general(struct domain_device *dev,
463 struct smp_resp *resp)
465 struct report_general_resp *rg = &resp->rg;
467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 dev->ex_dev.t2t_supp = rg->t2t_supp;
471 dev->ex_dev.conf_route_table = rg->conf_route_table;
472 dev->ex_dev.configuring = rg->configuring;
473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
476 #define RG_REQ_SIZE 8
477 #define RG_RESP_SIZE 32
479 static int sas_ex_general(struct domain_device *dev)
481 u8 *rg_req;
482 struct smp_resp *rg_resp;
483 int res;
484 int i;
486 rg_req = alloc_smp_req(RG_REQ_SIZE);
487 if (!rg_req)
488 return -ENOMEM;
490 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 if (!rg_resp) {
492 kfree(rg_req);
493 return -ENOMEM;
496 rg_req[1] = SMP_REPORT_GENERAL;
498 for (i = 0; i < 5; i++) {
499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 RG_RESP_SIZE);
502 if (res) {
503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 SAS_ADDR(dev->sas_addr), res);
505 goto out;
506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 SAS_ADDR(dev->sas_addr), rg_resp->result);
509 res = rg_resp->result;
510 goto out;
513 ex_assign_report_general(dev, rg_resp);
515 if (dev->ex_dev.configuring) {
516 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 SAS_ADDR(dev->sas_addr));
518 schedule_timeout_interruptible(5*HZ);
519 } else
520 break;
522 out:
523 kfree(rg_req);
524 kfree(rg_resp);
525 return res;
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 *_mi_resp)
531 u8 *mi_resp = _mi_resp;
532 struct sas_rphy *rphy = dev->rphy;
533 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 memcpy(edev->product_rev, mi_resp + 36,
538 SAS_EXPANDER_PRODUCT_REV_LEN);
540 if (mi_resp[8] & 1) {
541 memcpy(edev->component_vendor_id, mi_resp + 40,
542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 edev->component_revision_id = mi_resp[50];
548 #define MI_REQ_SIZE 8
549 #define MI_RESP_SIZE 64
551 static int sas_ex_manuf_info(struct domain_device *dev)
553 u8 *mi_req;
554 u8 *mi_resp;
555 int res;
557 mi_req = alloc_smp_req(MI_REQ_SIZE);
558 if (!mi_req)
559 return -ENOMEM;
561 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 if (!mi_resp) {
563 kfree(mi_req);
564 return -ENOMEM;
567 mi_req[1] = SMP_REPORT_MANUF_INFO;
569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 if (res) {
571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 SAS_ADDR(dev->sas_addr), res);
573 goto out;
574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 goto out;
580 ex_assign_manuf_info(dev, mi_resp);
581 out:
582 kfree(mi_req);
583 kfree(mi_resp);
584 return res;
587 #define PC_REQ_SIZE 44
588 #define PC_RESP_SIZE 8
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 enum phy_func phy_func,
592 struct sas_phy_linkrates *rates)
594 u8 *pc_req;
595 u8 *pc_resp;
596 int res;
598 pc_req = alloc_smp_req(PC_REQ_SIZE);
599 if (!pc_req)
600 return -ENOMEM;
602 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 if (!pc_resp) {
604 kfree(pc_req);
605 return -ENOMEM;
608 pc_req[1] = SMP_PHY_CONTROL;
609 pc_req[9] = phy_id;
610 pc_req[10]= phy_func;
611 if (rates) {
612 pc_req[32] = rates->minimum_linkrate << 4;
613 pc_req[33] = rates->maximum_linkrate << 4;
616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 if (res) {
618 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
619 SAS_ADDR(dev->sas_addr), phy_id, res);
620 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
621 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
622 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
623 res = pc_resp[2];
625 kfree(pc_resp);
626 kfree(pc_req);
627 return res;
630 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
632 struct expander_device *ex = &dev->ex_dev;
633 struct ex_phy *phy = &ex->ex_phy[phy_id];
635 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
636 phy->linkrate = SAS_PHY_DISABLED;
639 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
641 struct expander_device *ex = &dev->ex_dev;
642 int i;
644 for (i = 0; i < ex->num_phys; i++) {
645 struct ex_phy *phy = &ex->ex_phy[i];
647 if (phy->phy_state == PHY_VACANT ||
648 phy->phy_state == PHY_NOT_PRESENT)
649 continue;
651 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
652 sas_ex_disable_phy(dev, i);
656 static int sas_dev_present_in_domain(struct asd_sas_port *port,
657 u8 *sas_addr)
659 struct domain_device *dev;
661 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
662 return 1;
663 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
664 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
665 return 1;
667 return 0;
670 #define RPEL_REQ_SIZE 16
671 #define RPEL_RESP_SIZE 32
672 int sas_smp_get_phy_events(struct sas_phy *phy)
674 int res;
675 u8 *req;
676 u8 *resp;
677 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
678 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
680 req = alloc_smp_req(RPEL_REQ_SIZE);
681 if (!req)
682 return -ENOMEM;
684 resp = alloc_smp_resp(RPEL_RESP_SIZE);
685 if (!resp) {
686 kfree(req);
687 return -ENOMEM;
690 req[1] = SMP_REPORT_PHY_ERR_LOG;
691 req[9] = phy->number;
693 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
694 resp, RPEL_RESP_SIZE);
696 if (res)
697 goto out;
699 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
700 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
701 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
702 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
704 out:
705 kfree(req);
706 kfree(resp);
707 return res;
711 #ifdef CONFIG_SCSI_SAS_ATA
713 #define RPS_REQ_SIZE 16
714 #define RPS_RESP_SIZE 60
716 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
717 struct smp_resp *rps_resp)
719 int res;
720 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
721 u8 *resp = (u8 *)rps_resp;
723 if (!rps_req)
724 return -ENOMEM;
726 rps_req[1] = SMP_REPORT_PHY_SATA;
727 rps_req[9] = phy_id;
729 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
730 rps_resp, RPS_RESP_SIZE);
732 /* 0x34 is the FIS type for the D2H fis. There's a potential
733 * standards cockup here. sas-2 explicitly specifies the FIS
734 * should be encoded so that FIS type is in resp[24].
735 * However, some expanders endian reverse this. Undo the
736 * reversal here */
737 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
738 int i;
740 for (i = 0; i < 5; i++) {
741 int j = 24 + (i*4);
742 u8 a, b;
743 a = resp[j + 0];
744 b = resp[j + 1];
745 resp[j + 0] = resp[j + 3];
746 resp[j + 1] = resp[j + 2];
747 resp[j + 2] = b;
748 resp[j + 3] = a;
752 kfree(rps_req);
753 return res;
755 #endif
757 static void sas_ex_get_linkrate(struct domain_device *parent,
758 struct domain_device *child,
759 struct ex_phy *parent_phy)
761 struct expander_device *parent_ex = &parent->ex_dev;
762 struct sas_port *port;
763 int i;
765 child->pathways = 0;
767 port = parent_phy->port;
769 for (i = 0; i < parent_ex->num_phys; i++) {
770 struct ex_phy *phy = &parent_ex->ex_phy[i];
772 if (phy->phy_state == PHY_VACANT ||
773 phy->phy_state == PHY_NOT_PRESENT)
774 continue;
776 if (SAS_ADDR(phy->attached_sas_addr) ==
777 SAS_ADDR(child->sas_addr)) {
779 child->min_linkrate = min(parent->min_linkrate,
780 phy->linkrate);
781 child->max_linkrate = max(parent->max_linkrate,
782 phy->linkrate);
783 child->pathways++;
784 sas_port_add_phy(port, phy->phy);
787 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
788 child->pathways = min(child->pathways, parent->pathways);
791 static struct domain_device *sas_ex_discover_end_dev(
792 struct domain_device *parent, int phy_id)
794 struct expander_device *parent_ex = &parent->ex_dev;
795 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
796 struct domain_device *child = NULL;
797 struct sas_rphy *rphy;
798 int res;
800 if (phy->attached_sata_host || phy->attached_sata_ps)
801 return NULL;
803 child = sas_alloc_device();
804 if (!child)
805 return NULL;
807 kref_get(&parent->kref);
808 child->parent = parent;
809 child->port = parent->port;
810 child->iproto = phy->attached_iproto;
811 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
812 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
813 if (!phy->port) {
814 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
815 if (unlikely(!phy->port))
816 goto out_err;
817 if (unlikely(sas_port_add(phy->port) != 0)) {
818 sas_port_free(phy->port);
819 goto out_err;
822 sas_ex_get_linkrate(parent, child, phy);
823 sas_device_set_phy(child, phy->port);
825 #ifdef CONFIG_SCSI_SAS_ATA
826 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
827 if (child->linkrate > parent->min_linkrate) {
828 struct sas_phy_linkrates rates = {
829 .maximum_linkrate = parent->min_linkrate,
830 .minimum_linkrate = parent->min_linkrate,
832 int ret;
834 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
835 SAS_ADDR(child->sas_addr), phy_id);
836 ret = sas_smp_phy_control(parent, phy_id,
837 PHY_FUNC_LINK_RESET, &rates);
838 if (ret) {
839 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
840 SAS_ADDR(child->sas_addr), phy_id, ret);
841 goto out_free;
843 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
844 SAS_ADDR(child->sas_addr), phy_id);
845 child->linkrate = child->min_linkrate;
847 res = sas_get_ata_info(child, phy);
848 if (res)
849 goto out_free;
851 sas_init_dev(child);
852 res = sas_ata_init(child);
853 if (res)
854 goto out_free;
855 rphy = sas_end_device_alloc(phy->port);
856 if (!rphy)
857 goto out_free;
858 rphy->identify.phy_identifier = phy_id;
860 child->rphy = rphy;
861 get_device(&rphy->dev);
863 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
865 res = sas_discover_sata(child);
866 if (res) {
867 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
868 "%016llx:0x%x returned 0x%x\n",
869 SAS_ADDR(child->sas_addr),
870 SAS_ADDR(parent->sas_addr), phy_id, res);
871 goto out_list_del;
873 } else
874 #endif
875 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876 child->dev_type = SAS_END_DEVICE;
877 rphy = sas_end_device_alloc(phy->port);
878 /* FIXME: error handling */
879 if (unlikely(!rphy))
880 goto out_free;
881 child->tproto = phy->attached_tproto;
882 sas_init_dev(child);
884 child->rphy = rphy;
885 get_device(&rphy->dev);
886 rphy->identify.phy_identifier = phy_id;
887 sas_fill_in_rphy(child, rphy);
889 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
891 res = sas_discover_end_dev(child);
892 if (res) {
893 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
894 "at %016llx:0x%x returned 0x%x\n",
895 SAS_ADDR(child->sas_addr),
896 SAS_ADDR(parent->sas_addr), phy_id, res);
897 goto out_list_del;
899 } else {
900 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
901 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
902 phy_id);
903 goto out_free;
906 list_add_tail(&child->siblings, &parent_ex->children);
907 return child;
909 out_list_del:
910 sas_rphy_free(child->rphy);
911 list_del(&child->disco_list_node);
912 spin_lock_irq(&parent->port->dev_list_lock);
913 list_del(&child->dev_list_node);
914 spin_unlock_irq(&parent->port->dev_list_lock);
915 out_free:
916 sas_port_delete(phy->port);
917 out_err:
918 phy->port = NULL;
919 sas_put_device(child);
920 return NULL;
923 /* See if this phy is part of a wide port */
924 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
926 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
927 int i;
929 for (i = 0; i < parent->ex_dev.num_phys; i++) {
930 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
932 if (ephy == phy)
933 continue;
935 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
936 SAS_ADDR_SIZE) && ephy->port) {
937 sas_port_add_phy(ephy->port, phy->phy);
938 phy->port = ephy->port;
939 phy->phy_state = PHY_DEVICE_DISCOVERED;
940 return true;
944 return false;
947 static struct domain_device *sas_ex_discover_expander(
948 struct domain_device *parent, int phy_id)
950 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
951 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
952 struct domain_device *child = NULL;
953 struct sas_rphy *rphy;
954 struct sas_expander_device *edev;
955 struct asd_sas_port *port;
956 int res;
958 if (phy->routing_attr == DIRECT_ROUTING) {
959 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
960 "allowed\n",
961 SAS_ADDR(parent->sas_addr), phy_id,
962 SAS_ADDR(phy->attached_sas_addr),
963 phy->attached_phy_id);
964 return NULL;
966 child = sas_alloc_device();
967 if (!child)
968 return NULL;
970 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
971 /* FIXME: better error handling */
972 BUG_ON(sas_port_add(phy->port) != 0);
975 switch (phy->attached_dev_type) {
976 case SAS_EDGE_EXPANDER_DEVICE:
977 rphy = sas_expander_alloc(phy->port,
978 SAS_EDGE_EXPANDER_DEVICE);
979 break;
980 case SAS_FANOUT_EXPANDER_DEVICE:
981 rphy = sas_expander_alloc(phy->port,
982 SAS_FANOUT_EXPANDER_DEVICE);
983 break;
984 default:
985 rphy = NULL; /* shut gcc up */
986 BUG();
988 port = parent->port;
989 child->rphy = rphy;
990 get_device(&rphy->dev);
991 edev = rphy_to_expander_device(rphy);
992 child->dev_type = phy->attached_dev_type;
993 kref_get(&parent->kref);
994 child->parent = parent;
995 child->port = port;
996 child->iproto = phy->attached_iproto;
997 child->tproto = phy->attached_tproto;
998 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
999 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1000 sas_ex_get_linkrate(parent, child, phy);
1001 edev->level = parent_ex->level + 1;
1002 parent->port->disc.max_level = max(parent->port->disc.max_level,
1003 edev->level);
1004 sas_init_dev(child);
1005 sas_fill_in_rphy(child, rphy);
1006 sas_rphy_add(rphy);
1008 spin_lock_irq(&parent->port->dev_list_lock);
1009 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1010 spin_unlock_irq(&parent->port->dev_list_lock);
1012 res = sas_discover_expander(child);
1013 if (res) {
1014 sas_rphy_delete(rphy);
1015 spin_lock_irq(&parent->port->dev_list_lock);
1016 list_del(&child->dev_list_node);
1017 spin_unlock_irq(&parent->port->dev_list_lock);
1018 sas_put_device(child);
1019 sas_port_delete(phy->port);
1020 phy->port = NULL;
1021 return NULL;
1023 list_add_tail(&child->siblings, &parent->ex_dev.children);
1024 return child;
1027 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1029 struct expander_device *ex = &dev->ex_dev;
1030 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1031 struct domain_device *child = NULL;
1032 int res = 0;
1034 /* Phy state */
1035 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1036 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1037 res = sas_ex_phy_discover(dev, phy_id);
1038 if (res)
1039 return res;
1042 /* Parent and domain coherency */
1043 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1044 SAS_ADDR(dev->port->sas_addr))) {
1045 sas_add_parent_port(dev, phy_id);
1046 return 0;
1048 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1049 SAS_ADDR(dev->parent->sas_addr))) {
1050 sas_add_parent_port(dev, phy_id);
1051 if (ex_phy->routing_attr == TABLE_ROUTING)
1052 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1053 return 0;
1056 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1057 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1059 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1060 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1061 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1062 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1064 return 0;
1065 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1066 return 0;
1068 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1069 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1070 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1071 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1072 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1073 "phy 0x%x\n", ex_phy->attached_dev_type,
1074 SAS_ADDR(dev->sas_addr),
1075 phy_id);
1076 return 0;
1079 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1080 if (res) {
1081 SAS_DPRINTK("configure routing for dev %016llx "
1082 "reported 0x%x. Forgotten\n",
1083 SAS_ADDR(ex_phy->attached_sas_addr), res);
1084 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1085 return res;
1088 if (sas_ex_join_wide_port(dev, phy_id)) {
1089 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1090 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1091 return res;
1094 switch (ex_phy->attached_dev_type) {
1095 case SAS_END_DEVICE:
1096 case SAS_SATA_PENDING:
1097 child = sas_ex_discover_end_dev(dev, phy_id);
1098 break;
1099 case SAS_FANOUT_EXPANDER_DEVICE:
1100 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1101 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1102 "attached to ex %016llx phy 0x%x\n",
1103 SAS_ADDR(ex_phy->attached_sas_addr),
1104 ex_phy->attached_phy_id,
1105 SAS_ADDR(dev->sas_addr),
1106 phy_id);
1107 sas_ex_disable_phy(dev, phy_id);
1108 break;
1109 } else
1110 memcpy(dev->port->disc.fanout_sas_addr,
1111 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1112 /* fallthrough */
1113 case SAS_EDGE_EXPANDER_DEVICE:
1114 child = sas_ex_discover_expander(dev, phy_id);
1115 break;
1116 default:
1117 break;
1120 if (child) {
1121 int i;
1123 for (i = 0; i < ex->num_phys; i++) {
1124 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1125 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1126 continue;
1128 * Due to races, the phy might not get added to the
1129 * wide port, so we add the phy to the wide port here.
1131 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1132 SAS_ADDR(child->sas_addr)) {
1133 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1134 if (sas_ex_join_wide_port(dev, i))
1135 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1136 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1142 return res;
1145 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1147 struct expander_device *ex = &dev->ex_dev;
1148 int i;
1150 for (i = 0; i < ex->num_phys; i++) {
1151 struct ex_phy *phy = &ex->ex_phy[i];
1153 if (phy->phy_state == PHY_VACANT ||
1154 phy->phy_state == PHY_NOT_PRESENT)
1155 continue;
1157 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1158 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1159 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1163 return 1;
1166 return 0;
1169 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1171 struct expander_device *ex = &dev->ex_dev;
1172 struct domain_device *child;
1173 u8 sub_addr[8] = {0, };
1175 list_for_each_entry(child, &ex->children, siblings) {
1176 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1177 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1178 continue;
1179 if (sub_addr[0] == 0) {
1180 sas_find_sub_addr(child, sub_addr);
1181 continue;
1182 } else {
1183 u8 s2[8];
1185 if (sas_find_sub_addr(child, s2) &&
1186 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1188 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1189 "diverges from subtractive "
1190 "boundary %016llx\n",
1191 SAS_ADDR(dev->sas_addr),
1192 SAS_ADDR(child->sas_addr),
1193 SAS_ADDR(s2),
1194 SAS_ADDR(sub_addr));
1196 sas_ex_disable_port(child, s2);
1200 return 0;
1203 * sas_ex_discover_devices - discover devices attached to this expander
1204 * @dev: pointer to the expander domain device
1205 * @single: if you want to do a single phy, else set to -1;
1207 * Configure this expander for use with its devices and register the
1208 * devices of this expander.
1210 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1212 struct expander_device *ex = &dev->ex_dev;
1213 int i = 0, end = ex->num_phys;
1214 int res = 0;
1216 if (0 <= single && single < end) {
1217 i = single;
1218 end = i+1;
1221 for ( ; i < end; i++) {
1222 struct ex_phy *ex_phy = &ex->ex_phy[i];
1224 if (ex_phy->phy_state == PHY_VACANT ||
1225 ex_phy->phy_state == PHY_NOT_PRESENT ||
1226 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1227 continue;
1229 switch (ex_phy->linkrate) {
1230 case SAS_PHY_DISABLED:
1231 case SAS_PHY_RESET_PROBLEM:
1232 case SAS_SATA_PORT_SELECTOR:
1233 continue;
1234 default:
1235 res = sas_ex_discover_dev(dev, i);
1236 if (res)
1237 break;
1238 continue;
1242 if (!res)
1243 sas_check_level_subtractive_boundary(dev);
1245 return res;
1248 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1250 struct expander_device *ex = &dev->ex_dev;
1251 int i;
1252 u8 *sub_sas_addr = NULL;
1254 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1255 return 0;
1257 for (i = 0; i < ex->num_phys; i++) {
1258 struct ex_phy *phy = &ex->ex_phy[i];
1260 if (phy->phy_state == PHY_VACANT ||
1261 phy->phy_state == PHY_NOT_PRESENT)
1262 continue;
1264 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1265 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1266 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1268 if (!sub_sas_addr)
1269 sub_sas_addr = &phy->attached_sas_addr[0];
1270 else if (SAS_ADDR(sub_sas_addr) !=
1271 SAS_ADDR(phy->attached_sas_addr)) {
1273 SAS_DPRINTK("ex %016llx phy 0x%x "
1274 "diverges(%016llx) on subtractive "
1275 "boundary(%016llx). Disabled\n",
1276 SAS_ADDR(dev->sas_addr), i,
1277 SAS_ADDR(phy->attached_sas_addr),
1278 SAS_ADDR(sub_sas_addr));
1279 sas_ex_disable_phy(dev, i);
1283 return 0;
1286 static void sas_print_parent_topology_bug(struct domain_device *child,
1287 struct ex_phy *parent_phy,
1288 struct ex_phy *child_phy)
1290 static const char *ex_type[] = {
1291 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1292 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1294 struct domain_device *parent = child->parent;
1296 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1297 "phy 0x%x has %c:%c routing link!\n",
1299 ex_type[parent->dev_type],
1300 SAS_ADDR(parent->sas_addr),
1301 parent_phy->phy_id,
1303 ex_type[child->dev_type],
1304 SAS_ADDR(child->sas_addr),
1305 child_phy->phy_id,
1307 sas_route_char(parent, parent_phy),
1308 sas_route_char(child, child_phy));
1311 static int sas_check_eeds(struct domain_device *child,
1312 struct ex_phy *parent_phy,
1313 struct ex_phy *child_phy)
1315 int res = 0;
1316 struct domain_device *parent = child->parent;
1318 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1319 res = -ENODEV;
1320 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1321 "phy S:0x%x, while there is a fanout ex %016llx\n",
1322 SAS_ADDR(parent->sas_addr),
1323 parent_phy->phy_id,
1324 SAS_ADDR(child->sas_addr),
1325 child_phy->phy_id,
1326 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1327 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1328 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1329 SAS_ADDR_SIZE);
1330 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1331 SAS_ADDR_SIZE);
1332 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1333 SAS_ADDR(parent->sas_addr)) ||
1334 (SAS_ADDR(parent->port->disc.eeds_a) ==
1335 SAS_ADDR(child->sas_addr)))
1337 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1338 SAS_ADDR(parent->sas_addr)) ||
1339 (SAS_ADDR(parent->port->disc.eeds_b) ==
1340 SAS_ADDR(child->sas_addr))))
1342 else {
1343 res = -ENODEV;
1344 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1345 "phy 0x%x link forms a third EEDS!\n",
1346 SAS_ADDR(parent->sas_addr),
1347 parent_phy->phy_id,
1348 SAS_ADDR(child->sas_addr),
1349 child_phy->phy_id);
1352 return res;
1355 /* Here we spill over 80 columns. It is intentional.
1357 static int sas_check_parent_topology(struct domain_device *child)
1359 struct expander_device *child_ex = &child->ex_dev;
1360 struct expander_device *parent_ex;
1361 int i;
1362 int res = 0;
1364 if (!child->parent)
1365 return 0;
1367 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1368 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1369 return 0;
1371 parent_ex = &child->parent->ex_dev;
1373 for (i = 0; i < parent_ex->num_phys; i++) {
1374 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1375 struct ex_phy *child_phy;
1377 if (parent_phy->phy_state == PHY_VACANT ||
1378 parent_phy->phy_state == PHY_NOT_PRESENT)
1379 continue;
1381 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1382 continue;
1384 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1386 switch (child->parent->dev_type) {
1387 case SAS_EDGE_EXPANDER_DEVICE:
1388 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1389 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1390 child_phy->routing_attr != TABLE_ROUTING) {
1391 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1392 res = -ENODEV;
1394 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1395 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1396 res = sas_check_eeds(child, parent_phy, child_phy);
1397 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1398 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1399 res = -ENODEV;
1401 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1402 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1403 (child_phy->routing_attr == TABLE_ROUTING &&
1404 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1405 /* All good */;
1406 } else {
1407 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1408 res = -ENODEV;
1411 break;
1412 case SAS_FANOUT_EXPANDER_DEVICE:
1413 if (parent_phy->routing_attr != TABLE_ROUTING ||
1414 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1415 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1416 res = -ENODEV;
1418 break;
1419 default:
1420 break;
1424 return res;
1427 #define RRI_REQ_SIZE 16
1428 #define RRI_RESP_SIZE 44
1430 static int sas_configure_present(struct domain_device *dev, int phy_id,
1431 u8 *sas_addr, int *index, int *present)
1433 int i, res = 0;
1434 struct expander_device *ex = &dev->ex_dev;
1435 struct ex_phy *phy = &ex->ex_phy[phy_id];
1436 u8 *rri_req;
1437 u8 *rri_resp;
1439 *present = 0;
1440 *index = 0;
1442 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1443 if (!rri_req)
1444 return -ENOMEM;
1446 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1447 if (!rri_resp) {
1448 kfree(rri_req);
1449 return -ENOMEM;
1452 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1453 rri_req[9] = phy_id;
1455 for (i = 0; i < ex->max_route_indexes ; i++) {
1456 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1457 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1458 RRI_RESP_SIZE);
1459 if (res)
1460 goto out;
1461 res = rri_resp[2];
1462 if (res == SMP_RESP_NO_INDEX) {
1463 SAS_DPRINTK("overflow of indexes: dev %016llx "
1464 "phy 0x%x index 0x%x\n",
1465 SAS_ADDR(dev->sas_addr), phy_id, i);
1466 goto out;
1467 } else if (res != SMP_RESP_FUNC_ACC) {
1468 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1469 "result 0x%x\n", __func__,
1470 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1471 goto out;
1473 if (SAS_ADDR(sas_addr) != 0) {
1474 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1475 *index = i;
1476 if ((rri_resp[12] & 0x80) == 0x80)
1477 *present = 0;
1478 else
1479 *present = 1;
1480 goto out;
1481 } else if (SAS_ADDR(rri_resp+16) == 0) {
1482 *index = i;
1483 *present = 0;
1484 goto out;
1486 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1487 phy->last_da_index < i) {
1488 phy->last_da_index = i;
1489 *index = i;
1490 *present = 0;
1491 goto out;
1494 res = -1;
1495 out:
1496 kfree(rri_req);
1497 kfree(rri_resp);
1498 return res;
1501 #define CRI_REQ_SIZE 44
1502 #define CRI_RESP_SIZE 8
1504 static int sas_configure_set(struct domain_device *dev, int phy_id,
1505 u8 *sas_addr, int index, int include)
1507 int res;
1508 u8 *cri_req;
1509 u8 *cri_resp;
1511 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1512 if (!cri_req)
1513 return -ENOMEM;
1515 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1516 if (!cri_resp) {
1517 kfree(cri_req);
1518 return -ENOMEM;
1521 cri_req[1] = SMP_CONF_ROUTE_INFO;
1522 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1523 cri_req[9] = phy_id;
1524 if (SAS_ADDR(sas_addr) == 0 || !include)
1525 cri_req[12] |= 0x80;
1526 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1528 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1529 CRI_RESP_SIZE);
1530 if (res)
1531 goto out;
1532 res = cri_resp[2];
1533 if (res == SMP_RESP_NO_INDEX) {
1534 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1535 "index 0x%x\n",
1536 SAS_ADDR(dev->sas_addr), phy_id, index);
1538 out:
1539 kfree(cri_req);
1540 kfree(cri_resp);
1541 return res;
1544 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1545 u8 *sas_addr, int include)
1547 int index;
1548 int present;
1549 int res;
1551 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1552 if (res)
1553 return res;
1554 if (include ^ present)
1555 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1557 return res;
1561 * sas_configure_parent - configure routing table of parent
1562 * @parent: parent expander
1563 * @child: child expander
1564 * @sas_addr: SAS port identifier of device directly attached to child
1565 * @include: whether or not to include @child in the expander routing table
1567 static int sas_configure_parent(struct domain_device *parent,
1568 struct domain_device *child,
1569 u8 *sas_addr, int include)
1571 struct expander_device *ex_parent = &parent->ex_dev;
1572 int res = 0;
1573 int i;
1575 if (parent->parent) {
1576 res = sas_configure_parent(parent->parent, parent, sas_addr,
1577 include);
1578 if (res)
1579 return res;
1582 if (ex_parent->conf_route_table == 0) {
1583 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1584 SAS_ADDR(parent->sas_addr));
1585 return 0;
1588 for (i = 0; i < ex_parent->num_phys; i++) {
1589 struct ex_phy *phy = &ex_parent->ex_phy[i];
1591 if ((phy->routing_attr == TABLE_ROUTING) &&
1592 (SAS_ADDR(phy->attached_sas_addr) ==
1593 SAS_ADDR(child->sas_addr))) {
1594 res = sas_configure_phy(parent, i, sas_addr, include);
1595 if (res)
1596 return res;
1600 return res;
1604 * sas_configure_routing - configure routing
1605 * @dev: expander device
1606 * @sas_addr: port identifier of device directly attached to the expander device
1608 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1610 if (dev->parent)
1611 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1612 return 0;
1615 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1617 if (dev->parent)
1618 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1619 return 0;
1623 * sas_discover_expander - expander discovery
1624 * @dev: pointer to expander domain device
1626 * See comment in sas_discover_sata().
1628 static int sas_discover_expander(struct domain_device *dev)
1630 int res;
1632 res = sas_notify_lldd_dev_found(dev);
1633 if (res)
1634 return res;
1636 res = sas_ex_general(dev);
1637 if (res)
1638 goto out_err;
1639 res = sas_ex_manuf_info(dev);
1640 if (res)
1641 goto out_err;
1643 res = sas_expander_discover(dev);
1644 if (res) {
1645 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1646 SAS_ADDR(dev->sas_addr), res);
1647 goto out_err;
1650 sas_check_ex_subtractive_boundary(dev);
1651 res = sas_check_parent_topology(dev);
1652 if (res)
1653 goto out_err;
1654 return 0;
1655 out_err:
1656 sas_notify_lldd_dev_gone(dev);
1657 return res;
1660 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1662 int res = 0;
1663 struct domain_device *dev;
1665 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1666 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1667 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1668 struct sas_expander_device *ex =
1669 rphy_to_expander_device(dev->rphy);
1671 if (level == ex->level)
1672 res = sas_ex_discover_devices(dev, -1);
1673 else if (level > 0)
1674 res = sas_ex_discover_devices(port->port_dev, -1);
1679 return res;
1682 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1684 int res;
1685 int level;
1687 do {
1688 level = port->disc.max_level;
1689 res = sas_ex_level_discovery(port, level);
1690 mb();
1691 } while (level < port->disc.max_level);
1693 return res;
1696 int sas_discover_root_expander(struct domain_device *dev)
1698 int res;
1699 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1701 res = sas_rphy_add(dev->rphy);
1702 if (res)
1703 goto out_err;
1705 ex->level = dev->port->disc.max_level; /* 0 */
1706 res = sas_discover_expander(dev);
1707 if (res)
1708 goto out_err2;
1710 sas_ex_bfs_disc(dev->port);
1712 return res;
1714 out_err2:
1715 sas_rphy_remove(dev->rphy);
1716 out_err:
1717 return res;
1720 /* ---------- Domain revalidation ---------- */
1722 static int sas_get_phy_discover(struct domain_device *dev,
1723 int phy_id, struct smp_resp *disc_resp)
1725 int res;
1726 u8 *disc_req;
1728 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1729 if (!disc_req)
1730 return -ENOMEM;
1732 disc_req[1] = SMP_DISCOVER;
1733 disc_req[9] = phy_id;
1735 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1736 disc_resp, DISCOVER_RESP_SIZE);
1737 if (res)
1738 goto out;
1739 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1740 res = disc_resp->result;
1741 goto out;
1743 out:
1744 kfree(disc_req);
1745 return res;
1748 static int sas_get_phy_change_count(struct domain_device *dev,
1749 int phy_id, int *pcc)
1751 int res;
1752 struct smp_resp *disc_resp;
1754 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1755 if (!disc_resp)
1756 return -ENOMEM;
1758 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1759 if (!res)
1760 *pcc = disc_resp->disc.change_count;
1762 kfree(disc_resp);
1763 return res;
1766 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1767 u8 *sas_addr, enum sas_device_type *type)
1769 int res;
1770 struct smp_resp *disc_resp;
1771 struct discover_resp *dr;
1773 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1774 if (!disc_resp)
1775 return -ENOMEM;
1776 dr = &disc_resp->disc;
1778 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1779 if (res == 0) {
1780 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1781 *type = to_dev_type(dr);
1782 if (*type == 0)
1783 memset(sas_addr, 0, 8);
1785 kfree(disc_resp);
1786 return res;
1789 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1790 int from_phy, bool update)
1792 struct expander_device *ex = &dev->ex_dev;
1793 int res = 0;
1794 int i;
1796 for (i = from_phy; i < ex->num_phys; i++) {
1797 int phy_change_count = 0;
1799 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1800 switch (res) {
1801 case SMP_RESP_PHY_VACANT:
1802 case SMP_RESP_NO_PHY:
1803 continue;
1804 case SMP_RESP_FUNC_ACC:
1805 break;
1806 default:
1807 return res;
1810 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1811 if (update)
1812 ex->ex_phy[i].phy_change_count =
1813 phy_change_count;
1814 *phy_id = i;
1815 return 0;
1818 return 0;
1821 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1823 int res;
1824 u8 *rg_req;
1825 struct smp_resp *rg_resp;
1827 rg_req = alloc_smp_req(RG_REQ_SIZE);
1828 if (!rg_req)
1829 return -ENOMEM;
1831 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1832 if (!rg_resp) {
1833 kfree(rg_req);
1834 return -ENOMEM;
1837 rg_req[1] = SMP_REPORT_GENERAL;
1839 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1840 RG_RESP_SIZE);
1841 if (res)
1842 goto out;
1843 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1844 res = rg_resp->result;
1845 goto out;
1848 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1849 out:
1850 kfree(rg_resp);
1851 kfree(rg_req);
1852 return res;
1855 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1856 * @dev:domain device to be detect.
1857 * @src_dev: the device which originated BROADCAST(CHANGE).
1859 * Add self-configuration expander support. Suppose two expander cascading,
1860 * when the first level expander is self-configuring, hotplug the disks in
1861 * second level expander, BROADCAST(CHANGE) will not only be originated
1862 * in the second level expander, but also be originated in the first level
1863 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1864 * expander changed count in two level expanders will all increment at least
1865 * once, but the phy which chang count has changed is the source device which
1866 * we concerned.
1869 static int sas_find_bcast_dev(struct domain_device *dev,
1870 struct domain_device **src_dev)
1872 struct expander_device *ex = &dev->ex_dev;
1873 int ex_change_count = -1;
1874 int phy_id = -1;
1875 int res;
1876 struct domain_device *ch;
1878 res = sas_get_ex_change_count(dev, &ex_change_count);
1879 if (res)
1880 goto out;
1881 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1882 /* Just detect if this expander phys phy change count changed,
1883 * in order to determine if this expander originate BROADCAST,
1884 * and do not update phy change count field in our structure.
1886 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1887 if (phy_id != -1) {
1888 *src_dev = dev;
1889 ex->ex_change_count = ex_change_count;
1890 SAS_DPRINTK("Expander phy change count has changed\n");
1891 return res;
1892 } else
1893 SAS_DPRINTK("Expander phys DID NOT change\n");
1895 list_for_each_entry(ch, &ex->children, siblings) {
1896 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1897 res = sas_find_bcast_dev(ch, src_dev);
1898 if (*src_dev)
1899 return res;
1902 out:
1903 return res;
1906 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1908 struct expander_device *ex = &dev->ex_dev;
1909 struct domain_device *child, *n;
1911 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1912 set_bit(SAS_DEV_GONE, &child->state);
1913 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1914 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1915 sas_unregister_ex_tree(port, child);
1916 else
1917 sas_unregister_dev(port, child);
1919 sas_unregister_dev(port, dev);
1922 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1923 int phy_id, bool last)
1925 struct expander_device *ex_dev = &parent->ex_dev;
1926 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1927 struct domain_device *child, *n, *found = NULL;
1928 if (last) {
1929 list_for_each_entry_safe(child, n,
1930 &ex_dev->children, siblings) {
1931 if (SAS_ADDR(child->sas_addr) ==
1932 SAS_ADDR(phy->attached_sas_addr)) {
1933 set_bit(SAS_DEV_GONE, &child->state);
1934 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1936 sas_unregister_ex_tree(parent->port, child);
1937 else
1938 sas_unregister_dev(parent->port, child);
1939 found = child;
1940 break;
1943 sas_disable_routing(parent, phy->attached_sas_addr);
1945 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1946 if (phy->port) {
1947 sas_port_delete_phy(phy->port, phy->phy);
1948 sas_device_set_phy(found, phy->port);
1949 if (phy->port->num_phys == 0)
1950 list_add_tail(&phy->port->del_list,
1951 &parent->port->sas_port_del_list);
1952 phy->port = NULL;
1956 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1957 const int level)
1959 struct expander_device *ex_root = &root->ex_dev;
1960 struct domain_device *child;
1961 int res = 0;
1963 list_for_each_entry(child, &ex_root->children, siblings) {
1964 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1965 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1966 struct sas_expander_device *ex =
1967 rphy_to_expander_device(child->rphy);
1969 if (level > ex->level)
1970 res = sas_discover_bfs_by_root_level(child,
1971 level);
1972 else if (level == ex->level)
1973 res = sas_ex_discover_devices(child, -1);
1976 return res;
1979 static int sas_discover_bfs_by_root(struct domain_device *dev)
1981 int res;
1982 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1983 int level = ex->level+1;
1985 res = sas_ex_discover_devices(dev, -1);
1986 if (res)
1987 goto out;
1988 do {
1989 res = sas_discover_bfs_by_root_level(dev, level);
1990 mb();
1991 level += 1;
1992 } while (level <= dev->port->disc.max_level);
1993 out:
1994 return res;
1997 static int sas_discover_new(struct domain_device *dev, int phy_id)
1999 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
2000 struct domain_device *child;
2001 int res;
2003 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
2004 SAS_ADDR(dev->sas_addr), phy_id);
2005 res = sas_ex_phy_discover(dev, phy_id);
2006 if (res)
2007 return res;
2009 if (sas_ex_join_wide_port(dev, phy_id))
2010 return 0;
2012 res = sas_ex_discover_devices(dev, phy_id);
2013 if (res)
2014 return res;
2015 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2016 if (SAS_ADDR(child->sas_addr) ==
2017 SAS_ADDR(ex_phy->attached_sas_addr)) {
2018 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2019 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2020 res = sas_discover_bfs_by_root(child);
2021 break;
2024 return res;
2027 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2029 if (old == new)
2030 return true;
2032 /* treat device directed resets as flutter, if we went
2033 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2035 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2036 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2037 return true;
2039 return false;
2042 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2044 struct expander_device *ex = &dev->ex_dev;
2045 struct ex_phy *phy = &ex->ex_phy[phy_id];
2046 enum sas_device_type type = SAS_PHY_UNUSED;
2047 u8 sas_addr[8];
2048 int res;
2050 memset(sas_addr, 0, 8);
2051 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2052 switch (res) {
2053 case SMP_RESP_NO_PHY:
2054 phy->phy_state = PHY_NOT_PRESENT;
2055 sas_unregister_devs_sas_addr(dev, phy_id, last);
2056 return res;
2057 case SMP_RESP_PHY_VACANT:
2058 phy->phy_state = PHY_VACANT;
2059 sas_unregister_devs_sas_addr(dev, phy_id, last);
2060 return res;
2061 case SMP_RESP_FUNC_ACC:
2062 break;
2063 case -ECOMM:
2064 break;
2065 default:
2066 return res;
2069 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2070 phy->phy_state = PHY_EMPTY;
2071 sas_unregister_devs_sas_addr(dev, phy_id, last);
2073 * Even though the PHY is empty, for convenience we discover
2074 * the PHY to update the PHY info, like negotiated linkrate.
2076 sas_ex_phy_discover(dev, phy_id);
2077 return res;
2078 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2079 dev_type_flutter(type, phy->attached_dev_type)) {
2080 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2081 char *action = "";
2083 sas_ex_phy_discover(dev, phy_id);
2085 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2086 action = ", needs recovery";
2087 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2088 SAS_ADDR(dev->sas_addr), phy_id, action);
2089 return res;
2092 /* we always have to delete the old device when we went here */
2093 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2094 SAS_ADDR(dev->sas_addr), phy_id,
2095 SAS_ADDR(phy->attached_sas_addr));
2096 sas_unregister_devs_sas_addr(dev, phy_id, last);
2098 return sas_discover_new(dev, phy_id);
2102 * sas_rediscover - revalidate the domain.
2103 * @dev:domain device to be detect.
2104 * @phy_id: the phy id will be detected.
2106 * NOTE: this process _must_ quit (return) as soon as any connection
2107 * errors are encountered. Connection recovery is done elsewhere.
2108 * Discover process only interrogates devices in order to discover the
2109 * domain.For plugging out, we un-register the device only when it is
2110 * the last phy in the port, for other phys in this port, we just delete it
2111 * from the port.For inserting, we do discovery when it is the
2112 * first phy,for other phys in this port, we add it to the port to
2113 * forming the wide-port.
2115 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2117 struct expander_device *ex = &dev->ex_dev;
2118 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2119 int res = 0;
2120 int i;
2121 bool last = true; /* is this the last phy of the port */
2123 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2124 SAS_ADDR(dev->sas_addr), phy_id);
2126 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2127 for (i = 0; i < ex->num_phys; i++) {
2128 struct ex_phy *phy = &ex->ex_phy[i];
2130 if (i == phy_id)
2131 continue;
2132 if (SAS_ADDR(phy->attached_sas_addr) ==
2133 SAS_ADDR(changed_phy->attached_sas_addr)) {
2134 SAS_DPRINTK("phy%d part of wide port with "
2135 "phy%d\n", phy_id, i);
2136 last = false;
2137 break;
2140 res = sas_rediscover_dev(dev, phy_id, last);
2141 } else
2142 res = sas_discover_new(dev, phy_id);
2143 return res;
2147 * sas_ex_revalidate_domain - revalidate the domain
2148 * @port_dev: port domain device.
2150 * NOTE: this process _must_ quit (return) as soon as any connection
2151 * errors are encountered. Connection recovery is done elsewhere.
2152 * Discover process only interrogates devices in order to discover the
2153 * domain.
2155 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2157 int res;
2158 struct domain_device *dev = NULL;
2160 res = sas_find_bcast_dev(port_dev, &dev);
2161 if (res == 0 && dev) {
2162 struct expander_device *ex = &dev->ex_dev;
2163 int i = 0, phy_id;
2165 do {
2166 phy_id = -1;
2167 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2168 if (phy_id == -1)
2169 break;
2170 res = sas_rediscover(dev, phy_id);
2171 i = phy_id + 1;
2172 } while (i < ex->num_phys);
2174 return res;
2177 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2178 struct sas_rphy *rphy)
2180 struct domain_device *dev;
2181 unsigned int rcvlen = 0;
2182 int ret = -EINVAL;
2184 /* no rphy means no smp target support (ie aic94xx host) */
2185 if (!rphy)
2186 return sas_smp_host_handler(job, shost);
2188 switch (rphy->identify.device_type) {
2189 case SAS_EDGE_EXPANDER_DEVICE:
2190 case SAS_FANOUT_EXPANDER_DEVICE:
2191 break;
2192 default:
2193 printk("%s: can we send a smp request to a device?\n",
2194 __func__);
2195 goto out;
2198 dev = sas_find_dev_by_rphy(rphy);
2199 if (!dev) {
2200 printk("%s: fail to find a domain_device?\n", __func__);
2201 goto out;
2204 /* do we need to support multiple segments? */
2205 if (job->request_payload.sg_cnt > 1 ||
2206 job->reply_payload.sg_cnt > 1) {
2207 printk("%s: multiple segments req %u, rsp %u\n",
2208 __func__, job->request_payload.payload_len,
2209 job->reply_payload.payload_len);
2210 goto out;
2213 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2214 job->reply_payload.sg_list);
2215 if (ret >= 0) {
2216 /* bsg_job_done() requires the length received */
2217 rcvlen = job->reply_payload.payload_len - ret;
2218 ret = 0;
2221 out:
2222 bsg_job_done(job, ret, rcvlen);