Linux 4.19.133
[linux/fpc-iii.git] / drivers / soc / fsl / qbman / qman.c
bloba4ac6073c555d3278f0747e74af60d6f71943d78
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 #include "qman_priv.h"
33 #define DQRR_MAXFILL 15
34 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */
35 #define IRQNAME "QMan portal %d"
36 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */
37 #define QMAN_POLL_LIMIT 32
38 #define QMAN_PIRQ_DQRR_ITHRESH 12
39 #define QMAN_PIRQ_MR_ITHRESH 4
40 #define QMAN_PIRQ_IPERIOD 100
42 /* Portal register assists */
44 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
45 /* Cache-inhibited register offsets */
46 #define QM_REG_EQCR_PI_CINH 0x3000
47 #define QM_REG_EQCR_CI_CINH 0x3040
48 #define QM_REG_EQCR_ITR 0x3080
49 #define QM_REG_DQRR_PI_CINH 0x3100
50 #define QM_REG_DQRR_CI_CINH 0x3140
51 #define QM_REG_DQRR_ITR 0x3180
52 #define QM_REG_DQRR_DCAP 0x31C0
53 #define QM_REG_DQRR_SDQCR 0x3200
54 #define QM_REG_DQRR_VDQCR 0x3240
55 #define QM_REG_DQRR_PDQCR 0x3280
56 #define QM_REG_MR_PI_CINH 0x3300
57 #define QM_REG_MR_CI_CINH 0x3340
58 #define QM_REG_MR_ITR 0x3380
59 #define QM_REG_CFG 0x3500
60 #define QM_REG_ISR 0x3600
61 #define QM_REG_IER 0x3640
62 #define QM_REG_ISDR 0x3680
63 #define QM_REG_IIR 0x36C0
64 #define QM_REG_ITPR 0x3740
66 /* Cache-enabled register offsets */
67 #define QM_CL_EQCR 0x0000
68 #define QM_CL_DQRR 0x1000
69 #define QM_CL_MR 0x2000
70 #define QM_CL_EQCR_PI_CENA 0x3000
71 #define QM_CL_EQCR_CI_CENA 0x3040
72 #define QM_CL_DQRR_PI_CENA 0x3100
73 #define QM_CL_DQRR_CI_CENA 0x3140
74 #define QM_CL_MR_PI_CENA 0x3300
75 #define QM_CL_MR_CI_CENA 0x3340
76 #define QM_CL_CR 0x3800
77 #define QM_CL_RR0 0x3900
78 #define QM_CL_RR1 0x3940
80 #else
81 /* Cache-inhibited register offsets */
82 #define QM_REG_EQCR_PI_CINH 0x0000
83 #define QM_REG_EQCR_CI_CINH 0x0004
84 #define QM_REG_EQCR_ITR 0x0008
85 #define QM_REG_DQRR_PI_CINH 0x0040
86 #define QM_REG_DQRR_CI_CINH 0x0044
87 #define QM_REG_DQRR_ITR 0x0048
88 #define QM_REG_DQRR_DCAP 0x0050
89 #define QM_REG_DQRR_SDQCR 0x0054
90 #define QM_REG_DQRR_VDQCR 0x0058
91 #define QM_REG_DQRR_PDQCR 0x005c
92 #define QM_REG_MR_PI_CINH 0x0080
93 #define QM_REG_MR_CI_CINH 0x0084
94 #define QM_REG_MR_ITR 0x0088
95 #define QM_REG_CFG 0x0100
96 #define QM_REG_ISR 0x0e00
97 #define QM_REG_IER 0x0e04
98 #define QM_REG_ISDR 0x0e08
99 #define QM_REG_IIR 0x0e0c
100 #define QM_REG_ITPR 0x0e14
102 /* Cache-enabled register offsets */
103 #define QM_CL_EQCR 0x0000
104 #define QM_CL_DQRR 0x1000
105 #define QM_CL_MR 0x2000
106 #define QM_CL_EQCR_PI_CENA 0x3000
107 #define QM_CL_EQCR_CI_CENA 0x3100
108 #define QM_CL_DQRR_PI_CENA 0x3200
109 #define QM_CL_DQRR_CI_CENA 0x3300
110 #define QM_CL_MR_PI_CENA 0x3400
111 #define QM_CL_MR_CI_CENA 0x3500
112 #define QM_CL_CR 0x3800
113 #define QM_CL_RR0 0x3900
114 #define QM_CL_RR1 0x3940
115 #endif
118 * BTW, the drivers (and h/w programming model) already obtain the required
119 * synchronisation for portal accesses and data-dependencies. Use of barrier()s
120 * or other order-preserving primitives simply degrade performance. Hence the
121 * use of the __raw_*() interfaces, which simply ensure that the compiler treats
122 * the portal registers as volatile
125 /* Cache-enabled ring access */
126 #define qm_cl(base, idx) ((void *)base + ((idx) << 6))
129 * Portal modes.
130 * Enum types;
131 * pmode == production mode
132 * cmode == consumption mode,
133 * dmode == h/w dequeue mode.
134 * Enum values use 3 letter codes. First letter matches the portal mode,
135 * remaining two letters indicate;
136 * ci == cache-inhibited portal register
137 * ce == cache-enabled portal register
138 * vb == in-band valid-bit (cache-enabled)
139 * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
140 * As for "enum qm_dqrr_dmode", it should be self-explanatory.
142 enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */
143 qm_eqcr_pci = 0, /* PI index, cache-inhibited */
144 qm_eqcr_pce = 1, /* PI index, cache-enabled */
145 qm_eqcr_pvb = 2 /* valid-bit */
147 enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */
148 qm_dqrr_dpush = 0, /* SDQCR + VDQCR */
149 qm_dqrr_dpull = 1 /* PDQCR */
151 enum qm_dqrr_pmode { /* s/w-only */
152 qm_dqrr_pci, /* reads DQRR_PI_CINH */
153 qm_dqrr_pce, /* reads DQRR_PI_CENA */
154 qm_dqrr_pvb /* reads valid-bit */
156 enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */
157 qm_dqrr_cci = 0, /* CI index, cache-inhibited */
158 qm_dqrr_cce = 1, /* CI index, cache-enabled */
159 qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */
161 enum qm_mr_pmode { /* s/w-only */
162 qm_mr_pci, /* reads MR_PI_CINH */
163 qm_mr_pce, /* reads MR_PI_CENA */
164 qm_mr_pvb /* reads valid-bit */
166 enum qm_mr_cmode { /* matches QCSP_CFG::MM */
167 qm_mr_cci = 0, /* CI index, cache-inhibited */
168 qm_mr_cce = 1 /* CI index, cache-enabled */
171 /* --- Portal structures --- */
173 #define QM_EQCR_SIZE 8
174 #define QM_DQRR_SIZE 16
175 #define QM_MR_SIZE 8
177 /* "Enqueue Command" */
178 struct qm_eqcr_entry {
179 u8 _ncw_verb; /* writes to this are non-coherent */
180 u8 dca;
181 __be16 seqnum;
182 u8 __reserved[4];
183 __be32 fqid; /* 24-bit */
184 __be32 tag;
185 struct qm_fd fd;
186 u8 __reserved3[32];
187 } __packed;
188 #define QM_EQCR_VERB_VBIT 0x80
189 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */
190 #define QM_EQCR_VERB_CMD_ENQUEUE 0x01
191 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */
192 #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */
193 #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */
195 struct qm_eqcr {
196 struct qm_eqcr_entry *ring, *cursor;
197 u8 ci, available, ithresh, vbit;
198 #ifdef CONFIG_FSL_DPAA_CHECKING
199 u32 busy;
200 enum qm_eqcr_pmode pmode;
201 #endif
204 struct qm_dqrr {
205 const struct qm_dqrr_entry *ring, *cursor;
206 u8 pi, ci, fill, ithresh, vbit;
207 #ifdef CONFIG_FSL_DPAA_CHECKING
208 enum qm_dqrr_dmode dmode;
209 enum qm_dqrr_pmode pmode;
210 enum qm_dqrr_cmode cmode;
211 #endif
214 struct qm_mr {
215 union qm_mr_entry *ring, *cursor;
216 u8 pi, ci, fill, ithresh, vbit;
217 #ifdef CONFIG_FSL_DPAA_CHECKING
218 enum qm_mr_pmode pmode;
219 enum qm_mr_cmode cmode;
220 #endif
223 /* MC (Management Command) command */
224 /* "FQ" command layout */
225 struct qm_mcc_fq {
226 u8 _ncw_verb;
227 u8 __reserved1[3];
228 __be32 fqid; /* 24-bit */
229 u8 __reserved2[56];
230 } __packed;
232 /* "CGR" command layout */
233 struct qm_mcc_cgr {
234 u8 _ncw_verb;
235 u8 __reserved1[30];
236 u8 cgid;
237 u8 __reserved2[32];
240 #define QM_MCC_VERB_VBIT 0x80
241 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */
242 #define QM_MCC_VERB_INITFQ_PARKED 0x40
243 #define QM_MCC_VERB_INITFQ_SCHED 0x41
244 #define QM_MCC_VERB_QUERYFQ 0x44
245 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */
246 #define QM_MCC_VERB_QUERYWQ 0x46
247 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47
248 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */
249 #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */
250 #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */
251 #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */
252 #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */
253 #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */
254 #define QM_MCC_VERB_INITCGR 0x50
255 #define QM_MCC_VERB_MODIFYCGR 0x51
256 #define QM_MCC_VERB_CGRTESTWRITE 0x52
257 #define QM_MCC_VERB_QUERYCGR 0x58
258 #define QM_MCC_VERB_QUERYCONGESTION 0x59
259 union qm_mc_command {
260 struct {
261 u8 _ncw_verb; /* writes to this are non-coherent */
262 u8 __reserved[63];
264 struct qm_mcc_initfq initfq;
265 struct qm_mcc_initcgr initcgr;
266 struct qm_mcc_fq fq;
267 struct qm_mcc_cgr cgr;
270 /* MC (Management Command) result */
271 /* "Query FQ" */
272 struct qm_mcr_queryfq {
273 u8 verb;
274 u8 result;
275 u8 __reserved1[8];
276 struct qm_fqd fqd; /* the FQD fields are here */
277 u8 __reserved2[30];
278 } __packed;
280 /* "Alter FQ State Commands" */
281 struct qm_mcr_alterfq {
282 u8 verb;
283 u8 result;
284 u8 fqs; /* Frame Queue Status */
285 u8 __reserved1[61];
287 #define QM_MCR_VERB_RRID 0x80
288 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
289 #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
290 #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
291 #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
292 #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
293 #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
294 #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
295 #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
296 #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
297 #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
298 #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
299 #define QM_MCR_RESULT_NULL 0x00
300 #define QM_MCR_RESULT_OK 0xf0
301 #define QM_MCR_RESULT_ERR_FQID 0xf1
302 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2
303 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
304 #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
305 #define QM_MCR_RESULT_PENDING 0xf8
306 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
307 #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
308 #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
309 #define QM_MCR_TIMEOUT 10000 /* us */
310 union qm_mc_result {
311 struct {
312 u8 verb;
313 u8 result;
314 u8 __reserved1[62];
316 struct qm_mcr_queryfq queryfq;
317 struct qm_mcr_alterfq alterfq;
318 struct qm_mcr_querycgr querycgr;
319 struct qm_mcr_querycongestion querycongestion;
320 struct qm_mcr_querywq querywq;
321 struct qm_mcr_queryfq_np queryfq_np;
324 struct qm_mc {
325 union qm_mc_command *cr;
326 union qm_mc_result *rr;
327 u8 rridx, vbit;
328 #ifdef CONFIG_FSL_DPAA_CHECKING
329 enum {
330 /* Can be _mc_start()ed */
331 qman_mc_idle,
332 /* Can be _mc_commit()ed or _mc_abort()ed */
333 qman_mc_user,
334 /* Can only be _mc_retry()ed */
335 qman_mc_hw
336 } state;
337 #endif
340 struct qm_addr {
341 void *ce; /* cache-enabled */
342 __be32 *ce_be; /* same value as above but for direct access */
343 void __iomem *ci; /* cache-inhibited */
346 struct qm_portal {
348 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to
349 * and including 'mc' fits within a cacheline (yay!). The 'config' part
350 * is setup-only, so isn't a cause for a concern. In other words, don't
351 * rearrange this structure on a whim, there be dragons ...
353 struct qm_addr addr;
354 struct qm_eqcr eqcr;
355 struct qm_dqrr dqrr;
356 struct qm_mr mr;
357 struct qm_mc mc;
358 } ____cacheline_aligned;
360 /* Cache-inhibited register access. */
361 static inline u32 qm_in(struct qm_portal *p, u32 offset)
363 return ioread32be(p->addr.ci + offset);
366 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val)
368 iowrite32be(val, p->addr.ci + offset);
371 /* Cache Enabled Portal Access */
372 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset)
374 dpaa_invalidate(p->addr.ce + offset);
377 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset)
379 dpaa_touch_ro(p->addr.ce + offset);
382 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset)
384 return be32_to_cpu(*(p->addr.ce_be + (offset/4)));
387 /* --- EQCR API --- */
389 #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry))
390 #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT)
392 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
393 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p)
395 uintptr_t addr = (uintptr_t)p;
397 addr &= ~EQCR_CARRY;
399 return (struct qm_eqcr_entry *)addr;
402 /* Bit-wise logic to convert a ring pointer to a ring index */
403 static int eqcr_ptr2idx(struct qm_eqcr_entry *e)
405 return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1);
408 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */
409 static inline void eqcr_inc(struct qm_eqcr *eqcr)
411 /* increment to the next EQCR pointer and handle overflow and 'vbit' */
412 struct qm_eqcr_entry *partial = eqcr->cursor + 1;
414 eqcr->cursor = eqcr_carryclear(partial);
415 if (partial != eqcr->cursor)
416 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
419 static inline int qm_eqcr_init(struct qm_portal *portal,
420 enum qm_eqcr_pmode pmode,
421 unsigned int eq_stash_thresh,
422 int eq_stash_prio)
424 struct qm_eqcr *eqcr = &portal->eqcr;
425 u32 cfg;
426 u8 pi;
428 eqcr->ring = portal->addr.ce + QM_CL_EQCR;
429 eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
430 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
431 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
432 eqcr->cursor = eqcr->ring + pi;
433 eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ?
434 QM_EQCR_VERB_VBIT : 0;
435 eqcr->available = QM_EQCR_SIZE - 1 -
436 dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
437 eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR);
438 #ifdef CONFIG_FSL_DPAA_CHECKING
439 eqcr->busy = 0;
440 eqcr->pmode = pmode;
441 #endif
442 cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) |
443 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
444 (eq_stash_prio << 26) | /* QCSP_CFG: EP */
445 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
446 qm_out(portal, QM_REG_CFG, cfg);
447 return 0;
450 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal)
452 return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7;
455 static inline void qm_eqcr_finish(struct qm_portal *portal)
457 struct qm_eqcr *eqcr = &portal->eqcr;
458 u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
459 u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
461 DPAA_ASSERT(!eqcr->busy);
462 if (pi != eqcr_ptr2idx(eqcr->cursor))
463 pr_crit("losing uncommitted EQCR entries\n");
464 if (ci != eqcr->ci)
465 pr_crit("missing existing EQCR completions\n");
466 if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor))
467 pr_crit("EQCR destroyed unquiesced\n");
470 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
471 *portal)
473 struct qm_eqcr *eqcr = &portal->eqcr;
475 DPAA_ASSERT(!eqcr->busy);
476 if (!eqcr->available)
477 return NULL;
479 #ifdef CONFIG_FSL_DPAA_CHECKING
480 eqcr->busy = 1;
481 #endif
482 dpaa_zero(eqcr->cursor);
483 return eqcr->cursor;
486 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
487 *portal)
489 struct qm_eqcr *eqcr = &portal->eqcr;
490 u8 diff, old_ci;
492 DPAA_ASSERT(!eqcr->busy);
493 if (!eqcr->available) {
494 old_ci = eqcr->ci;
495 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) &
496 (QM_EQCR_SIZE - 1);
497 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
498 eqcr->available += diff;
499 if (!diff)
500 return NULL;
502 #ifdef CONFIG_FSL_DPAA_CHECKING
503 eqcr->busy = 1;
504 #endif
505 dpaa_zero(eqcr->cursor);
506 return eqcr->cursor;
509 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr)
511 DPAA_ASSERT(eqcr->busy);
512 DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK));
513 DPAA_ASSERT(eqcr->available >= 1);
516 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
518 struct qm_eqcr *eqcr = &portal->eqcr;
519 struct qm_eqcr_entry *eqcursor;
521 eqcr_commit_checks(eqcr);
522 DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
523 dma_wmb();
524 eqcursor = eqcr->cursor;
525 eqcursor->_ncw_verb = myverb | eqcr->vbit;
526 dpaa_flush(eqcursor);
527 eqcr_inc(eqcr);
528 eqcr->available--;
529 #ifdef CONFIG_FSL_DPAA_CHECKING
530 eqcr->busy = 0;
531 #endif
534 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
536 qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA);
539 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
541 struct qm_eqcr *eqcr = &portal->eqcr;
542 u8 diff, old_ci = eqcr->ci;
544 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1);
545 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
546 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
547 eqcr->available += diff;
548 return diff;
551 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
553 struct qm_eqcr *eqcr = &portal->eqcr;
555 eqcr->ithresh = ithresh;
556 qm_out(portal, QM_REG_EQCR_ITR, ithresh);
559 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
561 struct qm_eqcr *eqcr = &portal->eqcr;
563 return eqcr->available;
566 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
568 struct qm_eqcr *eqcr = &portal->eqcr;
570 return QM_EQCR_SIZE - 1 - eqcr->available;
573 /* --- DQRR API --- */
575 #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry))
576 #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT)
578 static const struct qm_dqrr_entry *dqrr_carryclear(
579 const struct qm_dqrr_entry *p)
581 uintptr_t addr = (uintptr_t)p;
583 addr &= ~DQRR_CARRY;
585 return (const struct qm_dqrr_entry *)addr;
588 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e)
590 return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1);
593 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e)
595 return dqrr_carryclear(e + 1);
598 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
600 qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) |
601 ((mf & (QM_DQRR_SIZE - 1)) << 20));
604 static inline int qm_dqrr_init(struct qm_portal *portal,
605 const struct qm_portal_config *config,
606 enum qm_dqrr_dmode dmode,
607 enum qm_dqrr_pmode pmode,
608 enum qm_dqrr_cmode cmode, u8 max_fill)
610 struct qm_dqrr *dqrr = &portal->dqrr;
611 u32 cfg;
613 /* Make sure the DQRR will be idle when we enable */
614 qm_out(portal, QM_REG_DQRR_SDQCR, 0);
615 qm_out(portal, QM_REG_DQRR_VDQCR, 0);
616 qm_out(portal, QM_REG_DQRR_PDQCR, 0);
617 dqrr->ring = portal->addr.ce + QM_CL_DQRR;
618 dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
619 dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
620 dqrr->cursor = dqrr->ring + dqrr->ci;
621 dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
622 dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ?
623 QM_DQRR_VERB_VBIT : 0;
624 dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR);
625 #ifdef CONFIG_FSL_DPAA_CHECKING
626 dqrr->dmode = dmode;
627 dqrr->pmode = pmode;
628 dqrr->cmode = cmode;
629 #endif
630 /* Invalidate every ring entry before beginning */
631 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
632 dpaa_invalidate(qm_cl(dqrr->ring, cfg));
633 cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) |
634 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
635 ((dmode & 1) << 18) | /* DP */
636 ((cmode & 3) << 16) | /* DCM */
637 0xa0 | /* RE+SE */
638 (0 ? 0x40 : 0) | /* Ignore RP */
639 (0 ? 0x10 : 0); /* Ignore SP */
640 qm_out(portal, QM_REG_CFG, cfg);
641 qm_dqrr_set_maxfill(portal, max_fill);
642 return 0;
645 static inline void qm_dqrr_finish(struct qm_portal *portal)
647 #ifdef CONFIG_FSL_DPAA_CHECKING
648 struct qm_dqrr *dqrr = &portal->dqrr;
650 if (dqrr->cmode != qm_dqrr_cdc &&
651 dqrr->ci != dqrr_ptr2idx(dqrr->cursor))
652 pr_crit("Ignoring completed DQRR entries\n");
653 #endif
656 static inline const struct qm_dqrr_entry *qm_dqrr_current(
657 struct qm_portal *portal)
659 struct qm_dqrr *dqrr = &portal->dqrr;
661 if (!dqrr->fill)
662 return NULL;
663 return dqrr->cursor;
666 static inline u8 qm_dqrr_next(struct qm_portal *portal)
668 struct qm_dqrr *dqrr = &portal->dqrr;
670 DPAA_ASSERT(dqrr->fill);
671 dqrr->cursor = dqrr_inc(dqrr->cursor);
672 return --dqrr->fill;
675 static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
677 struct qm_dqrr *dqrr = &portal->dqrr;
678 struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
680 DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
681 #ifndef CONFIG_FSL_PAMU
683 * If PAMU is not available we need to invalidate the cache.
684 * When PAMU is available the cache is updated by stash
686 dpaa_invalidate_touch_ro(res);
687 #endif
688 if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
689 dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
690 if (!dqrr->pi)
691 dqrr->vbit ^= QM_DQRR_VERB_VBIT;
692 dqrr->fill++;
696 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
697 const struct qm_dqrr_entry *dq,
698 int park)
700 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
701 int idx = dqrr_ptr2idx(dq);
703 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
704 DPAA_ASSERT((dqrr->ring + idx) == dq);
705 DPAA_ASSERT(idx < QM_DQRR_SIZE);
706 qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
707 ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */
708 idx); /* DQRR_DCAP::DCAP_CI */
711 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask)
713 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
715 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
716 qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
717 (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */
720 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
722 qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr);
725 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
727 qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr);
730 static inline void qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
732 qm_out(portal, QM_REG_DQRR_ITR, ithresh);
735 /* --- MR API --- */
737 #define MR_SHIFT ilog2(sizeof(union qm_mr_entry))
738 #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT)
740 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p)
742 uintptr_t addr = (uintptr_t)p;
744 addr &= ~MR_CARRY;
746 return (union qm_mr_entry *)addr;
749 static inline int mr_ptr2idx(const union qm_mr_entry *e)
751 return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1);
754 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e)
756 return mr_carryclear(e + 1);
759 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode,
760 enum qm_mr_cmode cmode)
762 struct qm_mr *mr = &portal->mr;
763 u32 cfg;
765 mr->ring = portal->addr.ce + QM_CL_MR;
766 mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1);
767 mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1);
768 mr->cursor = mr->ring + mr->ci;
769 mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
770 mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE)
771 ? QM_MR_VERB_VBIT : 0;
772 mr->ithresh = qm_in(portal, QM_REG_MR_ITR);
773 #ifdef CONFIG_FSL_DPAA_CHECKING
774 mr->pmode = pmode;
775 mr->cmode = cmode;
776 #endif
777 cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) |
778 ((cmode & 1) << 8); /* QCSP_CFG:MM */
779 qm_out(portal, QM_REG_CFG, cfg);
780 return 0;
783 static inline void qm_mr_finish(struct qm_portal *portal)
785 struct qm_mr *mr = &portal->mr;
787 if (mr->ci != mr_ptr2idx(mr->cursor))
788 pr_crit("Ignoring completed MR entries\n");
791 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal)
793 struct qm_mr *mr = &portal->mr;
795 if (!mr->fill)
796 return NULL;
797 return mr->cursor;
800 static inline int qm_mr_next(struct qm_portal *portal)
802 struct qm_mr *mr = &portal->mr;
804 DPAA_ASSERT(mr->fill);
805 mr->cursor = mr_inc(mr->cursor);
806 return --mr->fill;
809 static inline void qm_mr_pvb_update(struct qm_portal *portal)
811 struct qm_mr *mr = &portal->mr;
812 union qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
814 DPAA_ASSERT(mr->pmode == qm_mr_pvb);
816 if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) {
817 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
818 if (!mr->pi)
819 mr->vbit ^= QM_MR_VERB_VBIT;
820 mr->fill++;
821 res = mr_inc(res);
823 dpaa_invalidate_touch_ro(res);
826 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
828 struct qm_mr *mr = &portal->mr;
830 DPAA_ASSERT(mr->cmode == qm_mr_cci);
831 mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
832 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
835 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
837 struct qm_mr *mr = &portal->mr;
839 DPAA_ASSERT(mr->cmode == qm_mr_cci);
840 mr->ci = mr_ptr2idx(mr->cursor);
841 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
844 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
846 qm_out(portal, QM_REG_MR_ITR, ithresh);
849 /* --- Management command API --- */
851 static inline int qm_mc_init(struct qm_portal *portal)
853 struct qm_mc *mc = &portal->mc;
855 mc->cr = portal->addr.ce + QM_CL_CR;
856 mc->rr = portal->addr.ce + QM_CL_RR0;
857 mc->rridx = (mc->cr->_ncw_verb & QM_MCC_VERB_VBIT)
858 ? 0 : 1;
859 mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
860 #ifdef CONFIG_FSL_DPAA_CHECKING
861 mc->state = qman_mc_idle;
862 #endif
863 return 0;
866 static inline void qm_mc_finish(struct qm_portal *portal)
868 #ifdef CONFIG_FSL_DPAA_CHECKING
869 struct qm_mc *mc = &portal->mc;
871 DPAA_ASSERT(mc->state == qman_mc_idle);
872 if (mc->state != qman_mc_idle)
873 pr_crit("Losing incomplete MC command\n");
874 #endif
877 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal)
879 struct qm_mc *mc = &portal->mc;
881 DPAA_ASSERT(mc->state == qman_mc_idle);
882 #ifdef CONFIG_FSL_DPAA_CHECKING
883 mc->state = qman_mc_user;
884 #endif
885 dpaa_zero(mc->cr);
886 return mc->cr;
889 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
891 struct qm_mc *mc = &portal->mc;
892 union qm_mc_result *rr = mc->rr + mc->rridx;
894 DPAA_ASSERT(mc->state == qman_mc_user);
895 dma_wmb();
896 mc->cr->_ncw_verb = myverb | mc->vbit;
897 dpaa_flush(mc->cr);
898 dpaa_invalidate_touch_ro(rr);
899 #ifdef CONFIG_FSL_DPAA_CHECKING
900 mc->state = qman_mc_hw;
901 #endif
904 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal)
906 struct qm_mc *mc = &portal->mc;
907 union qm_mc_result *rr = mc->rr + mc->rridx;
909 DPAA_ASSERT(mc->state == qman_mc_hw);
911 * The inactive response register's verb byte always returns zero until
912 * its command is submitted and completed. This includes the valid-bit,
913 * in case you were wondering...
915 if (!rr->verb) {
916 dpaa_invalidate_touch_ro(rr);
917 return NULL;
919 mc->rridx ^= 1;
920 mc->vbit ^= QM_MCC_VERB_VBIT;
921 #ifdef CONFIG_FSL_DPAA_CHECKING
922 mc->state = qman_mc_idle;
923 #endif
924 return rr;
927 static inline int qm_mc_result_timeout(struct qm_portal *portal,
928 union qm_mc_result **mcr)
930 int timeout = QM_MCR_TIMEOUT;
932 do {
933 *mcr = qm_mc_result(portal);
934 if (*mcr)
935 break;
936 udelay(1);
937 } while (--timeout);
939 return timeout;
942 static inline void fq_set(struct qman_fq *fq, u32 mask)
944 fq->flags |= mask;
947 static inline void fq_clear(struct qman_fq *fq, u32 mask)
949 fq->flags &= ~mask;
952 static inline int fq_isset(struct qman_fq *fq, u32 mask)
954 return fq->flags & mask;
957 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
959 return !(fq->flags & mask);
962 struct qman_portal {
963 struct qm_portal p;
964 /* PORTAL_BITS_*** - dynamic, strictly internal */
965 unsigned long bits;
966 /* interrupt sources processed by portal_isr(), configurable */
967 unsigned long irq_sources;
968 u32 use_eqcr_ci_stashing;
969 /* only 1 volatile dequeue at a time */
970 struct qman_fq *vdqcr_owned;
971 u32 sdqcr;
972 /* probing time config params for cpu-affine portals */
973 const struct qm_portal_config *config;
974 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
975 struct qman_cgrs *cgrs;
976 /* linked-list of CSCN handlers. */
977 struct list_head cgr_cbs;
978 /* list lock */
979 spinlock_t cgr_lock;
980 struct work_struct congestion_work;
981 struct work_struct mr_work;
982 char irqname[MAX_IRQNAME];
985 static cpumask_t affine_mask;
986 static DEFINE_SPINLOCK(affine_mask_lock);
987 static u16 affine_channels[NR_CPUS];
988 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal);
989 struct qman_portal *affine_portals[NR_CPUS];
991 static inline struct qman_portal *get_affine_portal(void)
993 return &get_cpu_var(qman_affine_portal);
996 static inline void put_affine_portal(void)
998 put_cpu_var(qman_affine_portal);
1001 static struct workqueue_struct *qm_portal_wq;
1003 int qman_wq_alloc(void)
1005 qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1);
1006 if (!qm_portal_wq)
1007 return -ENOMEM;
1008 return 0;
1012 * This is what everything can wait on, even if it migrates to a different cpu
1013 * to the one whose affine portal it is waiting on.
1015 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
1017 static struct qman_fq **fq_table;
1018 static u32 num_fqids;
1020 int qman_alloc_fq_table(u32 _num_fqids)
1022 num_fqids = _num_fqids;
1024 fq_table = vzalloc(array3_size(sizeof(struct qman_fq *),
1025 num_fqids, 2));
1026 if (!fq_table)
1027 return -ENOMEM;
1029 pr_debug("Allocated fq lookup table at %p, entry count %u\n",
1030 fq_table, num_fqids * 2);
1031 return 0;
1034 static struct qman_fq *idx_to_fq(u32 idx)
1036 struct qman_fq *fq;
1038 #ifdef CONFIG_FSL_DPAA_CHECKING
1039 if (WARN_ON(idx >= num_fqids * 2))
1040 return NULL;
1041 #endif
1042 fq = fq_table[idx];
1043 DPAA_ASSERT(!fq || idx == fq->idx);
1045 return fq;
1049 * Only returns full-service fq objects, not enqueue-only
1050 * references (QMAN_FQ_FLAG_NO_MODIFY).
1052 static struct qman_fq *fqid_to_fq(u32 fqid)
1054 return idx_to_fq(fqid * 2);
1057 static struct qman_fq *tag_to_fq(u32 tag)
1059 #if BITS_PER_LONG == 64
1060 return idx_to_fq(tag);
1061 #else
1062 return (struct qman_fq *)tag;
1063 #endif
1066 static u32 fq_to_tag(struct qman_fq *fq)
1068 #if BITS_PER_LONG == 64
1069 return fq->idx;
1070 #else
1071 return (u32)fq;
1072 #endif
1075 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
1076 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1077 unsigned int poll_limit);
1078 static void qm_congestion_task(struct work_struct *work);
1079 static void qm_mr_process_task(struct work_struct *work);
1081 static irqreturn_t portal_isr(int irq, void *ptr)
1083 struct qman_portal *p = ptr;
1084 u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources;
1085 u32 clear = 0;
1087 if (unlikely(!is))
1088 return IRQ_NONE;
1090 /* DQRR-handling if it's interrupt-driven */
1091 if (is & QM_PIRQ_DQRI) {
1092 __poll_portal_fast(p, QMAN_POLL_LIMIT);
1093 clear = QM_DQAVAIL_MASK | QM_PIRQ_DQRI;
1095 /* Handling of anything else that's interrupt-driven */
1096 clear |= __poll_portal_slow(p, is) & QM_PIRQ_SLOW;
1097 qm_out(&p->p, QM_REG_ISR, clear);
1098 return IRQ_HANDLED;
1101 static int drain_mr_fqrni(struct qm_portal *p)
1103 const union qm_mr_entry *msg;
1104 loop:
1105 msg = qm_mr_current(p);
1106 if (!msg) {
1108 * if MR was full and h/w had other FQRNI entries to produce, we
1109 * need to allow it time to produce those entries once the
1110 * existing entries are consumed. A worst-case situation
1111 * (fully-loaded system) means h/w sequencers may have to do 3-4
1112 * other things before servicing the portal's MR pump, each of
1113 * which (if slow) may take ~50 qman cycles (which is ~200
1114 * processor cycles). So rounding up and then multiplying this
1115 * worst-case estimate by a factor of 10, just to be
1116 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
1117 * one entry at a time, so h/w has an opportunity to produce new
1118 * entries well before the ring has been fully consumed, so
1119 * we're being *really* paranoid here.
1121 msleep(1);
1122 msg = qm_mr_current(p);
1123 if (!msg)
1124 return 0;
1126 if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
1127 /* We aren't draining anything but FQRNIs */
1128 pr_err("Found verb 0x%x in MR\n", msg->verb);
1129 return -1;
1131 qm_mr_next(p);
1132 qm_mr_cci_consume(p, 1);
1133 goto loop;
1136 static int qman_create_portal(struct qman_portal *portal,
1137 const struct qm_portal_config *c,
1138 const struct qman_cgrs *cgrs)
1140 struct qm_portal *p;
1141 int ret;
1142 u32 isdr;
1144 p = &portal->p;
1146 #ifdef CONFIG_FSL_PAMU
1147 /* PAMU is required for stashing */
1148 portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
1149 #else
1150 portal->use_eqcr_ci_stashing = 0;
1151 #endif
1153 * prep the low-level portal struct with the mapped addresses from the
1154 * config, everything that follows depends on it and "config" is more
1155 * for (de)reference
1157 p->addr.ce = c->addr_virt_ce;
1158 p->addr.ce_be = c->addr_virt_ce;
1159 p->addr.ci = c->addr_virt_ci;
1161 * If CI-stashing is used, the current defaults use a threshold of 3,
1162 * and stash with high-than-DQRR priority.
1164 if (qm_eqcr_init(p, qm_eqcr_pvb,
1165 portal->use_eqcr_ci_stashing ? 3 : 0, 1)) {
1166 dev_err(c->dev, "EQCR initialisation failed\n");
1167 goto fail_eqcr;
1169 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
1170 qm_dqrr_cdc, DQRR_MAXFILL)) {
1171 dev_err(c->dev, "DQRR initialisation failed\n");
1172 goto fail_dqrr;
1174 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
1175 dev_err(c->dev, "MR initialisation failed\n");
1176 goto fail_mr;
1178 if (qm_mc_init(p)) {
1179 dev_err(c->dev, "MC initialisation failed\n");
1180 goto fail_mc;
1182 /* static interrupt-gating controls */
1183 qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH);
1184 qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH);
1185 qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD);
1186 portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL);
1187 if (!portal->cgrs)
1188 goto fail_cgrs;
1189 /* initial snapshot is no-depletion */
1190 qman_cgrs_init(&portal->cgrs[1]);
1191 if (cgrs)
1192 portal->cgrs[0] = *cgrs;
1193 else
1194 /* if the given mask is NULL, assume all CGRs can be seen */
1195 qman_cgrs_fill(&portal->cgrs[0]);
1196 INIT_LIST_HEAD(&portal->cgr_cbs);
1197 spin_lock_init(&portal->cgr_lock);
1198 INIT_WORK(&portal->congestion_work, qm_congestion_task);
1199 INIT_WORK(&portal->mr_work, qm_mr_process_task);
1200 portal->bits = 0;
1201 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
1202 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
1203 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
1204 isdr = 0xffffffff;
1205 qm_out(p, QM_REG_ISDR, isdr);
1206 portal->irq_sources = 0;
1207 qm_out(p, QM_REG_IER, 0);
1208 qm_out(p, QM_REG_ISR, 0xffffffff);
1209 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
1210 if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) {
1211 dev_err(c->dev, "request_irq() failed\n");
1212 goto fail_irq;
1214 if (c->cpu != -1 && irq_can_set_affinity(c->irq) &&
1215 irq_set_affinity(c->irq, cpumask_of(c->cpu))) {
1216 dev_err(c->dev, "irq_set_affinity() failed\n");
1217 goto fail_affinity;
1220 /* Need EQCR to be empty before continuing */
1221 isdr &= ~QM_PIRQ_EQCI;
1222 qm_out(p, QM_REG_ISDR, isdr);
1223 ret = qm_eqcr_get_fill(p);
1224 if (ret) {
1225 dev_err(c->dev, "EQCR unclean\n");
1226 goto fail_eqcr_empty;
1228 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
1229 qm_out(p, QM_REG_ISDR, isdr);
1230 if (qm_dqrr_current(p)) {
1231 dev_err(c->dev, "DQRR unclean\n");
1232 qm_dqrr_cdc_consume_n(p, 0xffff);
1234 if (qm_mr_current(p) && drain_mr_fqrni(p)) {
1235 /* special handling, drain just in case it's a few FQRNIs */
1236 const union qm_mr_entry *e = qm_mr_current(p);
1238 dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n",
1239 e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd));
1240 goto fail_dqrr_mr_empty;
1242 /* Success */
1243 portal->config = c;
1244 qm_out(p, QM_REG_ISDR, 0);
1245 qm_out(p, QM_REG_IIR, 0);
1246 /* Write a sane SDQCR */
1247 qm_dqrr_sdqcr_set(p, portal->sdqcr);
1248 return 0;
1250 fail_dqrr_mr_empty:
1251 fail_eqcr_empty:
1252 fail_affinity:
1253 free_irq(c->irq, portal);
1254 fail_irq:
1255 kfree(portal->cgrs);
1256 fail_cgrs:
1257 qm_mc_finish(p);
1258 fail_mc:
1259 qm_mr_finish(p);
1260 fail_mr:
1261 qm_dqrr_finish(p);
1262 fail_dqrr:
1263 qm_eqcr_finish(p);
1264 fail_eqcr:
1265 return -EIO;
1268 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
1269 const struct qman_cgrs *cgrs)
1271 struct qman_portal *portal;
1272 int err;
1274 portal = &per_cpu(qman_affine_portal, c->cpu);
1275 err = qman_create_portal(portal, c, cgrs);
1276 if (err)
1277 return NULL;
1279 spin_lock(&affine_mask_lock);
1280 cpumask_set_cpu(c->cpu, &affine_mask);
1281 affine_channels[c->cpu] = c->channel;
1282 affine_portals[c->cpu] = portal;
1283 spin_unlock(&affine_mask_lock);
1285 return portal;
1288 static void qman_destroy_portal(struct qman_portal *qm)
1290 const struct qm_portal_config *pcfg;
1292 /* Stop dequeues on the portal */
1293 qm_dqrr_sdqcr_set(&qm->p, 0);
1296 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
1297 * something related to QM_PIRQ_EQCI, this may need fixing.
1298 * Also, due to the prefetching model used for CI updates in the enqueue
1299 * path, this update will only invalidate the CI cacheline *after*
1300 * working on it, so we need to call this twice to ensure a full update
1301 * irrespective of where the enqueue processing was at when the teardown
1302 * began.
1304 qm_eqcr_cce_update(&qm->p);
1305 qm_eqcr_cce_update(&qm->p);
1306 pcfg = qm->config;
1308 free_irq(pcfg->irq, qm);
1310 kfree(qm->cgrs);
1311 qm_mc_finish(&qm->p);
1312 qm_mr_finish(&qm->p);
1313 qm_dqrr_finish(&qm->p);
1314 qm_eqcr_finish(&qm->p);
1316 qm->config = NULL;
1319 const struct qm_portal_config *qman_destroy_affine_portal(void)
1321 struct qman_portal *qm = get_affine_portal();
1322 const struct qm_portal_config *pcfg;
1323 int cpu;
1325 pcfg = qm->config;
1326 cpu = pcfg->cpu;
1328 qman_destroy_portal(qm);
1330 spin_lock(&affine_mask_lock);
1331 cpumask_clear_cpu(cpu, &affine_mask);
1332 spin_unlock(&affine_mask_lock);
1333 put_affine_portal();
1334 return pcfg;
1337 /* Inline helper to reduce nesting in __poll_portal_slow() */
1338 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
1339 const union qm_mr_entry *msg, u8 verb)
1341 switch (verb) {
1342 case QM_MR_VERB_FQRL:
1343 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
1344 fq_clear(fq, QMAN_FQ_STATE_ORL);
1345 break;
1346 case QM_MR_VERB_FQRN:
1347 DPAA_ASSERT(fq->state == qman_fq_state_parked ||
1348 fq->state == qman_fq_state_sched);
1349 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
1350 fq_clear(fq, QMAN_FQ_STATE_CHANGING);
1351 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
1352 fq_set(fq, QMAN_FQ_STATE_NE);
1353 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
1354 fq_set(fq, QMAN_FQ_STATE_ORL);
1355 fq->state = qman_fq_state_retired;
1356 break;
1357 case QM_MR_VERB_FQPN:
1358 DPAA_ASSERT(fq->state == qman_fq_state_sched);
1359 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
1360 fq->state = qman_fq_state_parked;
1364 static void qm_congestion_task(struct work_struct *work)
1366 struct qman_portal *p = container_of(work, struct qman_portal,
1367 congestion_work);
1368 struct qman_cgrs rr, c;
1369 union qm_mc_result *mcr;
1370 struct qman_cgr *cgr;
1372 spin_lock(&p->cgr_lock);
1373 qm_mc_start(&p->p);
1374 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
1375 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1376 spin_unlock(&p->cgr_lock);
1377 dev_crit(p->config->dev, "QUERYCONGESTION timeout\n");
1378 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1379 return;
1381 /* mask out the ones I'm not interested in */
1382 qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state,
1383 &p->cgrs[0]);
1384 /* check previous snapshot for delta, enter/exit congestion */
1385 qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
1386 /* update snapshot */
1387 qman_cgrs_cp(&p->cgrs[1], &rr);
1388 /* Invoke callback */
1389 list_for_each_entry(cgr, &p->cgr_cbs, node)
1390 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
1391 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
1392 spin_unlock(&p->cgr_lock);
1393 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1396 static void qm_mr_process_task(struct work_struct *work)
1398 struct qman_portal *p = container_of(work, struct qman_portal,
1399 mr_work);
1400 const union qm_mr_entry *msg;
1401 struct qman_fq *fq;
1402 u8 verb, num = 0;
1404 preempt_disable();
1406 while (1) {
1407 qm_mr_pvb_update(&p->p);
1408 msg = qm_mr_current(&p->p);
1409 if (!msg)
1410 break;
1412 verb = msg->verb & QM_MR_VERB_TYPE_MASK;
1413 /* The message is a software ERN iff the 0x20 bit is clear */
1414 if (verb & 0x20) {
1415 switch (verb) {
1416 case QM_MR_VERB_FQRNI:
1417 /* nada, we drop FQRNIs on the floor */
1418 break;
1419 case QM_MR_VERB_FQRN:
1420 case QM_MR_VERB_FQRL:
1421 /* Lookup in the retirement table */
1422 fq = fqid_to_fq(qm_fqid_get(&msg->fq));
1423 if (WARN_ON(!fq))
1424 break;
1425 fq_state_change(p, fq, msg, verb);
1426 if (fq->cb.fqs)
1427 fq->cb.fqs(p, fq, msg);
1428 break;
1429 case QM_MR_VERB_FQPN:
1430 /* Parked */
1431 fq = tag_to_fq(be32_to_cpu(msg->fq.context_b));
1432 fq_state_change(p, fq, msg, verb);
1433 if (fq->cb.fqs)
1434 fq->cb.fqs(p, fq, msg);
1435 break;
1436 case QM_MR_VERB_DC_ERN:
1437 /* DCP ERN */
1438 pr_crit_once("Leaking DCP ERNs!\n");
1439 break;
1440 default:
1441 pr_crit("Invalid MR verb 0x%02x\n", verb);
1443 } else {
1444 /* Its a software ERN */
1445 fq = tag_to_fq(be32_to_cpu(msg->ern.tag));
1446 fq->cb.ern(p, fq, msg);
1448 num++;
1449 qm_mr_next(&p->p);
1452 qm_mr_cci_consume(&p->p, num);
1453 qman_p_irqsource_add(p, QM_PIRQ_MRI);
1454 preempt_enable();
1457 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
1459 if (is & QM_PIRQ_CSCI) {
1460 qman_p_irqsource_remove(p, QM_PIRQ_CSCI);
1461 queue_work_on(smp_processor_id(), qm_portal_wq,
1462 &p->congestion_work);
1465 if (is & QM_PIRQ_EQRI) {
1466 qm_eqcr_cce_update(&p->p);
1467 qm_eqcr_set_ithresh(&p->p, 0);
1468 wake_up(&affine_queue);
1471 if (is & QM_PIRQ_MRI) {
1472 qman_p_irqsource_remove(p, QM_PIRQ_MRI);
1473 queue_work_on(smp_processor_id(), qm_portal_wq,
1474 &p->mr_work);
1477 return is;
1481 * remove some slowish-path stuff from the "fast path" and make sure it isn't
1482 * inlined.
1484 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
1486 p->vdqcr_owned = NULL;
1487 fq_clear(fq, QMAN_FQ_STATE_VDQCR);
1488 wake_up(&affine_queue);
1492 * The only states that would conflict with other things if they ran at the
1493 * same time on the same cpu are:
1495 * (i) setting/clearing vdqcr_owned, and
1496 * (ii) clearing the NE (Not Empty) flag.
1498 * Both are safe. Because;
1500 * (i) this clearing can only occur after qman_volatile_dequeue() has set the
1501 * vdqcr_owned field (which it does before setting VDQCR), and
1502 * qman_volatile_dequeue() blocks interrupts and preemption while this is
1503 * done so that we can't interfere.
1504 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
1505 * with (i) that API prevents us from interfering until it's safe.
1507 * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far
1508 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
1509 * advantage comes from this function not having to "lock" anything at all.
1511 * Note also that the callbacks are invoked at points which are safe against the
1512 * above potential conflicts, but that this function itself is not re-entrant
1513 * (this is because the function tracks one end of each FIFO in the portal and
1514 * we do *not* want to lock that). So the consequence is that it is safe for
1515 * user callbacks to call into any QMan API.
1517 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1518 unsigned int poll_limit)
1520 const struct qm_dqrr_entry *dq;
1521 struct qman_fq *fq;
1522 enum qman_cb_dqrr_result res;
1523 unsigned int limit = 0;
1525 do {
1526 qm_dqrr_pvb_update(&p->p);
1527 dq = qm_dqrr_current(&p->p);
1528 if (!dq)
1529 break;
1531 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1533 * VDQCR: don't trust context_b as the FQ may have
1534 * been configured for h/w consumption and we're
1535 * draining it post-retirement.
1537 fq = p->vdqcr_owned;
1539 * We only set QMAN_FQ_STATE_NE when retiring, so we
1540 * only need to check for clearing it when doing
1541 * volatile dequeues. It's one less thing to check
1542 * in the critical path (SDQCR).
1544 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1545 fq_clear(fq, QMAN_FQ_STATE_NE);
1547 * This is duplicated from the SDQCR code, but we
1548 * have stuff to do before *and* after this callback,
1549 * and we don't want multiple if()s in the critical
1550 * path (SDQCR).
1552 res = fq->cb.dqrr(p, fq, dq);
1553 if (res == qman_cb_dqrr_stop)
1554 break;
1555 /* Check for VDQCR completion */
1556 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1557 clear_vdqcr(p, fq);
1558 } else {
1559 /* SDQCR: context_b points to the FQ */
1560 fq = tag_to_fq(be32_to_cpu(dq->context_b));
1561 /* Now let the callback do its stuff */
1562 res = fq->cb.dqrr(p, fq, dq);
1564 * The callback can request that we exit without
1565 * consuming this entry nor advancing;
1567 if (res == qman_cb_dqrr_stop)
1568 break;
1570 /* Interpret 'dq' from a driver perspective. */
1572 * Parking isn't possible unless HELDACTIVE was set. NB,
1573 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1574 * check for HELDACTIVE to cover both.
1576 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1577 (res != qman_cb_dqrr_park));
1578 /* just means "skip it, I'll consume it myself later on" */
1579 if (res != qman_cb_dqrr_defer)
1580 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1581 res == qman_cb_dqrr_park);
1582 /* Move forward */
1583 qm_dqrr_next(&p->p);
1585 * Entry processed and consumed, increment our counter. The
1586 * callback can request that we exit after consuming the
1587 * entry, and we also exit if we reach our processing limit,
1588 * so loop back only if neither of these conditions is met.
1590 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1592 return limit;
1595 void qman_p_irqsource_add(struct qman_portal *p, u32 bits)
1597 unsigned long irqflags;
1599 local_irq_save(irqflags);
1600 p->irq_sources |= bits & QM_PIRQ_VISIBLE;
1601 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1602 local_irq_restore(irqflags);
1604 EXPORT_SYMBOL(qman_p_irqsource_add);
1606 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits)
1608 unsigned long irqflags;
1609 u32 ier;
1612 * Our interrupt handler only processes+clears status register bits that
1613 * are in p->irq_sources. As we're trimming that mask, if one of them
1614 * were to assert in the status register just before we remove it from
1615 * the enable register, there would be an interrupt-storm when we
1616 * release the IRQ lock. So we wait for the enable register update to
1617 * take effect in h/w (by reading it back) and then clear all other bits
1618 * in the status register. Ie. we clear them from ISR once it's certain
1619 * IER won't allow them to reassert.
1621 local_irq_save(irqflags);
1622 bits &= QM_PIRQ_VISIBLE;
1623 p->irq_sources &= ~bits;
1624 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1625 ier = qm_in(&p->p, QM_REG_IER);
1627 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1628 * data-dependency, ie. to protect against re-ordering.
1630 qm_out(&p->p, QM_REG_ISR, ~ier);
1631 local_irq_restore(irqflags);
1633 EXPORT_SYMBOL(qman_p_irqsource_remove);
1635 const cpumask_t *qman_affine_cpus(void)
1637 return &affine_mask;
1639 EXPORT_SYMBOL(qman_affine_cpus);
1641 u16 qman_affine_channel(int cpu)
1643 if (cpu < 0) {
1644 struct qman_portal *portal = get_affine_portal();
1646 cpu = portal->config->cpu;
1647 put_affine_portal();
1649 WARN_ON(!cpumask_test_cpu(cpu, &affine_mask));
1650 return affine_channels[cpu];
1652 EXPORT_SYMBOL(qman_affine_channel);
1654 struct qman_portal *qman_get_affine_portal(int cpu)
1656 return affine_portals[cpu];
1658 EXPORT_SYMBOL(qman_get_affine_portal);
1660 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit)
1662 return __poll_portal_fast(p, limit);
1664 EXPORT_SYMBOL(qman_p_poll_dqrr);
1666 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools)
1668 unsigned long irqflags;
1670 local_irq_save(irqflags);
1671 pools &= p->config->pools;
1672 p->sdqcr |= pools;
1673 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1674 local_irq_restore(irqflags);
1676 EXPORT_SYMBOL(qman_p_static_dequeue_add);
1678 /* Frame queue API */
1680 static const char *mcr_result_str(u8 result)
1682 switch (result) {
1683 case QM_MCR_RESULT_NULL:
1684 return "QM_MCR_RESULT_NULL";
1685 case QM_MCR_RESULT_OK:
1686 return "QM_MCR_RESULT_OK";
1687 case QM_MCR_RESULT_ERR_FQID:
1688 return "QM_MCR_RESULT_ERR_FQID";
1689 case QM_MCR_RESULT_ERR_FQSTATE:
1690 return "QM_MCR_RESULT_ERR_FQSTATE";
1691 case QM_MCR_RESULT_ERR_NOTEMPTY:
1692 return "QM_MCR_RESULT_ERR_NOTEMPTY";
1693 case QM_MCR_RESULT_PENDING:
1694 return "QM_MCR_RESULT_PENDING";
1695 case QM_MCR_RESULT_ERR_BADCOMMAND:
1696 return "QM_MCR_RESULT_ERR_BADCOMMAND";
1698 return "<unknown MCR result>";
1701 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1703 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1704 int ret = qman_alloc_fqid(&fqid);
1706 if (ret)
1707 return ret;
1709 fq->fqid = fqid;
1710 fq->flags = flags;
1711 fq->state = qman_fq_state_oos;
1712 fq->cgr_groupid = 0;
1714 /* A context_b of 0 is allegedly special, so don't use that fqid */
1715 if (fqid == 0 || fqid >= num_fqids) {
1716 WARN(1, "bad fqid %d\n", fqid);
1717 return -EINVAL;
1720 fq->idx = fqid * 2;
1721 if (flags & QMAN_FQ_FLAG_NO_MODIFY)
1722 fq->idx++;
1724 WARN_ON(fq_table[fq->idx]);
1725 fq_table[fq->idx] = fq;
1727 return 0;
1729 EXPORT_SYMBOL(qman_create_fq);
1731 void qman_destroy_fq(struct qman_fq *fq)
1734 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1735 * quiesced. Instead, run some checks.
1737 switch (fq->state) {
1738 case qman_fq_state_parked:
1739 case qman_fq_state_oos:
1740 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1741 qman_release_fqid(fq->fqid);
1743 DPAA_ASSERT(fq_table[fq->idx]);
1744 fq_table[fq->idx] = NULL;
1745 return;
1746 default:
1747 break;
1749 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1751 EXPORT_SYMBOL(qman_destroy_fq);
1753 u32 qman_fq_fqid(struct qman_fq *fq)
1755 return fq->fqid;
1757 EXPORT_SYMBOL(qman_fq_fqid);
1759 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1761 union qm_mc_command *mcc;
1762 union qm_mc_result *mcr;
1763 struct qman_portal *p;
1764 u8 res, myverb;
1765 int ret = 0;
1767 myverb = (flags & QMAN_INITFQ_FLAG_SCHED)
1768 ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1770 if (fq->state != qman_fq_state_oos &&
1771 fq->state != qman_fq_state_parked)
1772 return -EINVAL;
1773 #ifdef CONFIG_FSL_DPAA_CHECKING
1774 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1775 return -EINVAL;
1776 #endif
1777 if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) {
1778 /* And can't be set at the same time as TDTHRESH */
1779 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH)
1780 return -EINVAL;
1782 /* Issue an INITFQ_[PARKED|SCHED] management command */
1783 p = get_affine_portal();
1784 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1785 (fq->state != qman_fq_state_oos &&
1786 fq->state != qman_fq_state_parked)) {
1787 ret = -EBUSY;
1788 goto out;
1790 mcc = qm_mc_start(&p->p);
1791 if (opts)
1792 mcc->initfq = *opts;
1793 qm_fqid_set(&mcc->fq, fq->fqid);
1794 mcc->initfq.count = 0;
1796 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1797 * demux pointer. Otherwise, the caller-provided value is allowed to
1798 * stand, don't overwrite it.
1800 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1801 dma_addr_t phys_fq;
1803 mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB);
1804 mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq));
1806 * and the physical address - NB, if the user wasn't trying to
1807 * set CONTEXTA, clear the stashing settings.
1809 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1810 QM_INITFQ_WE_CONTEXTA)) {
1811 mcc->initfq.we_mask |=
1812 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1813 memset(&mcc->initfq.fqd.context_a, 0,
1814 sizeof(mcc->initfq.fqd.context_a));
1815 } else {
1816 struct qman_portal *p = qman_dma_portal;
1818 phys_fq = dma_map_single(p->config->dev, fq,
1819 sizeof(*fq), DMA_TO_DEVICE);
1820 if (dma_mapping_error(p->config->dev, phys_fq)) {
1821 dev_err(p->config->dev, "dma_mapping failed\n");
1822 ret = -EIO;
1823 goto out;
1826 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1829 if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1830 int wq = 0;
1832 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1833 QM_INITFQ_WE_DESTWQ)) {
1834 mcc->initfq.we_mask |=
1835 cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1836 wq = 4;
1838 qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq);
1840 qm_mc_commit(&p->p, myverb);
1841 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1842 dev_err(p->config->dev, "MCR timeout\n");
1843 ret = -ETIMEDOUT;
1844 goto out;
1847 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1848 res = mcr->result;
1849 if (res != QM_MCR_RESULT_OK) {
1850 ret = -EIO;
1851 goto out;
1853 if (opts) {
1854 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) {
1855 if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE)
1856 fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1857 else
1858 fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1860 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID)
1861 fq->cgr_groupid = opts->fqd.cgid;
1863 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1864 qman_fq_state_sched : qman_fq_state_parked;
1866 out:
1867 put_affine_portal();
1868 return ret;
1870 EXPORT_SYMBOL(qman_init_fq);
1872 int qman_schedule_fq(struct qman_fq *fq)
1874 union qm_mc_command *mcc;
1875 union qm_mc_result *mcr;
1876 struct qman_portal *p;
1877 int ret = 0;
1879 if (fq->state != qman_fq_state_parked)
1880 return -EINVAL;
1881 #ifdef CONFIG_FSL_DPAA_CHECKING
1882 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1883 return -EINVAL;
1884 #endif
1885 /* Issue a ALTERFQ_SCHED management command */
1886 p = get_affine_portal();
1887 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1888 fq->state != qman_fq_state_parked) {
1889 ret = -EBUSY;
1890 goto out;
1892 mcc = qm_mc_start(&p->p);
1893 qm_fqid_set(&mcc->fq, fq->fqid);
1894 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1895 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1896 dev_err(p->config->dev, "ALTER_SCHED timeout\n");
1897 ret = -ETIMEDOUT;
1898 goto out;
1901 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1902 if (mcr->result != QM_MCR_RESULT_OK) {
1903 ret = -EIO;
1904 goto out;
1906 fq->state = qman_fq_state_sched;
1907 out:
1908 put_affine_portal();
1909 return ret;
1911 EXPORT_SYMBOL(qman_schedule_fq);
1913 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1915 union qm_mc_command *mcc;
1916 union qm_mc_result *mcr;
1917 struct qman_portal *p;
1918 int ret;
1919 u8 res;
1921 if (fq->state != qman_fq_state_parked &&
1922 fq->state != qman_fq_state_sched)
1923 return -EINVAL;
1924 #ifdef CONFIG_FSL_DPAA_CHECKING
1925 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1926 return -EINVAL;
1927 #endif
1928 p = get_affine_portal();
1929 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1930 fq->state == qman_fq_state_retired ||
1931 fq->state == qman_fq_state_oos) {
1932 ret = -EBUSY;
1933 goto out;
1935 mcc = qm_mc_start(&p->p);
1936 qm_fqid_set(&mcc->fq, fq->fqid);
1937 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1938 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1939 dev_crit(p->config->dev, "ALTER_RETIRE timeout\n");
1940 ret = -ETIMEDOUT;
1941 goto out;
1944 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
1945 res = mcr->result;
1947 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
1948 * and defer the flags until FQRNI or FQRN (respectively) show up. But
1949 * "Friendly" is to process OK immediately, and not set CHANGING. We do
1950 * friendly, otherwise the caller doesn't necessarily have a fully
1951 * "retired" FQ on return even if the retirement was immediate. However
1952 * this does mean some code duplication between here and
1953 * fq_state_change().
1955 if (res == QM_MCR_RESULT_OK) {
1956 ret = 0;
1957 /* Process 'fq' right away, we'll ignore FQRNI */
1958 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
1959 fq_set(fq, QMAN_FQ_STATE_NE);
1960 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
1961 fq_set(fq, QMAN_FQ_STATE_ORL);
1962 if (flags)
1963 *flags = fq->flags;
1964 fq->state = qman_fq_state_retired;
1965 if (fq->cb.fqs) {
1967 * Another issue with supporting "immediate" retirement
1968 * is that we're forced to drop FQRNIs, because by the
1969 * time they're seen it may already be "too late" (the
1970 * fq may have been OOS'd and free()'d already). But if
1971 * the upper layer wants a callback whether it's
1972 * immediate or not, we have to fake a "MR" entry to
1973 * look like an FQRNI...
1975 union qm_mr_entry msg;
1977 msg.verb = QM_MR_VERB_FQRNI;
1978 msg.fq.fqs = mcr->alterfq.fqs;
1979 qm_fqid_set(&msg.fq, fq->fqid);
1980 msg.fq.context_b = cpu_to_be32(fq_to_tag(fq));
1981 fq->cb.fqs(p, fq, &msg);
1983 } else if (res == QM_MCR_RESULT_PENDING) {
1984 ret = 1;
1985 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1986 } else {
1987 ret = -EIO;
1989 out:
1990 put_affine_portal();
1991 return ret;
1993 EXPORT_SYMBOL(qman_retire_fq);
1995 int qman_oos_fq(struct qman_fq *fq)
1997 union qm_mc_command *mcc;
1998 union qm_mc_result *mcr;
1999 struct qman_portal *p;
2000 int ret = 0;
2002 if (fq->state != qman_fq_state_retired)
2003 return -EINVAL;
2004 #ifdef CONFIG_FSL_DPAA_CHECKING
2005 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2006 return -EINVAL;
2007 #endif
2008 p = get_affine_portal();
2009 if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) ||
2010 fq->state != qman_fq_state_retired) {
2011 ret = -EBUSY;
2012 goto out;
2014 mcc = qm_mc_start(&p->p);
2015 qm_fqid_set(&mcc->fq, fq->fqid);
2016 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2017 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2018 ret = -ETIMEDOUT;
2019 goto out;
2021 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
2022 if (mcr->result != QM_MCR_RESULT_OK) {
2023 ret = -EIO;
2024 goto out;
2026 fq->state = qman_fq_state_oos;
2027 out:
2028 put_affine_portal();
2029 return ret;
2031 EXPORT_SYMBOL(qman_oos_fq);
2033 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
2035 union qm_mc_command *mcc;
2036 union qm_mc_result *mcr;
2037 struct qman_portal *p = get_affine_portal();
2038 int ret = 0;
2040 mcc = qm_mc_start(&p->p);
2041 qm_fqid_set(&mcc->fq, fq->fqid);
2042 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2043 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2044 ret = -ETIMEDOUT;
2045 goto out;
2048 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2049 if (mcr->result == QM_MCR_RESULT_OK)
2050 *fqd = mcr->queryfq.fqd;
2051 else
2052 ret = -EIO;
2053 out:
2054 put_affine_portal();
2055 return ret;
2058 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
2060 union qm_mc_command *mcc;
2061 union qm_mc_result *mcr;
2062 struct qman_portal *p = get_affine_portal();
2063 int ret = 0;
2065 mcc = qm_mc_start(&p->p);
2066 qm_fqid_set(&mcc->fq, fq->fqid);
2067 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2068 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2069 ret = -ETIMEDOUT;
2070 goto out;
2073 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2074 if (mcr->result == QM_MCR_RESULT_OK)
2075 *np = mcr->queryfq_np;
2076 else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2077 ret = -ERANGE;
2078 else
2079 ret = -EIO;
2080 out:
2081 put_affine_portal();
2082 return ret;
2084 EXPORT_SYMBOL(qman_query_fq_np);
2086 static int qman_query_cgr(struct qman_cgr *cgr,
2087 struct qm_mcr_querycgr *cgrd)
2089 union qm_mc_command *mcc;
2090 union qm_mc_result *mcr;
2091 struct qman_portal *p = get_affine_portal();
2092 int ret = 0;
2094 mcc = qm_mc_start(&p->p);
2095 mcc->cgr.cgid = cgr->cgrid;
2096 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2097 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2098 ret = -ETIMEDOUT;
2099 goto out;
2101 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2102 if (mcr->result == QM_MCR_RESULT_OK)
2103 *cgrd = mcr->querycgr;
2104 else {
2105 dev_err(p->config->dev, "QUERY_CGR failed: %s\n",
2106 mcr_result_str(mcr->result));
2107 ret = -EIO;
2109 out:
2110 put_affine_portal();
2111 return ret;
2114 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result)
2116 struct qm_mcr_querycgr query_cgr;
2117 int err;
2119 err = qman_query_cgr(cgr, &query_cgr);
2120 if (err)
2121 return err;
2123 *result = !!query_cgr.cgr.cs;
2124 return 0;
2126 EXPORT_SYMBOL(qman_query_cgr_congested);
2128 /* internal function used as a wait_event() expression */
2129 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr)
2131 unsigned long irqflags;
2132 int ret = -EBUSY;
2134 local_irq_save(irqflags);
2135 if (p->vdqcr_owned)
2136 goto out;
2137 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2138 goto out;
2140 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2141 p->vdqcr_owned = fq;
2142 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2143 ret = 0;
2144 out:
2145 local_irq_restore(irqflags);
2146 return ret;
2149 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr)
2151 int ret;
2153 *p = get_affine_portal();
2154 ret = set_p_vdqcr(*p, fq, vdqcr);
2155 put_affine_portal();
2156 return ret;
2159 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq,
2160 u32 vdqcr, u32 flags)
2162 int ret = 0;
2164 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2165 ret = wait_event_interruptible(affine_queue,
2166 !set_vdqcr(p, fq, vdqcr));
2167 else
2168 wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr));
2169 return ret;
2172 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)
2174 struct qman_portal *p;
2175 int ret;
2177 if (fq->state != qman_fq_state_parked &&
2178 fq->state != qman_fq_state_retired)
2179 return -EINVAL;
2180 if (vdqcr & QM_VDQCR_FQID_MASK)
2181 return -EINVAL;
2182 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2183 return -EBUSY;
2184 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2185 if (flags & QMAN_VOLATILE_FLAG_WAIT)
2186 ret = wait_vdqcr_start(&p, fq, vdqcr, flags);
2187 else
2188 ret = set_vdqcr(&p, fq, vdqcr);
2189 if (ret)
2190 return ret;
2191 /* VDQCR is set */
2192 if (flags & QMAN_VOLATILE_FLAG_FINISH) {
2193 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2195 * NB: don't propagate any error - the caller wouldn't
2196 * know whether the VDQCR was issued or not. A signal
2197 * could arrive after returning anyway, so the caller
2198 * can check signal_pending() if that's an issue.
2200 wait_event_interruptible(affine_queue,
2201 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2202 else
2203 wait_event(affine_queue,
2204 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2206 return 0;
2208 EXPORT_SYMBOL(qman_volatile_dequeue);
2210 static void update_eqcr_ci(struct qman_portal *p, u8 avail)
2212 if (avail)
2213 qm_eqcr_cce_prefetch(&p->p);
2214 else
2215 qm_eqcr_cce_update(&p->p);
2218 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd)
2220 struct qman_portal *p;
2221 struct qm_eqcr_entry *eq;
2222 unsigned long irqflags;
2223 u8 avail;
2225 p = get_affine_portal();
2226 local_irq_save(irqflags);
2228 if (p->use_eqcr_ci_stashing) {
2230 * The stashing case is easy, only update if we need to in
2231 * order to try and liberate ring entries.
2233 eq = qm_eqcr_start_stash(&p->p);
2234 } else {
2236 * The non-stashing case is harder, need to prefetch ahead of
2237 * time.
2239 avail = qm_eqcr_get_avail(&p->p);
2240 if (avail < 2)
2241 update_eqcr_ci(p, avail);
2242 eq = qm_eqcr_start_no_stash(&p->p);
2245 if (unlikely(!eq))
2246 goto out;
2248 qm_fqid_set(eq, fq->fqid);
2249 eq->tag = cpu_to_be32(fq_to_tag(fq));
2250 eq->fd = *fd;
2252 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE);
2253 out:
2254 local_irq_restore(irqflags);
2255 put_affine_portal();
2256 return 0;
2258 EXPORT_SYMBOL(qman_enqueue);
2260 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags,
2261 struct qm_mcc_initcgr *opts)
2263 union qm_mc_command *mcc;
2264 union qm_mc_result *mcr;
2265 struct qman_portal *p = get_affine_portal();
2266 u8 verb = QM_MCC_VERB_MODIFYCGR;
2267 int ret = 0;
2269 mcc = qm_mc_start(&p->p);
2270 if (opts)
2271 mcc->initcgr = *opts;
2272 mcc->initcgr.cgid = cgr->cgrid;
2273 if (flags & QMAN_CGR_FLAG_USE_INIT)
2274 verb = QM_MCC_VERB_INITCGR;
2275 qm_mc_commit(&p->p, verb);
2276 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2277 ret = -ETIMEDOUT;
2278 goto out;
2281 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2282 if (mcr->result != QM_MCR_RESULT_OK)
2283 ret = -EIO;
2285 out:
2286 put_affine_portal();
2287 return ret;
2290 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0)
2292 /* congestion state change notification target update control */
2293 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val)
2295 if (qman_ip_rev >= QMAN_REV30)
2296 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi |
2297 QM_CGR_TARG_UDP_CTRL_WRITE_BIT);
2298 else
2299 cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi));
2302 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val)
2304 if (qman_ip_rev >= QMAN_REV30)
2305 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi);
2306 else
2307 cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi));
2310 static u8 qman_cgr_cpus[CGR_NUM];
2312 void qman_init_cgr_all(void)
2314 struct qman_cgr cgr;
2315 int err_cnt = 0;
2317 for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) {
2318 if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL))
2319 err_cnt++;
2322 if (err_cnt)
2323 pr_err("Warning: %d error%s while initialising CGR h/w\n",
2324 err_cnt, (err_cnt > 1) ? "s" : "");
2327 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2328 struct qm_mcc_initcgr *opts)
2330 struct qm_mcr_querycgr cgr_state;
2331 int ret;
2332 struct qman_portal *p;
2335 * We have to check that the provided CGRID is within the limits of the
2336 * data-structures, for obvious reasons. However we'll let h/w take
2337 * care of determining whether it's within the limits of what exists on
2338 * the SoC.
2340 if (cgr->cgrid >= CGR_NUM)
2341 return -EINVAL;
2343 preempt_disable();
2344 p = get_affine_portal();
2345 qman_cgr_cpus[cgr->cgrid] = smp_processor_id();
2346 preempt_enable();
2348 cgr->chan = p->config->channel;
2349 spin_lock(&p->cgr_lock);
2351 if (opts) {
2352 struct qm_mcc_initcgr local_opts = *opts;
2354 ret = qman_query_cgr(cgr, &cgr_state);
2355 if (ret)
2356 goto out;
2358 qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p),
2359 be32_to_cpu(cgr_state.cgr.cscn_targ));
2360 local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2362 /* send init if flags indicate so */
2363 if (flags & QMAN_CGR_FLAG_USE_INIT)
2364 ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2365 &local_opts);
2366 else
2367 ret = qm_modify_cgr(cgr, 0, &local_opts);
2368 if (ret)
2369 goto out;
2372 list_add(&cgr->node, &p->cgr_cbs);
2374 /* Determine if newly added object requires its callback to be called */
2375 ret = qman_query_cgr(cgr, &cgr_state);
2376 if (ret) {
2377 /* we can't go back, so proceed and return success */
2378 dev_err(p->config->dev, "CGR HW state partially modified\n");
2379 ret = 0;
2380 goto out;
2382 if (cgr->cb && cgr_state.cgr.cscn_en &&
2383 qman_cgrs_get(&p->cgrs[1], cgr->cgrid))
2384 cgr->cb(p, cgr, 1);
2385 out:
2386 spin_unlock(&p->cgr_lock);
2387 put_affine_portal();
2388 return ret;
2390 EXPORT_SYMBOL(qman_create_cgr);
2392 int qman_delete_cgr(struct qman_cgr *cgr)
2394 unsigned long irqflags;
2395 struct qm_mcr_querycgr cgr_state;
2396 struct qm_mcc_initcgr local_opts;
2397 int ret = 0;
2398 struct qman_cgr *i;
2399 struct qman_portal *p = get_affine_portal();
2401 if (cgr->chan != p->config->channel) {
2402 /* attempt to delete from other portal than creator */
2403 dev_err(p->config->dev, "CGR not owned by current portal");
2404 dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n",
2405 cgr->chan, p->config->channel);
2407 ret = -EINVAL;
2408 goto put_portal;
2410 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2411 spin_lock_irqsave(&p->cgr_lock, irqflags);
2412 list_del(&cgr->node);
2414 * If there are no other CGR objects for this CGRID in the list,
2415 * update CSCN_TARG accordingly
2417 list_for_each_entry(i, &p->cgr_cbs, node)
2418 if (i->cgrid == cgr->cgrid && i->cb)
2419 goto release_lock;
2420 ret = qman_query_cgr(cgr, &cgr_state);
2421 if (ret) {
2422 /* add back to the list */
2423 list_add(&cgr->node, &p->cgr_cbs);
2424 goto release_lock;
2427 local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2428 qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p),
2429 be32_to_cpu(cgr_state.cgr.cscn_targ));
2431 ret = qm_modify_cgr(cgr, 0, &local_opts);
2432 if (ret)
2433 /* add back to the list */
2434 list_add(&cgr->node, &p->cgr_cbs);
2435 release_lock:
2436 spin_unlock_irqrestore(&p->cgr_lock, irqflags);
2437 put_portal:
2438 put_affine_portal();
2439 return ret;
2441 EXPORT_SYMBOL(qman_delete_cgr);
2443 struct cgr_comp {
2444 struct qman_cgr *cgr;
2445 struct completion completion;
2448 static void qman_delete_cgr_smp_call(void *p)
2450 qman_delete_cgr((struct qman_cgr *)p);
2453 void qman_delete_cgr_safe(struct qman_cgr *cgr)
2455 preempt_disable();
2456 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) {
2457 smp_call_function_single(qman_cgr_cpus[cgr->cgrid],
2458 qman_delete_cgr_smp_call, cgr, true);
2459 preempt_enable();
2460 return;
2463 qman_delete_cgr(cgr);
2464 preempt_enable();
2466 EXPORT_SYMBOL(qman_delete_cgr_safe);
2468 /* Cleanup FQs */
2470 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v)
2472 const union qm_mr_entry *msg;
2473 int found = 0;
2475 qm_mr_pvb_update(p);
2476 msg = qm_mr_current(p);
2477 while (msg) {
2478 if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v)
2479 found = 1;
2480 qm_mr_next(p);
2481 qm_mr_cci_consume_to_current(p);
2482 qm_mr_pvb_update(p);
2483 msg = qm_mr_current(p);
2485 return found;
2488 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s,
2489 bool wait)
2491 const struct qm_dqrr_entry *dqrr;
2492 int found = 0;
2494 do {
2495 qm_dqrr_pvb_update(p);
2496 dqrr = qm_dqrr_current(p);
2497 if (!dqrr)
2498 cpu_relax();
2499 } while (wait && !dqrr);
2501 while (dqrr) {
2502 if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s))
2503 found = 1;
2504 qm_dqrr_cdc_consume_1ptr(p, dqrr, 0);
2505 qm_dqrr_pvb_update(p);
2506 qm_dqrr_next(p);
2507 dqrr = qm_dqrr_current(p);
2509 return found;
2512 #define qm_mr_drain(p, V) \
2513 _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V)
2515 #define qm_dqrr_drain(p, f, S) \
2516 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false)
2518 #define qm_dqrr_drain_wait(p, f, S) \
2519 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true)
2521 #define qm_dqrr_drain_nomatch(p) \
2522 _qm_dqrr_consume_and_match(p, 0, 0, false)
2524 static int qman_shutdown_fq(u32 fqid)
2526 struct qman_portal *p;
2527 struct device *dev;
2528 union qm_mc_command *mcc;
2529 union qm_mc_result *mcr;
2530 int orl_empty, drain = 0, ret = 0;
2531 u32 channel, wq, res;
2532 u8 state;
2534 p = get_affine_portal();
2535 dev = p->config->dev;
2536 /* Determine the state of the FQID */
2537 mcc = qm_mc_start(&p->p);
2538 qm_fqid_set(&mcc->fq, fqid);
2539 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2540 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2541 dev_err(dev, "QUERYFQ_NP timeout\n");
2542 ret = -ETIMEDOUT;
2543 goto out;
2546 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2547 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2548 if (state == QM_MCR_NP_STATE_OOS)
2549 goto out; /* Already OOS, no need to do anymore checks */
2551 /* Query which channel the FQ is using */
2552 mcc = qm_mc_start(&p->p);
2553 qm_fqid_set(&mcc->fq, fqid);
2554 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2555 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2556 dev_err(dev, "QUERYFQ timeout\n");
2557 ret = -ETIMEDOUT;
2558 goto out;
2561 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2562 /* Need to store these since the MCR gets reused */
2563 channel = qm_fqd_get_chan(&mcr->queryfq.fqd);
2564 wq = qm_fqd_get_wq(&mcr->queryfq.fqd);
2566 switch (state) {
2567 case QM_MCR_NP_STATE_TEN_SCHED:
2568 case QM_MCR_NP_STATE_TRU_SCHED:
2569 case QM_MCR_NP_STATE_ACTIVE:
2570 case QM_MCR_NP_STATE_PARKED:
2571 orl_empty = 0;
2572 mcc = qm_mc_start(&p->p);
2573 qm_fqid_set(&mcc->fq, fqid);
2574 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
2575 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2576 dev_err(dev, "QUERYFQ_NP timeout\n");
2577 ret = -ETIMEDOUT;
2578 goto out;
2580 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2581 QM_MCR_VERB_ALTER_RETIRE);
2582 res = mcr->result; /* Make a copy as we reuse MCR below */
2584 if (res == QM_MCR_RESULT_PENDING) {
2586 * Need to wait for the FQRN in the message ring, which
2587 * will only occur once the FQ has been drained. In
2588 * order for the FQ to drain the portal needs to be set
2589 * to dequeue from the channel the FQ is scheduled on
2591 int found_fqrn = 0;
2592 u16 dequeue_wq = 0;
2594 /* Flag that we need to drain FQ */
2595 drain = 1;
2597 if (channel >= qm_channel_pool1 &&
2598 channel < qm_channel_pool1 + 15) {
2599 /* Pool channel, enable the bit in the portal */
2600 dequeue_wq = (channel -
2601 qm_channel_pool1 + 1)<<4 | wq;
2602 } else if (channel < qm_channel_pool1) {
2603 /* Dedicated channel */
2604 dequeue_wq = wq;
2605 } else {
2606 dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x",
2607 fqid, channel);
2608 ret = -EBUSY;
2609 goto out;
2611 /* Set the sdqcr to drain this channel */
2612 if (channel < qm_channel_pool1)
2613 qm_dqrr_sdqcr_set(&p->p,
2614 QM_SDQCR_TYPE_ACTIVE |
2615 QM_SDQCR_CHANNELS_DEDICATED);
2616 else
2617 qm_dqrr_sdqcr_set(&p->p,
2618 QM_SDQCR_TYPE_ACTIVE |
2619 QM_SDQCR_CHANNELS_POOL_CONV
2620 (channel));
2621 do {
2622 /* Keep draining DQRR while checking the MR*/
2623 qm_dqrr_drain_nomatch(&p->p);
2624 /* Process message ring too */
2625 found_fqrn = qm_mr_drain(&p->p, FQRN);
2626 cpu_relax();
2627 } while (!found_fqrn);
2630 if (res != QM_MCR_RESULT_OK &&
2631 res != QM_MCR_RESULT_PENDING) {
2632 dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n",
2633 fqid, res);
2634 ret = -EIO;
2635 goto out;
2637 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2639 * ORL had no entries, no need to wait until the
2640 * ERNs come in
2642 orl_empty = 1;
2645 * Retirement succeeded, check to see if FQ needs
2646 * to be drained
2648 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2649 /* FQ is Not Empty, drain using volatile DQ commands */
2650 do {
2651 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2653 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2655 * Wait for a dequeue and process the dequeues,
2656 * making sure to empty the ring completely
2658 } while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY));
2660 qm_dqrr_sdqcr_set(&p->p, 0);
2662 while (!orl_empty) {
2663 /* Wait for the ORL to have been completely drained */
2664 orl_empty = qm_mr_drain(&p->p, FQRL);
2665 cpu_relax();
2667 mcc = qm_mc_start(&p->p);
2668 qm_fqid_set(&mcc->fq, fqid);
2669 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2670 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2671 ret = -ETIMEDOUT;
2672 goto out;
2675 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2676 QM_MCR_VERB_ALTER_OOS);
2677 if (mcr->result != QM_MCR_RESULT_OK) {
2678 dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n",
2679 fqid, mcr->result);
2680 ret = -EIO;
2681 goto out;
2683 break;
2685 case QM_MCR_NP_STATE_RETIRED:
2686 /* Send OOS Command */
2687 mcc = qm_mc_start(&p->p);
2688 qm_fqid_set(&mcc->fq, fqid);
2689 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2690 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2691 ret = -ETIMEDOUT;
2692 goto out;
2695 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2696 QM_MCR_VERB_ALTER_OOS);
2697 if (mcr->result) {
2698 dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n",
2699 fqid, mcr->result);
2700 ret = -EIO;
2701 goto out;
2703 break;
2705 case QM_MCR_NP_STATE_OOS:
2706 /* Done */
2707 break;
2709 default:
2710 ret = -EIO;
2713 out:
2714 put_affine_portal();
2715 return ret;
2718 const struct qm_portal_config *qman_get_qm_portal_config(
2719 struct qman_portal *portal)
2721 return portal->config;
2723 EXPORT_SYMBOL(qman_get_qm_portal_config);
2725 struct gen_pool *qm_fqalloc; /* FQID allocator */
2726 struct gen_pool *qm_qpalloc; /* pool-channel allocator */
2727 struct gen_pool *qm_cgralloc; /* CGR ID allocator */
2729 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt)
2731 unsigned long addr;
2733 if (!p)
2734 return -ENODEV;
2736 addr = gen_pool_alloc(p, cnt);
2737 if (!addr)
2738 return -ENOMEM;
2740 *result = addr & ~DPAA_GENALLOC_OFF;
2742 return 0;
2745 int qman_alloc_fqid_range(u32 *result, u32 count)
2747 return qman_alloc_range(qm_fqalloc, result, count);
2749 EXPORT_SYMBOL(qman_alloc_fqid_range);
2751 int qman_alloc_pool_range(u32 *result, u32 count)
2753 return qman_alloc_range(qm_qpalloc, result, count);
2755 EXPORT_SYMBOL(qman_alloc_pool_range);
2757 int qman_alloc_cgrid_range(u32 *result, u32 count)
2759 return qman_alloc_range(qm_cgralloc, result, count);
2761 EXPORT_SYMBOL(qman_alloc_cgrid_range);
2763 int qman_release_fqid(u32 fqid)
2765 int ret = qman_shutdown_fq(fqid);
2767 if (ret) {
2768 pr_debug("FQID %d leaked\n", fqid);
2769 return ret;
2772 gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1);
2773 return 0;
2775 EXPORT_SYMBOL(qman_release_fqid);
2777 static int qpool_cleanup(u32 qp)
2780 * We query all FQDs starting from
2781 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs
2782 * whose destination channel is the pool-channel being released.
2783 * When a non-OOS FQD is found we attempt to clean it up
2785 struct qman_fq fq = {
2786 .fqid = QM_FQID_RANGE_START
2788 int err;
2790 do {
2791 struct qm_mcr_queryfq_np np;
2793 err = qman_query_fq_np(&fq, &np);
2794 if (err == -ERANGE)
2795 /* FQID range exceeded, found no problems */
2796 return 0;
2797 else if (WARN_ON(err))
2798 return err;
2800 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2801 struct qm_fqd fqd;
2803 err = qman_query_fq(&fq, &fqd);
2804 if (WARN_ON(err))
2805 return err;
2806 if (qm_fqd_get_chan(&fqd) == qp) {
2807 /* The channel is the FQ's target, clean it */
2808 err = qman_shutdown_fq(fq.fqid);
2809 if (err)
2811 * Couldn't shut down the FQ
2812 * so the pool must be leaked
2814 return err;
2817 /* Move to the next FQID */
2818 fq.fqid++;
2819 } while (1);
2822 int qman_release_pool(u32 qp)
2824 int ret;
2826 ret = qpool_cleanup(qp);
2827 if (ret) {
2828 pr_debug("CHID %d leaked\n", qp);
2829 return ret;
2832 gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1);
2833 return 0;
2835 EXPORT_SYMBOL(qman_release_pool);
2837 static int cgr_cleanup(u32 cgrid)
2840 * query all FQDs starting from FQID 1 until we get an "invalid FQID"
2841 * error, looking for non-OOS FQDs whose CGR is the CGR being released
2843 struct qman_fq fq = {
2844 .fqid = QM_FQID_RANGE_START
2846 int err;
2848 do {
2849 struct qm_mcr_queryfq_np np;
2851 err = qman_query_fq_np(&fq, &np);
2852 if (err == -ERANGE)
2853 /* FQID range exceeded, found no problems */
2854 return 0;
2855 else if (WARN_ON(err))
2856 return err;
2858 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2859 struct qm_fqd fqd;
2861 err = qman_query_fq(&fq, &fqd);
2862 if (WARN_ON(err))
2863 return err;
2864 if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE &&
2865 fqd.cgid == cgrid) {
2866 pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n",
2867 cgrid, fq.fqid);
2868 return -EIO;
2871 /* Move to the next FQID */
2872 fq.fqid++;
2873 } while (1);
2876 int qman_release_cgrid(u32 cgrid)
2878 int ret;
2880 ret = cgr_cleanup(cgrid);
2881 if (ret) {
2882 pr_debug("CGRID %d leaked\n", cgrid);
2883 return ret;
2886 gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1);
2887 return 0;
2889 EXPORT_SYMBOL(qman_release_cgrid);