Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobc501fb5190a385f7d7c4f808a2812bc1f6edeaac
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
71 struct kmem_cache *cache;
72 int ret = 0;
74 mutex_lock(&scsi_sense_cache_mutex);
75 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
76 if (cache)
77 goto exit;
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create_usercopy("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 0, SCSI_SENSE_BUFFERSIZE, NULL);
91 if (!scsi_sense_cache)
92 ret = -ENOMEM;
94 exit:
95 mutex_unlock(&scsi_sense_cache_mutex);
96 return ret;
100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101 * not change behaviour from the previous unplug mechanism, experimentation
102 * may prove this needs changing.
104 #define SCSI_QUEUE_DELAY 3
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
109 struct Scsi_Host *host = cmd->device->host;
110 struct scsi_device *device = cmd->device;
111 struct scsi_target *starget = scsi_target(device);
114 * Set the appropriate busy bit for the device/host.
116 * If the host/device isn't busy, assume that something actually
117 * completed, and that we should be able to queue a command now.
119 * Note that the prior mid-layer assumption that any host could
120 * always queue at least one command is now broken. The mid-layer
121 * will implement a user specifiable stall (see
122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 * if a command is requeued with no other commands outstanding
124 * either for the device or for the host.
126 switch (reason) {
127 case SCSI_MLQUEUE_HOST_BUSY:
128 atomic_set(&host->host_blocked, host->max_host_blocked);
129 break;
130 case SCSI_MLQUEUE_DEVICE_BUSY:
131 case SCSI_MLQUEUE_EH_RETRY:
132 atomic_set(&device->device_blocked,
133 device->max_device_blocked);
134 break;
135 case SCSI_MLQUEUE_TARGET_BUSY:
136 atomic_set(&starget->target_blocked,
137 starget->max_target_blocked);
138 break;
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
144 struct scsi_device *sdev = cmd->device;
146 if (cmd->request->rq_flags & RQF_DONTPREP) {
147 cmd->request->rq_flags &= ~RQF_DONTPREP;
148 scsi_mq_uninit_cmd(cmd);
149 } else {
150 WARN_ON_ONCE(true);
152 blk_mq_requeue_request(cmd->request, true);
153 put_device(&sdev->sdev_gendev);
157 * __scsi_queue_insert - private queue insertion
158 * @cmd: The SCSI command being requeued
159 * @reason: The reason for the requeue
160 * @unbusy: Whether the queue should be unbusied
162 * This is a private queue insertion. The public interface
163 * scsi_queue_insert() always assumes the queue should be unbusied
164 * because it's always called before the completion. This function is
165 * for a requeue after completion, which should only occur in this
166 * file.
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
170 struct scsi_device *device = cmd->device;
171 struct request_queue *q = device->request_queue;
172 unsigned long flags;
174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 "Inserting command %p into mlqueue\n", cmd));
177 scsi_set_blocked(cmd, reason);
180 * Decrement the counters, since these commands are no longer
181 * active on the host/device.
183 if (unbusy)
184 scsi_device_unbusy(device);
187 * Requeue this command. It will go before all other commands
188 * that are already in the queue. Schedule requeue work under
189 * lock such that the kblockd_schedule_work() call happens
190 * before blk_cleanup_queue() finishes.
192 cmd->result = 0;
193 if (q->mq_ops) {
195 * Before a SCSI command is dispatched,
196 * get_device(&sdev->sdev_gendev) is called and the host,
197 * target and device busy counters are increased. Since
198 * requeuing a request causes these actions to be repeated and
199 * since scsi_device_unbusy() has already been called,
200 * put_device(&device->sdev_gendev) must still be called. Call
201 * put_device() after blk_mq_requeue_request() to avoid that
202 * removal of the SCSI device can start before requeueing has
203 * happened.
205 blk_mq_requeue_request(cmd->request, true);
206 put_device(&device->sdev_gendev);
207 return;
209 spin_lock_irqsave(q->queue_lock, flags);
210 blk_requeue_request(q, cmd->request);
211 kblockd_schedule_work(&device->requeue_work);
212 spin_unlock_irqrestore(q->queue_lock, flags);
216 * Function: scsi_queue_insert()
218 * Purpose: Insert a command in the midlevel queue.
220 * Arguments: cmd - command that we are adding to queue.
221 * reason - why we are inserting command to queue.
223 * Lock status: Assumed that lock is not held upon entry.
225 * Returns: Nothing.
227 * Notes: We do this for one of two cases. Either the host is busy
228 * and it cannot accept any more commands for the time being,
229 * or the device returned QUEUE_FULL and can accept no more
230 * commands.
231 * Notes: This could be called either from an interrupt context or a
232 * normal process context.
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
236 __scsi_queue_insert(cmd, reason, true);
241 * __scsi_execute - insert request and wait for the result
242 * @sdev: scsi device
243 * @cmd: scsi command
244 * @data_direction: data direction
245 * @buffer: data buffer
246 * @bufflen: len of buffer
247 * @sense: optional sense buffer
248 * @sshdr: optional decoded sense header
249 * @timeout: request timeout in seconds
250 * @retries: number of times to retry request
251 * @flags: flags for ->cmd_flags
252 * @rq_flags: flags for ->rq_flags
253 * @resid: optional residual length
255 * Returns the scsi_cmnd result field if a command was executed, or a negative
256 * Linux error code if we didn't get that far.
258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 int data_direction, void *buffer, unsigned bufflen,
260 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 int *resid)
264 struct request *req;
265 struct scsi_request *rq;
266 int ret = DRIVER_ERROR << 24;
268 req = blk_get_request(sdev->request_queue,
269 data_direction == DMA_TO_DEVICE ?
270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 if (IS_ERR(req))
272 return ret;
273 rq = scsi_req(req);
275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
276 buffer, bufflen, GFP_NOIO))
277 goto out;
279 rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 memcpy(rq->cmd, cmd, rq->cmd_len);
281 rq->retries = retries;
282 req->timeout = timeout;
283 req->cmd_flags |= flags;
284 req->rq_flags |= rq_flags | RQF_QUIET;
287 * head injection *required* here otherwise quiesce won't work
289 blk_execute_rq(req->q, NULL, req, 1);
292 * Some devices (USB mass-storage in particular) may transfer
293 * garbage data together with a residue indicating that the data
294 * is invalid. Prevent the garbage from being misinterpreted
295 * and prevent security leaks by zeroing out the excess data.
297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
300 if (resid)
301 *resid = rq->resid_len;
302 if (sense && rq->sense_len)
303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 if (sshdr)
305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 ret = rq->result;
307 out:
308 blk_put_request(req);
310 return ret;
312 EXPORT_SYMBOL(__scsi_execute);
315 * Function: scsi_init_cmd_errh()
317 * Purpose: Initialize cmd fields related to error handling.
319 * Arguments: cmd - command that is ready to be queued.
321 * Notes: This function has the job of initializing a number of
322 * fields related to error handling. Typically this will
323 * be called once for each command, as required.
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
327 cmd->serial_number = 0;
328 scsi_set_resid(cmd, 0);
329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 if (cmd->cmd_len == 0)
331 cmd->cmd_len = scsi_command_size(cmd->cmnd);
335 * Decrement the host_busy counter and wake up the error handler if necessary.
336 * Avoid as follows that the error handler is not woken up if shost->host_busy
337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338 * with an RCU read lock in this function to ensure that this function in its
339 * entirety either finishes before scsi_eh_scmd_add() increases the
340 * host_failed counter or that it notices the shost state change made by
341 * scsi_eh_scmd_add().
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
345 unsigned long flags;
347 rcu_read_lock();
348 atomic_dec(&shost->host_busy);
349 if (unlikely(scsi_host_in_recovery(shost))) {
350 spin_lock_irqsave(shost->host_lock, flags);
351 if (shost->host_failed || shost->host_eh_scheduled)
352 scsi_eh_wakeup(shost);
353 spin_unlock_irqrestore(shost->host_lock, flags);
355 rcu_read_unlock();
358 void scsi_device_unbusy(struct scsi_device *sdev)
360 struct Scsi_Host *shost = sdev->host;
361 struct scsi_target *starget = scsi_target(sdev);
363 scsi_dec_host_busy(shost);
365 if (starget->can_queue > 0)
366 atomic_dec(&starget->target_busy);
368 atomic_dec(&sdev->device_busy);
371 static void scsi_kick_queue(struct request_queue *q)
373 if (q->mq_ops)
374 blk_mq_run_hw_queues(q, false);
375 else
376 blk_run_queue(q);
380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381 * and call blk_run_queue for all the scsi_devices on the target -
382 * including current_sdev first.
384 * Called with *no* scsi locks held.
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
388 struct Scsi_Host *shost = current_sdev->host;
389 struct scsi_device *sdev, *tmp;
390 struct scsi_target *starget = scsi_target(current_sdev);
391 unsigned long flags;
393 spin_lock_irqsave(shost->host_lock, flags);
394 starget->starget_sdev_user = NULL;
395 spin_unlock_irqrestore(shost->host_lock, flags);
398 * Call blk_run_queue for all LUNs on the target, starting with
399 * current_sdev. We race with others (to set starget_sdev_user),
400 * but in most cases, we will be first. Ideally, each LU on the
401 * target would get some limited time or requests on the target.
403 scsi_kick_queue(current_sdev->request_queue);
405 spin_lock_irqsave(shost->host_lock, flags);
406 if (starget->starget_sdev_user)
407 goto out;
408 list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 same_target_siblings) {
410 if (sdev == current_sdev)
411 continue;
412 if (scsi_device_get(sdev))
413 continue;
415 spin_unlock_irqrestore(shost->host_lock, flags);
416 scsi_kick_queue(sdev->request_queue);
417 spin_lock_irqsave(shost->host_lock, flags);
419 scsi_device_put(sdev);
421 out:
422 spin_unlock_irqrestore(shost->host_lock, flags);
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 return true;
429 if (atomic_read(&sdev->device_blocked) > 0)
430 return true;
431 return false;
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
436 if (starget->can_queue > 0) {
437 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 return true;
439 if (atomic_read(&starget->target_blocked) > 0)
440 return true;
442 return false;
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
447 if (shost->can_queue > 0 &&
448 atomic_read(&shost->host_busy) >= shost->can_queue)
449 return true;
450 if (atomic_read(&shost->host_blocked) > 0)
451 return true;
452 if (shost->host_self_blocked)
453 return true;
454 return false;
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
459 LIST_HEAD(starved_list);
460 struct scsi_device *sdev;
461 unsigned long flags;
463 spin_lock_irqsave(shost->host_lock, flags);
464 list_splice_init(&shost->starved_list, &starved_list);
466 while (!list_empty(&starved_list)) {
467 struct request_queue *slq;
470 * As long as shost is accepting commands and we have
471 * starved queues, call blk_run_queue. scsi_request_fn
472 * drops the queue_lock and can add us back to the
473 * starved_list.
475 * host_lock protects the starved_list and starved_entry.
476 * scsi_request_fn must get the host_lock before checking
477 * or modifying starved_list or starved_entry.
479 if (scsi_host_is_busy(shost))
480 break;
482 sdev = list_entry(starved_list.next,
483 struct scsi_device, starved_entry);
484 list_del_init(&sdev->starved_entry);
485 if (scsi_target_is_busy(scsi_target(sdev))) {
486 list_move_tail(&sdev->starved_entry,
487 &shost->starved_list);
488 continue;
492 * Once we drop the host lock, a racing scsi_remove_device()
493 * call may remove the sdev from the starved list and destroy
494 * it and the queue. Mitigate by taking a reference to the
495 * queue and never touching the sdev again after we drop the
496 * host lock. Note: if __scsi_remove_device() invokes
497 * blk_cleanup_queue() before the queue is run from this
498 * function then blk_run_queue() will return immediately since
499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
501 slq = sdev->request_queue;
502 if (!blk_get_queue(slq))
503 continue;
504 spin_unlock_irqrestore(shost->host_lock, flags);
506 scsi_kick_queue(slq);
507 blk_put_queue(slq);
509 spin_lock_irqsave(shost->host_lock, flags);
511 /* put any unprocessed entries back */
512 list_splice(&starved_list, &shost->starved_list);
513 spin_unlock_irqrestore(shost->host_lock, flags);
517 * Function: scsi_run_queue()
519 * Purpose: Select a proper request queue to serve next
521 * Arguments: q - last request's queue
523 * Returns: Nothing
525 * Notes: The previous command was completely finished, start
526 * a new one if possible.
528 static void scsi_run_queue(struct request_queue *q)
530 struct scsi_device *sdev = q->queuedata;
532 if (scsi_target(sdev)->single_lun)
533 scsi_single_lun_run(sdev);
534 if (!list_empty(&sdev->host->starved_list))
535 scsi_starved_list_run(sdev->host);
537 if (q->mq_ops)
538 blk_mq_run_hw_queues(q, false);
539 else
540 blk_run_queue(q);
543 void scsi_requeue_run_queue(struct work_struct *work)
545 struct scsi_device *sdev;
546 struct request_queue *q;
548 sdev = container_of(work, struct scsi_device, requeue_work);
549 q = sdev->request_queue;
550 scsi_run_queue(q);
554 * Function: scsi_requeue_command()
556 * Purpose: Handle post-processing of completed commands.
558 * Arguments: q - queue to operate on
559 * cmd - command that may need to be requeued.
561 * Returns: Nothing
563 * Notes: After command completion, there may be blocks left
564 * over which weren't finished by the previous command
565 * this can be for a number of reasons - the main one is
566 * I/O errors in the middle of the request, in which case
567 * we need to request the blocks that come after the bad
568 * sector.
569 * Notes: Upon return, cmd is a stale pointer.
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
573 struct scsi_device *sdev = cmd->device;
574 struct request *req = cmd->request;
575 unsigned long flags;
577 spin_lock_irqsave(q->queue_lock, flags);
578 blk_unprep_request(req);
579 req->special = NULL;
580 scsi_put_command(cmd);
581 blk_requeue_request(q, req);
582 spin_unlock_irqrestore(q->queue_lock, flags);
584 scsi_run_queue(q);
586 put_device(&sdev->sdev_gendev);
589 void scsi_run_host_queues(struct Scsi_Host *shost)
591 struct scsi_device *sdev;
593 shost_for_each_device(sdev, shost)
594 scsi_run_queue(sdev->request_queue);
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
599 if (!blk_rq_is_passthrough(cmd->request)) {
600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
602 if (drv->uninit_command)
603 drv->uninit_command(cmd);
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
609 struct scsi_data_buffer *sdb;
611 if (cmd->sdb.table.nents)
612 sg_free_table_chained(&cmd->sdb.table, true);
613 if (cmd->request->next_rq) {
614 sdb = cmd->request->next_rq->special;
615 if (sdb)
616 sg_free_table_chained(&sdb->table, true);
618 if (scsi_prot_sg_count(cmd))
619 sg_free_table_chained(&cmd->prot_sdb->table, true);
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
624 scsi_mq_free_sgtables(cmd);
625 scsi_uninit_cmd(cmd);
626 scsi_del_cmd_from_list(cmd);
630 * Function: scsi_release_buffers()
632 * Purpose: Free resources allocate for a scsi_command.
634 * Arguments: cmd - command that we are bailing.
636 * Lock status: Assumed that no lock is held upon entry.
638 * Returns: Nothing
640 * Notes: In the event that an upper level driver rejects a
641 * command, we must release resources allocated during
642 * the __init_io() function. Primarily this would involve
643 * the scatter-gather table.
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
647 if (cmd->sdb.table.nents)
648 sg_free_table_chained(&cmd->sdb.table, false);
650 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
652 if (scsi_prot_sg_count(cmd))
653 sg_free_table_chained(&cmd->prot_sdb->table, false);
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
660 sg_free_table_chained(&bidi_sdb->table, false);
661 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 cmd->request->next_rq->special = NULL;
665 /* Returns false when no more bytes to process, true if there are more */
666 static bool scsi_end_request(struct request *req, blk_status_t error,
667 unsigned int bytes, unsigned int bidi_bytes)
669 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
670 struct scsi_device *sdev = cmd->device;
671 struct request_queue *q = sdev->request_queue;
673 if (blk_update_request(req, error, bytes))
674 return true;
676 /* Bidi request must be completed as a whole */
677 if (unlikely(bidi_bytes) &&
678 blk_update_request(req->next_rq, error, bidi_bytes))
679 return true;
681 if (blk_queue_add_random(q))
682 add_disk_randomness(req->rq_disk);
684 if (!blk_rq_is_scsi(req)) {
685 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
686 cmd->flags &= ~SCMD_INITIALIZED;
687 destroy_rcu_head(&cmd->rcu);
690 if (req->mq_ctx) {
692 * In the MQ case the command gets freed by __blk_mq_end_request,
693 * so we have to do all cleanup that depends on it earlier.
695 * We also can't kick the queues from irq context, so we
696 * will have to defer it to a workqueue.
698 scsi_mq_uninit_cmd(cmd);
701 * queue is still alive, so grab the ref for preventing it
702 * from being cleaned up during running queue.
704 percpu_ref_get(&q->q_usage_counter);
706 __blk_mq_end_request(req, error);
708 if (scsi_target(sdev)->single_lun ||
709 !list_empty(&sdev->host->starved_list))
710 kblockd_schedule_work(&sdev->requeue_work);
711 else
712 blk_mq_run_hw_queues(q, true);
714 percpu_ref_put(&q->q_usage_counter);
715 } else {
716 unsigned long flags;
718 if (bidi_bytes)
719 scsi_release_bidi_buffers(cmd);
720 scsi_release_buffers(cmd);
721 scsi_put_command(cmd);
723 spin_lock_irqsave(q->queue_lock, flags);
724 blk_finish_request(req, error);
725 spin_unlock_irqrestore(q->queue_lock, flags);
727 scsi_run_queue(q);
730 put_device(&sdev->sdev_gendev);
731 return false;
735 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
736 * @cmd: SCSI command
737 * @result: scsi error code
739 * Translate a SCSI result code into a blk_status_t value. May reset the host
740 * byte of @cmd->result.
742 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
744 switch (host_byte(result)) {
745 case DID_OK:
747 * Also check the other bytes than the status byte in result
748 * to handle the case when a SCSI LLD sets result to
749 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
751 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
752 return BLK_STS_OK;
753 return BLK_STS_IOERR;
754 case DID_TRANSPORT_FAILFAST:
755 return BLK_STS_TRANSPORT;
756 case DID_TARGET_FAILURE:
757 set_host_byte(cmd, DID_OK);
758 return BLK_STS_TARGET;
759 case DID_NEXUS_FAILURE:
760 set_host_byte(cmd, DID_OK);
761 return BLK_STS_NEXUS;
762 case DID_ALLOC_FAILURE:
763 set_host_byte(cmd, DID_OK);
764 return BLK_STS_NOSPC;
765 case DID_MEDIUM_ERROR:
766 set_host_byte(cmd, DID_OK);
767 return BLK_STS_MEDIUM;
768 default:
769 return BLK_STS_IOERR;
773 /* Helper for scsi_io_completion() when "reprep" action required. */
774 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
775 struct request_queue *q)
777 /* A new command will be prepared and issued. */
778 if (q->mq_ops) {
779 scsi_mq_requeue_cmd(cmd);
780 } else {
781 /* Unprep request and put it back at head of the queue. */
782 scsi_release_buffers(cmd);
783 scsi_requeue_command(q, cmd);
787 /* Helper for scsi_io_completion() when special action required. */
788 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
790 struct request_queue *q = cmd->device->request_queue;
791 struct request *req = cmd->request;
792 int level = 0;
793 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
794 ACTION_DELAYED_RETRY} action;
795 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
796 struct scsi_sense_hdr sshdr;
797 bool sense_valid;
798 bool sense_current = true; /* false implies "deferred sense" */
799 blk_status_t blk_stat;
801 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
802 if (sense_valid)
803 sense_current = !scsi_sense_is_deferred(&sshdr);
805 blk_stat = scsi_result_to_blk_status(cmd, result);
807 if (host_byte(result) == DID_RESET) {
808 /* Third party bus reset or reset for error recovery
809 * reasons. Just retry the command and see what
810 * happens.
812 action = ACTION_RETRY;
813 } else if (sense_valid && sense_current) {
814 switch (sshdr.sense_key) {
815 case UNIT_ATTENTION:
816 if (cmd->device->removable) {
817 /* Detected disc change. Set a bit
818 * and quietly refuse further access.
820 cmd->device->changed = 1;
821 action = ACTION_FAIL;
822 } else {
823 /* Must have been a power glitch, or a
824 * bus reset. Could not have been a
825 * media change, so we just retry the
826 * command and see what happens.
828 action = ACTION_RETRY;
830 break;
831 case ILLEGAL_REQUEST:
832 /* If we had an ILLEGAL REQUEST returned, then
833 * we may have performed an unsupported
834 * command. The only thing this should be
835 * would be a ten byte read where only a six
836 * byte read was supported. Also, on a system
837 * where READ CAPACITY failed, we may have
838 * read past the end of the disk.
840 if ((cmd->device->use_10_for_rw &&
841 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
842 (cmd->cmnd[0] == READ_10 ||
843 cmd->cmnd[0] == WRITE_10)) {
844 /* This will issue a new 6-byte command. */
845 cmd->device->use_10_for_rw = 0;
846 action = ACTION_REPREP;
847 } else if (sshdr.asc == 0x10) /* DIX */ {
848 action = ACTION_FAIL;
849 blk_stat = BLK_STS_PROTECTION;
850 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
851 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
852 action = ACTION_FAIL;
853 blk_stat = BLK_STS_TARGET;
854 } else
855 action = ACTION_FAIL;
856 break;
857 case ABORTED_COMMAND:
858 action = ACTION_FAIL;
859 if (sshdr.asc == 0x10) /* DIF */
860 blk_stat = BLK_STS_PROTECTION;
861 break;
862 case NOT_READY:
863 /* If the device is in the process of becoming
864 * ready, or has a temporary blockage, retry.
866 if (sshdr.asc == 0x04) {
867 switch (sshdr.ascq) {
868 case 0x01: /* becoming ready */
869 case 0x04: /* format in progress */
870 case 0x05: /* rebuild in progress */
871 case 0x06: /* recalculation in progress */
872 case 0x07: /* operation in progress */
873 case 0x08: /* Long write in progress */
874 case 0x09: /* self test in progress */
875 case 0x14: /* space allocation in progress */
876 case 0x1a: /* start stop unit in progress */
877 case 0x1b: /* sanitize in progress */
878 case 0x1d: /* configuration in progress */
879 case 0x24: /* depopulation in progress */
880 action = ACTION_DELAYED_RETRY;
881 break;
882 default:
883 action = ACTION_FAIL;
884 break;
886 } else
887 action = ACTION_FAIL;
888 break;
889 case VOLUME_OVERFLOW:
890 /* See SSC3rXX or current. */
891 action = ACTION_FAIL;
892 break;
893 default:
894 action = ACTION_FAIL;
895 break;
897 } else
898 action = ACTION_FAIL;
900 if (action != ACTION_FAIL &&
901 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
902 action = ACTION_FAIL;
904 switch (action) {
905 case ACTION_FAIL:
906 /* Give up and fail the remainder of the request */
907 if (!(req->rq_flags & RQF_QUIET)) {
908 static DEFINE_RATELIMIT_STATE(_rs,
909 DEFAULT_RATELIMIT_INTERVAL,
910 DEFAULT_RATELIMIT_BURST);
912 if (unlikely(scsi_logging_level))
913 level =
914 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
915 SCSI_LOG_MLCOMPLETE_BITS);
918 * if logging is enabled the failure will be printed
919 * in scsi_log_completion(), so avoid duplicate messages
921 if (!level && __ratelimit(&_rs)) {
922 scsi_print_result(cmd, NULL, FAILED);
923 if (driver_byte(result) == DRIVER_SENSE)
924 scsi_print_sense(cmd);
925 scsi_print_command(cmd);
928 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
929 return;
930 /*FALLTHRU*/
931 case ACTION_REPREP:
932 scsi_io_completion_reprep(cmd, q);
933 break;
934 case ACTION_RETRY:
935 /* Retry the same command immediately */
936 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
937 break;
938 case ACTION_DELAYED_RETRY:
939 /* Retry the same command after a delay */
940 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
941 break;
946 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
947 * new result that may suppress further error checking. Also modifies
948 * *blk_statp in some cases.
950 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
951 blk_status_t *blk_statp)
953 bool sense_valid;
954 bool sense_current = true; /* false implies "deferred sense" */
955 struct request *req = cmd->request;
956 struct scsi_sense_hdr sshdr;
958 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
959 if (sense_valid)
960 sense_current = !scsi_sense_is_deferred(&sshdr);
962 if (blk_rq_is_passthrough(req)) {
963 if (sense_valid) {
965 * SG_IO wants current and deferred errors
967 scsi_req(req)->sense_len =
968 min(8 + cmd->sense_buffer[7],
969 SCSI_SENSE_BUFFERSIZE);
971 if (sense_current)
972 *blk_statp = scsi_result_to_blk_status(cmd, result);
973 } else if (blk_rq_bytes(req) == 0 && sense_current) {
975 * Flush commands do not transfers any data, and thus cannot use
976 * good_bytes != blk_rq_bytes(req) as the signal for an error.
977 * This sets *blk_statp explicitly for the problem case.
979 *blk_statp = scsi_result_to_blk_status(cmd, result);
982 * Recovered errors need reporting, but they're always treated as
983 * success, so fiddle the result code here. For passthrough requests
984 * we already took a copy of the original into sreq->result which
985 * is what gets returned to the user
987 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
988 bool do_print = true;
990 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
991 * skip print since caller wants ATA registers. Only occurs
992 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
994 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
995 do_print = false;
996 else if (req->rq_flags & RQF_QUIET)
997 do_print = false;
998 if (do_print)
999 scsi_print_sense(cmd);
1000 result = 0;
1001 /* for passthrough, *blk_statp may be set */
1002 *blk_statp = BLK_STS_OK;
1005 * Another corner case: the SCSI status byte is non-zero but 'good'.
1006 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1007 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1008 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1009 * intermediate statuses (both obsolete in SAM-4) as good.
1011 if (status_byte(result) && scsi_status_is_good(result)) {
1012 result = 0;
1013 *blk_statp = BLK_STS_OK;
1015 return result;
1019 * Function: scsi_io_completion()
1021 * Purpose: Completion processing for block device I/O requests.
1023 * Arguments: cmd - command that is finished.
1025 * Lock status: Assumed that no lock is held upon entry.
1027 * Returns: Nothing
1029 * Notes: We will finish off the specified number of sectors. If we
1030 * are done, the command block will be released and the queue
1031 * function will be goosed. If we are not done then we have to
1032 * figure out what to do next:
1034 * a) We can call scsi_requeue_command(). The request
1035 * will be unprepared and put back on the queue. Then
1036 * a new command will be created for it. This should
1037 * be used if we made forward progress, or if we want
1038 * to switch from READ(10) to READ(6) for example.
1040 * b) We can call __scsi_queue_insert(). The request will
1041 * be put back on the queue and retried using the same
1042 * command as before, possibly after a delay.
1044 * c) We can call scsi_end_request() with blk_stat other than
1045 * BLK_STS_OK, to fail the remainder of the request.
1047 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1049 int result = cmd->result;
1050 struct request_queue *q = cmd->device->request_queue;
1051 struct request *req = cmd->request;
1052 blk_status_t blk_stat = BLK_STS_OK;
1054 if (unlikely(result)) /* a nz result may or may not be an error */
1055 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1057 if (unlikely(blk_rq_is_passthrough(req))) {
1059 * scsi_result_to_blk_status may have reset the host_byte
1061 scsi_req(req)->result = cmd->result;
1062 scsi_req(req)->resid_len = scsi_get_resid(cmd);
1064 if (unlikely(scsi_bidi_cmnd(cmd))) {
1066 * Bidi commands Must be complete as a whole,
1067 * both sides at once.
1069 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1070 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1071 blk_rq_bytes(req->next_rq)))
1072 WARN_ONCE(true,
1073 "Bidi command with remaining bytes");
1074 return;
1078 /* no bidi support yet, other than in pass-through */
1079 if (unlikely(blk_bidi_rq(req))) {
1080 WARN_ONCE(true, "Only support bidi command in passthrough");
1081 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1082 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1083 blk_rq_bytes(req->next_rq)))
1084 WARN_ONCE(true, "Bidi command with remaining bytes");
1085 return;
1089 * Next deal with any sectors which we were able to correctly
1090 * handle.
1092 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1093 "%u sectors total, %d bytes done.\n",
1094 blk_rq_sectors(req), good_bytes));
1097 * Next deal with any sectors which we were able to correctly
1098 * handle. Failed, zero length commands always need to drop down
1099 * to retry code. Fast path should return in this block.
1101 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1102 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1103 return; /* no bytes remaining */
1106 /* Kill remainder if no retries. */
1107 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1108 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1109 WARN_ONCE(true,
1110 "Bytes remaining after failed, no-retry command");
1111 return;
1115 * If there had been no error, but we have leftover bytes in the
1116 * requeues just queue the command up again.
1118 if (likely(result == 0))
1119 scsi_io_completion_reprep(cmd, q);
1120 else
1121 scsi_io_completion_action(cmd, result);
1124 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1126 int count;
1129 * If sg table allocation fails, requeue request later.
1131 if (unlikely(sg_alloc_table_chained(&sdb->table,
1132 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1133 return BLKPREP_DEFER;
1136 * Next, walk the list, and fill in the addresses and sizes of
1137 * each segment.
1139 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1140 BUG_ON(count > sdb->table.nents);
1141 sdb->table.nents = count;
1142 sdb->length = blk_rq_payload_bytes(req);
1143 return BLKPREP_OK;
1147 * Function: scsi_init_io()
1149 * Purpose: SCSI I/O initialize function.
1151 * Arguments: cmd - Command descriptor we wish to initialize
1153 * Returns: 0 on success
1154 * BLKPREP_DEFER if the failure is retryable
1155 * BLKPREP_KILL if the failure is fatal
1157 int scsi_init_io(struct scsi_cmnd *cmd)
1159 struct scsi_device *sdev = cmd->device;
1160 struct request *rq = cmd->request;
1161 bool is_mq = (rq->mq_ctx != NULL);
1162 int error = BLKPREP_KILL;
1164 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1165 goto err_exit;
1167 error = scsi_init_sgtable(rq, &cmd->sdb);
1168 if (error)
1169 goto err_exit;
1171 if (blk_bidi_rq(rq)) {
1172 if (!rq->q->mq_ops) {
1173 struct scsi_data_buffer *bidi_sdb =
1174 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1175 if (!bidi_sdb) {
1176 error = BLKPREP_DEFER;
1177 goto err_exit;
1180 rq->next_rq->special = bidi_sdb;
1183 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1184 if (error)
1185 goto err_exit;
1188 if (blk_integrity_rq(rq)) {
1189 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1190 int ivecs, count;
1192 if (prot_sdb == NULL) {
1194 * This can happen if someone (e.g. multipath)
1195 * queues a command to a device on an adapter
1196 * that does not support DIX.
1198 WARN_ON_ONCE(1);
1199 error = BLKPREP_KILL;
1200 goto err_exit;
1203 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1205 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1206 prot_sdb->table.sgl)) {
1207 error = BLKPREP_DEFER;
1208 goto err_exit;
1211 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1212 prot_sdb->table.sgl);
1213 BUG_ON(unlikely(count > ivecs));
1214 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1216 cmd->prot_sdb = prot_sdb;
1217 cmd->prot_sdb->table.nents = count;
1220 return BLKPREP_OK;
1221 err_exit:
1222 if (is_mq) {
1223 scsi_mq_free_sgtables(cmd);
1224 } else {
1225 scsi_release_buffers(cmd);
1226 cmd->request->special = NULL;
1227 scsi_put_command(cmd);
1228 put_device(&sdev->sdev_gendev);
1230 return error;
1232 EXPORT_SYMBOL(scsi_init_io);
1235 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1236 * @rq: Request associated with the SCSI command to be initialized.
1238 * This function initializes the members of struct scsi_cmnd that must be
1239 * initialized before request processing starts and that won't be
1240 * reinitialized if a SCSI command is requeued.
1242 * Called from inside blk_get_request() for pass-through requests and from
1243 * inside scsi_init_command() for filesystem requests.
1245 static void scsi_initialize_rq(struct request *rq)
1247 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1249 scsi_req_init(&cmd->req);
1250 init_rcu_head(&cmd->rcu);
1251 cmd->jiffies_at_alloc = jiffies;
1252 cmd->retries = 0;
1256 * Only called when the request isn't completed by SCSI, and not freed by
1257 * SCSI
1259 static void scsi_cleanup_rq(struct request *rq)
1261 if (rq->rq_flags & RQF_DONTPREP) {
1262 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1263 rq->rq_flags &= ~RQF_DONTPREP;
1267 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1268 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1270 struct scsi_device *sdev = cmd->device;
1271 struct Scsi_Host *shost = sdev->host;
1272 unsigned long flags;
1274 if (shost->use_cmd_list) {
1275 spin_lock_irqsave(&sdev->list_lock, flags);
1276 list_add_tail(&cmd->list, &sdev->cmd_list);
1277 spin_unlock_irqrestore(&sdev->list_lock, flags);
1281 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1282 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1284 struct scsi_device *sdev = cmd->device;
1285 struct Scsi_Host *shost = sdev->host;
1286 unsigned long flags;
1288 if (shost->use_cmd_list) {
1289 spin_lock_irqsave(&sdev->list_lock, flags);
1290 BUG_ON(list_empty(&cmd->list));
1291 list_del_init(&cmd->list);
1292 spin_unlock_irqrestore(&sdev->list_lock, flags);
1296 /* Called after a request has been started. */
1297 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1299 void *buf = cmd->sense_buffer;
1300 void *prot = cmd->prot_sdb;
1301 struct request *rq = blk_mq_rq_from_pdu(cmd);
1302 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1303 unsigned long jiffies_at_alloc;
1304 int retries;
1306 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1307 flags |= SCMD_INITIALIZED;
1308 scsi_initialize_rq(rq);
1311 jiffies_at_alloc = cmd->jiffies_at_alloc;
1312 retries = cmd->retries;
1313 /* zero out the cmd, except for the embedded scsi_request */
1314 memset((char *)cmd + sizeof(cmd->req), 0,
1315 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1317 cmd->device = dev;
1318 cmd->sense_buffer = buf;
1319 cmd->prot_sdb = prot;
1320 cmd->flags = flags;
1321 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1322 cmd->jiffies_at_alloc = jiffies_at_alloc;
1323 cmd->retries = retries;
1325 scsi_add_cmd_to_list(cmd);
1328 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1330 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1333 * Passthrough requests may transfer data, in which case they must
1334 * a bio attached to them. Or they might contain a SCSI command
1335 * that does not transfer data, in which case they may optionally
1336 * submit a request without an attached bio.
1338 if (req->bio) {
1339 int ret = scsi_init_io(cmd);
1340 if (unlikely(ret))
1341 return ret;
1342 } else {
1343 BUG_ON(blk_rq_bytes(req));
1345 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1348 cmd->cmd_len = scsi_req(req)->cmd_len;
1349 cmd->cmnd = scsi_req(req)->cmd;
1350 cmd->transfersize = blk_rq_bytes(req);
1351 cmd->allowed = scsi_req(req)->retries;
1352 return BLKPREP_OK;
1356 * Setup a normal block command. These are simple request from filesystems
1357 * that still need to be translated to SCSI CDBs from the ULD.
1359 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1361 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1363 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1364 int ret = sdev->handler->prep_fn(sdev, req);
1365 if (ret != BLKPREP_OK)
1366 return ret;
1369 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1370 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1371 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1374 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1376 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1378 if (!blk_rq_bytes(req))
1379 cmd->sc_data_direction = DMA_NONE;
1380 else if (rq_data_dir(req) == WRITE)
1381 cmd->sc_data_direction = DMA_TO_DEVICE;
1382 else
1383 cmd->sc_data_direction = DMA_FROM_DEVICE;
1385 if (blk_rq_is_scsi(req))
1386 return scsi_setup_scsi_cmnd(sdev, req);
1387 else
1388 return scsi_setup_fs_cmnd(sdev, req);
1391 static int
1392 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1394 int ret = BLKPREP_OK;
1397 * If the device is not in running state we will reject some
1398 * or all commands.
1400 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1401 switch (sdev->sdev_state) {
1402 case SDEV_OFFLINE:
1403 case SDEV_TRANSPORT_OFFLINE:
1405 * If the device is offline we refuse to process any
1406 * commands. The device must be brought online
1407 * before trying any recovery commands.
1409 sdev_printk(KERN_ERR, sdev,
1410 "rejecting I/O to offline device\n");
1411 ret = BLKPREP_KILL;
1412 break;
1413 case SDEV_DEL:
1415 * If the device is fully deleted, we refuse to
1416 * process any commands as well.
1418 sdev_printk(KERN_ERR, sdev,
1419 "rejecting I/O to dead device\n");
1420 ret = BLKPREP_KILL;
1421 break;
1422 case SDEV_BLOCK:
1423 case SDEV_CREATED_BLOCK:
1424 ret = BLKPREP_DEFER;
1425 break;
1426 case SDEV_QUIESCE:
1428 * If the devices is blocked we defer normal commands.
1430 if (req && !(req->rq_flags & RQF_PREEMPT))
1431 ret = BLKPREP_DEFER;
1432 break;
1433 default:
1435 * For any other not fully online state we only allow
1436 * special commands. In particular any user initiated
1437 * command is not allowed.
1439 if (req && !(req->rq_flags & RQF_PREEMPT))
1440 ret = BLKPREP_KILL;
1441 break;
1444 return ret;
1447 static int
1448 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1450 struct scsi_device *sdev = q->queuedata;
1452 switch (ret) {
1453 case BLKPREP_KILL:
1454 case BLKPREP_INVALID:
1455 scsi_req(req)->result = DID_NO_CONNECT << 16;
1456 /* release the command and kill it */
1457 if (req->special) {
1458 struct scsi_cmnd *cmd = req->special;
1459 scsi_release_buffers(cmd);
1460 scsi_put_command(cmd);
1461 put_device(&sdev->sdev_gendev);
1462 req->special = NULL;
1464 break;
1465 case BLKPREP_DEFER:
1467 * If we defer, the blk_peek_request() returns NULL, but the
1468 * queue must be restarted, so we schedule a callback to happen
1469 * shortly.
1471 if (atomic_read(&sdev->device_busy) == 0)
1472 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1473 break;
1474 default:
1475 req->rq_flags |= RQF_DONTPREP;
1478 return ret;
1481 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1483 struct scsi_device *sdev = q->queuedata;
1484 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1485 int ret;
1487 ret = scsi_prep_state_check(sdev, req);
1488 if (ret != BLKPREP_OK)
1489 goto out;
1491 if (!req->special) {
1492 /* Bail if we can't get a reference to the device */
1493 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1494 ret = BLKPREP_DEFER;
1495 goto out;
1498 scsi_init_command(sdev, cmd);
1499 req->special = cmd;
1502 cmd->tag = req->tag;
1503 cmd->request = req;
1504 cmd->prot_op = SCSI_PROT_NORMAL;
1506 ret = scsi_setup_cmnd(sdev, req);
1507 out:
1508 return scsi_prep_return(q, req, ret);
1511 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1513 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1517 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1518 * return 0.
1520 * Called with the queue_lock held.
1522 static inline int scsi_dev_queue_ready(struct request_queue *q,
1523 struct scsi_device *sdev)
1525 unsigned int busy;
1527 busy = atomic_inc_return(&sdev->device_busy) - 1;
1528 if (atomic_read(&sdev->device_blocked)) {
1529 if (busy)
1530 goto out_dec;
1533 * unblock after device_blocked iterates to zero
1535 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1537 * For the MQ case we take care of this in the caller.
1539 if (!q->mq_ops)
1540 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1541 goto out_dec;
1543 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1544 "unblocking device at zero depth\n"));
1547 if (busy >= sdev->queue_depth)
1548 goto out_dec;
1550 return 1;
1551 out_dec:
1552 atomic_dec(&sdev->device_busy);
1553 return 0;
1557 * scsi_target_queue_ready: checks if there we can send commands to target
1558 * @sdev: scsi device on starget to check.
1560 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1561 struct scsi_device *sdev)
1563 struct scsi_target *starget = scsi_target(sdev);
1564 unsigned int busy;
1566 if (starget->single_lun) {
1567 spin_lock_irq(shost->host_lock);
1568 if (starget->starget_sdev_user &&
1569 starget->starget_sdev_user != sdev) {
1570 spin_unlock_irq(shost->host_lock);
1571 return 0;
1573 starget->starget_sdev_user = sdev;
1574 spin_unlock_irq(shost->host_lock);
1577 if (starget->can_queue <= 0)
1578 return 1;
1580 busy = atomic_inc_return(&starget->target_busy) - 1;
1581 if (atomic_read(&starget->target_blocked) > 0) {
1582 if (busy)
1583 goto starved;
1586 * unblock after target_blocked iterates to zero
1588 if (atomic_dec_return(&starget->target_blocked) > 0)
1589 goto out_dec;
1591 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1592 "unblocking target at zero depth\n"));
1595 if (busy >= starget->can_queue)
1596 goto starved;
1598 return 1;
1600 starved:
1601 spin_lock_irq(shost->host_lock);
1602 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1603 spin_unlock_irq(shost->host_lock);
1604 out_dec:
1605 if (starget->can_queue > 0)
1606 atomic_dec(&starget->target_busy);
1607 return 0;
1611 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1612 * return 0. We must end up running the queue again whenever 0 is
1613 * returned, else IO can hang.
1615 static inline int scsi_host_queue_ready(struct request_queue *q,
1616 struct Scsi_Host *shost,
1617 struct scsi_device *sdev)
1619 unsigned int busy;
1621 if (scsi_host_in_recovery(shost))
1622 return 0;
1624 busy = atomic_inc_return(&shost->host_busy) - 1;
1625 if (atomic_read(&shost->host_blocked) > 0) {
1626 if (busy)
1627 goto starved;
1630 * unblock after host_blocked iterates to zero
1632 if (atomic_dec_return(&shost->host_blocked) > 0)
1633 goto out_dec;
1635 SCSI_LOG_MLQUEUE(3,
1636 shost_printk(KERN_INFO, shost,
1637 "unblocking host at zero depth\n"));
1640 if (shost->can_queue > 0 && busy >= shost->can_queue)
1641 goto starved;
1642 if (shost->host_self_blocked)
1643 goto starved;
1645 /* We're OK to process the command, so we can't be starved */
1646 if (!list_empty(&sdev->starved_entry)) {
1647 spin_lock_irq(shost->host_lock);
1648 if (!list_empty(&sdev->starved_entry))
1649 list_del_init(&sdev->starved_entry);
1650 spin_unlock_irq(shost->host_lock);
1653 return 1;
1655 starved:
1656 spin_lock_irq(shost->host_lock);
1657 if (list_empty(&sdev->starved_entry))
1658 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1659 spin_unlock_irq(shost->host_lock);
1660 out_dec:
1661 scsi_dec_host_busy(shost);
1662 return 0;
1666 * Busy state exporting function for request stacking drivers.
1668 * For efficiency, no lock is taken to check the busy state of
1669 * shost/starget/sdev, since the returned value is not guaranteed and
1670 * may be changed after request stacking drivers call the function,
1671 * regardless of taking lock or not.
1673 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1674 * needs to return 'not busy'. Otherwise, request stacking drivers
1675 * may hold requests forever.
1677 static int scsi_lld_busy(struct request_queue *q)
1679 struct scsi_device *sdev = q->queuedata;
1680 struct Scsi_Host *shost;
1682 if (blk_queue_dying(q))
1683 return 0;
1685 shost = sdev->host;
1688 * Ignore host/starget busy state.
1689 * Since block layer does not have a concept of fairness across
1690 * multiple queues, congestion of host/starget needs to be handled
1691 * in SCSI layer.
1693 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1694 return 1;
1696 return 0;
1700 * Kill a request for a dead device
1702 static void scsi_kill_request(struct request *req, struct request_queue *q)
1704 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1705 struct scsi_device *sdev;
1706 struct scsi_target *starget;
1707 struct Scsi_Host *shost;
1709 blk_start_request(req);
1711 scmd_printk(KERN_INFO, cmd, "killing request\n");
1713 sdev = cmd->device;
1714 starget = scsi_target(sdev);
1715 shost = sdev->host;
1716 scsi_init_cmd_errh(cmd);
1717 cmd->result = DID_NO_CONNECT << 16;
1718 atomic_inc(&cmd->device->iorequest_cnt);
1721 * SCSI request completion path will do scsi_device_unbusy(),
1722 * bump busy counts. To bump the counters, we need to dance
1723 * with the locks as normal issue path does.
1725 atomic_inc(&sdev->device_busy);
1726 atomic_inc(&shost->host_busy);
1727 if (starget->can_queue > 0)
1728 atomic_inc(&starget->target_busy);
1730 blk_complete_request(req);
1733 static void scsi_softirq_done(struct request *rq)
1735 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1736 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1737 int disposition;
1739 INIT_LIST_HEAD(&cmd->eh_entry);
1741 atomic_inc(&cmd->device->iodone_cnt);
1742 if (cmd->result)
1743 atomic_inc(&cmd->device->ioerr_cnt);
1745 disposition = scsi_decide_disposition(cmd);
1746 if (disposition != SUCCESS &&
1747 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1748 sdev_printk(KERN_ERR, cmd->device,
1749 "timing out command, waited %lus\n",
1750 wait_for/HZ);
1751 disposition = SUCCESS;
1754 scsi_log_completion(cmd, disposition);
1756 switch (disposition) {
1757 case SUCCESS:
1758 scsi_finish_command(cmd);
1759 break;
1760 case NEEDS_RETRY:
1761 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1762 break;
1763 case ADD_TO_MLQUEUE:
1764 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1765 break;
1766 default:
1767 scsi_eh_scmd_add(cmd);
1768 break;
1773 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1774 * @cmd: command block we are dispatching.
1776 * Return: nonzero return request was rejected and device's queue needs to be
1777 * plugged.
1779 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1781 struct Scsi_Host *host = cmd->device->host;
1782 int rtn = 0;
1784 atomic_inc(&cmd->device->iorequest_cnt);
1786 /* check if the device is still usable */
1787 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1788 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1789 * returns an immediate error upwards, and signals
1790 * that the device is no longer present */
1791 cmd->result = DID_NO_CONNECT << 16;
1792 goto done;
1795 /* Check to see if the scsi lld made this device blocked. */
1796 if (unlikely(scsi_device_blocked(cmd->device))) {
1798 * in blocked state, the command is just put back on
1799 * the device queue. The suspend state has already
1800 * blocked the queue so future requests should not
1801 * occur until the device transitions out of the
1802 * suspend state.
1804 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1805 "queuecommand : device blocked\n"));
1806 return SCSI_MLQUEUE_DEVICE_BUSY;
1809 /* Store the LUN value in cmnd, if needed. */
1810 if (cmd->device->lun_in_cdb)
1811 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1812 (cmd->device->lun << 5 & 0xe0);
1814 scsi_log_send(cmd);
1817 * Before we queue this command, check if the command
1818 * length exceeds what the host adapter can handle.
1820 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1821 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1822 "queuecommand : command too long. "
1823 "cdb_size=%d host->max_cmd_len=%d\n",
1824 cmd->cmd_len, cmd->device->host->max_cmd_len));
1825 cmd->result = (DID_ABORT << 16);
1826 goto done;
1829 if (unlikely(host->shost_state == SHOST_DEL)) {
1830 cmd->result = (DID_NO_CONNECT << 16);
1831 goto done;
1835 trace_scsi_dispatch_cmd_start(cmd);
1836 rtn = host->hostt->queuecommand(host, cmd);
1837 if (rtn) {
1838 trace_scsi_dispatch_cmd_error(cmd, rtn);
1839 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1840 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1841 rtn = SCSI_MLQUEUE_HOST_BUSY;
1843 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1844 "queuecommand : request rejected\n"));
1847 return rtn;
1848 done:
1849 cmd->scsi_done(cmd);
1850 return 0;
1854 * scsi_done - Invoke completion on finished SCSI command.
1855 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1856 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1858 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1859 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1860 * calls blk_complete_request() for further processing.
1862 * This function is interrupt context safe.
1864 static void scsi_done(struct scsi_cmnd *cmd)
1866 trace_scsi_dispatch_cmd_done(cmd);
1867 blk_complete_request(cmd->request);
1871 * Function: scsi_request_fn()
1873 * Purpose: Main strategy routine for SCSI.
1875 * Arguments: q - Pointer to actual queue.
1877 * Returns: Nothing
1879 * Lock status: request queue lock assumed to be held when called.
1881 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1882 * protection for ZBC disks.
1884 static void scsi_request_fn(struct request_queue *q)
1885 __releases(q->queue_lock)
1886 __acquires(q->queue_lock)
1888 struct scsi_device *sdev = q->queuedata;
1889 struct Scsi_Host *shost;
1890 struct scsi_cmnd *cmd;
1891 struct request *req;
1894 * To start with, we keep looping until the queue is empty, or until
1895 * the host is no longer able to accept any more requests.
1897 shost = sdev->host;
1898 for (;;) {
1899 int rtn;
1901 * get next queueable request. We do this early to make sure
1902 * that the request is fully prepared even if we cannot
1903 * accept it.
1905 req = blk_peek_request(q);
1906 if (!req)
1907 break;
1909 if (unlikely(!scsi_device_online(sdev))) {
1910 sdev_printk(KERN_ERR, sdev,
1911 "rejecting I/O to offline device\n");
1912 scsi_kill_request(req, q);
1913 continue;
1916 if (!scsi_dev_queue_ready(q, sdev))
1917 break;
1920 * Remove the request from the request list.
1922 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1923 blk_start_request(req);
1925 spin_unlock_irq(q->queue_lock);
1926 cmd = blk_mq_rq_to_pdu(req);
1927 if (cmd != req->special) {
1928 printk(KERN_CRIT "impossible request in %s.\n"
1929 "please mail a stack trace to "
1930 "linux-scsi@vger.kernel.org\n",
1931 __func__);
1932 blk_dump_rq_flags(req, "foo");
1933 BUG();
1937 * We hit this when the driver is using a host wide
1938 * tag map. For device level tag maps the queue_depth check
1939 * in the device ready fn would prevent us from trying
1940 * to allocate a tag. Since the map is a shared host resource
1941 * we add the dev to the starved list so it eventually gets
1942 * a run when a tag is freed.
1944 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1945 spin_lock_irq(shost->host_lock);
1946 if (list_empty(&sdev->starved_entry))
1947 list_add_tail(&sdev->starved_entry,
1948 &shost->starved_list);
1949 spin_unlock_irq(shost->host_lock);
1950 goto not_ready;
1953 if (!scsi_target_queue_ready(shost, sdev))
1954 goto not_ready;
1956 if (!scsi_host_queue_ready(q, shost, sdev))
1957 goto host_not_ready;
1959 if (sdev->simple_tags)
1960 cmd->flags |= SCMD_TAGGED;
1961 else
1962 cmd->flags &= ~SCMD_TAGGED;
1965 * Finally, initialize any error handling parameters, and set up
1966 * the timers for timeouts.
1968 scsi_init_cmd_errh(cmd);
1971 * Dispatch the command to the low-level driver.
1973 cmd->scsi_done = scsi_done;
1974 rtn = scsi_dispatch_cmd(cmd);
1975 if (rtn) {
1976 scsi_queue_insert(cmd, rtn);
1977 spin_lock_irq(q->queue_lock);
1978 goto out_delay;
1980 spin_lock_irq(q->queue_lock);
1983 return;
1985 host_not_ready:
1986 if (scsi_target(sdev)->can_queue > 0)
1987 atomic_dec(&scsi_target(sdev)->target_busy);
1988 not_ready:
1990 * lock q, handle tag, requeue req, and decrement device_busy. We
1991 * must return with queue_lock held.
1993 * Decrementing device_busy without checking it is OK, as all such
1994 * cases (host limits or settings) should run the queue at some
1995 * later time.
1997 spin_lock_irq(q->queue_lock);
1998 blk_requeue_request(q, req);
1999 atomic_dec(&sdev->device_busy);
2000 out_delay:
2001 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
2002 blk_delay_queue(q, SCSI_QUEUE_DELAY);
2005 static inline blk_status_t prep_to_mq(int ret)
2007 switch (ret) {
2008 case BLKPREP_OK:
2009 return BLK_STS_OK;
2010 case BLKPREP_DEFER:
2011 return BLK_STS_RESOURCE;
2012 default:
2013 return BLK_STS_IOERR;
2017 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
2018 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
2020 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2021 sizeof(struct scatterlist);
2024 static int scsi_mq_prep_fn(struct request *req)
2026 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2027 struct scsi_device *sdev = req->q->queuedata;
2028 struct Scsi_Host *shost = sdev->host;
2029 struct scatterlist *sg;
2031 scsi_init_command(sdev, cmd);
2033 req->special = cmd;
2035 cmd->request = req;
2037 cmd->tag = req->tag;
2038 cmd->prot_op = SCSI_PROT_NORMAL;
2040 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2041 cmd->sdb.table.sgl = sg;
2043 if (scsi_host_get_prot(shost)) {
2044 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2046 cmd->prot_sdb->table.sgl =
2047 (struct scatterlist *)(cmd->prot_sdb + 1);
2050 if (blk_bidi_rq(req)) {
2051 struct request *next_rq = req->next_rq;
2052 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2054 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2055 bidi_sdb->table.sgl =
2056 (struct scatterlist *)(bidi_sdb + 1);
2058 next_rq->special = bidi_sdb;
2061 blk_mq_start_request(req);
2063 return scsi_setup_cmnd(sdev, req);
2066 static void scsi_mq_done(struct scsi_cmnd *cmd)
2068 trace_scsi_dispatch_cmd_done(cmd);
2069 blk_mq_complete_request(cmd->request);
2072 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2074 struct request_queue *q = hctx->queue;
2075 struct scsi_device *sdev = q->queuedata;
2077 atomic_dec(&sdev->device_busy);
2078 put_device(&sdev->sdev_gendev);
2081 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2083 struct request_queue *q = hctx->queue;
2084 struct scsi_device *sdev = q->queuedata;
2086 if (!get_device(&sdev->sdev_gendev))
2087 goto out;
2088 if (!scsi_dev_queue_ready(q, sdev))
2089 goto out_put_device;
2091 return true;
2093 out_put_device:
2094 put_device(&sdev->sdev_gendev);
2095 out:
2096 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2097 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2098 return false;
2101 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2102 const struct blk_mq_queue_data *bd)
2104 struct request *req = bd->rq;
2105 struct request_queue *q = req->q;
2106 struct scsi_device *sdev = q->queuedata;
2107 struct Scsi_Host *shost = sdev->host;
2108 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2109 blk_status_t ret;
2110 int reason;
2112 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2113 if (ret != BLK_STS_OK)
2114 goto out_put_budget;
2116 ret = BLK_STS_RESOURCE;
2117 if (!scsi_target_queue_ready(shost, sdev))
2118 goto out_put_budget;
2119 if (!scsi_host_queue_ready(q, shost, sdev))
2120 goto out_dec_target_busy;
2122 if (!(req->rq_flags & RQF_DONTPREP)) {
2123 ret = prep_to_mq(scsi_mq_prep_fn(req));
2124 if (ret != BLK_STS_OK)
2125 goto out_dec_host_busy;
2126 req->rq_flags |= RQF_DONTPREP;
2127 } else {
2128 blk_mq_start_request(req);
2131 if (sdev->simple_tags)
2132 cmd->flags |= SCMD_TAGGED;
2133 else
2134 cmd->flags &= ~SCMD_TAGGED;
2136 scsi_init_cmd_errh(cmd);
2137 cmd->scsi_done = scsi_mq_done;
2139 reason = scsi_dispatch_cmd(cmd);
2140 if (reason) {
2141 scsi_set_blocked(cmd, reason);
2142 ret = BLK_STS_RESOURCE;
2143 goto out_dec_host_busy;
2146 return BLK_STS_OK;
2148 out_dec_host_busy:
2149 scsi_dec_host_busy(shost);
2150 out_dec_target_busy:
2151 if (scsi_target(sdev)->can_queue > 0)
2152 atomic_dec(&scsi_target(sdev)->target_busy);
2153 out_put_budget:
2154 scsi_mq_put_budget(hctx);
2155 switch (ret) {
2156 case BLK_STS_OK:
2157 break;
2158 case BLK_STS_RESOURCE:
2159 if (atomic_read(&sdev->device_busy) ||
2160 scsi_device_blocked(sdev))
2161 ret = BLK_STS_DEV_RESOURCE;
2162 break;
2163 default:
2164 if (unlikely(!scsi_device_online(sdev)))
2165 scsi_req(req)->result = DID_NO_CONNECT << 16;
2166 else
2167 scsi_req(req)->result = DID_ERROR << 16;
2169 * Make sure to release all allocated resources when
2170 * we hit an error, as we will never see this command
2171 * again.
2173 if (req->rq_flags & RQF_DONTPREP)
2174 scsi_mq_uninit_cmd(cmd);
2175 break;
2177 return ret;
2180 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2181 bool reserved)
2183 if (reserved)
2184 return BLK_EH_RESET_TIMER;
2185 return scsi_times_out(req);
2188 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2189 unsigned int hctx_idx, unsigned int numa_node)
2191 struct Scsi_Host *shost = set->driver_data;
2192 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2193 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2194 struct scatterlist *sg;
2196 if (unchecked_isa_dma)
2197 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2198 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2199 GFP_KERNEL, numa_node);
2200 if (!cmd->sense_buffer)
2201 return -ENOMEM;
2202 cmd->req.sense = cmd->sense_buffer;
2204 if (scsi_host_get_prot(shost)) {
2205 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2206 shost->hostt->cmd_size;
2207 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2210 return 0;
2213 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2214 unsigned int hctx_idx)
2216 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2219 cmd->sense_buffer);
2222 static int scsi_map_queues(struct blk_mq_tag_set *set)
2224 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2226 if (shost->hostt->map_queues)
2227 return shost->hostt->map_queues(shost);
2228 return blk_mq_map_queues(set);
2231 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2233 struct device *dev = shost->dma_dev;
2236 * this limit is imposed by hardware restrictions
2238 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2239 SG_MAX_SEGMENTS));
2241 if (scsi_host_prot_dma(shost)) {
2242 shost->sg_prot_tablesize =
2243 min_not_zero(shost->sg_prot_tablesize,
2244 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2245 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2246 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2249 blk_queue_max_hw_sectors(q, shost->max_sectors);
2250 if (shost->unchecked_isa_dma)
2251 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2252 blk_queue_segment_boundary(q, shost->dma_boundary);
2253 dma_set_seg_boundary(dev, shost->dma_boundary);
2255 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2257 if (!shost->use_clustering)
2258 q->limits.cluster = 0;
2261 * Set a reasonable default alignment: The larger of 32-byte (dword),
2262 * which is a common minimum for HBAs, and the minimum DMA alignment,
2263 * which is set by the platform.
2265 * Devices that require a bigger alignment can increase it later.
2267 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2269 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2271 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2272 gfp_t gfp)
2274 struct Scsi_Host *shost = q->rq_alloc_data;
2275 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2276 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2278 memset(cmd, 0, sizeof(*cmd));
2280 if (unchecked_isa_dma)
2281 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2282 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2283 NUMA_NO_NODE);
2284 if (!cmd->sense_buffer)
2285 goto fail;
2286 cmd->req.sense = cmd->sense_buffer;
2288 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2289 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2290 if (!cmd->prot_sdb)
2291 goto fail_free_sense;
2294 return 0;
2296 fail_free_sense:
2297 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2298 fail:
2299 return -ENOMEM;
2302 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2304 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2306 if (cmd->prot_sdb)
2307 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2308 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2309 cmd->sense_buffer);
2312 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2314 struct Scsi_Host *shost = sdev->host;
2315 struct request_queue *q;
2317 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2318 if (!q)
2319 return NULL;
2320 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2321 q->rq_alloc_data = shost;
2322 q->request_fn = scsi_request_fn;
2323 q->init_rq_fn = scsi_old_init_rq;
2324 q->exit_rq_fn = scsi_old_exit_rq;
2325 q->initialize_rq_fn = scsi_initialize_rq;
2327 if (blk_init_allocated_queue(q) < 0) {
2328 blk_cleanup_queue(q);
2329 return NULL;
2332 __scsi_init_queue(shost, q);
2333 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2334 blk_queue_prep_rq(q, scsi_prep_fn);
2335 blk_queue_unprep_rq(q, scsi_unprep_fn);
2336 blk_queue_softirq_done(q, scsi_softirq_done);
2337 blk_queue_rq_timed_out(q, scsi_times_out);
2338 blk_queue_lld_busy(q, scsi_lld_busy);
2339 return q;
2342 static const struct blk_mq_ops scsi_mq_ops = {
2343 .get_budget = scsi_mq_get_budget,
2344 .put_budget = scsi_mq_put_budget,
2345 .queue_rq = scsi_queue_rq,
2346 .complete = scsi_softirq_done,
2347 .timeout = scsi_timeout,
2348 #ifdef CONFIG_BLK_DEBUG_FS
2349 .show_rq = scsi_show_rq,
2350 #endif
2351 .init_request = scsi_mq_init_request,
2352 .exit_request = scsi_mq_exit_request,
2353 .initialize_rq_fn = scsi_initialize_rq,
2354 .cleanup_rq = scsi_cleanup_rq,
2355 .map_queues = scsi_map_queues,
2358 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2360 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2361 if (IS_ERR(sdev->request_queue))
2362 return NULL;
2364 sdev->request_queue->queuedata = sdev;
2365 __scsi_init_queue(sdev->host, sdev->request_queue);
2366 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2367 return sdev->request_queue;
2370 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2372 unsigned int cmd_size, sgl_size;
2374 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2375 scsi_mq_sgl_size(shost));
2376 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2377 if (scsi_host_get_prot(shost))
2378 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2380 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2381 shost->tag_set.ops = &scsi_mq_ops;
2382 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2383 shost->tag_set.queue_depth = shost->can_queue;
2384 shost->tag_set.cmd_size = cmd_size;
2385 shost->tag_set.numa_node = NUMA_NO_NODE;
2386 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2387 shost->tag_set.flags |=
2388 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2389 shost->tag_set.driver_data = shost;
2391 return blk_mq_alloc_tag_set(&shost->tag_set);
2394 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2396 blk_mq_free_tag_set(&shost->tag_set);
2400 * scsi_device_from_queue - return sdev associated with a request_queue
2401 * @q: The request queue to return the sdev from
2403 * Return the sdev associated with a request queue or NULL if the
2404 * request_queue does not reference a SCSI device.
2406 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2408 struct scsi_device *sdev = NULL;
2410 if (q->mq_ops) {
2411 if (q->mq_ops == &scsi_mq_ops)
2412 sdev = q->queuedata;
2413 } else if (q->request_fn == scsi_request_fn)
2414 sdev = q->queuedata;
2415 if (!sdev || !get_device(&sdev->sdev_gendev))
2416 sdev = NULL;
2418 return sdev;
2420 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2423 * Function: scsi_block_requests()
2425 * Purpose: Utility function used by low-level drivers to prevent further
2426 * commands from being queued to the device.
2428 * Arguments: shost - Host in question
2430 * Returns: Nothing
2432 * Lock status: No locks are assumed held.
2434 * Notes: There is no timer nor any other means by which the requests
2435 * get unblocked other than the low-level driver calling
2436 * scsi_unblock_requests().
2438 void scsi_block_requests(struct Scsi_Host *shost)
2440 shost->host_self_blocked = 1;
2442 EXPORT_SYMBOL(scsi_block_requests);
2445 * Function: scsi_unblock_requests()
2447 * Purpose: Utility function used by low-level drivers to allow further
2448 * commands from being queued to the device.
2450 * Arguments: shost - Host in question
2452 * Returns: Nothing
2454 * Lock status: No locks are assumed held.
2456 * Notes: There is no timer nor any other means by which the requests
2457 * get unblocked other than the low-level driver calling
2458 * scsi_unblock_requests().
2460 * This is done as an API function so that changes to the
2461 * internals of the scsi mid-layer won't require wholesale
2462 * changes to drivers that use this feature.
2464 void scsi_unblock_requests(struct Scsi_Host *shost)
2466 shost->host_self_blocked = 0;
2467 scsi_run_host_queues(shost);
2469 EXPORT_SYMBOL(scsi_unblock_requests);
2471 int __init scsi_init_queue(void)
2473 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2474 sizeof(struct scsi_data_buffer),
2475 0, 0, NULL);
2476 if (!scsi_sdb_cache) {
2477 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2478 return -ENOMEM;
2481 return 0;
2484 void scsi_exit_queue(void)
2486 kmem_cache_destroy(scsi_sense_cache);
2487 kmem_cache_destroy(scsi_sense_isadma_cache);
2488 kmem_cache_destroy(scsi_sdb_cache);
2492 * scsi_mode_select - issue a mode select
2493 * @sdev: SCSI device to be queried
2494 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2495 * @sp: Save page bit (0 == don't save, 1 == save)
2496 * @modepage: mode page being requested
2497 * @buffer: request buffer (may not be smaller than eight bytes)
2498 * @len: length of request buffer.
2499 * @timeout: command timeout
2500 * @retries: number of retries before failing
2501 * @data: returns a structure abstracting the mode header data
2502 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2503 * must be SCSI_SENSE_BUFFERSIZE big.
2505 * Returns zero if successful; negative error number or scsi
2506 * status on error
2510 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2511 unsigned char *buffer, int len, int timeout, int retries,
2512 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2514 unsigned char cmd[10];
2515 unsigned char *real_buffer;
2516 int ret;
2518 memset(cmd, 0, sizeof(cmd));
2519 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2521 if (sdev->use_10_for_ms) {
2522 if (len > 65535)
2523 return -EINVAL;
2524 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2525 if (!real_buffer)
2526 return -ENOMEM;
2527 memcpy(real_buffer + 8, buffer, len);
2528 len += 8;
2529 real_buffer[0] = 0;
2530 real_buffer[1] = 0;
2531 real_buffer[2] = data->medium_type;
2532 real_buffer[3] = data->device_specific;
2533 real_buffer[4] = data->longlba ? 0x01 : 0;
2534 real_buffer[5] = 0;
2535 real_buffer[6] = data->block_descriptor_length >> 8;
2536 real_buffer[7] = data->block_descriptor_length;
2538 cmd[0] = MODE_SELECT_10;
2539 cmd[7] = len >> 8;
2540 cmd[8] = len;
2541 } else {
2542 if (len > 255 || data->block_descriptor_length > 255 ||
2543 data->longlba)
2544 return -EINVAL;
2546 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2547 if (!real_buffer)
2548 return -ENOMEM;
2549 memcpy(real_buffer + 4, buffer, len);
2550 len += 4;
2551 real_buffer[0] = 0;
2552 real_buffer[1] = data->medium_type;
2553 real_buffer[2] = data->device_specific;
2554 real_buffer[3] = data->block_descriptor_length;
2557 cmd[0] = MODE_SELECT;
2558 cmd[4] = len;
2561 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2562 sshdr, timeout, retries, NULL);
2563 kfree(real_buffer);
2564 return ret;
2566 EXPORT_SYMBOL_GPL(scsi_mode_select);
2569 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2570 * @sdev: SCSI device to be queried
2571 * @dbd: set if mode sense will allow block descriptors to be returned
2572 * @modepage: mode page being requested
2573 * @buffer: request buffer (may not be smaller than eight bytes)
2574 * @len: length of request buffer.
2575 * @timeout: command timeout
2576 * @retries: number of retries before failing
2577 * @data: returns a structure abstracting the mode header data
2578 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2579 * must be SCSI_SENSE_BUFFERSIZE big.
2581 * Returns zero if unsuccessful, or the header offset (either 4
2582 * or 8 depending on whether a six or ten byte command was
2583 * issued) if successful.
2586 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2587 unsigned char *buffer, int len, int timeout, int retries,
2588 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2590 unsigned char cmd[12];
2591 int use_10_for_ms;
2592 int header_length;
2593 int result, retry_count = retries;
2594 struct scsi_sense_hdr my_sshdr;
2596 memset(data, 0, sizeof(*data));
2597 memset(&cmd[0], 0, 12);
2598 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2599 cmd[2] = modepage;
2601 /* caller might not be interested in sense, but we need it */
2602 if (!sshdr)
2603 sshdr = &my_sshdr;
2605 retry:
2606 use_10_for_ms = sdev->use_10_for_ms;
2608 if (use_10_for_ms) {
2609 if (len < 8)
2610 len = 8;
2612 cmd[0] = MODE_SENSE_10;
2613 cmd[8] = len;
2614 header_length = 8;
2615 } else {
2616 if (len < 4)
2617 len = 4;
2619 cmd[0] = MODE_SENSE;
2620 cmd[4] = len;
2621 header_length = 4;
2624 memset(buffer, 0, len);
2626 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2627 sshdr, timeout, retries, NULL);
2629 /* This code looks awful: what it's doing is making sure an
2630 * ILLEGAL REQUEST sense return identifies the actual command
2631 * byte as the problem. MODE_SENSE commands can return
2632 * ILLEGAL REQUEST if the code page isn't supported */
2634 if (use_10_for_ms && !scsi_status_is_good(result) &&
2635 driver_byte(result) == DRIVER_SENSE) {
2636 if (scsi_sense_valid(sshdr)) {
2637 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2638 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2640 * Invalid command operation code
2642 sdev->use_10_for_ms = 0;
2643 goto retry;
2648 if(scsi_status_is_good(result)) {
2649 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2650 (modepage == 6 || modepage == 8))) {
2651 /* Initio breakage? */
2652 header_length = 0;
2653 data->length = 13;
2654 data->medium_type = 0;
2655 data->device_specific = 0;
2656 data->longlba = 0;
2657 data->block_descriptor_length = 0;
2658 } else if(use_10_for_ms) {
2659 data->length = buffer[0]*256 + buffer[1] + 2;
2660 data->medium_type = buffer[2];
2661 data->device_specific = buffer[3];
2662 data->longlba = buffer[4] & 0x01;
2663 data->block_descriptor_length = buffer[6]*256
2664 + buffer[7];
2665 } else {
2666 data->length = buffer[0] + 1;
2667 data->medium_type = buffer[1];
2668 data->device_specific = buffer[2];
2669 data->block_descriptor_length = buffer[3];
2671 data->header_length = header_length;
2672 } else if ((status_byte(result) == CHECK_CONDITION) &&
2673 scsi_sense_valid(sshdr) &&
2674 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2675 retry_count--;
2676 goto retry;
2679 return result;
2681 EXPORT_SYMBOL(scsi_mode_sense);
2684 * scsi_test_unit_ready - test if unit is ready
2685 * @sdev: scsi device to change the state of.
2686 * @timeout: command timeout
2687 * @retries: number of retries before failing
2688 * @sshdr: outpout pointer for decoded sense information.
2690 * Returns zero if unsuccessful or an error if TUR failed. For
2691 * removable media, UNIT_ATTENTION sets ->changed flag.
2694 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2695 struct scsi_sense_hdr *sshdr)
2697 char cmd[] = {
2698 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2700 int result;
2702 /* try to eat the UNIT_ATTENTION if there are enough retries */
2703 do {
2704 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2705 timeout, 1, NULL);
2706 if (sdev->removable && scsi_sense_valid(sshdr) &&
2707 sshdr->sense_key == UNIT_ATTENTION)
2708 sdev->changed = 1;
2709 } while (scsi_sense_valid(sshdr) &&
2710 sshdr->sense_key == UNIT_ATTENTION && --retries);
2712 return result;
2714 EXPORT_SYMBOL(scsi_test_unit_ready);
2717 * scsi_device_set_state - Take the given device through the device state model.
2718 * @sdev: scsi device to change the state of.
2719 * @state: state to change to.
2721 * Returns zero if successful or an error if the requested
2722 * transition is illegal.
2725 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2727 enum scsi_device_state oldstate = sdev->sdev_state;
2729 if (state == oldstate)
2730 return 0;
2732 switch (state) {
2733 case SDEV_CREATED:
2734 switch (oldstate) {
2735 case SDEV_CREATED_BLOCK:
2736 break;
2737 default:
2738 goto illegal;
2740 break;
2742 case SDEV_RUNNING:
2743 switch (oldstate) {
2744 case SDEV_CREATED:
2745 case SDEV_OFFLINE:
2746 case SDEV_TRANSPORT_OFFLINE:
2747 case SDEV_QUIESCE:
2748 case SDEV_BLOCK:
2749 break;
2750 default:
2751 goto illegal;
2753 break;
2755 case SDEV_QUIESCE:
2756 switch (oldstate) {
2757 case SDEV_RUNNING:
2758 case SDEV_OFFLINE:
2759 case SDEV_TRANSPORT_OFFLINE:
2760 break;
2761 default:
2762 goto illegal;
2764 break;
2766 case SDEV_OFFLINE:
2767 case SDEV_TRANSPORT_OFFLINE:
2768 switch (oldstate) {
2769 case SDEV_CREATED:
2770 case SDEV_RUNNING:
2771 case SDEV_QUIESCE:
2772 case SDEV_BLOCK:
2773 break;
2774 default:
2775 goto illegal;
2777 break;
2779 case SDEV_BLOCK:
2780 switch (oldstate) {
2781 case SDEV_RUNNING:
2782 case SDEV_CREATED_BLOCK:
2783 break;
2784 default:
2785 goto illegal;
2787 break;
2789 case SDEV_CREATED_BLOCK:
2790 switch (oldstate) {
2791 case SDEV_CREATED:
2792 break;
2793 default:
2794 goto illegal;
2796 break;
2798 case SDEV_CANCEL:
2799 switch (oldstate) {
2800 case SDEV_CREATED:
2801 case SDEV_RUNNING:
2802 case SDEV_QUIESCE:
2803 case SDEV_OFFLINE:
2804 case SDEV_TRANSPORT_OFFLINE:
2805 break;
2806 default:
2807 goto illegal;
2809 break;
2811 case SDEV_DEL:
2812 switch (oldstate) {
2813 case SDEV_CREATED:
2814 case SDEV_RUNNING:
2815 case SDEV_OFFLINE:
2816 case SDEV_TRANSPORT_OFFLINE:
2817 case SDEV_CANCEL:
2818 case SDEV_BLOCK:
2819 case SDEV_CREATED_BLOCK:
2820 break;
2821 default:
2822 goto illegal;
2824 break;
2827 sdev->sdev_state = state;
2828 return 0;
2830 illegal:
2831 SCSI_LOG_ERROR_RECOVERY(1,
2832 sdev_printk(KERN_ERR, sdev,
2833 "Illegal state transition %s->%s",
2834 scsi_device_state_name(oldstate),
2835 scsi_device_state_name(state))
2837 return -EINVAL;
2839 EXPORT_SYMBOL(scsi_device_set_state);
2842 * sdev_evt_emit - emit a single SCSI device uevent
2843 * @sdev: associated SCSI device
2844 * @evt: event to emit
2846 * Send a single uevent (scsi_event) to the associated scsi_device.
2848 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2850 int idx = 0;
2851 char *envp[3];
2853 switch (evt->evt_type) {
2854 case SDEV_EVT_MEDIA_CHANGE:
2855 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2856 break;
2857 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2858 scsi_rescan_device(&sdev->sdev_gendev);
2859 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2860 break;
2861 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2862 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2863 break;
2864 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2865 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2866 break;
2867 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2868 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2869 break;
2870 case SDEV_EVT_LUN_CHANGE_REPORTED:
2871 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2872 break;
2873 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2874 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2875 break;
2876 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2877 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2878 break;
2879 default:
2880 /* do nothing */
2881 break;
2884 envp[idx++] = NULL;
2886 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2890 * sdev_evt_thread - send a uevent for each scsi event
2891 * @work: work struct for scsi_device
2893 * Dispatch queued events to their associated scsi_device kobjects
2894 * as uevents.
2896 void scsi_evt_thread(struct work_struct *work)
2898 struct scsi_device *sdev;
2899 enum scsi_device_event evt_type;
2900 LIST_HEAD(event_list);
2902 sdev = container_of(work, struct scsi_device, event_work);
2904 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2905 if (test_and_clear_bit(evt_type, sdev->pending_events))
2906 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2908 while (1) {
2909 struct scsi_event *evt;
2910 struct list_head *this, *tmp;
2911 unsigned long flags;
2913 spin_lock_irqsave(&sdev->list_lock, flags);
2914 list_splice_init(&sdev->event_list, &event_list);
2915 spin_unlock_irqrestore(&sdev->list_lock, flags);
2917 if (list_empty(&event_list))
2918 break;
2920 list_for_each_safe(this, tmp, &event_list) {
2921 evt = list_entry(this, struct scsi_event, node);
2922 list_del(&evt->node);
2923 scsi_evt_emit(sdev, evt);
2924 kfree(evt);
2930 * sdev_evt_send - send asserted event to uevent thread
2931 * @sdev: scsi_device event occurred on
2932 * @evt: event to send
2934 * Assert scsi device event asynchronously.
2936 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2938 unsigned long flags;
2940 #if 0
2941 /* FIXME: currently this check eliminates all media change events
2942 * for polled devices. Need to update to discriminate between AN
2943 * and polled events */
2944 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2945 kfree(evt);
2946 return;
2948 #endif
2950 spin_lock_irqsave(&sdev->list_lock, flags);
2951 list_add_tail(&evt->node, &sdev->event_list);
2952 schedule_work(&sdev->event_work);
2953 spin_unlock_irqrestore(&sdev->list_lock, flags);
2955 EXPORT_SYMBOL_GPL(sdev_evt_send);
2958 * sdev_evt_alloc - allocate a new scsi event
2959 * @evt_type: type of event to allocate
2960 * @gfpflags: GFP flags for allocation
2962 * Allocates and returns a new scsi_event.
2964 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2965 gfp_t gfpflags)
2967 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2968 if (!evt)
2969 return NULL;
2971 evt->evt_type = evt_type;
2972 INIT_LIST_HEAD(&evt->node);
2974 /* evt_type-specific initialization, if any */
2975 switch (evt_type) {
2976 case SDEV_EVT_MEDIA_CHANGE:
2977 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2978 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2979 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2980 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2981 case SDEV_EVT_LUN_CHANGE_REPORTED:
2982 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2983 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2984 default:
2985 /* do nothing */
2986 break;
2989 return evt;
2991 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2994 * sdev_evt_send_simple - send asserted event to uevent thread
2995 * @sdev: scsi_device event occurred on
2996 * @evt_type: type of event to send
2997 * @gfpflags: GFP flags for allocation
2999 * Assert scsi device event asynchronously, given an event type.
3001 void sdev_evt_send_simple(struct scsi_device *sdev,
3002 enum scsi_device_event evt_type, gfp_t gfpflags)
3004 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
3005 if (!evt) {
3006 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
3007 evt_type);
3008 return;
3011 sdev_evt_send(sdev, evt);
3013 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
3016 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
3017 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
3019 static int scsi_request_fn_active(struct scsi_device *sdev)
3021 struct request_queue *q = sdev->request_queue;
3022 int request_fn_active;
3024 WARN_ON_ONCE(sdev->host->use_blk_mq);
3026 spin_lock_irq(q->queue_lock);
3027 request_fn_active = q->request_fn_active;
3028 spin_unlock_irq(q->queue_lock);
3030 return request_fn_active;
3034 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3035 * @sdev: SCSI device pointer.
3037 * Wait until the ongoing shost->hostt->queuecommand() calls that are
3038 * invoked from scsi_request_fn() have finished.
3040 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3042 WARN_ON_ONCE(sdev->host->use_blk_mq);
3044 while (scsi_request_fn_active(sdev))
3045 msleep(20);
3049 * scsi_device_quiesce - Block user issued commands.
3050 * @sdev: scsi device to quiesce.
3052 * This works by trying to transition to the SDEV_QUIESCE state
3053 * (which must be a legal transition). When the device is in this
3054 * state, only special requests will be accepted, all others will
3055 * be deferred. Since special requests may also be requeued requests,
3056 * a successful return doesn't guarantee the device will be
3057 * totally quiescent.
3059 * Must be called with user context, may sleep.
3061 * Returns zero if unsuccessful or an error if not.
3064 scsi_device_quiesce(struct scsi_device *sdev)
3066 struct request_queue *q = sdev->request_queue;
3067 int err;
3070 * It is allowed to call scsi_device_quiesce() multiple times from
3071 * the same context but concurrent scsi_device_quiesce() calls are
3072 * not allowed.
3074 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3076 if (sdev->quiesced_by == current)
3077 return 0;
3079 blk_set_pm_only(q);
3081 blk_mq_freeze_queue(q);
3083 * Ensure that the effect of blk_set_pm_only() will be visible
3084 * for percpu_ref_tryget() callers that occur after the queue
3085 * unfreeze even if the queue was already frozen before this function
3086 * was called. See also https://lwn.net/Articles/573497/.
3088 synchronize_rcu();
3089 blk_mq_unfreeze_queue(q);
3091 mutex_lock(&sdev->state_mutex);
3092 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3093 if (err == 0)
3094 sdev->quiesced_by = current;
3095 else
3096 blk_clear_pm_only(q);
3097 mutex_unlock(&sdev->state_mutex);
3099 return err;
3101 EXPORT_SYMBOL(scsi_device_quiesce);
3104 * scsi_device_resume - Restart user issued commands to a quiesced device.
3105 * @sdev: scsi device to resume.
3107 * Moves the device from quiesced back to running and restarts the
3108 * queues.
3110 * Must be called with user context, may sleep.
3112 void scsi_device_resume(struct scsi_device *sdev)
3114 /* check if the device state was mutated prior to resume, and if
3115 * so assume the state is being managed elsewhere (for example
3116 * device deleted during suspend)
3118 mutex_lock(&sdev->state_mutex);
3119 if (sdev->quiesced_by) {
3120 sdev->quiesced_by = NULL;
3121 blk_clear_pm_only(sdev->request_queue);
3123 if (sdev->sdev_state == SDEV_QUIESCE)
3124 scsi_device_set_state(sdev, SDEV_RUNNING);
3125 mutex_unlock(&sdev->state_mutex);
3127 EXPORT_SYMBOL(scsi_device_resume);
3129 static void
3130 device_quiesce_fn(struct scsi_device *sdev, void *data)
3132 scsi_device_quiesce(sdev);
3135 void
3136 scsi_target_quiesce(struct scsi_target *starget)
3138 starget_for_each_device(starget, NULL, device_quiesce_fn);
3140 EXPORT_SYMBOL(scsi_target_quiesce);
3142 static void
3143 device_resume_fn(struct scsi_device *sdev, void *data)
3145 scsi_device_resume(sdev);
3148 void
3149 scsi_target_resume(struct scsi_target *starget)
3151 starget_for_each_device(starget, NULL, device_resume_fn);
3153 EXPORT_SYMBOL(scsi_target_resume);
3156 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3157 * @sdev: device to block
3159 * Pause SCSI command processing on the specified device. Does not sleep.
3161 * Returns zero if successful or a negative error code upon failure.
3163 * Notes:
3164 * This routine transitions the device to the SDEV_BLOCK state (which must be
3165 * a legal transition). When the device is in this state, command processing
3166 * is paused until the device leaves the SDEV_BLOCK state. See also
3167 * scsi_internal_device_unblock_nowait().
3169 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3171 struct request_queue *q = sdev->request_queue;
3172 unsigned long flags;
3173 int err = 0;
3175 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3176 if (err) {
3177 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3179 if (err)
3180 return err;
3184 * The device has transitioned to SDEV_BLOCK. Stop the
3185 * block layer from calling the midlayer with this device's
3186 * request queue.
3188 if (q->mq_ops) {
3189 blk_mq_quiesce_queue_nowait(q);
3190 } else {
3191 spin_lock_irqsave(q->queue_lock, flags);
3192 blk_stop_queue(q);
3193 spin_unlock_irqrestore(q->queue_lock, flags);
3196 return 0;
3198 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3201 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3202 * @sdev: device to block
3204 * Pause SCSI command processing on the specified device and wait until all
3205 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3207 * Returns zero if successful or a negative error code upon failure.
3209 * Note:
3210 * This routine transitions the device to the SDEV_BLOCK state (which must be
3211 * a legal transition). When the device is in this state, command processing
3212 * is paused until the device leaves the SDEV_BLOCK state. See also
3213 * scsi_internal_device_unblock().
3215 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3216 * scsi_internal_device_block() has blocked a SCSI device and also
3217 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3219 static int scsi_internal_device_block(struct scsi_device *sdev)
3221 struct request_queue *q = sdev->request_queue;
3222 int err;
3224 mutex_lock(&sdev->state_mutex);
3225 err = scsi_internal_device_block_nowait(sdev);
3226 if (err == 0) {
3227 if (q->mq_ops)
3228 blk_mq_quiesce_queue(q);
3229 else
3230 scsi_wait_for_queuecommand(sdev);
3232 mutex_unlock(&sdev->state_mutex);
3234 return err;
3237 void scsi_start_queue(struct scsi_device *sdev)
3239 struct request_queue *q = sdev->request_queue;
3240 unsigned long flags;
3242 if (q->mq_ops) {
3243 blk_mq_unquiesce_queue(q);
3244 } else {
3245 spin_lock_irqsave(q->queue_lock, flags);
3246 blk_start_queue(q);
3247 spin_unlock_irqrestore(q->queue_lock, flags);
3252 * scsi_internal_device_unblock_nowait - resume a device after a block request
3253 * @sdev: device to resume
3254 * @new_state: state to set the device to after unblocking
3256 * Restart the device queue for a previously suspended SCSI device. Does not
3257 * sleep.
3259 * Returns zero if successful or a negative error code upon failure.
3261 * Notes:
3262 * This routine transitions the device to the SDEV_RUNNING state or to one of
3263 * the offline states (which must be a legal transition) allowing the midlayer
3264 * to goose the queue for this device.
3266 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3267 enum scsi_device_state new_state)
3270 * Try to transition the scsi device to SDEV_RUNNING or one of the
3271 * offlined states and goose the device queue if successful.
3273 switch (sdev->sdev_state) {
3274 case SDEV_BLOCK:
3275 case SDEV_TRANSPORT_OFFLINE:
3276 sdev->sdev_state = new_state;
3277 break;
3278 case SDEV_CREATED_BLOCK:
3279 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3280 new_state == SDEV_OFFLINE)
3281 sdev->sdev_state = new_state;
3282 else
3283 sdev->sdev_state = SDEV_CREATED;
3284 break;
3285 case SDEV_CANCEL:
3286 case SDEV_OFFLINE:
3287 break;
3288 default:
3289 return -EINVAL;
3291 scsi_start_queue(sdev);
3293 return 0;
3295 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3298 * scsi_internal_device_unblock - resume a device after a block request
3299 * @sdev: device to resume
3300 * @new_state: state to set the device to after unblocking
3302 * Restart the device queue for a previously suspended SCSI device. May sleep.
3304 * Returns zero if successful or a negative error code upon failure.
3306 * Notes:
3307 * This routine transitions the device to the SDEV_RUNNING state or to one of
3308 * the offline states (which must be a legal transition) allowing the midlayer
3309 * to goose the queue for this device.
3311 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3312 enum scsi_device_state new_state)
3314 int ret;
3316 mutex_lock(&sdev->state_mutex);
3317 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3318 mutex_unlock(&sdev->state_mutex);
3320 return ret;
3323 static void
3324 device_block(struct scsi_device *sdev, void *data)
3326 scsi_internal_device_block(sdev);
3329 static int
3330 target_block(struct device *dev, void *data)
3332 if (scsi_is_target_device(dev))
3333 starget_for_each_device(to_scsi_target(dev), NULL,
3334 device_block);
3335 return 0;
3338 void
3339 scsi_target_block(struct device *dev)
3341 if (scsi_is_target_device(dev))
3342 starget_for_each_device(to_scsi_target(dev), NULL,
3343 device_block);
3344 else
3345 device_for_each_child(dev, NULL, target_block);
3347 EXPORT_SYMBOL_GPL(scsi_target_block);
3349 static void
3350 device_unblock(struct scsi_device *sdev, void *data)
3352 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3355 static int
3356 target_unblock(struct device *dev, void *data)
3358 if (scsi_is_target_device(dev))
3359 starget_for_each_device(to_scsi_target(dev), data,
3360 device_unblock);
3361 return 0;
3364 void
3365 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3367 if (scsi_is_target_device(dev))
3368 starget_for_each_device(to_scsi_target(dev), &new_state,
3369 device_unblock);
3370 else
3371 device_for_each_child(dev, &new_state, target_unblock);
3373 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3376 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3377 * @sgl: scatter-gather list
3378 * @sg_count: number of segments in sg
3379 * @offset: offset in bytes into sg, on return offset into the mapped area
3380 * @len: bytes to map, on return number of bytes mapped
3382 * Returns virtual address of the start of the mapped page
3384 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3385 size_t *offset, size_t *len)
3387 int i;
3388 size_t sg_len = 0, len_complete = 0;
3389 struct scatterlist *sg;
3390 struct page *page;
3392 WARN_ON(!irqs_disabled());
3394 for_each_sg(sgl, sg, sg_count, i) {
3395 len_complete = sg_len; /* Complete sg-entries */
3396 sg_len += sg->length;
3397 if (sg_len > *offset)
3398 break;
3401 if (unlikely(i == sg_count)) {
3402 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3403 "elements %d\n",
3404 __func__, sg_len, *offset, sg_count);
3405 WARN_ON(1);
3406 return NULL;
3409 /* Offset starting from the beginning of first page in this sg-entry */
3410 *offset = *offset - len_complete + sg->offset;
3412 /* Assumption: contiguous pages can be accessed as "page + i" */
3413 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3414 *offset &= ~PAGE_MASK;
3416 /* Bytes in this sg-entry from *offset to the end of the page */
3417 sg_len = PAGE_SIZE - *offset;
3418 if (*len > sg_len)
3419 *len = sg_len;
3421 return kmap_atomic(page);
3423 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3426 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3427 * @virt: virtual address to be unmapped
3429 void scsi_kunmap_atomic_sg(void *virt)
3431 kunmap_atomic(virt);
3433 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3435 void sdev_disable_disk_events(struct scsi_device *sdev)
3437 atomic_inc(&sdev->disk_events_disable_depth);
3439 EXPORT_SYMBOL(sdev_disable_disk_events);
3441 void sdev_enable_disk_events(struct scsi_device *sdev)
3443 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3444 return;
3445 atomic_dec(&sdev->disk_events_disable_depth);
3447 EXPORT_SYMBOL(sdev_enable_disk_events);
3450 * scsi_vpd_lun_id - return a unique device identification
3451 * @sdev: SCSI device
3452 * @id: buffer for the identification
3453 * @id_len: length of the buffer
3455 * Copies a unique device identification into @id based
3456 * on the information in the VPD page 0x83 of the device.
3457 * The string will be formatted as a SCSI name string.
3459 * Returns the length of the identification or error on failure.
3460 * If the identifier is longer than the supplied buffer the actual
3461 * identifier length is returned and the buffer is not zero-padded.
3463 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3465 u8 cur_id_type = 0xff;
3466 u8 cur_id_size = 0;
3467 const unsigned char *d, *cur_id_str;
3468 const struct scsi_vpd *vpd_pg83;
3469 int id_size = -EINVAL;
3471 rcu_read_lock();
3472 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3473 if (!vpd_pg83) {
3474 rcu_read_unlock();
3475 return -ENXIO;
3479 * Look for the correct descriptor.
3480 * Order of preference for lun descriptor:
3481 * - SCSI name string
3482 * - NAA IEEE Registered Extended
3483 * - EUI-64 based 16-byte
3484 * - EUI-64 based 12-byte
3485 * - NAA IEEE Registered
3486 * - NAA IEEE Extended
3487 * - T10 Vendor ID
3488 * as longer descriptors reduce the likelyhood
3489 * of identification clashes.
3492 /* The id string must be at least 20 bytes + terminating NULL byte */
3493 if (id_len < 21) {
3494 rcu_read_unlock();
3495 return -EINVAL;
3498 memset(id, 0, id_len);
3499 d = vpd_pg83->data + 4;
3500 while (d < vpd_pg83->data + vpd_pg83->len) {
3501 /* Skip designators not referring to the LUN */
3502 if ((d[1] & 0x30) != 0x00)
3503 goto next_desig;
3505 switch (d[1] & 0xf) {
3506 case 0x1:
3507 /* T10 Vendor ID */
3508 if (cur_id_size > d[3])
3509 break;
3510 /* Prefer anything */
3511 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3512 break;
3513 cur_id_size = d[3];
3514 if (cur_id_size + 4 > id_len)
3515 cur_id_size = id_len - 4;
3516 cur_id_str = d + 4;
3517 cur_id_type = d[1] & 0xf;
3518 id_size = snprintf(id, id_len, "t10.%*pE",
3519 cur_id_size, cur_id_str);
3520 break;
3521 case 0x2:
3522 /* EUI-64 */
3523 if (cur_id_size > d[3])
3524 break;
3525 /* Prefer NAA IEEE Registered Extended */
3526 if (cur_id_type == 0x3 &&
3527 cur_id_size == d[3])
3528 break;
3529 cur_id_size = d[3];
3530 cur_id_str = d + 4;
3531 cur_id_type = d[1] & 0xf;
3532 switch (cur_id_size) {
3533 case 8:
3534 id_size = snprintf(id, id_len,
3535 "eui.%8phN",
3536 cur_id_str);
3537 break;
3538 case 12:
3539 id_size = snprintf(id, id_len,
3540 "eui.%12phN",
3541 cur_id_str);
3542 break;
3543 case 16:
3544 id_size = snprintf(id, id_len,
3545 "eui.%16phN",
3546 cur_id_str);
3547 break;
3548 default:
3549 cur_id_size = 0;
3550 break;
3552 break;
3553 case 0x3:
3554 /* NAA */
3555 if (cur_id_size > d[3])
3556 break;
3557 cur_id_size = d[3];
3558 cur_id_str = d + 4;
3559 cur_id_type = d[1] & 0xf;
3560 switch (cur_id_size) {
3561 case 8:
3562 id_size = snprintf(id, id_len,
3563 "naa.%8phN",
3564 cur_id_str);
3565 break;
3566 case 16:
3567 id_size = snprintf(id, id_len,
3568 "naa.%16phN",
3569 cur_id_str);
3570 break;
3571 default:
3572 cur_id_size = 0;
3573 break;
3575 break;
3576 case 0x8:
3577 /* SCSI name string */
3578 if (cur_id_size + 4 > d[3])
3579 break;
3580 /* Prefer others for truncated descriptor */
3581 if (cur_id_size && d[3] > id_len)
3582 break;
3583 cur_id_size = id_size = d[3];
3584 cur_id_str = d + 4;
3585 cur_id_type = d[1] & 0xf;
3586 if (cur_id_size >= id_len)
3587 cur_id_size = id_len - 1;
3588 memcpy(id, cur_id_str, cur_id_size);
3589 /* Decrease priority for truncated descriptor */
3590 if (cur_id_size != id_size)
3591 cur_id_size = 6;
3592 break;
3593 default:
3594 break;
3596 next_desig:
3597 d += d[3] + 4;
3599 rcu_read_unlock();
3601 return id_size;
3603 EXPORT_SYMBOL(scsi_vpd_lun_id);
3606 * scsi_vpd_tpg_id - return a target port group identifier
3607 * @sdev: SCSI device
3609 * Returns the Target Port Group identifier from the information
3610 * froom VPD page 0x83 of the device.
3612 * Returns the identifier or error on failure.
3614 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3616 const unsigned char *d;
3617 const struct scsi_vpd *vpd_pg83;
3618 int group_id = -EAGAIN, rel_port = -1;
3620 rcu_read_lock();
3621 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3622 if (!vpd_pg83) {
3623 rcu_read_unlock();
3624 return -ENXIO;
3627 d = vpd_pg83->data + 4;
3628 while (d < vpd_pg83->data + vpd_pg83->len) {
3629 switch (d[1] & 0xf) {
3630 case 0x4:
3631 /* Relative target port */
3632 rel_port = get_unaligned_be16(&d[6]);
3633 break;
3634 case 0x5:
3635 /* Target port group */
3636 group_id = get_unaligned_be16(&d[6]);
3637 break;
3638 default:
3639 break;
3641 d += d[3] + 4;
3643 rcu_read_unlock();
3645 if (group_id >= 0 && rel_id && rel_port != -1)
3646 *rel_id = rel_port;
3648 return group_id;
3650 EXPORT_SYMBOL(scsi_vpd_tpg_id);