Linux 4.19.133
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
blob06cf9388e74f96b7e6251197b92a3f3b4897be8d
1 /*
2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
27 #define SPI_BITBANG_CS_DELAY 100
30 /*----------------------------------------------------------------------*/
33 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
34 * Use this for GPIO or shift-register level hardware APIs.
36 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
37 * to glue code. These bitbang setup() and cleanup() routines are always
38 * used, though maybe they're called from controller-aware code.
40 * chipselect() and friends may use spi_device->controller_data and
41 * controller registers as appropriate.
44 * NOTE: SPI controller pins can often be used as GPIO pins instead,
45 * which means you could use a bitbang driver either to get hardware
46 * working quickly, or testing for differences that aren't speed related.
49 struct spi_bitbang_cs {
50 unsigned nsecs; /* (clock cycle time)/2 */
51 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
52 u32 word, u8 bits, unsigned flags);
53 unsigned (*txrx_bufs)(struct spi_device *,
54 u32 (*txrx_word)(
55 struct spi_device *spi,
56 unsigned nsecs,
57 u32 word, u8 bits,
58 unsigned flags),
59 unsigned, struct spi_transfer *,
60 unsigned);
63 static unsigned bitbang_txrx_8(
64 struct spi_device *spi,
65 u32 (*txrx_word)(struct spi_device *spi,
66 unsigned nsecs,
67 u32 word, u8 bits,
68 unsigned flags),
69 unsigned ns,
70 struct spi_transfer *t,
71 unsigned flags
72 ) {
73 unsigned bits = t->bits_per_word;
74 unsigned count = t->len;
75 const u8 *tx = t->tx_buf;
76 u8 *rx = t->rx_buf;
78 while (likely(count > 0)) {
79 u8 word = 0;
81 if (tx)
82 word = *tx++;
83 word = txrx_word(spi, ns, word, bits, flags);
84 if (rx)
85 *rx++ = word;
86 count -= 1;
88 return t->len - count;
91 static unsigned bitbang_txrx_16(
92 struct spi_device *spi,
93 u32 (*txrx_word)(struct spi_device *spi,
94 unsigned nsecs,
95 u32 word, u8 bits,
96 unsigned flags),
97 unsigned ns,
98 struct spi_transfer *t,
99 unsigned flags
101 unsigned bits = t->bits_per_word;
102 unsigned count = t->len;
103 const u16 *tx = t->tx_buf;
104 u16 *rx = t->rx_buf;
106 while (likely(count > 1)) {
107 u16 word = 0;
109 if (tx)
110 word = *tx++;
111 word = txrx_word(spi, ns, word, bits, flags);
112 if (rx)
113 *rx++ = word;
114 count -= 2;
116 return t->len - count;
119 static unsigned bitbang_txrx_32(
120 struct spi_device *spi,
121 u32 (*txrx_word)(struct spi_device *spi,
122 unsigned nsecs,
123 u32 word, u8 bits,
124 unsigned flags),
125 unsigned ns,
126 struct spi_transfer *t,
127 unsigned flags
129 unsigned bits = t->bits_per_word;
130 unsigned count = t->len;
131 const u32 *tx = t->tx_buf;
132 u32 *rx = t->rx_buf;
134 while (likely(count > 3)) {
135 u32 word = 0;
137 if (tx)
138 word = *tx++;
139 word = txrx_word(spi, ns, word, bits, flags);
140 if (rx)
141 *rx++ = word;
142 count -= 4;
144 return t->len - count;
147 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
149 struct spi_bitbang_cs *cs = spi->controller_state;
150 u8 bits_per_word;
151 u32 hz;
153 if (t) {
154 bits_per_word = t->bits_per_word;
155 hz = t->speed_hz;
156 } else {
157 bits_per_word = 0;
158 hz = 0;
161 /* spi_transfer level calls that work per-word */
162 if (!bits_per_word)
163 bits_per_word = spi->bits_per_word;
164 if (bits_per_word <= 8)
165 cs->txrx_bufs = bitbang_txrx_8;
166 else if (bits_per_word <= 16)
167 cs->txrx_bufs = bitbang_txrx_16;
168 else if (bits_per_word <= 32)
169 cs->txrx_bufs = bitbang_txrx_32;
170 else
171 return -EINVAL;
173 /* nsecs = (clock period)/2 */
174 if (!hz)
175 hz = spi->max_speed_hz;
176 if (hz) {
177 cs->nsecs = (1000000000/2) / hz;
178 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
179 return -EINVAL;
182 return 0;
184 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
187 * spi_bitbang_setup - default setup for per-word I/O loops
189 int spi_bitbang_setup(struct spi_device *spi)
191 struct spi_bitbang_cs *cs = spi->controller_state;
192 struct spi_bitbang *bitbang;
194 bitbang = spi_master_get_devdata(spi->master);
196 if (!cs) {
197 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
198 if (!cs)
199 return -ENOMEM;
200 spi->controller_state = cs;
203 /* per-word shift register access, in hardware or bitbanging */
204 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
205 if (!cs->txrx_word)
206 return -EINVAL;
208 if (bitbang->setup_transfer) {
209 int retval = bitbang->setup_transfer(spi, NULL);
210 if (retval < 0)
211 return retval;
214 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
216 /* NOTE we _need_ to call chipselect() early, ideally with adapter
217 * setup, unless the hardware defaults cooperate to avoid confusion
218 * between normal (active low) and inverted chipselects.
221 /* deselect chip (low or high) */
222 mutex_lock(&bitbang->lock);
223 if (!bitbang->busy) {
224 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
225 ndelay(cs->nsecs);
227 mutex_unlock(&bitbang->lock);
229 return 0;
231 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
234 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
236 void spi_bitbang_cleanup(struct spi_device *spi)
238 kfree(spi->controller_state);
240 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
242 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
244 struct spi_bitbang_cs *cs = spi->controller_state;
245 unsigned nsecs = cs->nsecs;
246 struct spi_bitbang *bitbang;
248 bitbang = spi_master_get_devdata(spi->master);
249 if (bitbang->set_line_direction) {
250 int err;
252 err = bitbang->set_line_direction(spi, !!(t->tx_buf));
253 if (err < 0)
254 return err;
257 if (spi->mode & SPI_3WIRE) {
258 unsigned flags;
260 flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
261 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
263 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
266 /*----------------------------------------------------------------------*/
269 * SECOND PART ... simple transfer queue runner.
271 * This costs a task context per controller, running the queue by
272 * performing each transfer in sequence. Smarter hardware can queue
273 * several DMA transfers at once, and process several controller queues
274 * in parallel; this driver doesn't match such hardware very well.
276 * Drivers can provide word-at-a-time i/o primitives, or provide
277 * transfer-at-a-time ones to leverage dma or fifo hardware.
280 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
282 struct spi_bitbang *bitbang;
284 bitbang = spi_master_get_devdata(spi);
286 mutex_lock(&bitbang->lock);
287 bitbang->busy = 1;
288 mutex_unlock(&bitbang->lock);
290 return 0;
293 static int spi_bitbang_transfer_one(struct spi_master *master,
294 struct spi_device *spi,
295 struct spi_transfer *transfer)
297 struct spi_bitbang *bitbang = spi_master_get_devdata(master);
298 int status = 0;
300 if (bitbang->setup_transfer) {
301 status = bitbang->setup_transfer(spi, transfer);
302 if (status < 0)
303 goto out;
306 if (transfer->len)
307 status = bitbang->txrx_bufs(spi, transfer);
309 if (status == transfer->len)
310 status = 0;
311 else if (status >= 0)
312 status = -EREMOTEIO;
314 out:
315 spi_finalize_current_transfer(master);
317 return status;
320 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
322 struct spi_bitbang *bitbang;
324 bitbang = spi_master_get_devdata(spi);
326 mutex_lock(&bitbang->lock);
327 bitbang->busy = 0;
328 mutex_unlock(&bitbang->lock);
330 return 0;
333 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
335 struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
337 /* SPI core provides CS high / low, but bitbang driver
338 * expects CS active
339 * spi device driver takes care of handling SPI_CS_HIGH
341 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
343 ndelay(SPI_BITBANG_CS_DELAY);
344 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
345 BITBANG_CS_INACTIVE);
346 ndelay(SPI_BITBANG_CS_DELAY);
349 /*----------------------------------------------------------------------*/
352 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
353 * @bitbang: driver handle
355 * Caller should have zero-initialized all parts of the structure, and then
356 * provided callbacks for chip selection and I/O loops. If the master has
357 * a transfer method, its final step should call spi_bitbang_transfer; or,
358 * that's the default if the transfer routine is not initialized. It should
359 * also set up the bus number and number of chipselects.
361 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
362 * hardware that basically exposes a shift register) or per-spi_transfer
363 * (which takes better advantage of hardware like fifos or DMA engines).
365 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
366 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
367 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
368 * routine isn't initialized.
370 * This routine registers the spi_master, which will process requests in a
371 * dedicated task, keeping IRQs unblocked most of the time. To stop
372 * processing those requests, call spi_bitbang_stop().
374 * On success, this routine will take a reference to master. The caller is
375 * responsible for calling spi_bitbang_stop() to decrement the reference and
376 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
377 * leak.
379 int spi_bitbang_start(struct spi_bitbang *bitbang)
381 struct spi_master *master = bitbang->master;
382 int ret;
384 if (!master || !bitbang->chipselect)
385 return -EINVAL;
387 mutex_init(&bitbang->lock);
389 if (!master->mode_bits)
390 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
392 if (master->transfer || master->transfer_one_message)
393 return -EINVAL;
395 master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
396 master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
397 master->transfer_one = spi_bitbang_transfer_one;
398 master->set_cs = spi_bitbang_set_cs;
400 if (!bitbang->txrx_bufs) {
401 bitbang->use_dma = 0;
402 bitbang->txrx_bufs = spi_bitbang_bufs;
403 if (!master->setup) {
404 if (!bitbang->setup_transfer)
405 bitbang->setup_transfer =
406 spi_bitbang_setup_transfer;
407 master->setup = spi_bitbang_setup;
408 master->cleanup = spi_bitbang_cleanup;
412 /* driver may get busy before register() returns, especially
413 * if someone registered boardinfo for devices
415 ret = spi_register_master(spi_master_get(master));
416 if (ret)
417 spi_master_put(master);
419 return ret;
421 EXPORT_SYMBOL_GPL(spi_bitbang_start);
424 * spi_bitbang_stop - stops the task providing spi communication
426 void spi_bitbang_stop(struct spi_bitbang *bitbang)
428 spi_unregister_master(bitbang->master);
430 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
432 MODULE_LICENSE("GPL");