2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth
= -1;
77 module_param(max_queue_depth
, int, 0);
78 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
80 static int max_sgl_entries
= -1;
81 module_param(max_sgl_entries
, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
84 static int msix_disable
= -1;
85 module_param(msix_disable
, int, 0);
86 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable
= 1;
89 module_param(smp_affinity_enable
, int, S_IRUGO
);
90 MODULE_PARM_DESC(smp_affinity_enable
, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors
= -1;
93 module_param(max_msix_vectors
, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors
,
97 static int mpt3sas_fwfault_debug
;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug
,
99 " enable detection of firmware fault and halt firmware - (default=0)");
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
);
105 * mpt3sas_base_check_cmd_timeout - Function
106 * to check timeout and command termination due
109 * @ioc: per adapter object.
110 * @status: Status of issued command.
111 * @mpi_request:mf request pointer.
112 * @sz: size of buffer.
114 * @Returns - 1/0 Reset to be done or Not
117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER
*ioc
,
118 u8 status
, void *mpi_request
, int sz
)
122 if (!(status
& MPT3_CMD_RESET
))
125 pr_err(MPT3SAS_FMT
"Command %s\n", ioc
->name
,
126 ((issue_reset
== 0) ? "terminated due to Host Reset" : "Timeout"));
127 _debug_dump_mf(mpi_request
, sz
);
133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
140 _scsih_set_fwfault_debug(const char *val
, const struct kernel_param
*kp
)
142 int ret
= param_set_int(val
, kp
);
143 struct MPT3SAS_ADAPTER
*ioc
;
148 /* global ioc spinlock to protect controller list on list operations */
149 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug
);
150 spin_lock(&gioc_lock
);
151 list_for_each_entry(ioc
, &mpt3sas_ioc_list
, list
)
152 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
153 spin_unlock(&gioc_lock
);
156 module_param_call(mpt3sas_fwfault_debug
, _scsih_set_fwfault_debug
,
157 param_get_int
, &mpt3sas_fwfault_debug
, 0644);
160 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
163 * @ioc: per adapter object
164 * @reply: reply message frame(lower 32bit addr)
165 * @index: System request message index.
168 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER
*ioc
, u32 reply
,
172 * 256 is offset within sys register.
173 * 256 offset MPI frame starts. Max MPI frame supported is 32.
174 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
176 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
177 void __iomem
*reply_free_iomem
= (void __iomem
*)ioc
->chip
+
178 MPI_FRAME_START_OFFSET
+
179 (cmd_credit
* ioc
->request_sz
) + (index
* sizeof(u32
));
181 writel(reply
, reply_free_iomem
);
185 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
186 * to system/BAR0 region.
188 * @dst_iomem: Pointer to the destination location in BAR0 space.
189 * @src: Pointer to the Source data.
190 * @size: Size of data to be copied.
193 _base_clone_mpi_to_sys_mem(void *dst_iomem
, void *src
, u32 size
)
196 u32
*src_virt_mem
= (u32
*)src
;
198 for (i
= 0; i
< size
/4; i
++)
199 writel((u32
)src_virt_mem
[i
],
200 (void __iomem
*)dst_iomem
+ (i
* 4));
204 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
206 * @dst_iomem: Pointer to the destination location in BAR0 space.
207 * @src: Pointer to the Source data.
208 * @size: Size of data to be copied.
211 _base_clone_to_sys_mem(void __iomem
*dst_iomem
, void *src
, u32 size
)
214 u32
*src_virt_mem
= (u32
*)(src
);
216 for (i
= 0; i
< size
/4; i
++)
217 writel((u32
)src_virt_mem
[i
],
218 (void __iomem
*)dst_iomem
+ (i
* 4));
222 * _base_get_chain - Calculates and Returns virtual chain address
223 * for the provided smid in BAR0 space.
225 * @ioc: per adapter object
226 * @smid: system request message index
227 * @sge_chain_count: Scatter gather chain count.
229 * Return: the chain address.
231 static inline void __iomem
*
232 _base_get_chain(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
235 void __iomem
*base_chain
, *chain_virt
;
236 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
238 base_chain
= (void __iomem
*)ioc
->chip
+ MPI_FRAME_START_OFFSET
+
239 (cmd_credit
* ioc
->request_sz
) +
240 REPLY_FREE_POOL_SIZE
;
241 chain_virt
= base_chain
+ (smid
* ioc
->facts
.MaxChainDepth
*
242 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
247 * _base_get_chain_phys - Calculates and Returns physical address
248 * in BAR0 for scatter gather chains, for
251 * @ioc: per adapter object
252 * @smid: system request message index
253 * @sge_chain_count: Scatter gather chain count.
255 * Return: Physical chain address.
257 static inline phys_addr_t
258 _base_get_chain_phys(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
261 phys_addr_t base_chain_phys
, chain_phys
;
262 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
264 base_chain_phys
= ioc
->chip_phys
+ MPI_FRAME_START_OFFSET
+
265 (cmd_credit
* ioc
->request_sz
) +
266 REPLY_FREE_POOL_SIZE
;
267 chain_phys
= base_chain_phys
+ (smid
* ioc
->facts
.MaxChainDepth
*
268 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
273 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
274 * buffer address for the provided smid.
275 * (Each smid can have 64K starts from 17024)
277 * @ioc: per adapter object
278 * @smid: system request message index
280 * Return: Pointer to buffer location in BAR0.
283 static void __iomem
*
284 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
286 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
287 // Added extra 1 to reach end of chain.
288 void __iomem
*chain_end
= _base_get_chain(ioc
,
290 ioc
->facts
.MaxChainDepth
);
291 return chain_end
+ (smid
* 64 * 1024);
295 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
296 * Host buffer Physical address for the provided smid.
297 * (Each smid can have 64K starts from 17024)
299 * @ioc: per adapter object
300 * @smid: system request message index
302 * Return: Pointer to buffer location in BAR0.
305 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
307 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
308 phys_addr_t chain_end_phys
= _base_get_chain_phys(ioc
,
310 ioc
->facts
.MaxChainDepth
);
311 return chain_end_phys
+ (smid
* 64 * 1024);
315 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
316 * lookup list and Provides chain_buffer
317 * address for the matching dma address.
318 * (Each smid can have 64K starts from 17024)
320 * @ioc: per adapter object
321 * @chain_buffer_dma: Chain buffer dma address.
323 * Return: Pointer to chain buffer. Or Null on Failure.
326 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER
*ioc
,
327 dma_addr_t chain_buffer_dma
)
330 struct chain_tracker
*ct
;
332 for (index
= 0; index
< ioc
->scsiio_depth
; index
++) {
333 for (j
= 0; j
< ioc
->chains_needed_per_io
; j
++) {
334 ct
= &ioc
->chain_lookup
[index
].chains_per_smid
[j
];
335 if (ct
&& ct
->chain_buffer_dma
== chain_buffer_dma
)
336 return ct
->chain_buffer
;
340 "Provided chain_buffer_dma address is not in the lookup list\n",
346 * _clone_sg_entries - MPI EP's scsiio and config requests
347 * are handled here. Base function for
348 * double buffering, before submitting
351 * @ioc: per adapter object.
352 * @mpi_request: mf request pointer.
353 * @smid: system request message index.
355 static void _clone_sg_entries(struct MPT3SAS_ADAPTER
*ioc
,
356 void *mpi_request
, u16 smid
)
358 Mpi2SGESimple32_t
*sgel
, *sgel_next
;
359 u32 sgl_flags
, sge_chain_count
= 0;
362 void __iomem
*buffer_iomem
;
363 phys_addr_t buffer_iomem_phys
;
364 void __iomem
*buff_ptr
;
365 phys_addr_t buff_ptr_phys
;
366 void __iomem
*dst_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
367 void *src_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
368 phys_addr_t dst_addr_phys
;
369 MPI2RequestHeader_t
*request_hdr
;
370 struct scsi_cmnd
*scmd
;
371 struct scatterlist
*sg_scmd
= NULL
;
372 int is_scsiio_req
= 0;
374 request_hdr
= (MPI2RequestHeader_t
*) mpi_request
;
376 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
) {
377 Mpi25SCSIIORequest_t
*scsiio_request
=
378 (Mpi25SCSIIORequest_t
*)mpi_request
;
379 sgel
= (Mpi2SGESimple32_t
*) &scsiio_request
->SGL
;
381 } else if (request_hdr
->Function
== MPI2_FUNCTION_CONFIG
) {
382 Mpi2ConfigRequest_t
*config_req
=
383 (Mpi2ConfigRequest_t
*)mpi_request
;
384 sgel
= (Mpi2SGESimple32_t
*) &config_req
->PageBufferSGE
;
388 /* From smid we can get scsi_cmd, once we have sg_scmd,
389 * we just need to get sg_virt and sg_next to get virual
390 * address associated with sgel->Address.
394 /* Get scsi_cmd using smid */
395 scmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
397 pr_err(MPT3SAS_FMT
"scmd is NULL\n", ioc
->name
);
401 /* Get sg_scmd from scmd provided */
402 sg_scmd
= scsi_sglist(scmd
);
406 * 0 - 255 System register
407 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
408 * 4352 - 4864 Reply_free pool (512 byte is reserved
409 * considering maxCredit 32. Reply need extra
410 * room, for mCPU case kept four times of
412 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
413 * 128 byte size = 12288)
414 * 17152 - x Host buffer mapped with smid.
415 * (Each smid can have 64K Max IO.)
416 * BAR0+Last 1K MSIX Addr and Data
417 * Total size in use 2113664 bytes of 4MB BAR0
420 buffer_iomem
= _base_get_buffer_bar0(ioc
, smid
);
421 buffer_iomem_phys
= _base_get_buffer_phys_bar0(ioc
, smid
);
423 buff_ptr
= buffer_iomem
;
424 buff_ptr_phys
= buffer_iomem_phys
;
425 WARN_ON(buff_ptr_phys
> U32_MAX
);
427 if (le32_to_cpu(sgel
->FlagsLength
) &
428 (MPI2_SGE_FLAGS_HOST_TO_IOC
<< MPI2_SGE_FLAGS_SHIFT
))
431 for (i
= 0; i
< MPT_MIN_PHYS_SEGMENTS
+ ioc
->facts
.MaxChainDepth
; i
++) {
434 (le32_to_cpu(sgel
->FlagsLength
) >> MPI2_SGE_FLAGS_SHIFT
);
436 switch (sgl_flags
& MPI2_SGE_FLAGS_ELEMENT_MASK
) {
437 case MPI2_SGE_FLAGS_CHAIN_ELEMENT
:
439 * Helper function which on passing
440 * chain_buffer_dma returns chain_buffer. Get
441 * the virtual address for sgel->Address
444 _base_get_chain_buffer_dma_to_chain_buffer(ioc
,
445 le32_to_cpu(sgel
->Address
));
446 if (sgel_next
== NULL
)
449 * This is coping 128 byte chain
450 * frame (not a host buffer)
452 dst_chain_addr
[sge_chain_count
] =
454 smid
, sge_chain_count
);
455 src_chain_addr
[sge_chain_count
] =
457 dst_addr_phys
= _base_get_chain_phys(ioc
,
458 smid
, sge_chain_count
);
459 WARN_ON(dst_addr_phys
> U32_MAX
);
461 cpu_to_le32(lower_32_bits(dst_addr_phys
));
465 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT
:
468 _base_clone_to_sys_mem(buff_ptr
,
470 (le32_to_cpu(sgel
->FlagsLength
) &
473 * FIXME: this relies on a a zero
477 cpu_to_le32((u32
)buff_ptr_phys
);
479 _base_clone_to_sys_mem(buff_ptr
,
481 (le32_to_cpu(sgel
->FlagsLength
) &
484 cpu_to_le32((u32
)buff_ptr_phys
);
487 buff_ptr
+= (le32_to_cpu(sgel
->FlagsLength
) &
489 buff_ptr_phys
+= (le32_to_cpu(sgel
->FlagsLength
) &
491 if ((le32_to_cpu(sgel
->FlagsLength
) &
492 (MPI2_SGE_FLAGS_END_OF_BUFFER
493 << MPI2_SGE_FLAGS_SHIFT
)))
494 goto eob_clone_chain
;
497 * Every single element in MPT will have
498 * associated sg_next. Better to sanity that
499 * sg_next is not NULL, but it will be a bug
503 sg_scmd
= sg_next(sg_scmd
);
507 goto eob_clone_chain
;
515 for (i
= 0; i
< sge_chain_count
; i
++) {
517 _base_clone_to_sys_mem(dst_chain_addr
[i
],
518 src_chain_addr
[i
], ioc
->request_sz
);
523 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
524 * @arg: input argument, used to derive ioc
527 * 0 if controller is removed from pci subsystem.
530 static int mpt3sas_remove_dead_ioc_func(void *arg
)
532 struct MPT3SAS_ADAPTER
*ioc
= (struct MPT3SAS_ADAPTER
*)arg
;
533 struct pci_dev
*pdev
;
541 pci_stop_and_remove_bus_device_locked(pdev
);
546 * _base_fault_reset_work - workq handling ioc fault conditions
547 * @work: input argument, used to derive ioc
552 _base_fault_reset_work(struct work_struct
*work
)
554 struct MPT3SAS_ADAPTER
*ioc
=
555 container_of(work
, struct MPT3SAS_ADAPTER
, fault_reset_work
.work
);
559 struct task_struct
*p
;
562 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
563 if (ioc
->shost_recovery
|| ioc
->pci_error_recovery
)
565 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
567 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
568 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_MASK
) {
569 pr_err(MPT3SAS_FMT
"SAS host is non-operational !!!!\n",
572 /* It may be possible that EEH recovery can resolve some of
573 * pci bus failure issues rather removing the dead ioc function
574 * by considering controller is in a non-operational state. So
575 * here priority is given to the EEH recovery. If it doesn't
576 * not resolve this issue, mpt3sas driver will consider this
577 * controller to non-operational state and remove the dead ioc
580 if (ioc
->non_operational_loop
++ < 5) {
581 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
,
587 * Call _scsih_flush_pending_cmds callback so that we flush all
588 * pending commands back to OS. This call is required to aovid
589 * deadlock at block layer. Dead IOC will fail to do diag reset,
590 * and this call is safe since dead ioc will never return any
591 * command back from HW.
593 ioc
->schedule_dead_ioc_flush_running_cmds(ioc
);
595 * Set remove_host flag early since kernel thread will
596 * take some time to execute.
598 ioc
->remove_host
= 1;
599 /*Remove the Dead Host */
600 p
= kthread_run(mpt3sas_remove_dead_ioc_func
, ioc
,
601 "%s_dead_ioc_%d", ioc
->driver_name
, ioc
->id
);
604 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
605 ioc
->name
, __func__
);
608 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
609 ioc
->name
, __func__
);
610 return; /* don't rearm timer */
613 ioc
->non_operational_loop
= 0;
615 if ((doorbell
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
) {
616 rc
= mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
617 pr_warn(MPT3SAS_FMT
"%s: hard reset: %s\n", ioc
->name
,
618 __func__
, (rc
== 0) ? "success" : "failed");
619 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
620 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
621 mpt3sas_base_fault_info(ioc
, doorbell
&
622 MPI2_DOORBELL_DATA_MASK
);
623 if (rc
&& (doorbell
& MPI2_IOC_STATE_MASK
) !=
624 MPI2_IOC_STATE_OPERATIONAL
)
625 return; /* don't rearm timer */
628 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
630 if (ioc
->fault_reset_work_q
)
631 queue_delayed_work(ioc
->fault_reset_work_q
,
632 &ioc
->fault_reset_work
,
633 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
634 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
638 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
639 * @ioc: per adapter object
644 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
648 if (ioc
->fault_reset_work_q
)
651 /* initialize fault polling */
653 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
654 snprintf(ioc
->fault_reset_work_q_name
,
655 sizeof(ioc
->fault_reset_work_q_name
), "poll_%s%d_status",
656 ioc
->driver_name
, ioc
->id
);
657 ioc
->fault_reset_work_q
=
658 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
659 if (!ioc
->fault_reset_work_q
) {
660 pr_err(MPT3SAS_FMT
"%s: failed (line=%d)\n",
661 ioc
->name
, __func__
, __LINE__
);
664 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
665 if (ioc
->fault_reset_work_q
)
666 queue_delayed_work(ioc
->fault_reset_work_q
,
667 &ioc
->fault_reset_work
,
668 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
669 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
673 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
674 * @ioc: per adapter object
679 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
682 struct workqueue_struct
*wq
;
684 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
685 wq
= ioc
->fault_reset_work_q
;
686 ioc
->fault_reset_work_q
= NULL
;
687 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
689 if (!cancel_delayed_work_sync(&ioc
->fault_reset_work
))
691 destroy_workqueue(wq
);
696 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
697 * @ioc: per adapter object
698 * @fault_code: fault code
701 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER
*ioc
, u16 fault_code
)
703 pr_err(MPT3SAS_FMT
"fault_state(0x%04x)!\n",
704 ioc
->name
, fault_code
);
708 * mpt3sas_halt_firmware - halt's mpt controller firmware
709 * @ioc: per adapter object
711 * For debugging timeout related issues. Writing 0xCOFFEE00
712 * to the doorbell register will halt controller firmware. With
713 * the purpose to stop both driver and firmware, the enduser can
714 * obtain a ring buffer from controller UART.
717 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER
*ioc
)
721 if (!ioc
->fwfault_debug
)
726 doorbell
= readl(&ioc
->chip
->Doorbell
);
727 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
728 mpt3sas_base_fault_info(ioc
, doorbell
);
730 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
731 pr_err(MPT3SAS_FMT
"Firmware is halted due to command timeout\n",
735 if (ioc
->fwfault_debug
== 2)
739 panic("panic in %s\n", __func__
);
743 * _base_sas_ioc_info - verbose translation of the ioc status
744 * @ioc: per adapter object
745 * @mpi_reply: reply mf payload returned from firmware
746 * @request_hdr: request mf
749 _base_sas_ioc_info(struct MPT3SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
750 MPI2RequestHeader_t
*request_hdr
)
752 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
756 char *func_str
= NULL
;
758 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
759 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
760 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
761 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
764 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
767 switch (ioc_status
) {
769 /****************************************************************************
770 * Common IOCStatus values for all replies
771 ****************************************************************************/
773 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
774 desc
= "invalid function";
776 case MPI2_IOCSTATUS_BUSY
:
779 case MPI2_IOCSTATUS_INVALID_SGL
:
780 desc
= "invalid sgl";
782 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
783 desc
= "internal error";
785 case MPI2_IOCSTATUS_INVALID_VPID
:
786 desc
= "invalid vpid";
788 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
789 desc
= "insufficient resources";
791 case MPI2_IOCSTATUS_INSUFFICIENT_POWER
:
792 desc
= "insufficient power";
794 case MPI2_IOCSTATUS_INVALID_FIELD
:
795 desc
= "invalid field";
797 case MPI2_IOCSTATUS_INVALID_STATE
:
798 desc
= "invalid state";
800 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
801 desc
= "op state not supported";
804 /****************************************************************************
805 * Config IOCStatus values
806 ****************************************************************************/
808 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
809 desc
= "config invalid action";
811 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
812 desc
= "config invalid type";
814 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
815 desc
= "config invalid page";
817 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
818 desc
= "config invalid data";
820 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
821 desc
= "config no defaults";
823 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
824 desc
= "config cant commit";
827 /****************************************************************************
829 ****************************************************************************/
831 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
832 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
833 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
834 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
835 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
836 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
837 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
838 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
839 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
840 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
841 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
842 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
845 /****************************************************************************
846 * For use by SCSI Initiator and SCSI Target end-to-end data protection
847 ****************************************************************************/
849 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
850 desc
= "eedp guard error";
852 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
853 desc
= "eedp ref tag error";
855 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
856 desc
= "eedp app tag error";
859 /****************************************************************************
861 ****************************************************************************/
863 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
864 desc
= "target invalid io index";
866 case MPI2_IOCSTATUS_TARGET_ABORTED
:
867 desc
= "target aborted";
869 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
870 desc
= "target no conn retryable";
872 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
873 desc
= "target no connection";
875 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
876 desc
= "target xfer count mismatch";
878 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
879 desc
= "target data offset error";
881 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
882 desc
= "target too much write data";
884 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
885 desc
= "target iu too short";
887 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
888 desc
= "target ack nak timeout";
890 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
891 desc
= "target nak received";
894 /****************************************************************************
895 * Serial Attached SCSI values
896 ****************************************************************************/
898 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
899 desc
= "smp request failed";
901 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
902 desc
= "smp data overrun";
905 /****************************************************************************
906 * Diagnostic Buffer Post / Diagnostic Release values
907 ****************************************************************************/
909 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
910 desc
= "diagnostic released";
919 switch (request_hdr
->Function
) {
920 case MPI2_FUNCTION_CONFIG
:
921 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
922 func_str
= "config_page";
924 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
925 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
926 func_str
= "task_mgmt";
928 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
929 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
930 func_str
= "sas_iounit_ctl";
932 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
933 frame_sz
= sizeof(Mpi2SepRequest_t
);
934 func_str
= "enclosure";
936 case MPI2_FUNCTION_IOC_INIT
:
937 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
938 func_str
= "ioc_init";
940 case MPI2_FUNCTION_PORT_ENABLE
:
941 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
942 func_str
= "port_enable";
944 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
945 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
946 func_str
= "smp_passthru";
948 case MPI2_FUNCTION_NVME_ENCAPSULATED
:
949 frame_sz
= sizeof(Mpi26NVMeEncapsulatedRequest_t
) +
951 func_str
= "nvme_encapsulated";
955 func_str
= "unknown";
959 pr_warn(MPT3SAS_FMT
"ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
960 ioc
->name
, desc
, ioc_status
, request_hdr
, func_str
);
962 _debug_dump_mf(request_hdr
, frame_sz
/4);
966 * _base_display_event_data - verbose translation of firmware asyn events
967 * @ioc: per adapter object
968 * @mpi_reply: reply mf payload returned from firmware
971 _base_display_event_data(struct MPT3SAS_ADAPTER
*ioc
,
972 Mpi2EventNotificationReply_t
*mpi_reply
)
977 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
980 event
= le16_to_cpu(mpi_reply
->Event
);
983 case MPI2_EVENT_LOG_DATA
:
986 case MPI2_EVENT_STATE_CHANGE
:
987 desc
= "Status Change";
989 case MPI2_EVENT_HARD_RESET_RECEIVED
:
990 desc
= "Hard Reset Received";
992 case MPI2_EVENT_EVENT_CHANGE
:
993 desc
= "Event Change";
995 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
996 desc
= "Device Status Change";
998 case MPI2_EVENT_IR_OPERATION_STATUS
:
999 if (!ioc
->hide_ir_msg
)
1000 desc
= "IR Operation Status";
1002 case MPI2_EVENT_SAS_DISCOVERY
:
1004 Mpi2EventDataSasDiscovery_t
*event_data
=
1005 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
1006 pr_info(MPT3SAS_FMT
"Discovery: (%s)", ioc
->name
,
1007 (event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
) ?
1009 if (event_data
->DiscoveryStatus
)
1010 pr_cont(" discovery_status(0x%08x)",
1011 le32_to_cpu(event_data
->DiscoveryStatus
));
1015 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
1016 desc
= "SAS Broadcast Primitive";
1018 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
1019 desc
= "SAS Init Device Status Change";
1021 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
1022 desc
= "SAS Init Table Overflow";
1024 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
1025 desc
= "SAS Topology Change List";
1027 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
1028 desc
= "SAS Enclosure Device Status Change";
1030 case MPI2_EVENT_IR_VOLUME
:
1031 if (!ioc
->hide_ir_msg
)
1034 case MPI2_EVENT_IR_PHYSICAL_DISK
:
1035 if (!ioc
->hide_ir_msg
)
1036 desc
= "IR Physical Disk";
1038 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
1039 if (!ioc
->hide_ir_msg
)
1040 desc
= "IR Configuration Change List";
1042 case MPI2_EVENT_LOG_ENTRY_ADDED
:
1043 if (!ioc
->hide_ir_msg
)
1044 desc
= "Log Entry Added";
1046 case MPI2_EVENT_TEMP_THRESHOLD
:
1047 desc
= "Temperature Threshold";
1049 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
:
1050 desc
= "Cable Event";
1052 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
:
1053 desc
= "SAS Device Discovery Error";
1055 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
:
1056 desc
= "PCIE Device Status Change";
1058 case MPI2_EVENT_PCIE_ENUMERATION
:
1060 Mpi26EventDataPCIeEnumeration_t
*event_data
=
1061 (Mpi26EventDataPCIeEnumeration_t
*)mpi_reply
->EventData
;
1062 pr_info(MPT3SAS_FMT
"PCIE Enumeration: (%s)", ioc
->name
,
1063 (event_data
->ReasonCode
==
1064 MPI26_EVENT_PCIE_ENUM_RC_STARTED
) ?
1066 if (event_data
->EnumerationStatus
)
1067 pr_info("enumeration_status(0x%08x)",
1068 le32_to_cpu(event_data
->EnumerationStatus
));
1072 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
:
1073 desc
= "PCIE Topology Change List";
1080 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
, desc
);
1084 * _base_sas_log_info - verbose translation of firmware log info
1085 * @ioc: per adapter object
1086 * @log_info: log info
1089 _base_sas_log_info(struct MPT3SAS_ADAPTER
*ioc
, u32 log_info
)
1091 union loginfo_type
{
1100 union loginfo_type sas_loginfo
;
1101 char *originator_str
= NULL
;
1103 sas_loginfo
.loginfo
= log_info
;
1104 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
1107 /* each nexus loss loginfo */
1108 if (log_info
== 0x31170000)
1111 /* eat the loginfos associated with task aborts */
1112 if (ioc
->ignore_loginfos
&& (log_info
== 0x30050000 || log_info
==
1113 0x31140000 || log_info
== 0x31130000))
1116 switch (sas_loginfo
.dw
.originator
) {
1118 originator_str
= "IOP";
1121 originator_str
= "PL";
1124 if (!ioc
->hide_ir_msg
)
1125 originator_str
= "IR";
1127 originator_str
= "WarpDrive";
1132 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1133 ioc
->name
, log_info
,
1134 originator_str
, sas_loginfo
.dw
.code
,
1135 sas_loginfo
.dw
.subcode
);
1139 * _base_display_reply_info -
1140 * @ioc: per adapter object
1141 * @smid: system request message index
1142 * @msix_index: MSIX table index supplied by the OS
1143 * @reply: reply message frame(lower 32bit addr)
1146 _base_display_reply_info(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1149 MPI2DefaultReply_t
*mpi_reply
;
1153 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1154 if (unlikely(!mpi_reply
)) {
1155 pr_err(MPT3SAS_FMT
"mpi_reply not valid at %s:%d/%s()!\n",
1156 ioc
->name
, __FILE__
, __LINE__
, __func__
);
1159 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
1161 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
1162 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
1163 _base_sas_ioc_info(ioc
, mpi_reply
,
1164 mpt3sas_base_get_msg_frame(ioc
, smid
));
1167 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
) {
1168 loginfo
= le32_to_cpu(mpi_reply
->IOCLogInfo
);
1169 _base_sas_log_info(ioc
, loginfo
);
1172 if (ioc_status
|| loginfo
) {
1173 ioc_status
&= MPI2_IOCSTATUS_MASK
;
1174 mpt3sas_trigger_mpi(ioc
, ioc_status
, loginfo
);
1179 * mpt3sas_base_done - base internal command completion routine
1180 * @ioc: per adapter object
1181 * @smid: system request message index
1182 * @msix_index: MSIX table index supplied by the OS
1183 * @reply: reply message frame(lower 32bit addr)
1186 * 1 meaning mf should be freed from _base_interrupt
1187 * 0 means the mf is freed from this function.
1190 mpt3sas_base_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1193 MPI2DefaultReply_t
*mpi_reply
;
1195 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1196 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
1197 return mpt3sas_check_for_pending_internal_cmds(ioc
, smid
);
1199 if (ioc
->base_cmds
.status
== MPT3_CMD_NOT_USED
)
1202 ioc
->base_cmds
.status
|= MPT3_CMD_COMPLETE
;
1204 ioc
->base_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
1205 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
1207 ioc
->base_cmds
.status
&= ~MPT3_CMD_PENDING
;
1209 complete(&ioc
->base_cmds
.done
);
1214 * _base_async_event - main callback handler for firmware asyn events
1215 * @ioc: per adapter object
1216 * @msix_index: MSIX table index supplied by the OS
1217 * @reply: reply message frame(lower 32bit addr)
1220 * 1 meaning mf should be freed from _base_interrupt
1221 * 0 means the mf is freed from this function.
1224 _base_async_event(struct MPT3SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
1226 Mpi2EventNotificationReply_t
*mpi_reply
;
1227 Mpi2EventAckRequest_t
*ack_request
;
1229 struct _event_ack_list
*delayed_event_ack
;
1231 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1234 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
1237 _base_display_event_data(ioc
, mpi_reply
);
1239 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
1241 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
1243 delayed_event_ack
= kzalloc(sizeof(*delayed_event_ack
),
1245 if (!delayed_event_ack
)
1247 INIT_LIST_HEAD(&delayed_event_ack
->list
);
1248 delayed_event_ack
->Event
= mpi_reply
->Event
;
1249 delayed_event_ack
->EventContext
= mpi_reply
->EventContext
;
1250 list_add_tail(&delayed_event_ack
->list
,
1251 &ioc
->delayed_event_ack_list
);
1252 dewtprintk(ioc
, pr_info(MPT3SAS_FMT
1253 "DELAYED: EVENT ACK: event (0x%04x)\n",
1254 ioc
->name
, le16_to_cpu(mpi_reply
->Event
)));
1258 ack_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
1259 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
1260 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
1261 ack_request
->Event
= mpi_reply
->Event
;
1262 ack_request
->EventContext
= mpi_reply
->EventContext
;
1263 ack_request
->VF_ID
= 0; /* TODO */
1264 ack_request
->VP_ID
= 0;
1265 mpt3sas_base_put_smid_default(ioc
, smid
);
1269 /* scsih callback handler */
1270 mpt3sas_scsih_event_callback(ioc
, msix_index
, reply
);
1272 /* ctl callback handler */
1273 mpt3sas_ctl_event_callback(ioc
, msix_index
, reply
);
1278 static struct scsiio_tracker
*
1279 _get_st_from_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1281 struct scsi_cmnd
*cmd
;
1283 if (WARN_ON(!smid
) ||
1284 WARN_ON(smid
>= ioc
->hi_priority_smid
))
1287 cmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
1289 return scsi_cmd_priv(cmd
);
1295 * _base_get_cb_idx - obtain the callback index
1296 * @ioc: per adapter object
1297 * @smid: system request message index
1299 * Return: callback index.
1302 _base_get_cb_idx(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1305 u16 ctl_smid
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
+ 1;
1308 if (smid
< ioc
->hi_priority_smid
) {
1309 struct scsiio_tracker
*st
;
1311 if (smid
< ctl_smid
) {
1312 st
= _get_st_from_smid(ioc
, smid
);
1314 cb_idx
= st
->cb_idx
;
1315 } else if (smid
== ctl_smid
)
1316 cb_idx
= ioc
->ctl_cb_idx
;
1317 } else if (smid
< ioc
->internal_smid
) {
1318 i
= smid
- ioc
->hi_priority_smid
;
1319 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
1320 } else if (smid
<= ioc
->hba_queue_depth
) {
1321 i
= smid
- ioc
->internal_smid
;
1322 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
1328 * _base_mask_interrupts - disable interrupts
1329 * @ioc: per adapter object
1331 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1334 _base_mask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1338 ioc
->mask_interrupts
= 1;
1339 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
1340 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
1341 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1342 readl(&ioc
->chip
->HostInterruptMask
);
1346 * _base_unmask_interrupts - enable interrupts
1347 * @ioc: per adapter object
1349 * Enabling only Reply Interrupts
1352 _base_unmask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1356 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
1357 him_register
&= ~MPI2_HIM_RIM
;
1358 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1359 ioc
->mask_interrupts
= 0;
1362 union reply_descriptor
{
1371 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1372 * @irq: irq number (not used)
1373 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1375 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1378 _base_interrupt(int irq
, void *bus_id
)
1380 struct adapter_reply_queue
*reply_q
= bus_id
;
1381 union reply_descriptor rd
;
1383 u8 request_desript_type
;
1387 u8 msix_index
= reply_q
->msix_index
;
1388 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1389 Mpi2ReplyDescriptorsUnion_t
*rpf
;
1392 if (ioc
->mask_interrupts
)
1395 if (!atomic_add_unless(&reply_q
->busy
, 1, 1))
1398 rpf
= &reply_q
->reply_post_free
[reply_q
->reply_post_host_index
];
1399 request_desript_type
= rpf
->Default
.ReplyFlags
1400 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1401 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
) {
1402 atomic_dec(&reply_q
->busy
);
1409 rd
.word
= le64_to_cpu(rpf
->Words
);
1410 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
1413 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
1414 if (request_desript_type
==
1415 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS
||
1416 request_desript_type
==
1417 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS
||
1418 request_desript_type
==
1419 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS
) {
1420 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1421 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1422 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1423 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1426 mpt3sas_base_free_smid(ioc
, smid
);
1428 } else if (request_desript_type
==
1429 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
1430 reply
= le32_to_cpu(
1431 rpf
->AddressReply
.ReplyFrameAddress
);
1432 if (reply
> ioc
->reply_dma_max_address
||
1433 reply
< ioc
->reply_dma_min_address
)
1436 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1437 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1438 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1439 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1442 _base_display_reply_info(ioc
,
1443 smid
, msix_index
, reply
);
1445 mpt3sas_base_free_smid(ioc
,
1449 _base_async_event(ioc
, msix_index
, reply
);
1452 /* reply free queue handling */
1454 ioc
->reply_free_host_index
=
1455 (ioc
->reply_free_host_index
==
1456 (ioc
->reply_free_queue_depth
- 1)) ?
1457 0 : ioc
->reply_free_host_index
+ 1;
1458 ioc
->reply_free
[ioc
->reply_free_host_index
] =
1460 if (ioc
->is_mcpu_endpoint
)
1461 _base_clone_reply_to_sys_mem(ioc
,
1463 ioc
->reply_free_host_index
);
1464 writel(ioc
->reply_free_host_index
,
1465 &ioc
->chip
->ReplyFreeHostIndex
);
1469 rpf
->Words
= cpu_to_le64(ULLONG_MAX
);
1470 reply_q
->reply_post_host_index
=
1471 (reply_q
->reply_post_host_index
==
1472 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
1473 reply_q
->reply_post_host_index
+ 1;
1474 request_desript_type
=
1475 reply_q
->reply_post_free
[reply_q
->reply_post_host_index
].
1476 Default
.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1478 /* Update the reply post host index after continuously
1479 * processing the threshold number of Reply Descriptors.
1480 * So that FW can find enough entries to post the Reply
1481 * Descriptors in the reply descriptor post queue.
1483 if (completed_cmds
> ioc
->hba_queue_depth
/3) {
1484 if (ioc
->combined_reply_queue
) {
1485 writel(reply_q
->reply_post_host_index
|
1486 ((msix_index
& 7) <<
1487 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1488 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1490 writel(reply_q
->reply_post_host_index
|
1492 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1493 &ioc
->chip
->ReplyPostHostIndex
);
1497 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
1499 if (!reply_q
->reply_post_host_index
)
1500 rpf
= reply_q
->reply_post_free
;
1507 if (!completed_cmds
) {
1508 atomic_dec(&reply_q
->busy
);
1512 if (ioc
->is_warpdrive
) {
1513 writel(reply_q
->reply_post_host_index
,
1514 ioc
->reply_post_host_index
[msix_index
]);
1515 atomic_dec(&reply_q
->busy
);
1519 /* Update Reply Post Host Index.
1520 * For those HBA's which support combined reply queue feature
1521 * 1. Get the correct Supplemental Reply Post Host Index Register.
1522 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1523 * Index Register address bank i.e replyPostRegisterIndex[],
1524 * 2. Then update this register with new reply host index value
1525 * in ReplyPostIndex field and the MSIxIndex field with
1526 * msix_index value reduced to a value between 0 and 7,
1527 * using a modulo 8 operation. Since each Supplemental Reply Post
1528 * Host Index Register supports 8 MSI-X vectors.
1530 * For other HBA's just update the Reply Post Host Index register with
1531 * new reply host index value in ReplyPostIndex Field and msix_index
1532 * value in MSIxIndex field.
1534 if (ioc
->combined_reply_queue
)
1535 writel(reply_q
->reply_post_host_index
| ((msix_index
& 7) <<
1536 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1537 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1539 writel(reply_q
->reply_post_host_index
| (msix_index
<<
1540 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1541 &ioc
->chip
->ReplyPostHostIndex
);
1542 atomic_dec(&reply_q
->busy
);
1547 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1548 * @ioc: per adapter object
1550 * Return: Whether or not MSI/X is enabled.
1553 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER
*ioc
)
1555 return (ioc
->facts
.IOCCapabilities
&
1556 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX
) && ioc
->msix_enable
;
1560 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1561 * @ioc: per adapter object
1562 * Context: non ISR conext
1564 * Called when a Task Management request has completed.
1567 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER
*ioc
)
1569 struct adapter_reply_queue
*reply_q
;
1571 /* If MSIX capability is turned off
1572 * then multi-queues are not enabled
1574 if (!_base_is_controller_msix_enabled(ioc
))
1577 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1578 if (ioc
->shost_recovery
|| ioc
->remove_host
||
1579 ioc
->pci_error_recovery
)
1581 /* TMs are on msix_index == 0 */
1582 if (reply_q
->msix_index
== 0)
1584 synchronize_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
1589 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1590 * @cb_idx: callback index
1593 mpt3sas_base_release_callback_handler(u8 cb_idx
)
1595 mpt_callbacks
[cb_idx
] = NULL
;
1599 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1600 * @cb_func: callback function
1602 * Return: Index of @cb_func.
1605 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
1609 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
1610 if (mpt_callbacks
[cb_idx
] == NULL
)
1613 mpt_callbacks
[cb_idx
] = cb_func
;
1618 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1621 mpt3sas_base_initialize_callback_handler(void)
1625 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
1626 mpt3sas_base_release_callback_handler(cb_idx
);
1631 * _base_build_zero_len_sge - build zero length sg entry
1632 * @ioc: per adapter object
1633 * @paddr: virtual address for SGE
1635 * Create a zero length scatter gather entry to insure the IOCs hardware has
1636 * something to use if the target device goes brain dead and tries
1637 * to send data even when none is asked for.
1640 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
1642 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
1643 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
1644 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
1645 MPI2_SGE_FLAGS_SHIFT
);
1646 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
1650 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1651 * @paddr: virtual address for SGE
1652 * @flags_length: SGE flags and data transfer length
1653 * @dma_addr: Physical address
1656 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1658 Mpi2SGESimple32_t
*sgel
= paddr
;
1660 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1661 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1662 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1663 sgel
->Address
= cpu_to_le32(dma_addr
);
1668 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1669 * @paddr: virtual address for SGE
1670 * @flags_length: SGE flags and data transfer length
1671 * @dma_addr: Physical address
1674 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1676 Mpi2SGESimple64_t
*sgel
= paddr
;
1678 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
1679 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1680 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1681 sgel
->Address
= cpu_to_le64(dma_addr
);
1685 * _base_get_chain_buffer_tracker - obtain chain tracker
1686 * @ioc: per adapter object
1687 * @scmd: SCSI commands of the IO request
1689 * Return: chain tracker from chain_lookup table using key as
1690 * smid and smid's chain_offset.
1692 static struct chain_tracker
*
1693 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER
*ioc
,
1694 struct scsi_cmnd
*scmd
)
1696 struct chain_tracker
*chain_req
;
1697 struct scsiio_tracker
*st
= scsi_cmd_priv(scmd
);
1698 u16 smid
= st
->smid
;
1700 atomic_read(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1702 if (chain_offset
== ioc
->chains_needed_per_io
)
1705 chain_req
= &ioc
->chain_lookup
[smid
- 1].chains_per_smid
[chain_offset
];
1706 atomic_inc(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1712 * _base_build_sg - build generic sg
1713 * @ioc: per adapter object
1714 * @psge: virtual address for SGE
1715 * @data_out_dma: physical address for WRITES
1716 * @data_out_sz: data xfer size for WRITES
1717 * @data_in_dma: physical address for READS
1718 * @data_in_sz: data xfer size for READS
1721 _base_build_sg(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
1722 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1727 if (!data_out_sz
&& !data_in_sz
) {
1728 _base_build_zero_len_sge(ioc
, psge
);
1732 if (data_out_sz
&& data_in_sz
) {
1733 /* WRITE sgel first */
1734 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1735 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1736 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1737 ioc
->base_add_sg_single(psge
, sgl_flags
|
1738 data_out_sz
, data_out_dma
);
1741 psge
+= ioc
->sge_size
;
1743 /* READ sgel last */
1744 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1745 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1746 MPI2_SGE_FLAGS_END_OF_LIST
);
1747 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1748 ioc
->base_add_sg_single(psge
, sgl_flags
|
1749 data_in_sz
, data_in_dma
);
1750 } else if (data_out_sz
) /* WRITE */ {
1751 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1752 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1753 MPI2_SGE_FLAGS_END_OF_LIST
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1754 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1755 ioc
->base_add_sg_single(psge
, sgl_flags
|
1756 data_out_sz
, data_out_dma
);
1757 } else if (data_in_sz
) /* READ */ {
1758 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1759 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1760 MPI2_SGE_FLAGS_END_OF_LIST
);
1761 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1762 ioc
->base_add_sg_single(psge
, sgl_flags
|
1763 data_in_sz
, data_in_dma
);
1767 /* IEEE format sgls */
1770 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1771 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1772 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1773 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1774 * used to describe a larger data buffer. If the data buffer is too large to
1775 * describe using the two PRP entriess inside the NVMe message, then PRP1
1776 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1777 * list located elsewhere in memory to describe the remaining data memory
1778 * segments. The PRP list will be contiguous.
1780 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1781 * consists of a list of PRP entries to describe a number of noncontigous
1782 * physical memory segments as a single memory buffer, just as a SGL does. Note
1783 * however, that this function is only used by the IOCTL call, so the memory
1784 * given will be guaranteed to be contiguous. There is no need to translate
1785 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1786 * contiguous space that is one page size each.
1788 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1789 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1790 * contains the second PRP element if the memory being described fits within 2
1791 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1793 * A PRP list pointer contains the address of a PRP list, structured as a linear
1794 * array of PRP entries. Each PRP entry in this list describes a segment of
1797 * Each 64-bit PRP entry comprises an address and an offset field. The address
1798 * always points at the beginning of a 4KB physical memory page, and the offset
1799 * describes where within that 4KB page the memory segment begins. Only the
1800 * first element in a PRP list may contain a non-zero offest, implying that all
1801 * memory segments following the first begin at the start of a 4KB page.
1803 * Each PRP element normally describes 4KB of physical memory, with exceptions
1804 * for the first and last elements in the list. If the memory being described
1805 * by the list begins at a non-zero offset within the first 4KB page, then the
1806 * first PRP element will contain a non-zero offset indicating where the region
1807 * begins within the 4KB page. The last memory segment may end before the end
1808 * of the 4KB segment, depending upon the overall size of the memory being
1809 * described by the PRP list.
1811 * Since PRP entries lack any indication of size, the overall data buffer length
1812 * is used to determine where the end of the data memory buffer is located, and
1813 * how many PRP entries are required to describe it.
1815 * @ioc: per adapter object
1816 * @smid: system request message index for getting asscociated SGL
1817 * @nvme_encap_request: the NVMe request msg frame pointer
1818 * @data_out_dma: physical address for WRITES
1819 * @data_out_sz: data xfer size for WRITES
1820 * @data_in_dma: physical address for READS
1821 * @data_in_sz: data xfer size for READS
1824 _base_build_nvme_prp(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
1825 Mpi26NVMeEncapsulatedRequest_t
*nvme_encap_request
,
1826 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1829 int prp_size
= NVME_PRP_SIZE
;
1830 __le64
*prp_entry
, *prp1_entry
, *prp2_entry
;
1832 dma_addr_t prp_entry_dma
, prp_page_dma
, dma_addr
;
1833 u32 offset
, entry_len
;
1834 u32 page_mask_result
, page_mask
;
1836 struct mpt3sas_nvme_cmd
*nvme_cmd
=
1837 (void *)nvme_encap_request
->NVMe_Command
;
1840 * Not all commands require a data transfer. If no data, just return
1841 * without constructing any PRP.
1843 if (!data_in_sz
&& !data_out_sz
)
1845 prp1_entry
= &nvme_cmd
->prp1
;
1846 prp2_entry
= &nvme_cmd
->prp2
;
1847 prp_entry
= prp1_entry
;
1849 * For the PRP entries, use the specially allocated buffer of
1850 * contiguous memory.
1852 prp_page
= (__le64
*)mpt3sas_base_get_pcie_sgl(ioc
, smid
);
1853 prp_page_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
1856 * Check if we are within 1 entry of a page boundary we don't
1857 * want our first entry to be a PRP List entry.
1859 page_mask
= ioc
->page_size
- 1;
1860 page_mask_result
= (uintptr_t)((u8
*)prp_page
+ prp_size
) & page_mask
;
1861 if (!page_mask_result
) {
1862 /* Bump up to next page boundary. */
1863 prp_page
= (__le64
*)((u8
*)prp_page
+ prp_size
);
1864 prp_page_dma
= prp_page_dma
+ prp_size
;
1868 * Set PRP physical pointer, which initially points to the current PRP
1871 prp_entry_dma
= prp_page_dma
;
1873 /* Get physical address and length of the data buffer. */
1875 dma_addr
= data_in_dma
;
1876 length
= data_in_sz
;
1878 dma_addr
= data_out_dma
;
1879 length
= data_out_sz
;
1882 /* Loop while the length is not zero. */
1885 * Check if we need to put a list pointer here if we are at
1886 * page boundary - prp_size (8 bytes).
1888 page_mask_result
= (prp_entry_dma
+ prp_size
) & page_mask
;
1889 if (!page_mask_result
) {
1891 * This is the last entry in a PRP List, so we need to
1892 * put a PRP list pointer here. What this does is:
1893 * - bump the current memory pointer to the next
1894 * address, which will be the next full page.
1895 * - set the PRP Entry to point to that page. This
1896 * is now the PRP List pointer.
1897 * - bump the PRP Entry pointer the start of the
1898 * next page. Since all of this PRP memory is
1899 * contiguous, no need to get a new page - it's
1900 * just the next address.
1903 *prp_entry
= cpu_to_le64(prp_entry_dma
);
1907 /* Need to handle if entry will be part of a page. */
1908 offset
= dma_addr
& page_mask
;
1909 entry_len
= ioc
->page_size
- offset
;
1911 if (prp_entry
== prp1_entry
) {
1913 * Must fill in the first PRP pointer (PRP1) before
1916 *prp1_entry
= cpu_to_le64(dma_addr
);
1919 * Now point to the second PRP entry within the
1922 prp_entry
= prp2_entry
;
1923 } else if (prp_entry
== prp2_entry
) {
1925 * Should the PRP2 entry be a PRP List pointer or just
1926 * a regular PRP pointer? If there is more than one
1927 * more page of data, must use a PRP List pointer.
1929 if (length
> ioc
->page_size
) {
1931 * PRP2 will contain a PRP List pointer because
1932 * more PRP's are needed with this command. The
1933 * list will start at the beginning of the
1934 * contiguous buffer.
1936 *prp2_entry
= cpu_to_le64(prp_entry_dma
);
1939 * The next PRP Entry will be the start of the
1942 prp_entry
= prp_page
;
1945 * After this, the PRP Entries are complete.
1946 * This command uses 2 PRP's and no PRP list.
1948 *prp2_entry
= cpu_to_le64(dma_addr
);
1952 * Put entry in list and bump the addresses.
1954 * After PRP1 and PRP2 are filled in, this will fill in
1955 * all remaining PRP entries in a PRP List, one per
1956 * each time through the loop.
1958 *prp_entry
= cpu_to_le64(dma_addr
);
1964 * Bump the phys address of the command's data buffer by the
1967 dma_addr
+= entry_len
;
1969 /* Decrement length accounting for last partial page. */
1970 if (entry_len
> length
)
1973 length
-= entry_len
;
1978 * base_make_prp_nvme -
1979 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1981 * @ioc: per adapter object
1982 * @scmd: SCSI command from the mid-layer
1983 * @mpi_request: mpi request
1985 * @sge_count: scatter gather element count.
1987 * Return: true: PRPs are built
1988 * false: IEEE SGLs needs to be built
1991 base_make_prp_nvme(struct MPT3SAS_ADAPTER
*ioc
,
1992 struct scsi_cmnd
*scmd
,
1993 Mpi25SCSIIORequest_t
*mpi_request
,
1994 u16 smid
, int sge_count
)
1996 int sge_len
, num_prp_in_chain
= 0;
1997 Mpi25IeeeSgeChain64_t
*main_chain_element
, *ptr_first_sgl
;
1999 dma_addr_t msg_dma
, sge_addr
, offset
;
2000 u32 page_mask
, page_mask_result
;
2001 struct scatterlist
*sg_scmd
;
2003 int data_len
= scsi_bufflen(scmd
);
2006 nvme_pg_size
= max_t(u32
, ioc
->page_size
, NVME_PRP_PAGE_SIZE
);
2008 * Nvme has a very convoluted prp format. One prp is required
2009 * for each page or partial page. Driver need to split up OS sg_list
2010 * entries if it is longer than one page or cross a page
2011 * boundary. Driver also have to insert a PRP list pointer entry as
2012 * the last entry in each physical page of the PRP list.
2014 * NOTE: The first PRP "entry" is actually placed in the first
2015 * SGL entry in the main message as IEEE 64 format. The 2nd
2016 * entry in the main message is the chain element, and the rest
2017 * of the PRP entries are built in the contiguous pcie buffer.
2019 page_mask
= nvme_pg_size
- 1;
2022 * Native SGL is needed.
2023 * Put a chain element in main message frame that points to the first
2026 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2030 /* Set main message chain element pointer */
2031 main_chain_element
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2033 * For NVMe the chain element needs to be the 2nd SG entry in the main
2036 main_chain_element
= (Mpi25IeeeSgeChain64_t
*)
2037 ((u8
*)main_chain_element
+ sizeof(MPI25_IEEE_SGE_CHAIN64
));
2040 * For the PRP entries, use the specially allocated buffer of
2041 * contiguous memory. Normal chain buffers can't be used
2042 * because each chain buffer would need to be the size of an OS
2045 curr_buff
= mpt3sas_base_get_pcie_sgl(ioc
, smid
);
2046 msg_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
2048 main_chain_element
->Address
= cpu_to_le64(msg_dma
);
2049 main_chain_element
->NextChainOffset
= 0;
2050 main_chain_element
->Flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2051 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2052 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP
;
2054 /* Build first prp, sge need not to be page aligned*/
2055 ptr_first_sgl
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2056 sg_scmd
= scsi_sglist(scmd
);
2057 sge_addr
= sg_dma_address(sg_scmd
);
2058 sge_len
= sg_dma_len(sg_scmd
);
2060 offset
= sge_addr
& page_mask
;
2061 first_prp_len
= nvme_pg_size
- offset
;
2063 ptr_first_sgl
->Address
= cpu_to_le64(sge_addr
);
2064 ptr_first_sgl
->Length
= cpu_to_le32(first_prp_len
);
2066 data_len
-= first_prp_len
;
2068 if (sge_len
> first_prp_len
) {
2069 sge_addr
+= first_prp_len
;
2070 sge_len
-= first_prp_len
;
2071 } else if (data_len
&& (sge_len
== first_prp_len
)) {
2072 sg_scmd
= sg_next(sg_scmd
);
2073 sge_addr
= sg_dma_address(sg_scmd
);
2074 sge_len
= sg_dma_len(sg_scmd
);
2078 offset
= sge_addr
& page_mask
;
2080 /* Put PRP pointer due to page boundary*/
2081 page_mask_result
= (uintptr_t)(curr_buff
+ 1) & page_mask
;
2082 if (unlikely(!page_mask_result
)) {
2083 scmd_printk(KERN_NOTICE
,
2084 scmd
, "page boundary curr_buff: 0x%p\n",
2087 *curr_buff
= cpu_to_le64(msg_dma
);
2092 *curr_buff
= cpu_to_le64(sge_addr
);
2097 sge_addr
+= nvme_pg_size
;
2098 sge_len
-= nvme_pg_size
;
2099 data_len
-= nvme_pg_size
;
2107 sg_scmd
= sg_next(sg_scmd
);
2108 sge_addr
= sg_dma_address(sg_scmd
);
2109 sge_len
= sg_dma_len(sg_scmd
);
2112 main_chain_element
->Length
=
2113 cpu_to_le32(num_prp_in_chain
* sizeof(u64
));
2118 base_is_prp_possible(struct MPT3SAS_ADAPTER
*ioc
,
2119 struct _pcie_device
*pcie_device
, struct scsi_cmnd
*scmd
, int sge_count
)
2121 u32 data_length
= 0;
2122 bool build_prp
= true;
2124 data_length
= scsi_bufflen(scmd
);
2126 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2129 if ((data_length
<= NVME_PRP_PAGE_SIZE
*4) && (sge_count
<= 2))
2136 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2137 * determine if the driver needs to build a native SGL. If so, that native
2138 * SGL is built in the special contiguous buffers allocated especially for
2139 * PCIe SGL creation. If the driver will not build a native SGL, return
2140 * TRUE and a normal IEEE SGL will be built. Currently this routine
2142 * @ioc: per adapter object
2143 * @mpi_request: mf request pointer
2144 * @smid: system request message index
2145 * @scmd: scsi command
2146 * @pcie_device: points to the PCIe device's info
2148 * Return: 0 if native SGL was built, 1 if no SGL was built
2151 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER
*ioc
,
2152 Mpi25SCSIIORequest_t
*mpi_request
, u16 smid
, struct scsi_cmnd
*scmd
,
2153 struct _pcie_device
*pcie_device
)
2157 /* Get the SG list pointer and info. */
2158 sges_left
= scsi_dma_map(scmd
);
2159 if (sges_left
< 0) {
2160 sdev_printk(KERN_ERR
, scmd
->device
,
2161 "scsi_dma_map failed: request for %d bytes!\n",
2162 scsi_bufflen(scmd
));
2166 /* Check if we need to build a native SG list. */
2167 if (base_is_prp_possible(ioc
, pcie_device
,
2168 scmd
, sges_left
) == 0) {
2169 /* We built a native SG list, just return. */
2174 * Build native NVMe PRP.
2176 base_make_prp_nvme(ioc
, scmd
, mpi_request
,
2181 scsi_dma_unmap(scmd
);
2186 * _base_add_sg_single_ieee - add sg element for IEEE format
2187 * @paddr: virtual address for SGE
2189 * @chain_offset: number of 128 byte elements from start of segment
2190 * @length: data transfer length
2191 * @dma_addr: Physical address
2194 _base_add_sg_single_ieee(void *paddr
, u8 flags
, u8 chain_offset
, u32 length
,
2195 dma_addr_t dma_addr
)
2197 Mpi25IeeeSgeChain64_t
*sgel
= paddr
;
2199 sgel
->Flags
= flags
;
2200 sgel
->NextChainOffset
= chain_offset
;
2201 sgel
->Length
= cpu_to_le32(length
);
2202 sgel
->Address
= cpu_to_le64(dma_addr
);
2206 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2207 * @ioc: per adapter object
2208 * @paddr: virtual address for SGE
2210 * Create a zero length scatter gather entry to insure the IOCs hardware has
2211 * something to use if the target device goes brain dead and tries
2212 * to send data even when none is asked for.
2215 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
2217 u8 sgl_flags
= (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2218 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2219 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
);
2221 _base_add_sg_single_ieee(paddr
, sgl_flags
, 0, 0, -1);
2225 * _base_build_sg_scmd - main sg creation routine
2226 * pcie_device is unused here!
2227 * @ioc: per adapter object
2228 * @scmd: scsi command
2229 * @smid: system request message index
2230 * @unused: unused pcie_device pointer
2233 * The main routine that builds scatter gather table from a given
2234 * scsi request sent via the .queuecommand main handler.
2236 * Return: 0 success, anything else error
2239 _base_build_sg_scmd(struct MPT3SAS_ADAPTER
*ioc
,
2240 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*unused
)
2242 Mpi2SCSIIORequest_t
*mpi_request
;
2243 dma_addr_t chain_dma
;
2244 struct scatterlist
*sg_scmd
;
2245 void *sg_local
, *chain
;
2250 u32 sges_in_segment
;
2252 u32 sgl_flags_last_element
;
2253 u32 sgl_flags_end_buffer
;
2254 struct chain_tracker
*chain_req
;
2256 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2258 /* init scatter gather flags */
2259 sgl_flags
= MPI2_SGE_FLAGS_SIMPLE_ELEMENT
;
2260 if (scmd
->sc_data_direction
== DMA_TO_DEVICE
)
2261 sgl_flags
|= MPI2_SGE_FLAGS_HOST_TO_IOC
;
2262 sgl_flags_last_element
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
)
2263 << MPI2_SGE_FLAGS_SHIFT
;
2264 sgl_flags_end_buffer
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
|
2265 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
)
2266 << MPI2_SGE_FLAGS_SHIFT
;
2267 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2269 sg_scmd
= scsi_sglist(scmd
);
2270 sges_left
= scsi_dma_map(scmd
);
2271 if (sges_left
< 0) {
2272 sdev_printk(KERN_ERR
, scmd
->device
,
2273 "pci_map_sg failed: request for %d bytes!\n",
2274 scsi_bufflen(scmd
));
2278 sg_local
= &mpi_request
->SGL
;
2279 sges_in_segment
= ioc
->max_sges_in_main_message
;
2280 if (sges_left
<= sges_in_segment
)
2281 goto fill_in_last_segment
;
2283 mpi_request
->ChainOffset
= (offsetof(Mpi2SCSIIORequest_t
, SGL
) +
2284 (sges_in_segment
* ioc
->sge_size
))/4;
2286 /* fill in main message segment when there is a chain following */
2287 while (sges_in_segment
) {
2288 if (sges_in_segment
== 1)
2289 ioc
->base_add_sg_single(sg_local
,
2290 sgl_flags_last_element
| sg_dma_len(sg_scmd
),
2291 sg_dma_address(sg_scmd
));
2293 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2294 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2295 sg_scmd
= sg_next(sg_scmd
);
2296 sg_local
+= ioc
->sge_size
;
2301 /* initializing the chain flags and pointers */
2302 chain_flags
= MPI2_SGE_FLAGS_CHAIN_ELEMENT
<< MPI2_SGE_FLAGS_SHIFT
;
2303 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2306 chain
= chain_req
->chain_buffer
;
2307 chain_dma
= chain_req
->chain_buffer_dma
;
2309 sges_in_segment
= (sges_left
<=
2310 ioc
->max_sges_in_chain_message
) ? sges_left
:
2311 ioc
->max_sges_in_chain_message
;
2312 chain_offset
= (sges_left
== sges_in_segment
) ?
2313 0 : (sges_in_segment
* ioc
->sge_size
)/4;
2314 chain_length
= sges_in_segment
* ioc
->sge_size
;
2316 chain_offset
= chain_offset
<<
2317 MPI2_SGE_CHAIN_OFFSET_SHIFT
;
2318 chain_length
+= ioc
->sge_size
;
2320 ioc
->base_add_sg_single(sg_local
, chain_flags
| chain_offset
|
2321 chain_length
, chain_dma
);
2324 goto fill_in_last_segment
;
2326 /* fill in chain segments */
2327 while (sges_in_segment
) {
2328 if (sges_in_segment
== 1)
2329 ioc
->base_add_sg_single(sg_local
,
2330 sgl_flags_last_element
|
2331 sg_dma_len(sg_scmd
),
2332 sg_dma_address(sg_scmd
));
2334 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2335 sg_dma_len(sg_scmd
),
2336 sg_dma_address(sg_scmd
));
2337 sg_scmd
= sg_next(sg_scmd
);
2338 sg_local
+= ioc
->sge_size
;
2343 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2346 chain
= chain_req
->chain_buffer
;
2347 chain_dma
= chain_req
->chain_buffer_dma
;
2351 fill_in_last_segment
:
2353 /* fill the last segment */
2356 ioc
->base_add_sg_single(sg_local
, sgl_flags_end_buffer
|
2357 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2359 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2360 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2361 sg_scmd
= sg_next(sg_scmd
);
2362 sg_local
+= ioc
->sge_size
;
2370 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2371 * @ioc: per adapter object
2372 * @scmd: scsi command
2373 * @smid: system request message index
2374 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2375 * constructed on need.
2378 * The main routine that builds scatter gather table from a given
2379 * scsi request sent via the .queuecommand main handler.
2381 * Return: 0 success, anything else error
2384 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER
*ioc
,
2385 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*pcie_device
)
2387 Mpi25SCSIIORequest_t
*mpi_request
;
2388 dma_addr_t chain_dma
;
2389 struct scatterlist
*sg_scmd
;
2390 void *sg_local
, *chain
;
2394 u32 sges_in_segment
;
2395 u8 simple_sgl_flags
;
2396 u8 simple_sgl_flags_last
;
2398 struct chain_tracker
*chain_req
;
2400 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2402 /* init scatter gather flags */
2403 simple_sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2404 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2405 simple_sgl_flags_last
= simple_sgl_flags
|
2406 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2407 chain_sgl_flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2408 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2410 /* Check if we need to build a native SG list. */
2411 if ((pcie_device
) && (_base_check_pcie_native_sgl(ioc
, mpi_request
,
2412 smid
, scmd
, pcie_device
) == 0)) {
2413 /* We built a native SG list, just return. */
2417 sg_scmd
= scsi_sglist(scmd
);
2418 sges_left
= scsi_dma_map(scmd
);
2419 if (sges_left
< 0) {
2420 sdev_printk(KERN_ERR
, scmd
->device
,
2421 "pci_map_sg failed: request for %d bytes!\n",
2422 scsi_bufflen(scmd
));
2426 sg_local
= &mpi_request
->SGL
;
2427 sges_in_segment
= (ioc
->request_sz
-
2428 offsetof(Mpi25SCSIIORequest_t
, SGL
))/ioc
->sge_size_ieee
;
2429 if (sges_left
<= sges_in_segment
)
2430 goto fill_in_last_segment
;
2432 mpi_request
->ChainOffset
= (sges_in_segment
- 1 /* chain element */) +
2433 (offsetof(Mpi25SCSIIORequest_t
, SGL
)/ioc
->sge_size_ieee
);
2435 /* fill in main message segment when there is a chain following */
2436 while (sges_in_segment
> 1) {
2437 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2438 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2439 sg_scmd
= sg_next(sg_scmd
);
2440 sg_local
+= ioc
->sge_size_ieee
;
2445 /* initializing the pointers */
2446 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2449 chain
= chain_req
->chain_buffer
;
2450 chain_dma
= chain_req
->chain_buffer_dma
;
2452 sges_in_segment
= (sges_left
<=
2453 ioc
->max_sges_in_chain_message
) ? sges_left
:
2454 ioc
->max_sges_in_chain_message
;
2455 chain_offset
= (sges_left
== sges_in_segment
) ?
2456 0 : sges_in_segment
;
2457 chain_length
= sges_in_segment
* ioc
->sge_size_ieee
;
2459 chain_length
+= ioc
->sge_size_ieee
;
2460 _base_add_sg_single_ieee(sg_local
, chain_sgl_flags
,
2461 chain_offset
, chain_length
, chain_dma
);
2465 goto fill_in_last_segment
;
2467 /* fill in chain segments */
2468 while (sges_in_segment
) {
2469 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2470 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2471 sg_scmd
= sg_next(sg_scmd
);
2472 sg_local
+= ioc
->sge_size_ieee
;
2477 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2480 chain
= chain_req
->chain_buffer
;
2481 chain_dma
= chain_req
->chain_buffer_dma
;
2485 fill_in_last_segment
:
2487 /* fill the last segment */
2488 while (sges_left
> 0) {
2490 _base_add_sg_single_ieee(sg_local
,
2491 simple_sgl_flags_last
, 0, sg_dma_len(sg_scmd
),
2492 sg_dma_address(sg_scmd
));
2494 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2495 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2496 sg_scmd
= sg_next(sg_scmd
);
2497 sg_local
+= ioc
->sge_size_ieee
;
2505 * _base_build_sg_ieee - build generic sg for IEEE format
2506 * @ioc: per adapter object
2507 * @psge: virtual address for SGE
2508 * @data_out_dma: physical address for WRITES
2509 * @data_out_sz: data xfer size for WRITES
2510 * @data_in_dma: physical address for READS
2511 * @data_in_sz: data xfer size for READS
2514 _base_build_sg_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
2515 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2520 if (!data_out_sz
&& !data_in_sz
) {
2521 _base_build_zero_len_sge_ieee(ioc
, psge
);
2525 if (data_out_sz
&& data_in_sz
) {
2526 /* WRITE sgel first */
2527 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2528 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2529 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2533 psge
+= ioc
->sge_size_ieee
;
2535 /* READ sgel last */
2536 sgl_flags
|= MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2537 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2539 } else if (data_out_sz
) /* WRITE */ {
2540 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2541 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2542 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2543 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2545 } else if (data_in_sz
) /* READ */ {
2546 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2547 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2548 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2549 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2554 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2557 * _base_config_dma_addressing - set dma addressing
2558 * @ioc: per adapter object
2559 * @pdev: PCI device struct
2561 * Return: 0 for success, non-zero for failure.
2564 _base_config_dma_addressing(struct MPT3SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
2567 u64 consistent_dma_mask
;
2568 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2569 int dma_mask
= (ioc
->hba_mpi_version_belonged
> MPI2_VERSION
) ? 63 : 64;
2571 if (ioc
->is_mcpu_endpoint
)
2575 consistent_dma_mask
= DMA_BIT_MASK(dma_mask
);
2577 consistent_dma_mask
= DMA_BIT_MASK(32);
2579 if (sizeof(dma_addr_t
) > 4) {
2580 const uint64_t required_mask
=
2581 dma_get_required_mask(&pdev
->dev
);
2582 if ((required_mask
> DMA_BIT_MASK(32)) &&
2583 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(dma_mask
)) &&
2584 !pci_set_consistent_dma_mask(pdev
, consistent_dma_mask
)) {
2585 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
2586 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
2587 ioc
->dma_mask
= dma_mask
;
2593 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))
2594 && !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32))) {
2595 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
2596 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
2604 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2605 ioc
->name
, ioc
->dma_mask
, convert_to_kb(s
.totalram
));
2611 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER
*ioc
,
2612 struct pci_dev
*pdev
)
2614 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(ioc
->dma_mask
))) {
2615 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))
2622 * _base_check_enable_msix - checks MSIX capabable.
2623 * @ioc: per adapter object
2625 * Check to see if card is capable of MSIX, and set number
2626 * of available msix vectors
2629 _base_check_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2632 u16 message_control
;
2634 /* Check whether controller SAS2008 B0 controller,
2635 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2637 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
&&
2638 ioc
->pdev
->revision
== SAS2_PCI_DEVICE_B0_REVISION
) {
2642 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
2644 dfailprintk(ioc
, pr_info(MPT3SAS_FMT
"msix not supported\n",
2649 /* get msix vector count */
2650 /* NUMA_IO not supported for older controllers */
2651 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2004
||
2652 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
||
2653 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_1
||
2654 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_2
||
2655 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_3
||
2656 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_1
||
2657 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_2
)
2658 ioc
->msix_vector_count
= 1;
2660 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
2661 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
2663 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
2664 "msix is supported, vector_count(%d)\n",
2665 ioc
->name
, ioc
->msix_vector_count
));
2670 * _base_free_irq - free irq
2671 * @ioc: per adapter object
2673 * Freeing respective reply_queue from the list.
2676 _base_free_irq(struct MPT3SAS_ADAPTER
*ioc
)
2678 struct adapter_reply_queue
*reply_q
, *next
;
2680 if (list_empty(&ioc
->reply_queue_list
))
2683 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
2684 list_del(&reply_q
->list
);
2685 free_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
),
2692 * _base_request_irq - request irq
2693 * @ioc: per adapter object
2694 * @index: msix index into vector table
2696 * Inserting respective reply_queue into the list.
2699 _base_request_irq(struct MPT3SAS_ADAPTER
*ioc
, u8 index
)
2701 struct pci_dev
*pdev
= ioc
->pdev
;
2702 struct adapter_reply_queue
*reply_q
;
2705 reply_q
= kzalloc(sizeof(struct adapter_reply_queue
), GFP_KERNEL
);
2707 pr_err(MPT3SAS_FMT
"unable to allocate memory %d!\n",
2708 ioc
->name
, (int)sizeof(struct adapter_reply_queue
));
2712 reply_q
->msix_index
= index
;
2714 atomic_set(&reply_q
->busy
, 0);
2715 if (ioc
->msix_enable
)
2716 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d-msix%d",
2717 ioc
->driver_name
, ioc
->id
, index
);
2719 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d",
2720 ioc
->driver_name
, ioc
->id
);
2721 r
= request_irq(pci_irq_vector(pdev
, index
), _base_interrupt
,
2722 IRQF_SHARED
, reply_q
->name
, reply_q
);
2724 pr_err(MPT3SAS_FMT
"unable to allocate interrupt %d!\n",
2725 reply_q
->name
, pci_irq_vector(pdev
, index
));
2730 INIT_LIST_HEAD(&reply_q
->list
);
2731 list_add_tail(&reply_q
->list
, &ioc
->reply_queue_list
);
2736 * _base_assign_reply_queues - assigning msix index for each cpu
2737 * @ioc: per adapter object
2739 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2741 * It would nice if we could call irq_set_affinity, however it is not
2742 * an exported symbol
2745 _base_assign_reply_queues(struct MPT3SAS_ADAPTER
*ioc
)
2747 unsigned int cpu
, nr_cpus
, nr_msix
, index
= 0;
2748 struct adapter_reply_queue
*reply_q
;
2750 if (!_base_is_controller_msix_enabled(ioc
))
2753 memset(ioc
->cpu_msix_table
, 0, ioc
->cpu_msix_table_sz
);
2755 nr_cpus
= num_online_cpus();
2756 nr_msix
= ioc
->reply_queue_count
= min(ioc
->reply_queue_count
,
2757 ioc
->facts
.MaxMSIxVectors
);
2761 if (smp_affinity_enable
) {
2762 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2763 const cpumask_t
*mask
= pci_irq_get_affinity(ioc
->pdev
,
2764 reply_q
->msix_index
);
2766 pr_warn(MPT3SAS_FMT
"no affinity for msi %x\n",
2767 ioc
->name
, reply_q
->msix_index
);
2771 for_each_cpu_and(cpu
, mask
, cpu_online_mask
) {
2772 if (cpu
>= ioc
->cpu_msix_table_sz
)
2774 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2779 cpu
= cpumask_first(cpu_online_mask
);
2781 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2783 unsigned int i
, group
= nr_cpus
/ nr_msix
;
2788 if (index
< nr_cpus
% nr_msix
)
2791 for (i
= 0 ; i
< group
; i
++) {
2792 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2793 cpu
= cpumask_next(cpu
, cpu_online_mask
);
2800 * _base_disable_msix - disables msix
2801 * @ioc: per adapter object
2805 _base_disable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2807 if (!ioc
->msix_enable
)
2809 pci_disable_msix(ioc
->pdev
);
2810 ioc
->msix_enable
= 0;
2814 * _base_enable_msix - enables msix, failback to io_apic
2815 * @ioc: per adapter object
2819 _base_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2822 int i
, local_max_msix_vectors
;
2824 unsigned int irq_flags
= PCI_IRQ_MSIX
;
2826 if (msix_disable
== -1 || msix_disable
== 0)
2832 if (_base_check_enable_msix(ioc
) != 0)
2835 ioc
->reply_queue_count
= min_t(int, ioc
->cpu_count
,
2836 ioc
->msix_vector_count
);
2838 printk(MPT3SAS_FMT
"MSI-X vectors supported: %d, no of cores"
2839 ": %d, max_msix_vectors: %d\n", ioc
->name
, ioc
->msix_vector_count
,
2840 ioc
->cpu_count
, max_msix_vectors
);
2842 if (!ioc
->rdpq_array_enable
&& max_msix_vectors
== -1)
2843 local_max_msix_vectors
= (reset_devices
) ? 1 : 8;
2845 local_max_msix_vectors
= max_msix_vectors
;
2847 if (local_max_msix_vectors
> 0)
2848 ioc
->reply_queue_count
= min_t(int, local_max_msix_vectors
,
2849 ioc
->reply_queue_count
);
2850 else if (local_max_msix_vectors
== 0)
2853 if (ioc
->msix_vector_count
< ioc
->cpu_count
)
2854 smp_affinity_enable
= 0;
2856 if (smp_affinity_enable
)
2857 irq_flags
|= PCI_IRQ_AFFINITY
;
2859 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, ioc
->reply_queue_count
,
2862 dfailprintk(ioc
, pr_info(MPT3SAS_FMT
2863 "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2868 ioc
->msix_enable
= 1;
2869 ioc
->reply_queue_count
= r
;
2870 for (i
= 0; i
< ioc
->reply_queue_count
; i
++) {
2871 r
= _base_request_irq(ioc
, i
);
2873 _base_free_irq(ioc
);
2874 _base_disable_msix(ioc
);
2881 /* failback to io_apic interrupt routing */
2884 ioc
->reply_queue_count
= 1;
2885 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, 1, PCI_IRQ_LEGACY
);
2887 dfailprintk(ioc
, pr_info(MPT3SAS_FMT
2888 "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2891 r
= _base_request_irq(ioc
, 0);
2897 * mpt3sas_base_unmap_resources - free controller resources
2898 * @ioc: per adapter object
2901 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER
*ioc
)
2903 struct pci_dev
*pdev
= ioc
->pdev
;
2905 dexitprintk(ioc
, printk(MPT3SAS_FMT
"%s\n",
2906 ioc
->name
, __func__
));
2908 _base_free_irq(ioc
);
2909 _base_disable_msix(ioc
);
2911 kfree(ioc
->replyPostRegisterIndex
);
2912 ioc
->replyPostRegisterIndex
= NULL
;
2915 if (ioc
->chip_phys
) {
2920 if (pci_is_enabled(pdev
)) {
2921 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
2922 pci_disable_pcie_error_reporting(pdev
);
2923 pci_disable_device(pdev
);
2928 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2929 * @ioc: per adapter object
2931 * Return: 0 for success, non-zero for failure.
2934 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER
*ioc
)
2936 struct pci_dev
*pdev
= ioc
->pdev
;
2941 phys_addr_t chip_phys
= 0;
2942 struct adapter_reply_queue
*reply_q
;
2944 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n",
2945 ioc
->name
, __func__
));
2947 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
2948 if (pci_enable_device_mem(pdev
)) {
2949 pr_warn(MPT3SAS_FMT
"pci_enable_device_mem: failed\n",
2956 if (pci_request_selected_regions(pdev
, ioc
->bars
,
2957 ioc
->driver_name
)) {
2958 pr_warn(MPT3SAS_FMT
"pci_request_selected_regions: failed\n",
2965 /* AER (Advanced Error Reporting) hooks */
2966 pci_enable_pcie_error_reporting(pdev
);
2968 pci_set_master(pdev
);
2971 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
2972 pr_warn(MPT3SAS_FMT
"no suitable DMA mask for %s\n",
2973 ioc
->name
, pci_name(pdev
));
2978 for (i
= 0, memap_sz
= 0, pio_sz
= 0; (i
< DEVICE_COUNT_RESOURCE
) &&
2979 (!memap_sz
|| !pio_sz
); i
++) {
2980 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
2983 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
2984 pio_sz
= pci_resource_len(pdev
, i
);
2985 } else if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
2988 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
2989 chip_phys
= ioc
->chip_phys
;
2990 memap_sz
= pci_resource_len(pdev
, i
);
2991 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
2995 if (ioc
->chip
== NULL
) {
2996 pr_err(MPT3SAS_FMT
"unable to map adapter memory! "
2997 " or resource not found\n", ioc
->name
);
3002 _base_mask_interrupts(ioc
);
3004 r
= _base_get_ioc_facts(ioc
);
3008 if (!ioc
->rdpq_array_enable_assigned
) {
3009 ioc
->rdpq_array_enable
= ioc
->rdpq_array_capable
;
3010 ioc
->rdpq_array_enable_assigned
= 1;
3013 r
= _base_enable_msix(ioc
);
3017 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3018 * revision HBAs and also only when reply queue count is greater than 8
3020 if (ioc
->combined_reply_queue
) {
3021 /* Determine the Supplemental Reply Post Host Index Registers
3022 * Addresse. Supplemental Reply Post Host Index Registers
3023 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3024 * each register is at offset bytes of
3025 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3027 ioc
->replyPostRegisterIndex
= kcalloc(
3028 ioc
->combined_reply_index_count
,
3029 sizeof(resource_size_t
*), GFP_KERNEL
);
3030 if (!ioc
->replyPostRegisterIndex
) {
3031 dfailprintk(ioc
, printk(MPT3SAS_FMT
3032 "allocation for reply Post Register Index failed!!!\n",
3038 for (i
= 0; i
< ioc
->combined_reply_index_count
; i
++) {
3039 ioc
->replyPostRegisterIndex
[i
] = (resource_size_t
*)
3040 ((u8 __force
*)&ioc
->chip
->Doorbell
+
3041 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET
+
3042 (i
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET
));
3046 if (ioc
->is_warpdrive
) {
3047 ioc
->reply_post_host_index
[0] = (resource_size_t __iomem
*)
3048 &ioc
->chip
->ReplyPostHostIndex
;
3050 for (i
= 1; i
< ioc
->cpu_msix_table_sz
; i
++)
3051 ioc
->reply_post_host_index
[i
] =
3052 (resource_size_t __iomem
*)
3053 ((u8 __iomem
*)&ioc
->chip
->Doorbell
+ (0x4000 + ((i
- 1)
3057 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
)
3058 pr_info(MPT3SAS_FMT
"%s: IRQ %d\n",
3059 reply_q
->name
, ((ioc
->msix_enable
) ? "PCI-MSI-X enabled" :
3061 pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
3063 pr_info(MPT3SAS_FMT
"iomem(%pap), mapped(0x%p), size(%d)\n",
3064 ioc
->name
, &chip_phys
, ioc
->chip
, memap_sz
);
3065 pr_info(MPT3SAS_FMT
"ioport(0x%016llx), size(%d)\n",
3066 ioc
->name
, (unsigned long long)pio_chip
, pio_sz
);
3068 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3069 pci_save_state(pdev
);
3073 mpt3sas_base_unmap_resources(ioc
);
3078 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3079 * @ioc: per adapter object
3080 * @smid: system request message index(smid zero is invalid)
3082 * Return: virt pointer to message frame.
3085 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3087 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
3091 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3092 * @ioc: per adapter object
3093 * @smid: system request message index
3095 * Return: virt pointer to sense buffer.
3098 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3100 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
3104 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3105 * @ioc: per adapter object
3106 * @smid: system request message index
3108 * Return: phys pointer to the low 32bit address of the sense buffer.
3111 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3113 return cpu_to_le32(ioc
->sense_dma
+ ((smid
- 1) *
3114 SCSI_SENSE_BUFFERSIZE
));
3118 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3119 * @ioc: per adapter object
3120 * @smid: system request message index
3122 * Return: virt pointer to a PCIe SGL.
3125 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3127 return (void *)(ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl
);
3131 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3132 * @ioc: per adapter object
3133 * @smid: system request message index
3135 * Return: phys pointer to the address of the PCIe buffer.
3138 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3140 return ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl_dma
;
3144 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3145 * @ioc: per adapter object
3146 * @phys_addr: lower 32 physical addr of the reply
3148 * Converts 32bit lower physical addr into a virt address.
3151 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER
*ioc
, u32 phys_addr
)
3155 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
3159 _base_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
)
3161 return ioc
->cpu_msix_table
[raw_smp_processor_id()];
3165 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3166 * @ioc: per adapter object
3167 * @cb_idx: callback index
3169 * Return: smid (zero is invalid)
3172 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3174 unsigned long flags
;
3175 struct request_tracker
*request
;
3178 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3179 if (list_empty(&ioc
->internal_free_list
)) {
3180 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3181 pr_err(MPT3SAS_FMT
"%s: smid not available\n",
3182 ioc
->name
, __func__
);
3186 request
= list_entry(ioc
->internal_free_list
.next
,
3187 struct request_tracker
, tracker_list
);
3188 request
->cb_idx
= cb_idx
;
3189 smid
= request
->smid
;
3190 list_del(&request
->tracker_list
);
3191 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3196 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3197 * @ioc: per adapter object
3198 * @cb_idx: callback index
3199 * @scmd: pointer to scsi command object
3201 * Return: smid (zero is invalid)
3204 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
,
3205 struct scsi_cmnd
*scmd
)
3207 struct scsiio_tracker
*request
= scsi_cmd_priv(scmd
);
3208 unsigned int tag
= scmd
->request
->tag
;
3212 request
->cb_idx
= cb_idx
;
3213 request
->msix_io
= _base_get_msix_index(ioc
);
3214 request
->smid
= smid
;
3215 INIT_LIST_HEAD(&request
->chain_list
);
3220 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3221 * @ioc: per adapter object
3222 * @cb_idx: callback index
3224 * Return: smid (zero is invalid)
3227 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3229 unsigned long flags
;
3230 struct request_tracker
*request
;
3233 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3234 if (list_empty(&ioc
->hpr_free_list
)) {
3235 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3239 request
= list_entry(ioc
->hpr_free_list
.next
,
3240 struct request_tracker
, tracker_list
);
3241 request
->cb_idx
= cb_idx
;
3242 smid
= request
->smid
;
3243 list_del(&request
->tracker_list
);
3244 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3249 _base_recovery_check(struct MPT3SAS_ADAPTER
*ioc
)
3252 * See _wait_for_commands_to_complete() call with regards to this code.
3254 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
3255 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
3256 if (ioc
->pending_io_count
== 0)
3257 wake_up(&ioc
->reset_wq
);
3261 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER
*ioc
,
3262 struct scsiio_tracker
*st
)
3264 if (WARN_ON(st
->smid
== 0))
3268 atomic_set(&ioc
->chain_lookup
[st
->smid
- 1].chain_offset
, 0);
3273 * mpt3sas_base_free_smid - put smid back on free_list
3274 * @ioc: per adapter object
3275 * @smid: system request message index
3278 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3280 unsigned long flags
;
3283 if (smid
< ioc
->hi_priority_smid
) {
3284 struct scsiio_tracker
*st
;
3287 st
= _get_st_from_smid(ioc
, smid
);
3289 _base_recovery_check(ioc
);
3293 /* Clear MPI request frame */
3294 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3295 memset(request
, 0, ioc
->request_sz
);
3297 mpt3sas_base_clear_st(ioc
, st
);
3298 _base_recovery_check(ioc
);
3302 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3303 if (smid
< ioc
->internal_smid
) {
3305 i
= smid
- ioc
->hi_priority_smid
;
3306 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
3307 list_add(&ioc
->hpr_lookup
[i
].tracker_list
, &ioc
->hpr_free_list
);
3308 } else if (smid
<= ioc
->hba_queue_depth
) {
3309 /* internal queue */
3310 i
= smid
- ioc
->internal_smid
;
3311 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
3312 list_add(&ioc
->internal_lookup
[i
].tracker_list
,
3313 &ioc
->internal_free_list
);
3315 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3319 * _base_mpi_ep_writeq - 32 bit write to MMIO
3321 * @addr: address in MMIO space
3322 * @writeq_lock: spin lock
3324 * This special handling for MPI EP to take care of 32 bit
3325 * environment where its not quarenteed to send the entire word
3329 _base_mpi_ep_writeq(__u64 b
, volatile void __iomem
*addr
,
3330 spinlock_t
*writeq_lock
)
3332 unsigned long flags
;
3334 spin_lock_irqsave(writeq_lock
, flags
);
3335 __raw_writel((u32
)(b
), addr
);
3336 __raw_writel((u32
)(b
>> 32), (addr
+ 4));
3338 spin_unlock_irqrestore(writeq_lock
, flags
);
3342 * _base_writeq - 64 bit write to MMIO
3344 * @addr: address in MMIO space
3345 * @writeq_lock: spin lock
3347 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3348 * care of 32 bit environment where its not quarenteed to send the entire word
3351 #if defined(writeq) && defined(CONFIG_64BIT)
3353 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3356 __raw_writeq(b
, addr
);
3361 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3363 _base_mpi_ep_writeq(b
, addr
, writeq_lock
);
3368 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3369 * @ioc: per adapter object
3370 * @smid: system request message index
3371 * @handle: device handle
3374 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3376 Mpi2RequestDescriptorUnion_t descriptor
;
3377 u64
*request
= (u64
*)&descriptor
;
3378 void *mpi_req_iomem
;
3379 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3381 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3382 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3383 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3384 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3386 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3387 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3388 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3389 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3390 descriptor
.SCSIIO
.LMID
= 0;
3391 _base_mpi_ep_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3392 &ioc
->scsi_lookup_lock
);
3396 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3397 * @ioc: per adapter object
3398 * @smid: system request message index
3399 * @handle: device handle
3402 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3404 Mpi2RequestDescriptorUnion_t descriptor
;
3405 u64
*request
= (u64
*)&descriptor
;
3408 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3409 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3410 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3411 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3412 descriptor
.SCSIIO
.LMID
= 0;
3413 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3414 &ioc
->scsi_lookup_lock
);
3418 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3419 * @ioc: per adapter object
3420 * @smid: system request message index
3421 * @handle: device handle
3424 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3427 Mpi2RequestDescriptorUnion_t descriptor
;
3428 u64
*request
= (u64
*)&descriptor
;
3430 descriptor
.SCSIIO
.RequestFlags
=
3431 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
3432 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3433 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3434 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3435 descriptor
.SCSIIO
.LMID
= 0;
3436 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3437 &ioc
->scsi_lookup_lock
);
3441 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3442 * @ioc: per adapter object
3443 * @smid: system request message index
3444 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3447 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3450 Mpi2RequestDescriptorUnion_t descriptor
;
3451 void *mpi_req_iomem
;
3454 if (ioc
->is_mcpu_endpoint
) {
3455 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3457 /* TBD 256 is offset within sys register. */
3458 mpi_req_iomem
= (void __force
*)ioc
->chip
3459 + MPI_FRAME_START_OFFSET
3460 + (smid
* ioc
->request_sz
);
3461 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3465 request
= (u64
*)&descriptor
;
3467 descriptor
.HighPriority
.RequestFlags
=
3468 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
3469 descriptor
.HighPriority
.MSIxIndex
= msix_task
;
3470 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
3471 descriptor
.HighPriority
.LMID
= 0;
3472 descriptor
.HighPriority
.Reserved1
= 0;
3473 if (ioc
->is_mcpu_endpoint
)
3474 _base_mpi_ep_writeq(*request
,
3475 &ioc
->chip
->RequestDescriptorPostLow
,
3476 &ioc
->scsi_lookup_lock
);
3478 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3479 &ioc
->scsi_lookup_lock
);
3483 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3485 * @ioc: per adapter object
3486 * @smid: system request message index
3489 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3491 Mpi2RequestDescriptorUnion_t descriptor
;
3492 u64
*request
= (u64
*)&descriptor
;
3494 descriptor
.Default
.RequestFlags
=
3495 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED
;
3496 descriptor
.Default
.MSIxIndex
= _base_get_msix_index(ioc
);
3497 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3498 descriptor
.Default
.LMID
= 0;
3499 descriptor
.Default
.DescriptorTypeDependent
= 0;
3500 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3501 &ioc
->scsi_lookup_lock
);
3505 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3506 * @ioc: per adapter object
3507 * @smid: system request message index
3510 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3512 Mpi2RequestDescriptorUnion_t descriptor
;
3513 void *mpi_req_iomem
;
3516 if (ioc
->is_mcpu_endpoint
) {
3517 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3519 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3520 /* TBD 256 is offset within sys register */
3521 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3522 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3523 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3526 request
= (u64
*)&descriptor
;
3527 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
3528 descriptor
.Default
.MSIxIndex
= _base_get_msix_index(ioc
);
3529 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3530 descriptor
.Default
.LMID
= 0;
3531 descriptor
.Default
.DescriptorTypeDependent
= 0;
3532 if (ioc
->is_mcpu_endpoint
)
3533 _base_mpi_ep_writeq(*request
,
3534 &ioc
->chip
->RequestDescriptorPostLow
,
3535 &ioc
->scsi_lookup_lock
);
3537 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3538 &ioc
->scsi_lookup_lock
);
3542 * _base_display_OEMs_branding - Display branding string
3543 * @ioc: per adapter object
3546 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER
*ioc
)
3548 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_INTEL
)
3551 switch (ioc
->pdev
->subsystem_vendor
) {
3552 case PCI_VENDOR_ID_INTEL
:
3553 switch (ioc
->pdev
->device
) {
3554 case MPI2_MFGPAGE_DEVID_SAS2008
:
3555 switch (ioc
->pdev
->subsystem_device
) {
3556 case MPT2SAS_INTEL_RMS2LL080_SSDID
:
3557 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3558 MPT2SAS_INTEL_RMS2LL080_BRANDING
);
3560 case MPT2SAS_INTEL_RMS2LL040_SSDID
:
3561 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3562 MPT2SAS_INTEL_RMS2LL040_BRANDING
);
3564 case MPT2SAS_INTEL_SSD910_SSDID
:
3565 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3566 MPT2SAS_INTEL_SSD910_BRANDING
);
3570 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3571 ioc
->name
, ioc
->pdev
->subsystem_device
);
3574 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
3575 switch (ioc
->pdev
->subsystem_device
) {
3576 case MPT2SAS_INTEL_RS25GB008_SSDID
:
3577 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3578 MPT2SAS_INTEL_RS25GB008_BRANDING
);
3580 case MPT2SAS_INTEL_RMS25JB080_SSDID
:
3581 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3582 MPT2SAS_INTEL_RMS25JB080_BRANDING
);
3584 case MPT2SAS_INTEL_RMS25JB040_SSDID
:
3585 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3586 MPT2SAS_INTEL_RMS25JB040_BRANDING
);
3588 case MPT2SAS_INTEL_RMS25KB080_SSDID
:
3589 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3590 MPT2SAS_INTEL_RMS25KB080_BRANDING
);
3592 case MPT2SAS_INTEL_RMS25KB040_SSDID
:
3593 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3594 MPT2SAS_INTEL_RMS25KB040_BRANDING
);
3596 case MPT2SAS_INTEL_RMS25LB040_SSDID
:
3597 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3598 MPT2SAS_INTEL_RMS25LB040_BRANDING
);
3600 case MPT2SAS_INTEL_RMS25LB080_SSDID
:
3601 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3602 MPT2SAS_INTEL_RMS25LB080_BRANDING
);
3606 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3607 ioc
->name
, ioc
->pdev
->subsystem_device
);
3610 case MPI25_MFGPAGE_DEVID_SAS3008
:
3611 switch (ioc
->pdev
->subsystem_device
) {
3612 case MPT3SAS_INTEL_RMS3JC080_SSDID
:
3613 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3614 MPT3SAS_INTEL_RMS3JC080_BRANDING
);
3617 case MPT3SAS_INTEL_RS3GC008_SSDID
:
3618 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3619 MPT3SAS_INTEL_RS3GC008_BRANDING
);
3621 case MPT3SAS_INTEL_RS3FC044_SSDID
:
3622 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3623 MPT3SAS_INTEL_RS3FC044_BRANDING
);
3625 case MPT3SAS_INTEL_RS3UC080_SSDID
:
3626 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3627 MPT3SAS_INTEL_RS3UC080_BRANDING
);
3631 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3632 ioc
->name
, ioc
->pdev
->subsystem_device
);
3638 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3639 ioc
->name
, ioc
->pdev
->subsystem_device
);
3643 case PCI_VENDOR_ID_DELL
:
3644 switch (ioc
->pdev
->device
) {
3645 case MPI2_MFGPAGE_DEVID_SAS2008
:
3646 switch (ioc
->pdev
->subsystem_device
) {
3647 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
3648 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3649 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
);
3651 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
3652 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3653 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
);
3655 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
3656 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3657 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
);
3659 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
3660 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3661 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
);
3663 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
3664 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3665 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
);
3667 case MPT2SAS_DELL_PERC_H200_SSDID
:
3668 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3669 MPT2SAS_DELL_PERC_H200_BRANDING
);
3671 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
3672 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3673 MPT2SAS_DELL_6GBPS_SAS_BRANDING
);
3677 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3678 ioc
->name
, ioc
->pdev
->subsystem_device
);
3682 case MPI25_MFGPAGE_DEVID_SAS3008
:
3683 switch (ioc
->pdev
->subsystem_device
) {
3684 case MPT3SAS_DELL_12G_HBA_SSDID
:
3685 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3686 MPT3SAS_DELL_12G_HBA_BRANDING
);
3690 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3691 ioc
->name
, ioc
->pdev
->subsystem_device
);
3697 "Dell HBA: Subsystem ID: 0x%X\n", ioc
->name
,
3698 ioc
->pdev
->subsystem_device
);
3702 case PCI_VENDOR_ID_CISCO
:
3703 switch (ioc
->pdev
->device
) {
3704 case MPI25_MFGPAGE_DEVID_SAS3008
:
3705 switch (ioc
->pdev
->subsystem_device
) {
3706 case MPT3SAS_CISCO_12G_8E_HBA_SSDID
:
3707 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3708 MPT3SAS_CISCO_12G_8E_HBA_BRANDING
);
3710 case MPT3SAS_CISCO_12G_8I_HBA_SSDID
:
3711 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3712 MPT3SAS_CISCO_12G_8I_HBA_BRANDING
);
3714 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
3715 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3716 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
3720 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3721 ioc
->name
, ioc
->pdev
->subsystem_device
);
3725 case MPI25_MFGPAGE_DEVID_SAS3108_1
:
3726 switch (ioc
->pdev
->subsystem_device
) {
3727 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
3728 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3729 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
3731 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID
:
3732 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3733 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3738 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3739 ioc
->name
, ioc
->pdev
->subsystem_device
);
3745 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3746 ioc
->name
, ioc
->pdev
->subsystem_device
);
3750 case MPT2SAS_HP_3PAR_SSVID
:
3751 switch (ioc
->pdev
->device
) {
3752 case MPI2_MFGPAGE_DEVID_SAS2004
:
3753 switch (ioc
->pdev
->subsystem_device
) {
3754 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID
:
3755 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3756 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING
);
3760 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3761 ioc
->name
, ioc
->pdev
->subsystem_device
);
3764 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
3765 switch (ioc
->pdev
->subsystem_device
) {
3766 case MPT2SAS_HP_2_4_INTERNAL_SSDID
:
3767 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3768 MPT2SAS_HP_2_4_INTERNAL_BRANDING
);
3770 case MPT2SAS_HP_2_4_EXTERNAL_SSDID
:
3771 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3772 MPT2SAS_HP_2_4_EXTERNAL_BRANDING
);
3774 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID
:
3775 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3776 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING
);
3778 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID
:
3779 pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3780 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING
);
3784 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3785 ioc
->name
, ioc
->pdev
->subsystem_device
);
3790 "HP SAS HBA: Subsystem ID: 0x%X\n",
3791 ioc
->name
, ioc
->pdev
->subsystem_device
);
3800 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3801 * version from FW Image Header.
3802 * @ioc: per adapter object
3804 * Return: 0 for success, non-zero for failure.
3807 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER
*ioc
)
3809 Mpi2FWImageHeader_t
*FWImgHdr
;
3810 Mpi25FWUploadRequest_t
*mpi_request
;
3811 Mpi2FWUploadReply_t mpi_reply
;
3813 void *fwpkg_data
= NULL
;
3814 dma_addr_t fwpkg_data_dma
;
3815 u16 smid
, ioc_status
;
3818 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
3821 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
3822 pr_err(MPT3SAS_FMT
"%s: internal command already in use\n",
3823 ioc
->name
, __func__
);
3827 data_length
= sizeof(Mpi2FWImageHeader_t
);
3828 fwpkg_data
= pci_alloc_consistent(ioc
->pdev
, data_length
,
3831 pr_err(MPT3SAS_FMT
"failure at %s:%d/%s()!\n",
3832 ioc
->name
, __FILE__
, __LINE__
, __func__
);
3836 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3838 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
3839 ioc
->name
, __func__
);
3844 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
3845 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3846 ioc
->base_cmds
.smid
= smid
;
3847 memset(mpi_request
, 0, sizeof(Mpi25FWUploadRequest_t
));
3848 mpi_request
->Function
= MPI2_FUNCTION_FW_UPLOAD
;
3849 mpi_request
->ImageType
= MPI2_FW_UPLOAD_ITYPE_FW_FLASH
;
3850 mpi_request
->ImageSize
= cpu_to_le32(data_length
);
3851 ioc
->build_sg(ioc
, &mpi_request
->SGL
, 0, 0, fwpkg_data_dma
,
3853 init_completion(&ioc
->base_cmds
.done
);
3854 mpt3sas_base_put_smid_default(ioc
, smid
);
3855 /* Wait for 15 seconds */
3856 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
3857 FW_IMG_HDR_READ_TIMEOUT
*HZ
);
3858 pr_info(MPT3SAS_FMT
"%s: complete\n",
3859 ioc
->name
, __func__
);
3860 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
3861 pr_err(MPT3SAS_FMT
"%s: timeout\n",
3862 ioc
->name
, __func__
);
3863 _debug_dump_mf(mpi_request
,
3864 sizeof(Mpi25FWUploadRequest_t
)/4);
3867 memset(&mpi_reply
, 0, sizeof(Mpi2FWUploadReply_t
));
3868 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
) {
3869 memcpy(&mpi_reply
, ioc
->base_cmds
.reply
,
3870 sizeof(Mpi2FWUploadReply_t
));
3871 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
3872 MPI2_IOCSTATUS_MASK
;
3873 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
3874 FWImgHdr
= (Mpi2FWImageHeader_t
*)fwpkg_data
;
3875 if (FWImgHdr
->PackageVersion
.Word
) {
3876 pr_info(MPT3SAS_FMT
"FW Package Version"
3877 "(%02d.%02d.%02d.%02d)\n",
3879 FWImgHdr
->PackageVersion
.Struct
.Major
,
3880 FWImgHdr
->PackageVersion
.Struct
.Minor
,
3881 FWImgHdr
->PackageVersion
.Struct
.Unit
,
3882 FWImgHdr
->PackageVersion
.Struct
.Dev
);
3885 _debug_dump_mf(&mpi_reply
,
3886 sizeof(Mpi2FWUploadReply_t
)/4);
3890 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
3893 pci_free_consistent(ioc
->pdev
, data_length
, fwpkg_data
,
3899 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3900 * @ioc: per adapter object
3903 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER
*ioc
)
3907 u32 iounit_pg1_flags
;
3910 bios_version
= le32_to_cpu(ioc
->bios_pg3
.BiosVersion
);
3911 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
3912 pr_info(MPT3SAS_FMT
"%s: FWVersion(%02d.%02d.%02d.%02d), "\
3913 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3915 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
3916 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
3917 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
3918 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
3919 ioc
->pdev
->revision
,
3920 (bios_version
& 0xFF000000) >> 24,
3921 (bios_version
& 0x00FF0000) >> 16,
3922 (bios_version
& 0x0000FF00) >> 8,
3923 bios_version
& 0x000000FF);
3925 _base_display_OEMs_branding(ioc
);
3927 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
3928 pr_info("%sNVMe", i
? "," : "");
3932 pr_info(MPT3SAS_FMT
"Protocol=(", ioc
->name
);
3934 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
3935 pr_info("Initiator");
3939 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
3940 pr_info("%sTarget", i
? "," : "");
3946 pr_info("Capabilities=(");
3948 if (!ioc
->hide_ir_msg
) {
3949 if (ioc
->facts
.IOCCapabilities
&
3950 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
3956 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
3957 pr_info("%sTLR", i
? "," : "");
3961 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
3962 pr_info("%sMulticast", i
? "," : "");
3966 if (ioc
->facts
.IOCCapabilities
&
3967 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
3968 pr_info("%sBIDI Target", i
? "," : "");
3972 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
3973 pr_info("%sEEDP", i
? "," : "");
3977 if (ioc
->facts
.IOCCapabilities
&
3978 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
3979 pr_info("%sSnapshot Buffer", i
? "," : "");
3983 if (ioc
->facts
.IOCCapabilities
&
3984 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
3985 pr_info("%sDiag Trace Buffer", i
? "," : "");
3989 if (ioc
->facts
.IOCCapabilities
&
3990 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
3991 pr_info("%sDiag Extended Buffer", i
? "," : "");
3995 if (ioc
->facts
.IOCCapabilities
&
3996 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
3997 pr_info("%sTask Set Full", i
? "," : "");
4001 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4002 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
4003 pr_info("%sNCQ", i
? "," : "");
4011 * mpt3sas_base_update_missing_delay - change the missing delay timers
4012 * @ioc: per adapter object
4013 * @device_missing_delay: amount of time till device is reported missing
4014 * @io_missing_delay: interval IO is returned when there is a missing device
4016 * Passed on the command line, this function will modify the device missing
4017 * delay, as well as the io missing delay. This should be called at driver
4021 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER
*ioc
,
4022 u16 device_missing_delay
, u8 io_missing_delay
)
4024 u16 dmd
, dmd_new
, dmd_orignal
;
4025 u8 io_missing_delay_original
;
4027 Mpi2SasIOUnitPage1_t
*sas_iounit_pg1
= NULL
;
4028 Mpi2ConfigReply_t mpi_reply
;
4032 mpt3sas_config_get_number_hba_phys(ioc
, &num_phys
);
4036 sz
= offsetof(Mpi2SasIOUnitPage1_t
, PhyData
) + (num_phys
*
4037 sizeof(Mpi2SasIOUnit1PhyData_t
));
4038 sas_iounit_pg1
= kzalloc(sz
, GFP_KERNEL
);
4039 if (!sas_iounit_pg1
) {
4040 pr_err(MPT3SAS_FMT
"failure at %s:%d/%s()!\n",
4041 ioc
->name
, __FILE__
, __LINE__
, __func__
);
4044 if ((mpt3sas_config_get_sas_iounit_pg1(ioc
, &mpi_reply
,
4045 sas_iounit_pg1
, sz
))) {
4046 pr_err(MPT3SAS_FMT
"failure at %s:%d/%s()!\n",
4047 ioc
->name
, __FILE__
, __LINE__
, __func__
);
4050 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4051 MPI2_IOCSTATUS_MASK
;
4052 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4053 pr_err(MPT3SAS_FMT
"failure at %s:%d/%s()!\n",
4054 ioc
->name
, __FILE__
, __LINE__
, __func__
);
4058 /* device missing delay */
4059 dmd
= sas_iounit_pg1
->ReportDeviceMissingDelay
;
4060 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4061 dmd
= (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4063 dmd
= dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4065 if (device_missing_delay
> 0x7F) {
4066 dmd
= (device_missing_delay
> 0x7F0) ? 0x7F0 :
4067 device_missing_delay
;
4069 dmd
|= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
;
4071 dmd
= device_missing_delay
;
4072 sas_iounit_pg1
->ReportDeviceMissingDelay
= dmd
;
4074 /* io missing delay */
4075 io_missing_delay_original
= sas_iounit_pg1
->IODeviceMissingDelay
;
4076 sas_iounit_pg1
->IODeviceMissingDelay
= io_missing_delay
;
4078 if (!mpt3sas_config_set_sas_iounit_pg1(ioc
, &mpi_reply
, sas_iounit_pg1
,
4080 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4082 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4085 dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4086 pr_info(MPT3SAS_FMT
"device_missing_delay: old(%d), new(%d)\n",
4087 ioc
->name
, dmd_orignal
, dmd_new
);
4088 pr_info(MPT3SAS_FMT
"ioc_missing_delay: old(%d), new(%d)\n",
4089 ioc
->name
, io_missing_delay_original
,
4091 ioc
->device_missing_delay
= dmd_new
;
4092 ioc
->io_missing_delay
= io_missing_delay
;
4096 kfree(sas_iounit_pg1
);
4100 * _base_static_config_pages - static start of day config pages
4101 * @ioc: per adapter object
4104 _base_static_config_pages(struct MPT3SAS_ADAPTER
*ioc
)
4106 Mpi2ConfigReply_t mpi_reply
;
4107 u32 iounit_pg1_flags
;
4109 ioc
->nvme_abort_timeout
= 30;
4110 mpt3sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
4111 if (ioc
->ir_firmware
)
4112 mpt3sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
4116 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4117 * flag unset in NVDATA.
4119 mpt3sas_config_get_manufacturing_pg11(ioc
, &mpi_reply
, &ioc
->manu_pg11
);
4120 if (!ioc
->is_gen35_ioc
&& ioc
->manu_pg11
.EEDPTagMode
== 0) {
4121 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4123 ioc
->manu_pg11
.EEDPTagMode
&= ~0x3;
4124 ioc
->manu_pg11
.EEDPTagMode
|= 0x1;
4125 mpt3sas_config_set_manufacturing_pg11(ioc
, &mpi_reply
,
4128 if (ioc
->manu_pg11
.AddlFlags2
& NVME_TASK_MNGT_CUSTOM_MASK
)
4129 ioc
->tm_custom_handling
= 1;
4131 ioc
->tm_custom_handling
= 0;
4132 if (ioc
->manu_pg11
.NVMeAbortTO
< NVME_TASK_ABORT_MIN_TIMEOUT
)
4133 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MIN_TIMEOUT
;
4134 else if (ioc
->manu_pg11
.NVMeAbortTO
>
4135 NVME_TASK_ABORT_MAX_TIMEOUT
)
4136 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MAX_TIMEOUT
;
4138 ioc
->nvme_abort_timeout
= ioc
->manu_pg11
.NVMeAbortTO
;
4141 mpt3sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
4142 mpt3sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
4143 mpt3sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
4144 mpt3sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
4145 mpt3sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4146 mpt3sas_config_get_iounit_pg8(ioc
, &mpi_reply
, &ioc
->iounit_pg8
);
4147 _base_display_ioc_capabilities(ioc
);
4150 * Enable task_set_full handling in iounit_pg1 when the
4151 * facts capabilities indicate that its supported.
4153 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4154 if ((ioc
->facts
.IOCCapabilities
&
4155 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
4157 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4160 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4161 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
4162 mpt3sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4164 if (ioc
->iounit_pg8
.NumSensors
)
4165 ioc
->temp_sensors_count
= ioc
->iounit_pg8
.NumSensors
;
4169 * mpt3sas_free_enclosure_list - release memory
4170 * @ioc: per adapter object
4172 * Free memory allocated during encloure add.
4175 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER
*ioc
)
4177 struct _enclosure_node
*enclosure_dev
, *enclosure_dev_next
;
4179 /* Free enclosure list */
4180 list_for_each_entry_safe(enclosure_dev
,
4181 enclosure_dev_next
, &ioc
->enclosure_list
, list
) {
4182 list_del(&enclosure_dev
->list
);
4183 kfree(enclosure_dev
);
4188 * _base_release_memory_pools - release memory
4189 * @ioc: per adapter object
4191 * Free memory allocated from _base_allocate_memory_pools.
4194 _base_release_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4198 struct chain_tracker
*ct
;
4199 struct reply_post_struct
*rps
;
4201 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
4205 pci_free_consistent(ioc
->pdev
, ioc
->request_dma_sz
,
4206 ioc
->request
, ioc
->request_dma
);
4207 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4208 "request_pool(0x%p): free\n",
4209 ioc
->name
, ioc
->request
));
4210 ioc
->request
= NULL
;
4214 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
4215 dma_pool_destroy(ioc
->sense_dma_pool
);
4216 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4217 "sense_pool(0x%p): free\n",
4218 ioc
->name
, ioc
->sense
));
4223 dma_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
4224 dma_pool_destroy(ioc
->reply_dma_pool
);
4225 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4226 "reply_pool(0x%p): free\n",
4227 ioc
->name
, ioc
->reply
));
4231 if (ioc
->reply_free
) {
4232 dma_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
4233 ioc
->reply_free_dma
);
4234 dma_pool_destroy(ioc
->reply_free_dma_pool
);
4235 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4236 "reply_free_pool(0x%p): free\n",
4237 ioc
->name
, ioc
->reply_free
));
4238 ioc
->reply_free
= NULL
;
4241 if (ioc
->reply_post
) {
4243 rps
= &ioc
->reply_post
[i
];
4244 if (rps
->reply_post_free
) {
4246 ioc
->reply_post_free_dma_pool
,
4247 rps
->reply_post_free
,
4248 rps
->reply_post_free_dma
);
4249 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4250 "reply_post_free_pool(0x%p): free\n",
4251 ioc
->name
, rps
->reply_post_free
));
4252 rps
->reply_post_free
= NULL
;
4254 } while (ioc
->rdpq_array_enable
&&
4255 (++i
< ioc
->reply_queue_count
));
4256 if (ioc
->reply_post_free_array
&&
4257 ioc
->rdpq_array_enable
) {
4258 dma_pool_free(ioc
->reply_post_free_array_dma_pool
,
4259 ioc
->reply_post_free_array
,
4260 ioc
->reply_post_free_array_dma
);
4261 ioc
->reply_post_free_array
= NULL
;
4263 dma_pool_destroy(ioc
->reply_post_free_array_dma_pool
);
4264 dma_pool_destroy(ioc
->reply_post_free_dma_pool
);
4265 kfree(ioc
->reply_post
);
4268 if (ioc
->pcie_sgl_dma_pool
) {
4269 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4270 dma_pool_free(ioc
->pcie_sgl_dma_pool
,
4271 ioc
->pcie_sg_lookup
[i
].pcie_sgl
,
4272 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
4274 if (ioc
->pcie_sgl_dma_pool
)
4275 dma_pool_destroy(ioc
->pcie_sgl_dma_pool
);
4278 if (ioc
->config_page
) {
4279 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
4280 "config_page(0x%p): free\n", ioc
->name
,
4282 pci_free_consistent(ioc
->pdev
, ioc
->config_page_sz
,
4283 ioc
->config_page
, ioc
->config_page_dma
);
4286 kfree(ioc
->hpr_lookup
);
4287 ioc
->hpr_lookup
= NULL
;
4288 kfree(ioc
->internal_lookup
);
4289 ioc
->internal_lookup
= NULL
;
4290 if (ioc
->chain_lookup
) {
4291 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4292 for (j
= ioc
->chains_per_prp_buffer
;
4293 j
< ioc
->chains_needed_per_io
; j
++) {
4294 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4295 if (ct
&& ct
->chain_buffer
)
4296 dma_pool_free(ioc
->chain_dma_pool
,
4298 ct
->chain_buffer_dma
);
4300 kfree(ioc
->chain_lookup
[i
].chains_per_smid
);
4302 dma_pool_destroy(ioc
->chain_dma_pool
);
4303 kfree(ioc
->chain_lookup
);
4304 ioc
->chain_lookup
= NULL
;
4309 * is_MSB_are_same - checks whether all reply queues in a set are
4310 * having same upper 32bits in their base memory address.
4311 * @reply_pool_start_address: Base address of a reply queue set
4312 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4314 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4315 * memory address, else 0.
4319 is_MSB_are_same(long reply_pool_start_address
, u32 pool_sz
)
4321 long reply_pool_end_address
;
4323 reply_pool_end_address
= reply_pool_start_address
+ pool_sz
;
4325 if (upper_32_bits(reply_pool_start_address
) ==
4326 upper_32_bits(reply_pool_end_address
))
4333 * _base_allocate_memory_pools - allocate start of day memory pools
4334 * @ioc: per adapter object
4336 * Return: 0 success, anything else error.
4339 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4341 struct mpt3sas_facts
*facts
;
4342 u16 max_sge_elements
;
4343 u16 chains_needed_per_io
;
4344 u32 sz
, total_sz
, reply_post_free_sz
, reply_post_free_array_sz
;
4346 u16 max_request_credit
, nvme_blocks_needed
;
4347 unsigned short sg_tablesize
;
4350 struct chain_tracker
*ct
;
4352 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
4357 facts
= &ioc
->facts
;
4359 /* command line tunables for max sgl entries */
4360 if (max_sgl_entries
!= -1)
4361 sg_tablesize
= max_sgl_entries
;
4363 if (ioc
->hba_mpi_version_belonged
== MPI2_VERSION
)
4364 sg_tablesize
= MPT2SAS_SG_DEPTH
;
4366 sg_tablesize
= MPT3SAS_SG_DEPTH
;
4369 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4371 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4372 MPT_KDUMP_MIN_PHYS_SEGMENTS
);
4374 if (ioc
->is_mcpu_endpoint
)
4375 ioc
->shost
->sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4377 if (sg_tablesize
< MPT_MIN_PHYS_SEGMENTS
)
4378 sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4379 else if (sg_tablesize
> MPT_MAX_PHYS_SEGMENTS
) {
4380 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4383 "sg_tablesize(%u) is bigger than kernel "
4384 "defined SG_CHUNK_SIZE(%u)\n", ioc
->name
,
4385 sg_tablesize
, MPT_MAX_PHYS_SEGMENTS
);
4387 ioc
->shost
->sg_tablesize
= sg_tablesize
;
4390 ioc
->internal_depth
= min_t(int, (facts
->HighPriorityCredit
+ (5)),
4391 (facts
->RequestCredit
/ 4));
4392 if (ioc
->internal_depth
< INTERNAL_CMDS_COUNT
) {
4393 if (facts
->RequestCredit
<= (INTERNAL_CMDS_COUNT
+
4394 INTERNAL_SCSIIO_CMDS_COUNT
)) {
4395 pr_err(MPT3SAS_FMT
"IOC doesn't have enough Request \
4396 Credits, it has just %d number of credits\n",
4397 ioc
->name
, facts
->RequestCredit
);
4400 ioc
->internal_depth
= 10;
4403 ioc
->hi_priority_depth
= ioc
->internal_depth
- (5);
4404 /* command line tunables for max controller queue depth */
4405 if (max_queue_depth
!= -1 && max_queue_depth
!= 0) {
4406 max_request_credit
= min_t(u16
, max_queue_depth
+
4407 ioc
->internal_depth
, facts
->RequestCredit
);
4408 if (max_request_credit
> MAX_HBA_QUEUE_DEPTH
)
4409 max_request_credit
= MAX_HBA_QUEUE_DEPTH
;
4410 } else if (reset_devices
)
4411 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4412 (MPT3SAS_KDUMP_SCSI_IO_DEPTH
+ ioc
->internal_depth
));
4414 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4415 MAX_HBA_QUEUE_DEPTH
);
4417 /* Firmware maintains additional facts->HighPriorityCredit number of
4418 * credits for HiPriprity Request messages, so hba queue depth will be
4419 * sum of max_request_credit and high priority queue depth.
4421 ioc
->hba_queue_depth
= max_request_credit
+ ioc
->hi_priority_depth
;
4423 /* request frame size */
4424 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
4426 /* reply frame size */
4427 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
4429 /* chain segment size */
4430 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
4431 if (facts
->IOCMaxChainSegmentSize
)
4432 ioc
->chain_segment_sz
=
4433 facts
->IOCMaxChainSegmentSize
*
4436 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4437 ioc
->chain_segment_sz
= DEFAULT_NUM_FWCHAIN_ELEMTS
*
4440 ioc
->chain_segment_sz
= ioc
->request_sz
;
4442 /* calculate the max scatter element size */
4443 sge_size
= max_t(u16
, ioc
->sge_size
, ioc
->sge_size_ieee
);
4447 /* calculate number of sg elements left over in the 1st frame */
4448 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
4449 sizeof(Mpi2SGEIOUnion_t
)) + sge_size
);
4450 ioc
->max_sges_in_main_message
= max_sge_elements
/sge_size
;
4452 /* now do the same for a chain buffer */
4453 max_sge_elements
= ioc
->chain_segment_sz
- sge_size
;
4454 ioc
->max_sges_in_chain_message
= max_sge_elements
/sge_size
;
4457 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4459 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
4460 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
4462 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
4463 chains_needed_per_io
= facts
->MaxChainDepth
;
4464 ioc
->shost
->sg_tablesize
= min_t(u16
,
4465 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
4466 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
4468 ioc
->chains_needed_per_io
= chains_needed_per_io
;
4470 /* reply free queue sizing - taking into account for 64 FW events */
4471 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4473 /* mCPU manage single counters for simplicity */
4474 if (ioc
->is_mcpu_endpoint
)
4475 ioc
->reply_post_queue_depth
= ioc
->reply_free_queue_depth
;
4477 /* calculate reply descriptor post queue depth */
4478 ioc
->reply_post_queue_depth
= ioc
->hba_queue_depth
+
4479 ioc
->reply_free_queue_depth
+ 1;
4480 /* align the reply post queue on the next 16 count boundary */
4481 if (ioc
->reply_post_queue_depth
% 16)
4482 ioc
->reply_post_queue_depth
+= 16 -
4483 (ioc
->reply_post_queue_depth
% 16);
4486 if (ioc
->reply_post_queue_depth
>
4487 facts
->MaxReplyDescriptorPostQueueDepth
) {
4488 ioc
->reply_post_queue_depth
=
4489 facts
->MaxReplyDescriptorPostQueueDepth
-
4490 (facts
->MaxReplyDescriptorPostQueueDepth
% 16);
4491 ioc
->hba_queue_depth
=
4492 ((ioc
->reply_post_queue_depth
- 64) / 2) - 1;
4493 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4496 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"scatter gather: " \
4497 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4498 "chains_per_io(%d)\n", ioc
->name
, ioc
->max_sges_in_main_message
,
4499 ioc
->max_sges_in_chain_message
, ioc
->shost
->sg_tablesize
,
4500 ioc
->chains_needed_per_io
));
4502 /* reply post queue, 16 byte align */
4503 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
4504 sizeof(Mpi2DefaultReplyDescriptor_t
);
4506 sz
= reply_post_free_sz
;
4507 if (_base_is_controller_msix_enabled(ioc
) && !ioc
->rdpq_array_enable
)
4508 sz
*= ioc
->reply_queue_count
;
4510 ioc
->reply_post
= kcalloc((ioc
->rdpq_array_enable
) ?
4511 (ioc
->reply_queue_count
):1,
4512 sizeof(struct reply_post_struct
), GFP_KERNEL
);
4514 if (!ioc
->reply_post
) {
4515 pr_err(MPT3SAS_FMT
"reply_post_free pool: kcalloc failed\n",
4519 ioc
->reply_post_free_dma_pool
= dma_pool_create("reply_post_free pool",
4520 &ioc
->pdev
->dev
, sz
, 16, 0);
4521 if (!ioc
->reply_post_free_dma_pool
) {
4523 "reply_post_free pool: dma_pool_create failed\n",
4529 ioc
->reply_post
[i
].reply_post_free
=
4530 dma_pool_alloc(ioc
->reply_post_free_dma_pool
,
4532 &ioc
->reply_post
[i
].reply_post_free_dma
);
4533 if (!ioc
->reply_post
[i
].reply_post_free
) {
4535 "reply_post_free pool: dma_pool_alloc failed\n",
4539 memset(ioc
->reply_post
[i
].reply_post_free
, 0, sz
);
4540 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4541 "reply post free pool (0x%p): depth(%d),"
4542 "element_size(%d), pool_size(%d kB)\n", ioc
->name
,
4543 ioc
->reply_post
[i
].reply_post_free
,
4544 ioc
->reply_post_queue_depth
, 8, sz
/1024));
4545 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4546 "reply_post_free_dma = (0x%llx)\n", ioc
->name
,
4547 (unsigned long long)
4548 ioc
->reply_post
[i
].reply_post_free_dma
));
4550 } while (ioc
->rdpq_array_enable
&& (++i
< ioc
->reply_queue_count
));
4552 if (ioc
->dma_mask
> 32) {
4553 if (_base_change_consistent_dma_mask(ioc
, ioc
->pdev
) != 0) {
4555 "no suitable consistent DMA mask for %s\n",
4556 ioc
->name
, pci_name(ioc
->pdev
));
4561 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
4562 ioc
->hi_priority_depth
- ioc
->internal_depth
;
4564 /* set the scsi host can_queue depth
4565 * with some internal commands that could be outstanding
4567 ioc
->shost
->can_queue
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
;
4568 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4569 "scsi host: can_queue depth (%d)\n",
4570 ioc
->name
, ioc
->shost
->can_queue
));
4573 /* contiguous pool for request and chains, 16 byte align, one extra "
4576 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
4577 sz
= ((ioc
->scsiio_depth
+ 1) * ioc
->request_sz
);
4579 /* hi-priority queue */
4580 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
4582 /* internal queue */
4583 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
4585 ioc
->request_dma_sz
= sz
;
4586 ioc
->request
= pci_alloc_consistent(ioc
->pdev
, sz
, &ioc
->request_dma
);
4587 if (!ioc
->request
) {
4588 pr_err(MPT3SAS_FMT
"request pool: pci_alloc_consistent " \
4589 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4590 "total(%d kB)\n", ioc
->name
, ioc
->hba_queue_depth
,
4591 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
4592 if (ioc
->scsiio_depth
< MPT3SAS_SAS_QUEUE_DEPTH
)
4595 ioc
->hba_queue_depth
-= retry_sz
;
4596 _base_release_memory_pools(ioc
);
4597 goto retry_allocation
;
4601 pr_err(MPT3SAS_FMT
"request pool: pci_alloc_consistent " \
4602 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4603 "total(%d kb)\n", ioc
->name
, ioc
->hba_queue_depth
,
4604 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
4606 /* hi-priority queue */
4607 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
4609 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
4612 /* internal queue */
4613 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
4615 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
4618 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4619 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4620 ioc
->name
, ioc
->request
, ioc
->hba_queue_depth
, ioc
->request_sz
,
4621 (ioc
->hba_queue_depth
* ioc
->request_sz
)/1024));
4623 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"request pool: dma(0x%llx)\n",
4624 ioc
->name
, (unsigned long long) ioc
->request_dma
));
4627 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"scsiio(0x%p): depth(%d)\n",
4628 ioc
->name
, ioc
->request
, ioc
->scsiio_depth
));
4630 ioc
->chain_depth
= min_t(u32
, ioc
->chain_depth
, MAX_CHAIN_DEPTH
);
4631 sz
= ioc
->scsiio_depth
* sizeof(struct chain_lookup
);
4632 ioc
->chain_lookup
= kzalloc(sz
, GFP_KERNEL
);
4633 if (!ioc
->chain_lookup
) {
4634 pr_err(MPT3SAS_FMT
"chain_lookup: __get_free_pages "
4635 "failed\n", ioc
->name
);
4639 sz
= ioc
->chains_needed_per_io
* sizeof(struct chain_tracker
);
4640 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4641 ioc
->chain_lookup
[i
].chains_per_smid
= kzalloc(sz
, GFP_KERNEL
);
4642 if (!ioc
->chain_lookup
[i
].chains_per_smid
) {
4643 pr_err(MPT3SAS_FMT
"chain_lookup: "
4644 " kzalloc failed\n", ioc
->name
);
4649 /* initialize hi-priority queue smid's */
4650 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
4651 sizeof(struct request_tracker
), GFP_KERNEL
);
4652 if (!ioc
->hpr_lookup
) {
4653 pr_err(MPT3SAS_FMT
"hpr_lookup: kcalloc failed\n",
4657 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
4658 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4659 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4660 ioc
->name
, ioc
->hi_priority
,
4661 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
4663 /* initialize internal queue smid's */
4664 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
4665 sizeof(struct request_tracker
), GFP_KERNEL
);
4666 if (!ioc
->internal_lookup
) {
4667 pr_err(MPT3SAS_FMT
"internal_lookup: kcalloc failed\n",
4671 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
4672 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4673 "internal(0x%p): depth(%d), start smid(%d)\n",
4674 ioc
->name
, ioc
->internal
,
4675 ioc
->internal_depth
, ioc
->internal_smid
));
4677 * The number of NVMe page sized blocks needed is:
4678 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4679 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4680 * that is placed in the main message frame. 8 is the size of each PRP
4681 * entry or PRP list pointer entry. 8 is subtracted from page_size
4682 * because of the PRP list pointer entry at the end of a page, so this
4683 * is not counted as a PRP entry. The 1 added page is a round up.
4685 * To avoid allocation failures due to the amount of memory that could
4686 * be required for NVMe PRP's, only each set of NVMe blocks will be
4687 * contiguous, so a new set is allocated for each possible I/O.
4689 ioc
->chains_per_prp_buffer
= 0;
4690 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
4691 nvme_blocks_needed
=
4692 (ioc
->shost
->sg_tablesize
* NVME_PRP_SIZE
) - 1;
4693 nvme_blocks_needed
/= (ioc
->page_size
- NVME_PRP_SIZE
);
4694 nvme_blocks_needed
++;
4696 sz
= sizeof(struct pcie_sg_list
) * ioc
->scsiio_depth
;
4697 ioc
->pcie_sg_lookup
= kzalloc(sz
, GFP_KERNEL
);
4698 if (!ioc
->pcie_sg_lookup
) {
4700 "PCIe SGL lookup: kzalloc failed\n", ioc
->name
);
4703 sz
= nvme_blocks_needed
* ioc
->page_size
;
4704 ioc
->pcie_sgl_dma_pool
=
4705 dma_pool_create("PCIe SGL pool", &ioc
->pdev
->dev
, sz
, 16, 0);
4706 if (!ioc
->pcie_sgl_dma_pool
) {
4708 "PCIe SGL pool: dma_pool_create failed\n",
4713 ioc
->chains_per_prp_buffer
= sz
/ioc
->chain_segment_sz
;
4714 ioc
->chains_per_prp_buffer
= min(ioc
->chains_per_prp_buffer
,
4715 ioc
->chains_needed_per_io
);
4717 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4718 ioc
->pcie_sg_lookup
[i
].pcie_sgl
= dma_pool_alloc(
4719 ioc
->pcie_sgl_dma_pool
, GFP_KERNEL
,
4720 &ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
4721 if (!ioc
->pcie_sg_lookup
[i
].pcie_sgl
) {
4723 "PCIe SGL pool: dma_pool_alloc failed\n",
4727 for (j
= 0; j
< ioc
->chains_per_prp_buffer
; j
++) {
4728 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4730 ioc
->pcie_sg_lookup
[i
].pcie_sgl
+
4731 (j
* ioc
->chain_segment_sz
);
4732 ct
->chain_buffer_dma
=
4733 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
+
4734 (j
* ioc
->chain_segment_sz
);
4738 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"PCIe sgl pool depth(%d), "
4739 "element_size(%d), pool_size(%d kB)\n", ioc
->name
,
4740 ioc
->scsiio_depth
, sz
, (sz
* ioc
->scsiio_depth
)/1024));
4741 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"Number of chains can "
4742 "fit in a PRP page(%d)\n", ioc
->name
,
4743 ioc
->chains_per_prp_buffer
));
4744 total_sz
+= sz
* ioc
->scsiio_depth
;
4747 ioc
->chain_dma_pool
= dma_pool_create("chain pool", &ioc
->pdev
->dev
,
4748 ioc
->chain_segment_sz
, 16, 0);
4749 if (!ioc
->chain_dma_pool
) {
4750 pr_err(MPT3SAS_FMT
"chain_dma_pool: dma_pool_create failed\n",
4754 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4755 for (j
= ioc
->chains_per_prp_buffer
;
4756 j
< ioc
->chains_needed_per_io
; j
++) {
4757 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4758 ct
->chain_buffer
= dma_pool_alloc(
4759 ioc
->chain_dma_pool
, GFP_KERNEL
,
4760 &ct
->chain_buffer_dma
);
4761 if (!ct
->chain_buffer
) {
4762 pr_err(MPT3SAS_FMT
"chain_lookup: "
4763 " pci_pool_alloc failed\n", ioc
->name
);
4764 _base_release_memory_pools(ioc
);
4768 total_sz
+= ioc
->chain_segment_sz
;
4771 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4772 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4773 ioc
->name
, ioc
->chain_depth
, ioc
->chain_segment_sz
,
4774 ((ioc
->chain_depth
* ioc
->chain_segment_sz
))/1024));
4776 /* sense buffers, 4 byte align */
4777 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
4778 ioc
->sense_dma_pool
= dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
4780 if (!ioc
->sense_dma_pool
) {
4781 pr_err(MPT3SAS_FMT
"sense pool: dma_pool_create failed\n",
4785 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
4788 pr_err(MPT3SAS_FMT
"sense pool: dma_pool_alloc failed\n",
4792 /* sense buffer requires to be in same 4 gb region.
4793 * Below function will check the same.
4794 * In case of failure, new pci pool will be created with updated
4795 * alignment. Older allocation and pool will be destroyed.
4796 * Alignment will be used such a way that next allocation if
4797 * success, will always meet same 4gb region requirement.
4798 * Actual requirement is not alignment, but we need start and end of
4799 * DMA address must have same upper 32 bit address.
4801 if (!is_MSB_are_same((long)ioc
->sense
, sz
)) {
4802 //Release Sense pool & Reallocate
4803 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
4804 dma_pool_destroy(ioc
->sense_dma_pool
);
4807 ioc
->sense_dma_pool
=
4808 dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
4809 roundup_pow_of_two(sz
), 0);
4810 if (!ioc
->sense_dma_pool
) {
4811 pr_err(MPT3SAS_FMT
"sense pool: pci_pool_create failed\n",
4815 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
4818 pr_err(MPT3SAS_FMT
"sense pool: pci_pool_alloc failed\n",
4823 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4824 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4825 "(%d kB)\n", ioc
->name
, ioc
->sense
, ioc
->scsiio_depth
,
4826 SCSI_SENSE_BUFFERSIZE
, sz
/1024));
4827 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"sense_dma(0x%llx)\n",
4828 ioc
->name
, (unsigned long long)ioc
->sense_dma
));
4831 /* reply pool, 4 byte align */
4832 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
4833 ioc
->reply_dma_pool
= dma_pool_create("reply pool", &ioc
->pdev
->dev
, sz
,
4835 if (!ioc
->reply_dma_pool
) {
4836 pr_err(MPT3SAS_FMT
"reply pool: dma_pool_create failed\n",
4840 ioc
->reply
= dma_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
4843 pr_err(MPT3SAS_FMT
"reply pool: dma_pool_alloc failed\n",
4847 ioc
->reply_dma_min_address
= (u32
)(ioc
->reply_dma
);
4848 ioc
->reply_dma_max_address
= (u32
)(ioc
->reply_dma
) + sz
;
4849 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4850 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4851 ioc
->name
, ioc
->reply
,
4852 ioc
->reply_free_queue_depth
, ioc
->reply_sz
, sz
/1024));
4853 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"reply_dma(0x%llx)\n",
4854 ioc
->name
, (unsigned long long)ioc
->reply_dma
));
4857 /* reply free queue, 16 byte align */
4858 sz
= ioc
->reply_free_queue_depth
* 4;
4859 ioc
->reply_free_dma_pool
= dma_pool_create("reply_free pool",
4860 &ioc
->pdev
->dev
, sz
, 16, 0);
4861 if (!ioc
->reply_free_dma_pool
) {
4862 pr_err(MPT3SAS_FMT
"reply_free pool: dma_pool_create failed\n",
4866 ioc
->reply_free
= dma_pool_alloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
4867 &ioc
->reply_free_dma
);
4868 if (!ioc
->reply_free
) {
4869 pr_err(MPT3SAS_FMT
"reply_free pool: dma_pool_alloc failed\n",
4873 memset(ioc
->reply_free
, 0, sz
);
4874 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"reply_free pool(0x%p): " \
4875 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc
->name
,
4876 ioc
->reply_free
, ioc
->reply_free_queue_depth
, 4, sz
/1024));
4877 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4878 "reply_free_dma (0x%llx)\n",
4879 ioc
->name
, (unsigned long long)ioc
->reply_free_dma
));
4882 if (ioc
->rdpq_array_enable
) {
4883 reply_post_free_array_sz
= ioc
->reply_queue_count
*
4884 sizeof(Mpi2IOCInitRDPQArrayEntry
);
4885 ioc
->reply_post_free_array_dma_pool
=
4886 dma_pool_create("reply_post_free_array pool",
4887 &ioc
->pdev
->dev
, reply_post_free_array_sz
, 16, 0);
4888 if (!ioc
->reply_post_free_array_dma_pool
) {
4890 pr_info(MPT3SAS_FMT
"reply_post_free_array pool: "
4891 "dma_pool_create failed\n", ioc
->name
));
4894 ioc
->reply_post_free_array
=
4895 dma_pool_alloc(ioc
->reply_post_free_array_dma_pool
,
4896 GFP_KERNEL
, &ioc
->reply_post_free_array_dma
);
4897 if (!ioc
->reply_post_free_array
) {
4899 pr_info(MPT3SAS_FMT
"reply_post_free_array pool: "
4900 "dma_pool_alloc failed\n", ioc
->name
));
4904 ioc
->config_page_sz
= 512;
4905 ioc
->config_page
= pci_alloc_consistent(ioc
->pdev
,
4906 ioc
->config_page_sz
, &ioc
->config_page_dma
);
4907 if (!ioc
->config_page
) {
4909 "config page: dma_pool_alloc failed\n",
4913 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
4914 "config page(0x%p): size(%d)\n",
4915 ioc
->name
, ioc
->config_page
, ioc
->config_page_sz
));
4916 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"config_page_dma(0x%llx)\n",
4917 ioc
->name
, (unsigned long long)ioc
->config_page_dma
));
4918 total_sz
+= ioc
->config_page_sz
;
4920 pr_info(MPT3SAS_FMT
"Allocated physical memory: size(%d kB)\n",
4921 ioc
->name
, total_sz
/1024);
4923 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4924 ioc
->name
, ioc
->shost
->can_queue
, facts
->RequestCredit
);
4925 pr_info(MPT3SAS_FMT
"Scatter Gather Elements per IO(%d)\n",
4926 ioc
->name
, ioc
->shost
->sg_tablesize
);
4934 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4935 * @ioc: Pointer to MPT_ADAPTER structure
4936 * @cooked: Request raw or cooked IOC state
4938 * Return: all IOC Doorbell register bits if cooked==0, else just the
4939 * Doorbell bits in MPI_IOC_STATE_MASK.
4942 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int cooked
)
4946 s
= readl(&ioc
->chip
->Doorbell
);
4947 sc
= s
& MPI2_IOC_STATE_MASK
;
4948 return cooked
? sc
: s
;
4952 * _base_wait_on_iocstate - waiting on a particular ioc state
4954 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4955 * @timeout: timeout in second
4957 * Return: 0 for success, non-zero for failure.
4960 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
)
4966 cntdn
= 1000 * timeout
;
4968 current_state
= mpt3sas_base_get_iocstate(ioc
, 1);
4969 if (current_state
== ioc_state
)
4971 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
4974 usleep_range(1000, 1500);
4978 return current_state
;
4982 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4983 * a write to the doorbell)
4984 * @ioc: per adapter object
4986 * Return: 0 for success, non-zero for failure.
4988 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4991 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
);
4994 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5000 cntdn
= 1000 * timeout
;
5002 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
5003 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5004 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
5005 "%s: successful count(%d), timeout(%d)\n",
5006 ioc
->name
, __func__
, count
, timeout
));
5010 usleep_range(1000, 1500);
5015 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5016 ioc
->name
, __func__
, count
, int_status
);
5021 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5027 cntdn
= 2000 * timeout
;
5029 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
5030 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5031 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
5032 "%s: successful count(%d), timeout(%d)\n",
5033 ioc
->name
, __func__
, count
, timeout
));
5042 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5043 ioc
->name
, __func__
, count
, int_status
);
5049 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5050 * @ioc: per adapter object
5051 * @timeout: timeout in second
5053 * Return: 0 for success, non-zero for failure.
5055 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5059 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5066 cntdn
= 1000 * timeout
;
5068 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
5069 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
5070 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
5071 "%s: successful count(%d), timeout(%d)\n",
5072 ioc
->name
, __func__
, count
, timeout
));
5074 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5075 doorbell
= readl(&ioc
->chip
->Doorbell
);
5076 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
5077 MPI2_IOC_STATE_FAULT
) {
5078 mpt3sas_base_fault_info(ioc
, doorbell
);
5081 } else if (int_status
== 0xFFFFFFFF)
5084 usleep_range(1000, 1500);
5090 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5091 ioc
->name
, __func__
, count
, int_status
);
5096 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5097 * @ioc: per adapter object
5098 * @timeout: timeout in second
5100 * Return: 0 for success, non-zero for failure.
5103 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5109 cntdn
= 1000 * timeout
;
5111 doorbell_reg
= readl(&ioc
->chip
->Doorbell
);
5112 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
5113 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
5114 "%s: successful count(%d), timeout(%d)\n",
5115 ioc
->name
, __func__
, count
, timeout
));
5119 usleep_range(1000, 1500);
5124 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5125 ioc
->name
, __func__
, count
, doorbell_reg
);
5130 * _base_send_ioc_reset - send doorbell reset
5131 * @ioc: per adapter object
5132 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5133 * @timeout: timeout in second
5135 * Return: 0 for success, non-zero for failure.
5138 _base_send_ioc_reset(struct MPT3SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
)
5143 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
5144 pr_err(MPT3SAS_FMT
"%s: unknown reset_type\n",
5145 ioc
->name
, __func__
);
5149 if (!(ioc
->facts
.IOCCapabilities
&
5150 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
5153 pr_info(MPT3SAS_FMT
"sending message unit reset !!\n", ioc
->name
);
5155 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
5156 &ioc
->chip
->Doorbell
);
5157 if ((_base_wait_for_doorbell_ack(ioc
, 15))) {
5161 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5164 "%s: failed going to ready state (ioc_state=0x%x)\n",
5165 ioc
->name
, __func__
, ioc_state
);
5170 pr_info(MPT3SAS_FMT
"message unit reset: %s\n",
5171 ioc
->name
, ((r
== 0) ? "SUCCESS" : "FAILED"));
5176 * _base_handshake_req_reply_wait - send request thru doorbell interface
5177 * @ioc: per adapter object
5178 * @request_bytes: request length
5179 * @request: pointer having request payload
5180 * @reply_bytes: reply length
5181 * @reply: pointer to reply payload
5182 * @timeout: timeout in second
5184 * Return: 0 for success, non-zero for failure.
5187 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER
*ioc
, int request_bytes
,
5188 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
)
5190 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
5195 /* make sure doorbell is not in use */
5196 if ((readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
5198 "doorbell is in use (line=%d)\n",
5199 ioc
->name
, __LINE__
);
5203 /* clear pending doorbell interrupts from previous state changes */
5204 if (readl(&ioc
->chip
->HostInterruptStatus
) &
5205 MPI2_HIS_IOC2SYS_DB_STATUS
)
5206 writel(0, &ioc
->chip
->HostInterruptStatus
);
5208 /* send message to ioc */
5209 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
5210 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
5211 &ioc
->chip
->Doorbell
);
5213 if ((_base_spin_on_doorbell_int(ioc
, 5))) {
5215 "doorbell handshake int failed (line=%d)\n",
5216 ioc
->name
, __LINE__
);
5219 writel(0, &ioc
->chip
->HostInterruptStatus
);
5221 if ((_base_wait_for_doorbell_ack(ioc
, 5))) {
5223 "doorbell handshake ack failed (line=%d)\n",
5224 ioc
->name
, __LINE__
);
5228 /* send message 32-bits at a time */
5229 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
5230 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
5231 if ((_base_wait_for_doorbell_ack(ioc
, 5)))
5237 "doorbell handshake sending request failed (line=%d)\n",
5238 ioc
->name
, __LINE__
);
5242 /* now wait for the reply */
5243 if ((_base_wait_for_doorbell_int(ioc
, timeout
))) {
5245 "doorbell handshake int failed (line=%d)\n",
5246 ioc
->name
, __LINE__
);
5250 /* read the first two 16-bits, it gives the total length of the reply */
5251 reply
[0] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
5252 & MPI2_DOORBELL_DATA_MASK
);
5253 writel(0, &ioc
->chip
->HostInterruptStatus
);
5254 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5256 "doorbell handshake int failed (line=%d)\n",
5257 ioc
->name
, __LINE__
);
5260 reply
[1] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
5261 & MPI2_DOORBELL_DATA_MASK
);
5262 writel(0, &ioc
->chip
->HostInterruptStatus
);
5264 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
5265 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5267 "doorbell handshake int failed (line=%d)\n",
5268 ioc
->name
, __LINE__
);
5271 if (i
>= reply_bytes
/2) /* overflow case */
5272 readl(&ioc
->chip
->Doorbell
);
5274 reply
[i
] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
5275 & MPI2_DOORBELL_DATA_MASK
);
5276 writel(0, &ioc
->chip
->HostInterruptStatus
);
5279 _base_wait_for_doorbell_int(ioc
, 5);
5280 if (_base_wait_for_doorbell_not_used(ioc
, 5) != 0) {
5281 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
5282 "doorbell is in use (line=%d)\n", ioc
->name
, __LINE__
));
5284 writel(0, &ioc
->chip
->HostInterruptStatus
);
5286 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
5287 mfp
= (__le32
*)reply
;
5288 pr_info("\toffset:data\n");
5289 for (i
= 0; i
< reply_bytes
/4; i
++)
5290 pr_info("\t[0x%02x]:%08x\n", i
*4,
5291 le32_to_cpu(mfp
[i
]));
5297 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5298 * @ioc: per adapter object
5299 * @mpi_reply: the reply payload from FW
5300 * @mpi_request: the request payload sent to FW
5302 * The SAS IO Unit Control Request message allows the host to perform low-level
5303 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5304 * to obtain the IOC assigned device handles for a device if it has other
5305 * identifying information about the device, in addition allows the host to
5306 * remove IOC resources associated with the device.
5308 * Return: 0 for success, non-zero for failure.
5311 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER
*ioc
,
5312 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
5313 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
5320 u16 wait_state_count
;
5322 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
5325 mutex_lock(&ioc
->base_cmds
.mutex
);
5327 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5328 pr_err(MPT3SAS_FMT
"%s: base_cmd in use\n",
5329 ioc
->name
, __func__
);
5334 wait_state_count
= 0;
5335 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5336 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
5337 if (wait_state_count
++ == 10) {
5339 "%s: failed due to ioc not operational\n",
5340 ioc
->name
, __func__
);
5345 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5347 "%s: waiting for operational state(count=%d)\n",
5348 ioc
->name
, __func__
, wait_state_count
);
5351 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5353 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
5354 ioc
->name
, __func__
);
5360 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5361 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5362 ioc
->base_cmds
.smid
= smid
;
5363 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
5364 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5365 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
5366 ioc
->ioc_link_reset_in_progress
= 1;
5367 init_completion(&ioc
->base_cmds
.done
);
5368 mpt3sas_base_put_smid_default(ioc
, smid
);
5369 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5370 msecs_to_jiffies(10000));
5371 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5372 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
5373 ioc
->ioc_link_reset_in_progress
)
5374 ioc
->ioc_link_reset_in_progress
= 0;
5375 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5377 mpt3sas_base_check_cmd_timeout(ioc
,
5378 ioc
->base_cmds
.status
, mpi_request
,
5379 sizeof(Mpi2SasIoUnitControlRequest_t
)/4);
5380 goto issue_host_reset
;
5382 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5383 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5384 sizeof(Mpi2SasIoUnitControlReply_t
));
5386 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
5387 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5392 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5393 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5396 mutex_unlock(&ioc
->base_cmds
.mutex
);
5401 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5402 * @ioc: per adapter object
5403 * @mpi_reply: the reply payload from FW
5404 * @mpi_request: the request payload sent to FW
5406 * The SCSI Enclosure Processor request message causes the IOC to
5407 * communicate with SES devices to control LED status signals.
5409 * Return: 0 for success, non-zero for failure.
5412 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER
*ioc
,
5413 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
5420 u16 wait_state_count
;
5422 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
5425 mutex_lock(&ioc
->base_cmds
.mutex
);
5427 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5428 pr_err(MPT3SAS_FMT
"%s: base_cmd in use\n",
5429 ioc
->name
, __func__
);
5434 wait_state_count
= 0;
5435 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5436 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
5437 if (wait_state_count
++ == 10) {
5439 "%s: failed due to ioc not operational\n",
5440 ioc
->name
, __func__
);
5445 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5447 "%s: waiting for operational state(count=%d)\n",
5449 __func__
, wait_state_count
);
5452 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5454 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
5455 ioc
->name
, __func__
);
5461 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5462 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5463 ioc
->base_cmds
.smid
= smid
;
5464 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
5465 init_completion(&ioc
->base_cmds
.done
);
5466 mpt3sas_base_put_smid_default(ioc
, smid
);
5467 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5468 msecs_to_jiffies(10000));
5469 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5471 mpt3sas_base_check_cmd_timeout(ioc
,
5472 ioc
->base_cmds
.status
, mpi_request
,
5473 sizeof(Mpi2SepRequest_t
)/4);
5474 goto issue_host_reset
;
5476 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5477 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5478 sizeof(Mpi2SepReply_t
));
5480 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
5481 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5486 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5487 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5490 mutex_unlock(&ioc
->base_cmds
.mutex
);
5495 * _base_get_port_facts - obtain port facts reply and save in ioc
5496 * @ioc: per adapter object
5499 * Return: 0 for success, non-zero for failure.
5502 _base_get_port_facts(struct MPT3SAS_ADAPTER
*ioc
, int port
)
5504 Mpi2PortFactsRequest_t mpi_request
;
5505 Mpi2PortFactsReply_t mpi_reply
;
5506 struct mpt3sas_port_facts
*pfacts
;
5507 int mpi_reply_sz
, mpi_request_sz
, r
;
5509 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
5512 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
5513 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
5514 memset(&mpi_request
, 0, mpi_request_sz
);
5515 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
5516 mpi_request
.PortNumber
= port
;
5517 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
5518 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
5521 pr_err(MPT3SAS_FMT
"%s: handshake failed (r=%d)\n",
5522 ioc
->name
, __func__
, r
);
5526 pfacts
= &ioc
->pfacts
[port
];
5527 memset(pfacts
, 0, sizeof(struct mpt3sas_port_facts
));
5528 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
5529 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
5530 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
5531 pfacts
->MaxPostedCmdBuffers
=
5532 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
5538 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5539 * @ioc: per adapter object
5542 * Return: 0 for success, non-zero for failure.
5545 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5550 dinitprintk(ioc
, printk(MPT3SAS_FMT
"%s\n", ioc
->name
,
5553 if (ioc
->pci_error_recovery
) {
5554 dfailprintk(ioc
, printk(MPT3SAS_FMT
5555 "%s: host in pci error recovery\n", ioc
->name
, __func__
));
5559 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
5560 dhsprintk(ioc
, printk(MPT3SAS_FMT
"%s: ioc_state(0x%08x)\n",
5561 ioc
->name
, __func__
, ioc_state
));
5563 if (((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
) ||
5564 (ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
5567 if (ioc_state
& MPI2_DOORBELL_USED
) {
5568 dhsprintk(ioc
, printk(MPT3SAS_FMT
5569 "unexpected doorbell active!\n", ioc
->name
));
5570 goto issue_diag_reset
;
5573 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
5574 mpt3sas_base_fault_info(ioc
, ioc_state
&
5575 MPI2_DOORBELL_DATA_MASK
);
5576 goto issue_diag_reset
;
5579 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5581 dfailprintk(ioc
, printk(MPT3SAS_FMT
5582 "%s: failed going to ready state (ioc_state=0x%x)\n",
5583 ioc
->name
, __func__
, ioc_state
));
5588 rc
= _base_diag_reset(ioc
);
5593 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5594 * @ioc: per adapter object
5596 * Return: 0 for success, non-zero for failure.
5599 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
)
5601 Mpi2IOCFactsRequest_t mpi_request
;
5602 Mpi2IOCFactsReply_t mpi_reply
;
5603 struct mpt3sas_facts
*facts
;
5604 int mpi_reply_sz
, mpi_request_sz
, r
;
5606 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
5609 r
= _base_wait_for_iocstate(ioc
, 10);
5611 dfailprintk(ioc
, printk(MPT3SAS_FMT
5612 "%s: failed getting to correct state\n",
5613 ioc
->name
, __func__
));
5616 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
5617 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
5618 memset(&mpi_request
, 0, mpi_request_sz
);
5619 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
5620 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
5621 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
5624 pr_err(MPT3SAS_FMT
"%s: handshake failed (r=%d)\n",
5625 ioc
->name
, __func__
, r
);
5629 facts
= &ioc
->facts
;
5630 memset(facts
, 0, sizeof(struct mpt3sas_facts
));
5631 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
5632 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
5633 facts
->VP_ID
= mpi_reply
.VP_ID
;
5634 facts
->VF_ID
= mpi_reply
.VF_ID
;
5635 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
5636 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
5637 facts
->WhoInit
= mpi_reply
.WhoInit
;
5638 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
5639 facts
->MaxMSIxVectors
= mpi_reply
.MaxMSIxVectors
;
5640 if (ioc
->msix_enable
&& (facts
->MaxMSIxVectors
<=
5641 MAX_COMBINED_MSIX_VECTORS(ioc
->is_gen35_ioc
)))
5642 ioc
->combined_reply_queue
= 0;
5643 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
5644 facts
->MaxReplyDescriptorPostQueueDepth
=
5645 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
5646 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
5647 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
5648 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
5649 ioc
->ir_firmware
= 1;
5650 if ((facts
->IOCCapabilities
&
5651 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE
) && (!reset_devices
))
5652 ioc
->rdpq_array_capable
= 1;
5653 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
5654 facts
->IOCRequestFrameSize
=
5655 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
5656 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
5657 facts
->IOCMaxChainSegmentSize
=
5658 le16_to_cpu(mpi_reply
.IOCMaxChainSegmentSize
);
5660 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
5661 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
5662 ioc
->shost
->max_id
= -1;
5663 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
5664 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
5665 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
5666 facts
->HighPriorityCredit
=
5667 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
5668 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
5669 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
5670 facts
->CurrentHostPageSize
= mpi_reply
.CurrentHostPageSize
;
5673 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5675 ioc
->page_size
= 1 << facts
->CurrentHostPageSize
;
5676 if (ioc
->page_size
== 1) {
5677 pr_info(MPT3SAS_FMT
"CurrentHostPageSize is 0: Setting "
5678 "default host page size to 4k\n", ioc
->name
);
5679 ioc
->page_size
= 1 << MPT3SAS_HOST_PAGE_SIZE_4K
;
5681 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"CurrentHostPageSize(%d)\n",
5682 ioc
->name
, facts
->CurrentHostPageSize
));
5684 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
5685 "hba queue depth(%d), max chains per io(%d)\n",
5686 ioc
->name
, facts
->RequestCredit
,
5687 facts
->MaxChainDepth
));
5688 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
5689 "request frame size(%d), reply frame size(%d)\n", ioc
->name
,
5690 facts
->IOCRequestFrameSize
* 4, facts
->ReplyFrameSize
* 4));
5695 * _base_send_ioc_init - send ioc_init to firmware
5696 * @ioc: per adapter object
5698 * Return: 0 for success, non-zero for failure.
5701 _base_send_ioc_init(struct MPT3SAS_ADAPTER
*ioc
)
5703 Mpi2IOCInitRequest_t mpi_request
;
5704 Mpi2IOCInitReply_t mpi_reply
;
5706 ktime_t current_time
;
5708 u32 reply_post_free_array_sz
= 0;
5710 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
5713 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
5714 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
5715 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
5716 mpi_request
.VF_ID
= 0; /* TODO */
5717 mpi_request
.VP_ID
= 0;
5718 mpi_request
.MsgVersion
= cpu_to_le16(ioc
->hba_mpi_version_belonged
);
5719 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
5720 mpi_request
.HostPageSize
= MPT3SAS_HOST_PAGE_SIZE_4K
;
5722 if (_base_is_controller_msix_enabled(ioc
))
5723 mpi_request
.HostMSIxVectors
= ioc
->reply_queue_count
;
5724 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
5725 mpi_request
.ReplyDescriptorPostQueueDepth
=
5726 cpu_to_le16(ioc
->reply_post_queue_depth
);
5727 mpi_request
.ReplyFreeQueueDepth
=
5728 cpu_to_le16(ioc
->reply_free_queue_depth
);
5730 mpi_request
.SenseBufferAddressHigh
=
5731 cpu_to_le32((u64
)ioc
->sense_dma
>> 32);
5732 mpi_request
.SystemReplyAddressHigh
=
5733 cpu_to_le32((u64
)ioc
->reply_dma
>> 32);
5734 mpi_request
.SystemRequestFrameBaseAddress
=
5735 cpu_to_le64((u64
)ioc
->request_dma
);
5736 mpi_request
.ReplyFreeQueueAddress
=
5737 cpu_to_le64((u64
)ioc
->reply_free_dma
);
5739 if (ioc
->rdpq_array_enable
) {
5740 reply_post_free_array_sz
= ioc
->reply_queue_count
*
5741 sizeof(Mpi2IOCInitRDPQArrayEntry
);
5742 memset(ioc
->reply_post_free_array
, 0, reply_post_free_array_sz
);
5743 for (i
= 0; i
< ioc
->reply_queue_count
; i
++)
5744 ioc
->reply_post_free_array
[i
].RDPQBaseAddress
=
5746 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
);
5747 mpi_request
.MsgFlags
= MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE
;
5748 mpi_request
.ReplyDescriptorPostQueueAddress
=
5749 cpu_to_le64((u64
)ioc
->reply_post_free_array_dma
);
5751 mpi_request
.ReplyDescriptorPostQueueAddress
=
5752 cpu_to_le64((u64
)ioc
->reply_post
[0].reply_post_free_dma
);
5755 /* This time stamp specifies number of milliseconds
5756 * since epoch ~ midnight January 1, 1970.
5758 current_time
= ktime_get_real();
5759 mpi_request
.TimeStamp
= cpu_to_le64(ktime_to_ms(current_time
));
5761 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
5765 mfp
= (__le32
*)&mpi_request
;
5766 pr_info("\toffset:data\n");
5767 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
5768 pr_info("\t[0x%02x]:%08x\n", i
*4,
5769 le32_to_cpu(mfp
[i
]));
5772 r
= _base_handshake_req_reply_wait(ioc
,
5773 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
5774 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 10);
5777 pr_err(MPT3SAS_FMT
"%s: handshake failed (r=%d)\n",
5778 ioc
->name
, __func__
, r
);
5782 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5783 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
5784 mpi_reply
.IOCLogInfo
) {
5785 pr_err(MPT3SAS_FMT
"%s: failed\n", ioc
->name
, __func__
);
5793 * mpt3sas_port_enable_done - command completion routine for port enable
5794 * @ioc: per adapter object
5795 * @smid: system request message index
5796 * @msix_index: MSIX table index supplied by the OS
5797 * @reply: reply message frame(lower 32bit addr)
5799 * Return: 1 meaning mf should be freed from _base_interrupt
5800 * 0 means the mf is freed from this function.
5803 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
5806 MPI2DefaultReply_t
*mpi_reply
;
5809 if (ioc
->port_enable_cmds
.status
== MPT3_CMD_NOT_USED
)
5812 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
5816 if (mpi_reply
->Function
!= MPI2_FUNCTION_PORT_ENABLE
)
5819 ioc
->port_enable_cmds
.status
&= ~MPT3_CMD_PENDING
;
5820 ioc
->port_enable_cmds
.status
|= MPT3_CMD_COMPLETE
;
5821 ioc
->port_enable_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
5822 memcpy(ioc
->port_enable_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
5823 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5824 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
5825 ioc
->port_enable_failed
= 1;
5827 if (ioc
->is_driver_loading
) {
5828 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
5829 mpt3sas_port_enable_complete(ioc
);
5832 ioc
->start_scan_failed
= ioc_status
;
5833 ioc
->start_scan
= 0;
5837 complete(&ioc
->port_enable_cmds
.done
);
5842 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5843 * @ioc: per adapter object
5845 * Return: 0 for success, non-zero for failure.
5848 _base_send_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
5850 Mpi2PortEnableRequest_t
*mpi_request
;
5851 Mpi2PortEnableReply_t
*mpi_reply
;
5856 pr_info(MPT3SAS_FMT
"sending port enable !!\n", ioc
->name
);
5858 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
5859 pr_err(MPT3SAS_FMT
"%s: internal command already in use\n",
5860 ioc
->name
, __func__
);
5864 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
5866 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
5867 ioc
->name
, __func__
);
5871 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
5872 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5873 ioc
->port_enable_cmds
.smid
= smid
;
5874 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
5875 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
5877 init_completion(&ioc
->port_enable_cmds
.done
);
5878 mpt3sas_base_put_smid_default(ioc
, smid
);
5879 wait_for_completion_timeout(&ioc
->port_enable_cmds
.done
, 300*HZ
);
5880 if (!(ioc
->port_enable_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5881 pr_err(MPT3SAS_FMT
"%s: timeout\n",
5882 ioc
->name
, __func__
);
5883 _debug_dump_mf(mpi_request
,
5884 sizeof(Mpi2PortEnableRequest_t
)/4);
5885 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_RESET
)
5892 mpi_reply
= ioc
->port_enable_cmds
.reply
;
5893 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5894 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
5895 pr_err(MPT3SAS_FMT
"%s: failed with (ioc_status=0x%08x)\n",
5896 ioc
->name
, __func__
, ioc_status
);
5902 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
5903 pr_info(MPT3SAS_FMT
"port enable: %s\n", ioc
->name
, ((r
== 0) ?
5904 "SUCCESS" : "FAILED"));
5909 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5910 * @ioc: per adapter object
5912 * Return: 0 for success, non-zero for failure.
5915 mpt3sas_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
5917 Mpi2PortEnableRequest_t
*mpi_request
;
5920 pr_info(MPT3SAS_FMT
"sending port enable !!\n", ioc
->name
);
5922 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
5923 pr_err(MPT3SAS_FMT
"%s: internal command already in use\n",
5924 ioc
->name
, __func__
);
5928 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
5930 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
5931 ioc
->name
, __func__
);
5935 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
5936 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5937 ioc
->port_enable_cmds
.smid
= smid
;
5938 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
5939 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
5941 mpt3sas_base_put_smid_default(ioc
, smid
);
5946 * _base_determine_wait_on_discovery - desposition
5947 * @ioc: per adapter object
5949 * Decide whether to wait on discovery to complete. Used to either
5950 * locate boot device, or report volumes ahead of physical devices.
5952 * Return: 1 for wait, 0 for don't wait.
5955 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER
*ioc
)
5957 /* We wait for discovery to complete if IR firmware is loaded.
5958 * The sas topology events arrive before PD events, so we need time to
5959 * turn on the bit in ioc->pd_handles to indicate PD
5960 * Also, it maybe required to report Volumes ahead of physical
5961 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5963 if (ioc
->ir_firmware
)
5966 /* if no Bios, then we don't need to wait */
5967 if (!ioc
->bios_pg3
.BiosVersion
)
5970 /* Bios is present, then we drop down here.
5972 * If there any entries in the Bios Page 2, then we wait
5973 * for discovery to complete.
5976 /* Current Boot Device */
5977 if ((ioc
->bios_pg2
.CurrentBootDeviceForm
&
5978 MPI2_BIOSPAGE2_FORM_MASK
) ==
5979 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
5980 /* Request Boot Device */
5981 (ioc
->bios_pg2
.ReqBootDeviceForm
&
5982 MPI2_BIOSPAGE2_FORM_MASK
) ==
5983 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
5984 /* Alternate Request Boot Device */
5985 (ioc
->bios_pg2
.ReqAltBootDeviceForm
&
5986 MPI2_BIOSPAGE2_FORM_MASK
) ==
5987 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
)
5994 * _base_unmask_events - turn on notification for this event
5995 * @ioc: per adapter object
5996 * @event: firmware event
5998 * The mask is stored in ioc->event_masks.
6001 _base_unmask_events(struct MPT3SAS_ADAPTER
*ioc
, u16 event
)
6008 desired_event
= (1 << (event
% 32));
6011 ioc
->event_masks
[0] &= ~desired_event
;
6012 else if (event
< 64)
6013 ioc
->event_masks
[1] &= ~desired_event
;
6014 else if (event
< 96)
6015 ioc
->event_masks
[2] &= ~desired_event
;
6016 else if (event
< 128)
6017 ioc
->event_masks
[3] &= ~desired_event
;
6021 * _base_event_notification - send event notification
6022 * @ioc: per adapter object
6024 * Return: 0 for success, non-zero for failure.
6027 _base_event_notification(struct MPT3SAS_ADAPTER
*ioc
)
6029 Mpi2EventNotificationRequest_t
*mpi_request
;
6034 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6037 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
6038 pr_err(MPT3SAS_FMT
"%s: internal command already in use\n",
6039 ioc
->name
, __func__
);
6043 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
6045 pr_err(MPT3SAS_FMT
"%s: failed obtaining a smid\n",
6046 ioc
->name
, __func__
);
6049 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
6050 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6051 ioc
->base_cmds
.smid
= smid
;
6052 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
6053 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
6054 mpi_request
->VF_ID
= 0; /* TODO */
6055 mpi_request
->VP_ID
= 0;
6056 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
6057 mpi_request
->EventMasks
[i
] =
6058 cpu_to_le32(ioc
->event_masks
[i
]);
6059 init_completion(&ioc
->base_cmds
.done
);
6060 mpt3sas_base_put_smid_default(ioc
, smid
);
6061 wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
6062 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6063 pr_err(MPT3SAS_FMT
"%s: timeout\n",
6064 ioc
->name
, __func__
);
6065 _debug_dump_mf(mpi_request
,
6066 sizeof(Mpi2EventNotificationRequest_t
)/4);
6067 if (ioc
->base_cmds
.status
& MPT3_CMD_RESET
)
6072 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s: complete\n",
6073 ioc
->name
, __func__
));
6074 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6079 * mpt3sas_base_validate_event_type - validating event types
6080 * @ioc: per adapter object
6081 * @event_type: firmware event
6083 * This will turn on firmware event notification when application
6084 * ask for that event. We don't mask events that are already enabled.
6087 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER
*ioc
, u32
*event_type
)
6090 u32 event_mask
, desired_event
;
6091 u8 send_update_to_fw
;
6093 for (i
= 0, send_update_to_fw
= 0; i
<
6094 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
6095 event_mask
= ~event_type
[i
];
6097 for (j
= 0; j
< 32; j
++) {
6098 if (!(event_mask
& desired_event
) &&
6099 (ioc
->event_masks
[i
] & desired_event
)) {
6100 ioc
->event_masks
[i
] &= ~desired_event
;
6101 send_update_to_fw
= 1;
6103 desired_event
= (desired_event
<< 1);
6107 if (!send_update_to_fw
)
6110 mutex_lock(&ioc
->base_cmds
.mutex
);
6111 _base_event_notification(ioc
);
6112 mutex_unlock(&ioc
->base_cmds
.mutex
);
6116 * _base_diag_reset - the "big hammer" start of day reset
6117 * @ioc: per adapter object
6119 * Return: 0 for success, non-zero for failure.
6122 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
)
6124 u32 host_diagnostic
;
6129 pr_info(MPT3SAS_FMT
"sending diag reset !!\n", ioc
->name
);
6131 drsprintk(ioc
, pr_info(MPT3SAS_FMT
"clear interrupts\n",
6136 /* Write magic sequence to WriteSequence register
6137 * Loop until in diagnostic mode
6139 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6140 "write magic sequence\n", ioc
->name
));
6141 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6142 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6143 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6144 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6145 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6146 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6147 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6155 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
6156 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6157 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6158 ioc
->name
, count
, host_diagnostic
));
6160 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
6162 hcb_size
= readl(&ioc
->chip
->HCBSize
);
6164 drsprintk(ioc
, pr_info(MPT3SAS_FMT
"diag reset: issued\n",
6166 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
6167 &ioc
->chip
->HostDiagnostic
);
6169 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6170 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
6172 /* Approximately 300 second max wait */
6173 for (count
= 0; count
< (300000000 /
6174 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
); count
++) {
6176 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
6178 if (host_diagnostic
== 0xFFFFFFFF)
6180 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
6183 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
6186 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
6188 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6189 "restart the adapter assuming the HCB Address points to good F/W\n",
6191 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
6192 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
6193 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
6195 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6196 "re-enable the HCDW\n", ioc
->name
));
6197 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
6198 &ioc
->chip
->HCBSize
);
6201 drsprintk(ioc
, pr_info(MPT3SAS_FMT
"restart the adapter\n",
6203 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
6204 &ioc
->chip
->HostDiagnostic
);
6206 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6207 "disable writes to the diagnostic register\n", ioc
->name
));
6208 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6210 drsprintk(ioc
, pr_info(MPT3SAS_FMT
6211 "Wait for FW to go to the READY state\n", ioc
->name
));
6212 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20);
6215 "%s: failed going to ready state (ioc_state=0x%x)\n",
6216 ioc
->name
, __func__
, ioc_state
);
6220 pr_info(MPT3SAS_FMT
"diag reset: SUCCESS\n", ioc
->name
);
6224 pr_err(MPT3SAS_FMT
"diag reset: FAILED\n", ioc
->name
);
6229 * _base_make_ioc_ready - put controller in READY state
6230 * @ioc: per adapter object
6231 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6233 * Return: 0 for success, non-zero for failure.
6236 _base_make_ioc_ready(struct MPT3SAS_ADAPTER
*ioc
, enum reset_type type
)
6242 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6245 if (ioc
->pci_error_recovery
)
6248 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6249 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
"%s: ioc_state(0x%08x)\n",
6250 ioc
->name
, __func__
, ioc_state
));
6252 /* if in RESET state, it should move to READY state shortly */
6254 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_RESET
) {
6255 while ((ioc_state
& MPI2_IOC_STATE_MASK
) !=
6256 MPI2_IOC_STATE_READY
) {
6257 if (count
++ == 10) {
6259 "%s: failed going to ready state (ioc_state=0x%x)\n",
6260 ioc
->name
, __func__
, ioc_state
);
6264 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6268 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
6271 if (ioc_state
& MPI2_DOORBELL_USED
) {
6272 dhsprintk(ioc
, pr_info(MPT3SAS_FMT
6273 "unexpected doorbell active!\n",
6275 goto issue_diag_reset
;
6278 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
6279 mpt3sas_base_fault_info(ioc
, ioc_state
&
6280 MPI2_DOORBELL_DATA_MASK
);
6281 goto issue_diag_reset
;
6284 if (type
== FORCE_BIG_HAMMER
)
6285 goto issue_diag_reset
;
6287 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
6288 if (!(_base_send_ioc_reset(ioc
,
6289 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15))) {
6294 rc
= _base_diag_reset(ioc
);
6299 * _base_make_ioc_operational - put controller in OPERATIONAL state
6300 * @ioc: per adapter object
6302 * Return: 0 for success, non-zero for failure.
6305 _base_make_ioc_operational(struct MPT3SAS_ADAPTER
*ioc
)
6308 unsigned long flags
;
6311 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
6312 struct _sc_list
*delayed_sc
, *delayed_sc_next
;
6313 struct _event_ack_list
*delayed_event_ack
, *delayed_event_ack_next
;
6315 struct adapter_reply_queue
*reply_q
;
6316 Mpi2ReplyDescriptorsUnion_t
*reply_post_free_contig
;
6318 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6321 /* clean the delayed target reset list */
6322 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6323 &ioc
->delayed_tr_list
, list
) {
6324 list_del(&delayed_tr
->list
);
6329 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6330 &ioc
->delayed_tr_volume_list
, list
) {
6331 list_del(&delayed_tr
->list
);
6335 list_for_each_entry_safe(delayed_sc
, delayed_sc_next
,
6336 &ioc
->delayed_sc_list
, list
) {
6337 list_del(&delayed_sc
->list
);
6341 list_for_each_entry_safe(delayed_event_ack
, delayed_event_ack_next
,
6342 &ioc
->delayed_event_ack_list
, list
) {
6343 list_del(&delayed_event_ack
->list
);
6344 kfree(delayed_event_ack
);
6347 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
6349 /* hi-priority queue */
6350 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
6351 smid
= ioc
->hi_priority_smid
;
6352 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
6353 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
6354 ioc
->hpr_lookup
[i
].smid
= smid
;
6355 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
6356 &ioc
->hpr_free_list
);
6359 /* internal queue */
6360 INIT_LIST_HEAD(&ioc
->internal_free_list
);
6361 smid
= ioc
->internal_smid
;
6362 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
6363 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
6364 ioc
->internal_lookup
[i
].smid
= smid
;
6365 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
6366 &ioc
->internal_free_list
);
6369 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
6371 /* initialize Reply Free Queue */
6372 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
6373 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
6375 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
6376 if (ioc
->is_mcpu_endpoint
)
6377 _base_clone_reply_to_sys_mem(ioc
,
6381 /* initialize reply queues */
6382 if (ioc
->is_driver_loading
)
6383 _base_assign_reply_queues(ioc
);
6385 /* initialize Reply Post Free Queue */
6387 reply_post_free_contig
= ioc
->reply_post
[0].reply_post_free
;
6388 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6390 * If RDPQ is enabled, switch to the next allocation.
6391 * Otherwise advance within the contiguous region.
6393 if (ioc
->rdpq_array_enable
) {
6394 reply_q
->reply_post_free
=
6395 ioc
->reply_post
[index
++].reply_post_free
;
6397 reply_q
->reply_post_free
= reply_post_free_contig
;
6398 reply_post_free_contig
+= ioc
->reply_post_queue_depth
;
6401 reply_q
->reply_post_host_index
= 0;
6402 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
6403 reply_q
->reply_post_free
[i
].Words
=
6404 cpu_to_le64(ULLONG_MAX
);
6405 if (!_base_is_controller_msix_enabled(ioc
))
6406 goto skip_init_reply_post_free_queue
;
6408 skip_init_reply_post_free_queue
:
6410 r
= _base_send_ioc_init(ioc
);
6414 /* initialize reply free host index */
6415 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
6416 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
6418 /* initialize reply post host index */
6419 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6420 if (ioc
->combined_reply_queue
)
6421 writel((reply_q
->msix_index
& 7)<<
6422 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6423 ioc
->replyPostRegisterIndex
[reply_q
->msix_index
/8]);
6425 writel(reply_q
->msix_index
<<
6426 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6427 &ioc
->chip
->ReplyPostHostIndex
);
6429 if (!_base_is_controller_msix_enabled(ioc
))
6430 goto skip_init_reply_post_host_index
;
6433 skip_init_reply_post_host_index
:
6435 _base_unmask_interrupts(ioc
);
6437 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
6438 r
= _base_display_fwpkg_version(ioc
);
6443 _base_static_config_pages(ioc
);
6444 r
= _base_event_notification(ioc
);
6448 if (ioc
->is_driver_loading
) {
6450 if (ioc
->is_warpdrive
&& ioc
->manu_pg10
.OEMIdentifier
6453 le32_to_cpu(ioc
->manu_pg10
.OEMSpecificFlags0
) &
6454 MFG_PAGE10_HIDE_SSDS_MASK
);
6455 if (hide_flag
!= MFG_PAGE10_HIDE_SSDS_MASK
)
6456 ioc
->mfg_pg10_hide_flag
= hide_flag
;
6459 ioc
->wait_for_discovery_to_complete
=
6460 _base_determine_wait_on_discovery(ioc
);
6462 return r
; /* scan_start and scan_finished support */
6465 r
= _base_send_port_enable(ioc
);
6473 * mpt3sas_base_free_resources - free resources controller resources
6474 * @ioc: per adapter object
6477 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER
*ioc
)
6479 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6482 /* synchronizing freeing resource with pci_access_mutex lock */
6483 mutex_lock(&ioc
->pci_access_mutex
);
6484 if (ioc
->chip_phys
&& ioc
->chip
) {
6485 _base_mask_interrupts(ioc
);
6486 ioc
->shost_recovery
= 1;
6487 _base_make_ioc_ready(ioc
, SOFT_RESET
);
6488 ioc
->shost_recovery
= 0;
6491 mpt3sas_base_unmap_resources(ioc
);
6492 mutex_unlock(&ioc
->pci_access_mutex
);
6497 * mpt3sas_base_attach - attach controller instance
6498 * @ioc: per adapter object
6500 * Return: 0 for success, non-zero for failure.
6503 mpt3sas_base_attach(struct MPT3SAS_ADAPTER
*ioc
)
6506 int cpu_id
, last_cpu_id
= 0;
6508 dinitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6511 /* setup cpu_msix_table */
6512 ioc
->cpu_count
= num_online_cpus();
6513 for_each_online_cpu(cpu_id
)
6514 last_cpu_id
= cpu_id
;
6515 ioc
->cpu_msix_table_sz
= last_cpu_id
+ 1;
6516 ioc
->cpu_msix_table
= kzalloc(ioc
->cpu_msix_table_sz
, GFP_KERNEL
);
6517 ioc
->reply_queue_count
= 1;
6518 if (!ioc
->cpu_msix_table
) {
6519 dfailprintk(ioc
, pr_info(MPT3SAS_FMT
6520 "allocation for cpu_msix_table failed!!!\n",
6523 goto out_free_resources
;
6526 if (ioc
->is_warpdrive
) {
6527 ioc
->reply_post_host_index
= kcalloc(ioc
->cpu_msix_table_sz
,
6528 sizeof(resource_size_t
*), GFP_KERNEL
);
6529 if (!ioc
->reply_post_host_index
) {
6530 dfailprintk(ioc
, pr_info(MPT3SAS_FMT
"allocation "
6531 "for reply_post_host_index failed!!!\n",
6534 goto out_free_resources
;
6538 ioc
->rdpq_array_enable_assigned
= 0;
6540 r
= mpt3sas_base_map_resources(ioc
);
6542 goto out_free_resources
;
6544 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
6545 r
= _base_get_ioc_facts(ioc
);
6547 goto out_free_resources
;
6549 switch (ioc
->hba_mpi_version_belonged
) {
6551 ioc
->build_sg_scmd
= &_base_build_sg_scmd
;
6552 ioc
->build_sg
= &_base_build_sg
;
6553 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge
;
6559 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6560 * Target Status - all require the IEEE formated scatter gather
6563 ioc
->build_sg_scmd
= &_base_build_sg_scmd_ieee
;
6564 ioc
->build_sg
= &_base_build_sg_ieee
;
6565 ioc
->build_nvme_prp
= &_base_build_nvme_prp
;
6566 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge_ieee
;
6567 ioc
->sge_size_ieee
= sizeof(Mpi2IeeeSgeSimple64_t
);
6572 if (ioc
->is_mcpu_endpoint
)
6573 ioc
->put_smid_scsi_io
= &_base_put_smid_mpi_ep_scsi_io
;
6575 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io
;
6578 * These function pointers for other requests that don't
6579 * the require IEEE scatter gather elements.
6581 * For example Configuration Pages and SAS IOUNIT Control don't.
6583 ioc
->build_sg_mpi
= &_base_build_sg
;
6584 ioc
->build_zero_len_sge_mpi
= &_base_build_zero_len_sge
;
6586 r
= _base_make_ioc_ready(ioc
, SOFT_RESET
);
6588 goto out_free_resources
;
6590 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
6591 sizeof(struct mpt3sas_port_facts
), GFP_KERNEL
);
6594 goto out_free_resources
;
6597 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
6598 r
= _base_get_port_facts(ioc
, i
);
6600 goto out_free_resources
;
6603 r
= _base_allocate_memory_pools(ioc
);
6605 goto out_free_resources
;
6607 init_waitqueue_head(&ioc
->reset_wq
);
6609 /* allocate memory pd handle bitmask list */
6610 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
6611 if (ioc
->facts
.MaxDevHandle
% 8)
6612 ioc
->pd_handles_sz
++;
6613 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
6615 if (!ioc
->pd_handles
) {
6617 goto out_free_resources
;
6619 ioc
->blocking_handles
= kzalloc(ioc
->pd_handles_sz
,
6621 if (!ioc
->blocking_handles
) {
6623 goto out_free_resources
;
6626 /* allocate memory for pending OS device add list */
6627 ioc
->pend_os_device_add_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
6628 if (ioc
->facts
.MaxDevHandle
% 8)
6629 ioc
->pend_os_device_add_sz
++;
6630 ioc
->pend_os_device_add
= kzalloc(ioc
->pend_os_device_add_sz
,
6632 if (!ioc
->pend_os_device_add
)
6633 goto out_free_resources
;
6635 ioc
->device_remove_in_progress_sz
= ioc
->pend_os_device_add_sz
;
6636 ioc
->device_remove_in_progress
=
6637 kzalloc(ioc
->device_remove_in_progress_sz
, GFP_KERNEL
);
6638 if (!ioc
->device_remove_in_progress
)
6639 goto out_free_resources
;
6641 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
6643 /* base internal command bits */
6644 mutex_init(&ioc
->base_cmds
.mutex
);
6645 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6646 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6648 /* port_enable command bits */
6649 ioc
->port_enable_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6650 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
6652 /* transport internal command bits */
6653 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6654 ioc
->transport_cmds
.status
= MPT3_CMD_NOT_USED
;
6655 mutex_init(&ioc
->transport_cmds
.mutex
);
6657 /* scsih internal command bits */
6658 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6659 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
6660 mutex_init(&ioc
->scsih_cmds
.mutex
);
6662 /* task management internal command bits */
6663 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6664 ioc
->tm_cmds
.status
= MPT3_CMD_NOT_USED
;
6665 mutex_init(&ioc
->tm_cmds
.mutex
);
6667 /* config page internal command bits */
6668 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6669 ioc
->config_cmds
.status
= MPT3_CMD_NOT_USED
;
6670 mutex_init(&ioc
->config_cmds
.mutex
);
6672 /* ctl module internal command bits */
6673 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6674 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
6675 ioc
->ctl_cmds
.status
= MPT3_CMD_NOT_USED
;
6676 mutex_init(&ioc
->ctl_cmds
.mutex
);
6678 if (!ioc
->base_cmds
.reply
|| !ioc
->port_enable_cmds
.reply
||
6679 !ioc
->transport_cmds
.reply
|| !ioc
->scsih_cmds
.reply
||
6680 !ioc
->tm_cmds
.reply
|| !ioc
->config_cmds
.reply
||
6681 !ioc
->ctl_cmds
.reply
|| !ioc
->ctl_cmds
.sense
) {
6683 goto out_free_resources
;
6686 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
6687 ioc
->event_masks
[i
] = -1;
6689 /* here we enable the events we care about */
6690 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
6691 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
6692 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
6693 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
6694 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
6695 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
6696 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
6697 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
6698 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
6699 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
6700 _base_unmask_events(ioc
, MPI2_EVENT_TEMP_THRESHOLD
);
6701 _base_unmask_events(ioc
, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
);
6702 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
);
6703 if (ioc
->hba_mpi_version_belonged
== MPI26_VERSION
) {
6704 if (ioc
->is_gen35_ioc
) {
6705 _base_unmask_events(ioc
,
6706 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
);
6707 _base_unmask_events(ioc
, MPI2_EVENT_PCIE_ENUMERATION
);
6708 _base_unmask_events(ioc
,
6709 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
);
6712 r
= _base_make_ioc_operational(ioc
);
6714 goto out_free_resources
;
6716 ioc
->non_operational_loop
= 0;
6717 ioc
->got_task_abort_from_ioctl
= 0;
6722 ioc
->remove_host
= 1;
6724 mpt3sas_base_free_resources(ioc
);
6725 _base_release_memory_pools(ioc
);
6726 pci_set_drvdata(ioc
->pdev
, NULL
);
6727 kfree(ioc
->cpu_msix_table
);
6728 if (ioc
->is_warpdrive
)
6729 kfree(ioc
->reply_post_host_index
);
6730 kfree(ioc
->pd_handles
);
6731 kfree(ioc
->blocking_handles
);
6732 kfree(ioc
->device_remove_in_progress
);
6733 kfree(ioc
->pend_os_device_add
);
6734 kfree(ioc
->tm_cmds
.reply
);
6735 kfree(ioc
->transport_cmds
.reply
);
6736 kfree(ioc
->scsih_cmds
.reply
);
6737 kfree(ioc
->config_cmds
.reply
);
6738 kfree(ioc
->base_cmds
.reply
);
6739 kfree(ioc
->port_enable_cmds
.reply
);
6740 kfree(ioc
->ctl_cmds
.reply
);
6741 kfree(ioc
->ctl_cmds
.sense
);
6743 ioc
->ctl_cmds
.reply
= NULL
;
6744 ioc
->base_cmds
.reply
= NULL
;
6745 ioc
->tm_cmds
.reply
= NULL
;
6746 ioc
->scsih_cmds
.reply
= NULL
;
6747 ioc
->transport_cmds
.reply
= NULL
;
6748 ioc
->config_cmds
.reply
= NULL
;
6755 * mpt3sas_base_detach - remove controller instance
6756 * @ioc: per adapter object
6759 mpt3sas_base_detach(struct MPT3SAS_ADAPTER
*ioc
)
6761 dexitprintk(ioc
, pr_info(MPT3SAS_FMT
"%s\n", ioc
->name
,
6764 mpt3sas_base_stop_watchdog(ioc
);
6765 mpt3sas_base_free_resources(ioc
);
6766 _base_release_memory_pools(ioc
);
6767 mpt3sas_free_enclosure_list(ioc
);
6768 pci_set_drvdata(ioc
->pdev
, NULL
);
6769 kfree(ioc
->cpu_msix_table
);
6770 if (ioc
->is_warpdrive
)
6771 kfree(ioc
->reply_post_host_index
);
6772 kfree(ioc
->pd_handles
);
6773 kfree(ioc
->blocking_handles
);
6774 kfree(ioc
->device_remove_in_progress
);
6775 kfree(ioc
->pend_os_device_add
);
6777 kfree(ioc
->ctl_cmds
.reply
);
6778 kfree(ioc
->ctl_cmds
.sense
);
6779 kfree(ioc
->base_cmds
.reply
);
6780 kfree(ioc
->port_enable_cmds
.reply
);
6781 kfree(ioc
->tm_cmds
.reply
);
6782 kfree(ioc
->transport_cmds
.reply
);
6783 kfree(ioc
->scsih_cmds
.reply
);
6784 kfree(ioc
->config_cmds
.reply
);
6788 * _base_pre_reset_handler - pre reset handler
6789 * @ioc: per adapter object
6791 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
6793 mpt3sas_scsih_pre_reset_handler(ioc
);
6794 mpt3sas_ctl_pre_reset_handler(ioc
);
6795 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
6796 "%s: MPT3_IOC_PRE_RESET\n", ioc
->name
, __func__
));
6800 * _base_after_reset_handler - after reset handler
6801 * @ioc: per adapter object
6803 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
6805 mpt3sas_scsih_after_reset_handler(ioc
);
6806 mpt3sas_ctl_after_reset_handler(ioc
);
6807 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
6808 "%s: MPT3_IOC_AFTER_RESET\n", ioc
->name
, __func__
));
6809 if (ioc
->transport_cmds
.status
& MPT3_CMD_PENDING
) {
6810 ioc
->transport_cmds
.status
|= MPT3_CMD_RESET
;
6811 mpt3sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
6812 complete(&ioc
->transport_cmds
.done
);
6814 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
6815 ioc
->base_cmds
.status
|= MPT3_CMD_RESET
;
6816 mpt3sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
6817 complete(&ioc
->base_cmds
.done
);
6819 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
6820 ioc
->port_enable_failed
= 1;
6821 ioc
->port_enable_cmds
.status
|= MPT3_CMD_RESET
;
6822 mpt3sas_base_free_smid(ioc
, ioc
->port_enable_cmds
.smid
);
6823 if (ioc
->is_driver_loading
) {
6824 ioc
->start_scan_failed
=
6825 MPI2_IOCSTATUS_INTERNAL_ERROR
;
6826 ioc
->start_scan
= 0;
6827 ioc
->port_enable_cmds
.status
=
6830 complete(&ioc
->port_enable_cmds
.done
);
6833 if (ioc
->config_cmds
.status
& MPT3_CMD_PENDING
) {
6834 ioc
->config_cmds
.status
|= MPT3_CMD_RESET
;
6835 mpt3sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
6836 ioc
->config_cmds
.smid
= USHRT_MAX
;
6837 complete(&ioc
->config_cmds
.done
);
6842 * _base_reset_done_handler - reset done handler
6843 * @ioc: per adapter object
6845 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER
*ioc
)
6847 mpt3sas_scsih_reset_done_handler(ioc
);
6848 mpt3sas_ctl_reset_done_handler(ioc
);
6849 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
6850 "%s: MPT3_IOC_DONE_RESET\n", ioc
->name
, __func__
));
6854 * mpt3sas_wait_for_commands_to_complete - reset controller
6855 * @ioc: Pointer to MPT_ADAPTER structure
6857 * This function is waiting 10s for all pending commands to complete
6858 * prior to putting controller in reset.
6861 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER
*ioc
)
6865 ioc
->pending_io_count
= 0;
6867 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6868 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
6871 /* pending command count */
6872 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
6874 if (!ioc
->pending_io_count
)
6877 /* wait for pending commands to complete */
6878 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
6882 * mpt3sas_base_hard_reset_handler - reset controller
6883 * @ioc: Pointer to MPT_ADAPTER structure
6884 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6886 * Return: 0 for success, non-zero for failure.
6889 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER
*ioc
,
6890 enum reset_type type
)
6893 unsigned long flags
;
6895 u8 is_fault
= 0, is_trigger
= 0;
6897 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
"%s: enter\n", ioc
->name
,
6900 if (ioc
->pci_error_recovery
) {
6901 pr_err(MPT3SAS_FMT
"%s: pci error recovery reset\n",
6902 ioc
->name
, __func__
);
6907 if (mpt3sas_fwfault_debug
)
6908 mpt3sas_halt_firmware(ioc
);
6910 /* wait for an active reset in progress to complete */
6911 mutex_lock(&ioc
->reset_in_progress_mutex
);
6913 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
6914 ioc
->shost_recovery
= 1;
6915 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
6917 if ((ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
6918 MPT3_DIAG_BUFFER_IS_REGISTERED
) &&
6919 (!(ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
6920 MPT3_DIAG_BUFFER_IS_RELEASED
))) {
6922 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6923 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
6926 _base_pre_reset_handler(ioc
);
6927 mpt3sas_wait_for_commands_to_complete(ioc
);
6928 _base_mask_interrupts(ioc
);
6929 r
= _base_make_ioc_ready(ioc
, type
);
6932 _base_after_reset_handler(ioc
);
6934 /* If this hard reset is called while port enable is active, then
6935 * there is no reason to call make_ioc_operational
6937 if (ioc
->is_driver_loading
&& ioc
->port_enable_failed
) {
6938 ioc
->remove_host
= 1;
6942 r
= _base_get_ioc_facts(ioc
);
6946 if (ioc
->rdpq_array_enable
&& !ioc
->rdpq_array_capable
)
6947 panic("%s: Issue occurred with flashing controller firmware."
6948 "Please reboot the system and ensure that the correct"
6949 " firmware version is running\n", ioc
->name
);
6951 r
= _base_make_ioc_operational(ioc
);
6953 _base_reset_done_handler(ioc
);
6956 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
"%s: %s\n",
6957 ioc
->name
, __func__
, ((r
== 0) ? "SUCCESS" : "FAILED")));
6959 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
6960 ioc
->shost_recovery
= 0;
6961 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
6962 ioc
->ioc_reset_count
++;
6963 mutex_unlock(&ioc
->reset_in_progress_mutex
);
6966 if ((r
== 0) && is_trigger
) {
6968 mpt3sas_trigger_master(ioc
, MASTER_TRIGGER_FW_FAULT
);
6970 mpt3sas_trigger_master(ioc
,
6971 MASTER_TRIGGER_ADAPTER_RESET
);
6973 dtmprintk(ioc
, pr_info(MPT3SAS_FMT
"%s: exit\n", ioc
->name
,