Linux 4.19.133
[linux/fpc-iii.git] / drivers / spi / spi.c
blobf589d8100e957e14abc353366efefa32a57accb0
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
50 #include "internals.h"
52 static DEFINE_IDR(spi_master_idr);
54 static void spidev_release(struct device *dev)
56 struct spi_device *spi = to_spi_device(dev);
58 /* spi controllers may cleanup for released devices */
59 if (spi->controller->cleanup)
60 spi->controller->cleanup(spi);
62 spi_controller_put(spi->controller);
63 kfree(spi);
66 static ssize_t
67 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
69 const struct spi_device *spi = to_spi_device(dev);
70 int len;
72 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73 if (len != -ENODEV)
74 return len;
76 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
78 static DEVICE_ATTR_RO(modalias);
80 #define SPI_STATISTICS_ATTRS(field, file) \
81 static ssize_t spi_controller_##field##_show(struct device *dev, \
82 struct device_attribute *attr, \
83 char *buf) \
84 { \
85 struct spi_controller *ctlr = container_of(dev, \
86 struct spi_controller, dev); \
87 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
88 } \
89 static struct device_attribute dev_attr_spi_controller_##field = { \
90 .attr = { .name = file, .mode = 0444 }, \
91 .show = spi_controller_##field##_show, \
92 }; \
93 static ssize_t spi_device_##field##_show(struct device *dev, \
94 struct device_attribute *attr, \
95 char *buf) \
96 { \
97 struct spi_device *spi = to_spi_device(dev); \
98 return spi_statistics_##field##_show(&spi->statistics, buf); \
99 } \
100 static struct device_attribute dev_attr_spi_device_##field = { \
101 .attr = { .name = file, .mode = 0444 }, \
102 .show = spi_device_##field##_show, \
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107 char *buf) \
109 unsigned long flags; \
110 ssize_t len; \
111 spin_lock_irqsave(&stat->lock, flags); \
112 len = sprintf(buf, format_string, stat->field); \
113 spin_unlock_irqrestore(&stat->lock, flags); \
114 return len; \
116 SPI_STATISTICS_ATTRS(name, file)
118 #define SPI_STATISTICS_SHOW(field, format_string) \
119 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
120 field, format_string)
122 SPI_STATISTICS_SHOW(messages, "%lu");
123 SPI_STATISTICS_SHOW(transfers, "%lu");
124 SPI_STATISTICS_SHOW(errors, "%lu");
125 SPI_STATISTICS_SHOW(timedout, "%lu");
127 SPI_STATISTICS_SHOW(spi_sync, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129 SPI_STATISTICS_SHOW(spi_async, "%lu");
131 SPI_STATISTICS_SHOW(bytes, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
136 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
137 "transfer_bytes_histo_" number, \
138 transfer_bytes_histo[index], "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
157 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
159 static struct attribute *spi_dev_attrs[] = {
160 &dev_attr_modalias.attr,
161 NULL,
164 static const struct attribute_group spi_dev_group = {
165 .attrs = spi_dev_attrs,
168 static struct attribute *spi_device_statistics_attrs[] = {
169 &dev_attr_spi_device_messages.attr,
170 &dev_attr_spi_device_transfers.attr,
171 &dev_attr_spi_device_errors.attr,
172 &dev_attr_spi_device_timedout.attr,
173 &dev_attr_spi_device_spi_sync.attr,
174 &dev_attr_spi_device_spi_sync_immediate.attr,
175 &dev_attr_spi_device_spi_async.attr,
176 &dev_attr_spi_device_bytes.attr,
177 &dev_attr_spi_device_bytes_rx.attr,
178 &dev_attr_spi_device_bytes_tx.attr,
179 &dev_attr_spi_device_transfer_bytes_histo0.attr,
180 &dev_attr_spi_device_transfer_bytes_histo1.attr,
181 &dev_attr_spi_device_transfer_bytes_histo2.attr,
182 &dev_attr_spi_device_transfer_bytes_histo3.attr,
183 &dev_attr_spi_device_transfer_bytes_histo4.attr,
184 &dev_attr_spi_device_transfer_bytes_histo5.attr,
185 &dev_attr_spi_device_transfer_bytes_histo6.attr,
186 &dev_attr_spi_device_transfer_bytes_histo7.attr,
187 &dev_attr_spi_device_transfer_bytes_histo8.attr,
188 &dev_attr_spi_device_transfer_bytes_histo9.attr,
189 &dev_attr_spi_device_transfer_bytes_histo10.attr,
190 &dev_attr_spi_device_transfer_bytes_histo11.attr,
191 &dev_attr_spi_device_transfer_bytes_histo12.attr,
192 &dev_attr_spi_device_transfer_bytes_histo13.attr,
193 &dev_attr_spi_device_transfer_bytes_histo14.attr,
194 &dev_attr_spi_device_transfer_bytes_histo15.attr,
195 &dev_attr_spi_device_transfer_bytes_histo16.attr,
196 &dev_attr_spi_device_transfers_split_maxsize.attr,
197 NULL,
200 static const struct attribute_group spi_device_statistics_group = {
201 .name = "statistics",
202 .attrs = spi_device_statistics_attrs,
205 static const struct attribute_group *spi_dev_groups[] = {
206 &spi_dev_group,
207 &spi_device_statistics_group,
208 NULL,
211 static struct attribute *spi_controller_statistics_attrs[] = {
212 &dev_attr_spi_controller_messages.attr,
213 &dev_attr_spi_controller_transfers.attr,
214 &dev_attr_spi_controller_errors.attr,
215 &dev_attr_spi_controller_timedout.attr,
216 &dev_attr_spi_controller_spi_sync.attr,
217 &dev_attr_spi_controller_spi_sync_immediate.attr,
218 &dev_attr_spi_controller_spi_async.attr,
219 &dev_attr_spi_controller_bytes.attr,
220 &dev_attr_spi_controller_bytes_rx.attr,
221 &dev_attr_spi_controller_bytes_tx.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
236 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
237 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
238 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
239 &dev_attr_spi_controller_transfers_split_maxsize.attr,
240 NULL,
243 static const struct attribute_group spi_controller_statistics_group = {
244 .name = "statistics",
245 .attrs = spi_controller_statistics_attrs,
248 static const struct attribute_group *spi_master_groups[] = {
249 &spi_controller_statistics_group,
250 NULL,
253 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254 struct spi_transfer *xfer,
255 struct spi_controller *ctlr)
257 unsigned long flags;
258 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
260 if (l2len < 0)
261 l2len = 0;
263 spin_lock_irqsave(&stats->lock, flags);
265 stats->transfers++;
266 stats->transfer_bytes_histo[l2len]++;
268 stats->bytes += xfer->len;
269 if ((xfer->tx_buf) &&
270 (xfer->tx_buf != ctlr->dummy_tx))
271 stats->bytes_tx += xfer->len;
272 if ((xfer->rx_buf) &&
273 (xfer->rx_buf != ctlr->dummy_rx))
274 stats->bytes_rx += xfer->len;
276 spin_unlock_irqrestore(&stats->lock, flags);
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281 * and the sysfs version makes coldplug work too.
284 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285 const struct spi_device *sdev)
287 while (id->name[0]) {
288 if (!strcmp(sdev->modalias, id->name))
289 return id;
290 id++;
292 return NULL;
295 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
297 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
299 return spi_match_id(sdrv->id_table, sdev);
301 EXPORT_SYMBOL_GPL(spi_get_device_id);
303 static int spi_match_device(struct device *dev, struct device_driver *drv)
305 const struct spi_device *spi = to_spi_device(dev);
306 const struct spi_driver *sdrv = to_spi_driver(drv);
308 /* Attempt an OF style match */
309 if (of_driver_match_device(dev, drv))
310 return 1;
312 /* Then try ACPI */
313 if (acpi_driver_match_device(dev, drv))
314 return 1;
316 if (sdrv->id_table)
317 return !!spi_match_id(sdrv->id_table, spi);
319 return strcmp(spi->modalias, drv->name) == 0;
322 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
324 const struct spi_device *spi = to_spi_device(dev);
325 int rc;
327 rc = acpi_device_uevent_modalias(dev, env);
328 if (rc != -ENODEV)
329 return rc;
331 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
334 struct bus_type spi_bus_type = {
335 .name = "spi",
336 .dev_groups = spi_dev_groups,
337 .match = spi_match_device,
338 .uevent = spi_uevent,
340 EXPORT_SYMBOL_GPL(spi_bus_type);
343 static int spi_drv_probe(struct device *dev)
345 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
346 struct spi_device *spi = to_spi_device(dev);
347 int ret;
349 ret = of_clk_set_defaults(dev->of_node, false);
350 if (ret)
351 return ret;
353 if (dev->of_node) {
354 spi->irq = of_irq_get(dev->of_node, 0);
355 if (spi->irq == -EPROBE_DEFER)
356 return -EPROBE_DEFER;
357 if (spi->irq < 0)
358 spi->irq = 0;
361 ret = dev_pm_domain_attach(dev, true);
362 if (ret)
363 return ret;
365 ret = sdrv->probe(spi);
366 if (ret)
367 dev_pm_domain_detach(dev, true);
369 return ret;
372 static int spi_drv_remove(struct device *dev)
374 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
375 int ret;
377 ret = sdrv->remove(to_spi_device(dev));
378 dev_pm_domain_detach(dev, true);
380 return ret;
383 static void spi_drv_shutdown(struct device *dev)
385 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
387 sdrv->shutdown(to_spi_device(dev));
391 * __spi_register_driver - register a SPI driver
392 * @owner: owner module of the driver to register
393 * @sdrv: the driver to register
394 * Context: can sleep
396 * Return: zero on success, else a negative error code.
398 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
400 sdrv->driver.owner = owner;
401 sdrv->driver.bus = &spi_bus_type;
402 if (sdrv->probe)
403 sdrv->driver.probe = spi_drv_probe;
404 if (sdrv->remove)
405 sdrv->driver.remove = spi_drv_remove;
406 if (sdrv->shutdown)
407 sdrv->driver.shutdown = spi_drv_shutdown;
408 return driver_register(&sdrv->driver);
410 EXPORT_SYMBOL_GPL(__spi_register_driver);
412 /*-------------------------------------------------------------------------*/
414 /* SPI devices should normally not be created by SPI device drivers; that
415 * would make them board-specific. Similarly with SPI controller drivers.
416 * Device registration normally goes into like arch/.../mach.../board-YYY.c
417 * with other readonly (flashable) information about mainboard devices.
420 struct boardinfo {
421 struct list_head list;
422 struct spi_board_info board_info;
425 static LIST_HEAD(board_list);
426 static LIST_HEAD(spi_controller_list);
429 * Used to protect add/del opertion for board_info list and
430 * spi_controller list, and their matching process
431 * also used to protect object of type struct idr
433 static DEFINE_MUTEX(board_lock);
436 * spi_alloc_device - Allocate a new SPI device
437 * @ctlr: Controller to which device is connected
438 * Context: can sleep
440 * Allows a driver to allocate and initialize a spi_device without
441 * registering it immediately. This allows a driver to directly
442 * fill the spi_device with device parameters before calling
443 * spi_add_device() on it.
445 * Caller is responsible to call spi_add_device() on the returned
446 * spi_device structure to add it to the SPI controller. If the caller
447 * needs to discard the spi_device without adding it, then it should
448 * call spi_dev_put() on it.
450 * Return: a pointer to the new device, or NULL.
452 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
454 struct spi_device *spi;
456 if (!spi_controller_get(ctlr))
457 return NULL;
459 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
460 if (!spi) {
461 spi_controller_put(ctlr);
462 return NULL;
465 spi->master = spi->controller = ctlr;
466 spi->dev.parent = &ctlr->dev;
467 spi->dev.bus = &spi_bus_type;
468 spi->dev.release = spidev_release;
469 spi->cs_gpio = -ENOENT;
471 spin_lock_init(&spi->statistics.lock);
473 device_initialize(&spi->dev);
474 return spi;
476 EXPORT_SYMBOL_GPL(spi_alloc_device);
478 static void spi_dev_set_name(struct spi_device *spi)
480 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
482 if (adev) {
483 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
484 return;
487 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
488 spi->chip_select);
491 static int spi_dev_check(struct device *dev, void *data)
493 struct spi_device *spi = to_spi_device(dev);
494 struct spi_device *new_spi = data;
496 if (spi->controller == new_spi->controller &&
497 spi->chip_select == new_spi->chip_select)
498 return -EBUSY;
499 return 0;
503 * spi_add_device - Add spi_device allocated with spi_alloc_device
504 * @spi: spi_device to register
506 * Companion function to spi_alloc_device. Devices allocated with
507 * spi_alloc_device can be added onto the spi bus with this function.
509 * Return: 0 on success; negative errno on failure
511 int spi_add_device(struct spi_device *spi)
513 static DEFINE_MUTEX(spi_add_lock);
514 struct spi_controller *ctlr = spi->controller;
515 struct device *dev = ctlr->dev.parent;
516 int status;
518 /* Chipselects are numbered 0..max; validate. */
519 if (spi->chip_select >= ctlr->num_chipselect) {
520 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
521 ctlr->num_chipselect);
522 return -EINVAL;
525 /* Set the bus ID string */
526 spi_dev_set_name(spi);
528 /* We need to make sure there's no other device with this
529 * chipselect **BEFORE** we call setup(), else we'll trash
530 * its configuration. Lock against concurrent add() calls.
532 mutex_lock(&spi_add_lock);
534 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
535 if (status) {
536 dev_err(dev, "chipselect %d already in use\n",
537 spi->chip_select);
538 goto done;
541 if (ctlr->cs_gpios)
542 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
544 /* Drivers may modify this initial i/o setup, but will
545 * normally rely on the device being setup. Devices
546 * using SPI_CS_HIGH can't coexist well otherwise...
548 status = spi_setup(spi);
549 if (status < 0) {
550 dev_err(dev, "can't setup %s, status %d\n",
551 dev_name(&spi->dev), status);
552 goto done;
555 /* Device may be bound to an active driver when this returns */
556 status = device_add(&spi->dev);
557 if (status < 0)
558 dev_err(dev, "can't add %s, status %d\n",
559 dev_name(&spi->dev), status);
560 else
561 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
563 done:
564 mutex_unlock(&spi_add_lock);
565 return status;
567 EXPORT_SYMBOL_GPL(spi_add_device);
570 * spi_new_device - instantiate one new SPI device
571 * @ctlr: Controller to which device is connected
572 * @chip: Describes the SPI device
573 * Context: can sleep
575 * On typical mainboards, this is purely internal; and it's not needed
576 * after board init creates the hard-wired devices. Some development
577 * platforms may not be able to use spi_register_board_info though, and
578 * this is exported so that for example a USB or parport based adapter
579 * driver could add devices (which it would learn about out-of-band).
581 * Return: the new device, or NULL.
583 struct spi_device *spi_new_device(struct spi_controller *ctlr,
584 struct spi_board_info *chip)
586 struct spi_device *proxy;
587 int status;
589 /* NOTE: caller did any chip->bus_num checks necessary.
591 * Also, unless we change the return value convention to use
592 * error-or-pointer (not NULL-or-pointer), troubleshootability
593 * suggests syslogged diagnostics are best here (ugh).
596 proxy = spi_alloc_device(ctlr);
597 if (!proxy)
598 return NULL;
600 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
602 proxy->chip_select = chip->chip_select;
603 proxy->max_speed_hz = chip->max_speed_hz;
604 proxy->mode = chip->mode;
605 proxy->irq = chip->irq;
606 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
607 proxy->dev.platform_data = (void *) chip->platform_data;
608 proxy->controller_data = chip->controller_data;
609 proxy->controller_state = NULL;
611 if (chip->properties) {
612 status = device_add_properties(&proxy->dev, chip->properties);
613 if (status) {
614 dev_err(&ctlr->dev,
615 "failed to add properties to '%s': %d\n",
616 chip->modalias, status);
617 goto err_dev_put;
621 status = spi_add_device(proxy);
622 if (status < 0)
623 goto err_remove_props;
625 return proxy;
627 err_remove_props:
628 if (chip->properties)
629 device_remove_properties(&proxy->dev);
630 err_dev_put:
631 spi_dev_put(proxy);
632 return NULL;
634 EXPORT_SYMBOL_GPL(spi_new_device);
637 * spi_unregister_device - unregister a single SPI device
638 * @spi: spi_device to unregister
640 * Start making the passed SPI device vanish. Normally this would be handled
641 * by spi_unregister_controller().
643 void spi_unregister_device(struct spi_device *spi)
645 if (!spi)
646 return;
648 if (spi->dev.of_node) {
649 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
650 of_node_put(spi->dev.of_node);
652 if (ACPI_COMPANION(&spi->dev))
653 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
654 device_unregister(&spi->dev);
656 EXPORT_SYMBOL_GPL(spi_unregister_device);
658 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
659 struct spi_board_info *bi)
661 struct spi_device *dev;
663 if (ctlr->bus_num != bi->bus_num)
664 return;
666 dev = spi_new_device(ctlr, bi);
667 if (!dev)
668 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
669 bi->modalias);
673 * spi_register_board_info - register SPI devices for a given board
674 * @info: array of chip descriptors
675 * @n: how many descriptors are provided
676 * Context: can sleep
678 * Board-specific early init code calls this (probably during arch_initcall)
679 * with segments of the SPI device table. Any device nodes are created later,
680 * after the relevant parent SPI controller (bus_num) is defined. We keep
681 * this table of devices forever, so that reloading a controller driver will
682 * not make Linux forget about these hard-wired devices.
684 * Other code can also call this, e.g. a particular add-on board might provide
685 * SPI devices through its expansion connector, so code initializing that board
686 * would naturally declare its SPI devices.
688 * The board info passed can safely be __initdata ... but be careful of
689 * any embedded pointers (platform_data, etc), they're copied as-is.
690 * Device properties are deep-copied though.
692 * Return: zero on success, else a negative error code.
694 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
696 struct boardinfo *bi;
697 int i;
699 if (!n)
700 return 0;
702 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
703 if (!bi)
704 return -ENOMEM;
706 for (i = 0; i < n; i++, bi++, info++) {
707 struct spi_controller *ctlr;
709 memcpy(&bi->board_info, info, sizeof(*info));
710 if (info->properties) {
711 bi->board_info.properties =
712 property_entries_dup(info->properties);
713 if (IS_ERR(bi->board_info.properties))
714 return PTR_ERR(bi->board_info.properties);
717 mutex_lock(&board_lock);
718 list_add_tail(&bi->list, &board_list);
719 list_for_each_entry(ctlr, &spi_controller_list, list)
720 spi_match_controller_to_boardinfo(ctlr,
721 &bi->board_info);
722 mutex_unlock(&board_lock);
725 return 0;
728 /*-------------------------------------------------------------------------*/
730 static void spi_set_cs(struct spi_device *spi, bool enable)
732 if (spi->mode & SPI_CS_HIGH)
733 enable = !enable;
735 if (gpio_is_valid(spi->cs_gpio)) {
736 gpio_set_value(spi->cs_gpio, !enable);
737 /* Some SPI masters need both GPIO CS & slave_select */
738 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
739 spi->controller->set_cs)
740 spi->controller->set_cs(spi, !enable);
741 } else if (spi->controller->set_cs) {
742 spi->controller->set_cs(spi, !enable);
746 #ifdef CONFIG_HAS_DMA
747 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
748 struct sg_table *sgt, void *buf, size_t len,
749 enum dma_data_direction dir)
751 const bool vmalloced_buf = is_vmalloc_addr(buf);
752 unsigned int max_seg_size = dma_get_max_seg_size(dev);
753 #ifdef CONFIG_HIGHMEM
754 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
755 (unsigned long)buf < (PKMAP_BASE +
756 (LAST_PKMAP * PAGE_SIZE)));
757 #else
758 const bool kmap_buf = false;
759 #endif
760 int desc_len;
761 int sgs;
762 struct page *vm_page;
763 struct scatterlist *sg;
764 void *sg_buf;
765 size_t min;
766 int i, ret;
768 if (vmalloced_buf || kmap_buf) {
769 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
770 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
771 } else if (virt_addr_valid(buf)) {
772 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
773 sgs = DIV_ROUND_UP(len, desc_len);
774 } else {
775 return -EINVAL;
778 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
779 if (ret != 0)
780 return ret;
782 sg = &sgt->sgl[0];
783 for (i = 0; i < sgs; i++) {
785 if (vmalloced_buf || kmap_buf) {
787 * Next scatterlist entry size is the minimum between
788 * the desc_len and the remaining buffer length that
789 * fits in a page.
791 min = min_t(size_t, desc_len,
792 min_t(size_t, len,
793 PAGE_SIZE - offset_in_page(buf)));
794 if (vmalloced_buf)
795 vm_page = vmalloc_to_page(buf);
796 else
797 vm_page = kmap_to_page(buf);
798 if (!vm_page) {
799 sg_free_table(sgt);
800 return -ENOMEM;
802 sg_set_page(sg, vm_page,
803 min, offset_in_page(buf));
804 } else {
805 min = min_t(size_t, len, desc_len);
806 sg_buf = buf;
807 sg_set_buf(sg, sg_buf, min);
810 buf += min;
811 len -= min;
812 sg = sg_next(sg);
815 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
816 if (!ret)
817 ret = -ENOMEM;
818 if (ret < 0) {
819 sg_free_table(sgt);
820 return ret;
823 sgt->nents = ret;
825 return 0;
828 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
829 struct sg_table *sgt, enum dma_data_direction dir)
831 if (sgt->orig_nents) {
832 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
833 sg_free_table(sgt);
837 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
839 struct device *tx_dev, *rx_dev;
840 struct spi_transfer *xfer;
841 int ret;
843 if (!ctlr->can_dma)
844 return 0;
846 if (ctlr->dma_tx)
847 tx_dev = ctlr->dma_tx->device->dev;
848 else
849 tx_dev = ctlr->dev.parent;
851 if (ctlr->dma_rx)
852 rx_dev = ctlr->dma_rx->device->dev;
853 else
854 rx_dev = ctlr->dev.parent;
856 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
857 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
858 continue;
860 if (xfer->tx_buf != NULL) {
861 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
862 (void *)xfer->tx_buf, xfer->len,
863 DMA_TO_DEVICE);
864 if (ret != 0)
865 return ret;
868 if (xfer->rx_buf != NULL) {
869 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
870 xfer->rx_buf, xfer->len,
871 DMA_FROM_DEVICE);
872 if (ret != 0) {
873 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
874 DMA_TO_DEVICE);
875 return ret;
880 ctlr->cur_msg_mapped = true;
882 return 0;
885 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
887 struct spi_transfer *xfer;
888 struct device *tx_dev, *rx_dev;
890 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
891 return 0;
893 if (ctlr->dma_tx)
894 tx_dev = ctlr->dma_tx->device->dev;
895 else
896 tx_dev = ctlr->dev.parent;
898 if (ctlr->dma_rx)
899 rx_dev = ctlr->dma_rx->device->dev;
900 else
901 rx_dev = ctlr->dev.parent;
903 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
904 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
905 continue;
907 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
908 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
911 return 0;
913 #else /* !CONFIG_HAS_DMA */
914 static inline int __spi_map_msg(struct spi_controller *ctlr,
915 struct spi_message *msg)
917 return 0;
920 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
921 struct spi_message *msg)
923 return 0;
925 #endif /* !CONFIG_HAS_DMA */
927 static inline int spi_unmap_msg(struct spi_controller *ctlr,
928 struct spi_message *msg)
930 struct spi_transfer *xfer;
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
934 * Restore the original value of tx_buf or rx_buf if they are
935 * NULL.
937 if (xfer->tx_buf == ctlr->dummy_tx)
938 xfer->tx_buf = NULL;
939 if (xfer->rx_buf == ctlr->dummy_rx)
940 xfer->rx_buf = NULL;
943 return __spi_unmap_msg(ctlr, msg);
946 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
948 struct spi_transfer *xfer;
949 void *tmp;
950 unsigned int max_tx, max_rx;
952 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
953 max_tx = 0;
954 max_rx = 0;
956 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
958 !xfer->tx_buf)
959 max_tx = max(xfer->len, max_tx);
960 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
961 !xfer->rx_buf)
962 max_rx = max(xfer->len, max_rx);
965 if (max_tx) {
966 tmp = krealloc(ctlr->dummy_tx, max_tx,
967 GFP_KERNEL | GFP_DMA);
968 if (!tmp)
969 return -ENOMEM;
970 ctlr->dummy_tx = tmp;
971 memset(tmp, 0, max_tx);
974 if (max_rx) {
975 tmp = krealloc(ctlr->dummy_rx, max_rx,
976 GFP_KERNEL | GFP_DMA);
977 if (!tmp)
978 return -ENOMEM;
979 ctlr->dummy_rx = tmp;
982 if (max_tx || max_rx) {
983 list_for_each_entry(xfer, &msg->transfers,
984 transfer_list) {
985 if (!xfer->len)
986 continue;
987 if (!xfer->tx_buf)
988 xfer->tx_buf = ctlr->dummy_tx;
989 if (!xfer->rx_buf)
990 xfer->rx_buf = ctlr->dummy_rx;
995 return __spi_map_msg(ctlr, msg);
999 * spi_transfer_one_message - Default implementation of transfer_one_message()
1001 * This is a standard implementation of transfer_one_message() for
1002 * drivers which implement a transfer_one() operation. It provides
1003 * standard handling of delays and chip select management.
1005 static int spi_transfer_one_message(struct spi_controller *ctlr,
1006 struct spi_message *msg)
1008 struct spi_transfer *xfer;
1009 bool keep_cs = false;
1010 int ret = 0;
1011 unsigned long long ms = 1;
1012 struct spi_statistics *statm = &ctlr->statistics;
1013 struct spi_statistics *stats = &msg->spi->statistics;
1015 spi_set_cs(msg->spi, true);
1017 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1018 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1020 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1021 trace_spi_transfer_start(msg, xfer);
1023 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1024 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026 if (xfer->tx_buf || xfer->rx_buf) {
1027 reinit_completion(&ctlr->xfer_completion);
1029 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1030 if (ret < 0) {
1031 SPI_STATISTICS_INCREMENT_FIELD(statm,
1032 errors);
1033 SPI_STATISTICS_INCREMENT_FIELD(stats,
1034 errors);
1035 dev_err(&msg->spi->dev,
1036 "SPI transfer failed: %d\n", ret);
1037 goto out;
1040 if (ret > 0) {
1041 ret = 0;
1042 ms = 8LL * 1000LL * xfer->len;
1043 do_div(ms, xfer->speed_hz);
1044 ms += ms + 200; /* some tolerance */
1046 if (ms > UINT_MAX)
1047 ms = UINT_MAX;
1049 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1050 msecs_to_jiffies(ms));
1053 if (ms == 0) {
1054 SPI_STATISTICS_INCREMENT_FIELD(statm,
1055 timedout);
1056 SPI_STATISTICS_INCREMENT_FIELD(stats,
1057 timedout);
1058 dev_err(&msg->spi->dev,
1059 "SPI transfer timed out\n");
1060 msg->status = -ETIMEDOUT;
1062 } else {
1063 if (xfer->len)
1064 dev_err(&msg->spi->dev,
1065 "Bufferless transfer has length %u\n",
1066 xfer->len);
1069 trace_spi_transfer_stop(msg, xfer);
1071 if (msg->status != -EINPROGRESS)
1072 goto out;
1074 if (xfer->delay_usecs) {
1075 u16 us = xfer->delay_usecs;
1077 if (us <= 10)
1078 udelay(us);
1079 else
1080 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1083 if (xfer->cs_change) {
1084 if (list_is_last(&xfer->transfer_list,
1085 &msg->transfers)) {
1086 keep_cs = true;
1087 } else {
1088 spi_set_cs(msg->spi, false);
1089 udelay(10);
1090 spi_set_cs(msg->spi, true);
1094 msg->actual_length += xfer->len;
1097 out:
1098 if (ret != 0 || !keep_cs)
1099 spi_set_cs(msg->spi, false);
1101 if (msg->status == -EINPROGRESS)
1102 msg->status = ret;
1104 if (msg->status && ctlr->handle_err)
1105 ctlr->handle_err(ctlr, msg);
1107 spi_res_release(ctlr, msg);
1109 spi_finalize_current_message(ctlr);
1111 return ret;
1115 * spi_finalize_current_transfer - report completion of a transfer
1116 * @ctlr: the controller reporting completion
1118 * Called by SPI drivers using the core transfer_one_message()
1119 * implementation to notify it that the current interrupt driven
1120 * transfer has finished and the next one may be scheduled.
1122 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124 complete(&ctlr->xfer_completion);
1126 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1129 * __spi_pump_messages - function which processes spi message queue
1130 * @ctlr: controller to process queue for
1131 * @in_kthread: true if we are in the context of the message pump thread
1133 * This function checks if there is any spi message in the queue that
1134 * needs processing and if so call out to the driver to initialize hardware
1135 * and transfer each message.
1137 * Note that it is called both from the kthread itself and also from
1138 * inside spi_sync(); the queue extraction handling at the top of the
1139 * function should deal with this safely.
1141 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143 unsigned long flags;
1144 bool was_busy = false;
1145 int ret;
1147 /* Lock queue */
1148 spin_lock_irqsave(&ctlr->queue_lock, flags);
1150 /* Make sure we are not already running a message */
1151 if (ctlr->cur_msg) {
1152 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1153 return;
1156 /* If another context is idling the device then defer */
1157 if (ctlr->idling) {
1158 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1159 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160 return;
1163 /* Check if the queue is idle */
1164 if (list_empty(&ctlr->queue) || !ctlr->running) {
1165 if (!ctlr->busy) {
1166 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167 return;
1170 /* Only do teardown in the thread */
1171 if (!in_kthread) {
1172 kthread_queue_work(&ctlr->kworker,
1173 &ctlr->pump_messages);
1174 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1175 return;
1178 ctlr->busy = false;
1179 ctlr->idling = true;
1180 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182 kfree(ctlr->dummy_rx);
1183 ctlr->dummy_rx = NULL;
1184 kfree(ctlr->dummy_tx);
1185 ctlr->dummy_tx = NULL;
1186 if (ctlr->unprepare_transfer_hardware &&
1187 ctlr->unprepare_transfer_hardware(ctlr))
1188 dev_err(&ctlr->dev,
1189 "failed to unprepare transfer hardware\n");
1190 if (ctlr->auto_runtime_pm) {
1191 pm_runtime_mark_last_busy(ctlr->dev.parent);
1192 pm_runtime_put_autosuspend(ctlr->dev.parent);
1194 trace_spi_controller_idle(ctlr);
1196 spin_lock_irqsave(&ctlr->queue_lock, flags);
1197 ctlr->idling = false;
1198 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1199 return;
1202 /* Extract head of queue */
1203 ctlr->cur_msg =
1204 list_first_entry(&ctlr->queue, struct spi_message, queue);
1206 list_del_init(&ctlr->cur_msg->queue);
1207 if (ctlr->busy)
1208 was_busy = true;
1209 else
1210 ctlr->busy = true;
1211 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213 mutex_lock(&ctlr->io_mutex);
1215 if (!was_busy && ctlr->auto_runtime_pm) {
1216 ret = pm_runtime_get_sync(ctlr->dev.parent);
1217 if (ret < 0) {
1218 pm_runtime_put_noidle(ctlr->dev.parent);
1219 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220 ret);
1221 mutex_unlock(&ctlr->io_mutex);
1222 return;
1226 if (!was_busy)
1227 trace_spi_controller_busy(ctlr);
1229 if (!was_busy && ctlr->prepare_transfer_hardware) {
1230 ret = ctlr->prepare_transfer_hardware(ctlr);
1231 if (ret) {
1232 dev_err(&ctlr->dev,
1233 "failed to prepare transfer hardware\n");
1235 if (ctlr->auto_runtime_pm)
1236 pm_runtime_put(ctlr->dev.parent);
1237 mutex_unlock(&ctlr->io_mutex);
1238 return;
1242 trace_spi_message_start(ctlr->cur_msg);
1244 if (ctlr->prepare_message) {
1245 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246 if (ret) {
1247 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248 ret);
1249 ctlr->cur_msg->status = ret;
1250 spi_finalize_current_message(ctlr);
1251 goto out;
1253 ctlr->cur_msg_prepared = true;
1256 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257 if (ret) {
1258 ctlr->cur_msg->status = ret;
1259 spi_finalize_current_message(ctlr);
1260 goto out;
1263 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264 if (ret) {
1265 dev_err(&ctlr->dev,
1266 "failed to transfer one message from queue\n");
1267 goto out;
1270 out:
1271 mutex_unlock(&ctlr->io_mutex);
1273 /* Prod the scheduler in case transfer_one() was busy waiting */
1274 if (!ret)
1275 cond_resched();
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1282 static void spi_pump_messages(struct kthread_work *work)
1284 struct spi_controller *ctlr =
1285 container_of(work, struct spi_controller, pump_messages);
1287 __spi_pump_messages(ctlr, true);
1290 static int spi_init_queue(struct spi_controller *ctlr)
1292 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1294 ctlr->running = false;
1295 ctlr->busy = false;
1297 kthread_init_worker(&ctlr->kworker);
1298 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299 "%s", dev_name(&ctlr->dev));
1300 if (IS_ERR(ctlr->kworker_task)) {
1301 dev_err(&ctlr->dev, "failed to create message pump task\n");
1302 return PTR_ERR(ctlr->kworker_task);
1304 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1307 * Controller config will indicate if this controller should run the
1308 * message pump with high (realtime) priority to reduce the transfer
1309 * latency on the bus by minimising the delay between a transfer
1310 * request and the scheduling of the message pump thread. Without this
1311 * setting the message pump thread will remain at default priority.
1313 if (ctlr->rt) {
1314 dev_info(&ctlr->dev,
1315 "will run message pump with realtime priority\n");
1316 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1319 return 0;
1323 * spi_get_next_queued_message() - called by driver to check for queued
1324 * messages
1325 * @ctlr: the controller to check for queued messages
1327 * If there are more messages in the queue, the next message is returned from
1328 * this call.
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1334 struct spi_message *next;
1335 unsigned long flags;
1337 /* get a pointer to the next message, if any */
1338 spin_lock_irqsave(&ctlr->queue_lock, flags);
1339 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340 queue);
1341 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1343 return next;
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1354 void spi_finalize_current_message(struct spi_controller *ctlr)
1356 struct spi_message *mesg;
1357 unsigned long flags;
1358 int ret;
1360 spin_lock_irqsave(&ctlr->queue_lock, flags);
1361 mesg = ctlr->cur_msg;
1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1364 spi_unmap_msg(ctlr, mesg);
1366 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367 ret = ctlr->unprepare_message(ctlr, mesg);
1368 if (ret) {
1369 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370 ret);
1374 spin_lock_irqsave(&ctlr->queue_lock, flags);
1375 ctlr->cur_msg = NULL;
1376 ctlr->cur_msg_prepared = false;
1377 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1380 trace_spi_message_done(mesg);
1382 mesg->state = NULL;
1383 if (mesg->complete)
1384 mesg->complete(mesg->context);
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1388 static int spi_start_queue(struct spi_controller *ctlr)
1390 unsigned long flags;
1392 spin_lock_irqsave(&ctlr->queue_lock, flags);
1394 if (ctlr->running || ctlr->busy) {
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 return -EBUSY;
1399 ctlr->running = true;
1400 ctlr->cur_msg = NULL;
1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1405 return 0;
1408 static int spi_stop_queue(struct spi_controller *ctlr)
1410 unsigned long flags;
1411 unsigned limit = 500;
1412 int ret = 0;
1414 spin_lock_irqsave(&ctlr->queue_lock, flags);
1417 * This is a bit lame, but is optimized for the common execution path.
1418 * A wait_queue on the ctlr->busy could be used, but then the common
1419 * execution path (pump_messages) would be required to call wake_up or
1420 * friends on every SPI message. Do this instead.
1422 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 usleep_range(10000, 11000);
1425 spin_lock_irqsave(&ctlr->queue_lock, flags);
1428 if (!list_empty(&ctlr->queue) || ctlr->busy)
1429 ret = -EBUSY;
1430 else
1431 ctlr->running = false;
1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1435 if (ret) {
1436 dev_warn(&ctlr->dev, "could not stop message queue\n");
1437 return ret;
1439 return ret;
1442 static int spi_destroy_queue(struct spi_controller *ctlr)
1444 int ret;
1446 ret = spi_stop_queue(ctlr);
1449 * kthread_flush_worker will block until all work is done.
1450 * If the reason that stop_queue timed out is that the work will never
1451 * finish, then it does no good to call flush/stop thread, so
1452 * return anyway.
1454 if (ret) {
1455 dev_err(&ctlr->dev, "problem destroying queue\n");
1456 return ret;
1459 kthread_flush_worker(&ctlr->kworker);
1460 kthread_stop(ctlr->kworker_task);
1462 return 0;
1465 static int __spi_queued_transfer(struct spi_device *spi,
1466 struct spi_message *msg,
1467 bool need_pump)
1469 struct spi_controller *ctlr = spi->controller;
1470 unsigned long flags;
1472 spin_lock_irqsave(&ctlr->queue_lock, flags);
1474 if (!ctlr->running) {
1475 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 return -ESHUTDOWN;
1478 msg->actual_length = 0;
1479 msg->status = -EINPROGRESS;
1481 list_add_tail(&msg->queue, &ctlr->queue);
1482 if (!ctlr->busy && need_pump)
1483 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1485 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486 return 0;
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1494 * Return: zero on success, else a negative error code.
1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1498 return __spi_queued_transfer(spi, msg, true);
1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1503 int ret;
1505 ctlr->transfer = spi_queued_transfer;
1506 if (!ctlr->transfer_one_message)
1507 ctlr->transfer_one_message = spi_transfer_one_message;
1509 /* Initialize and start queue */
1510 ret = spi_init_queue(ctlr);
1511 if (ret) {
1512 dev_err(&ctlr->dev, "problem initializing queue\n");
1513 goto err_init_queue;
1515 ctlr->queued = true;
1516 ret = spi_start_queue(ctlr);
1517 if (ret) {
1518 dev_err(&ctlr->dev, "problem starting queue\n");
1519 goto err_start_queue;
1522 return 0;
1524 err_start_queue:
1525 spi_destroy_queue(ctlr);
1526 err_init_queue:
1527 return ret;
1531 * spi_flush_queue - Send all pending messages in the queue from the callers'
1532 * context
1533 * @ctlr: controller to process queue for
1535 * This should be used when one wants to ensure all pending messages have been
1536 * sent before doing something. Is used by the spi-mem code to make sure SPI
1537 * memory operations do not preempt regular SPI transfers that have been queued
1538 * before the spi-mem operation.
1540 void spi_flush_queue(struct spi_controller *ctlr)
1542 if (ctlr->transfer == spi_queued_transfer)
1543 __spi_pump_messages(ctlr, false);
1546 /*-------------------------------------------------------------------------*/
1548 #if defined(CONFIG_OF)
1549 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1550 struct device_node *nc)
1552 u32 value;
1553 int rc;
1555 /* Mode (clock phase/polarity/etc.) */
1556 if (of_property_read_bool(nc, "spi-cpha"))
1557 spi->mode |= SPI_CPHA;
1558 if (of_property_read_bool(nc, "spi-cpol"))
1559 spi->mode |= SPI_CPOL;
1560 if (of_property_read_bool(nc, "spi-cs-high"))
1561 spi->mode |= SPI_CS_HIGH;
1562 if (of_property_read_bool(nc, "spi-3wire"))
1563 spi->mode |= SPI_3WIRE;
1564 if (of_property_read_bool(nc, "spi-lsb-first"))
1565 spi->mode |= SPI_LSB_FIRST;
1567 /* Device DUAL/QUAD mode */
1568 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1569 switch (value) {
1570 case 1:
1571 break;
1572 case 2:
1573 spi->mode |= SPI_TX_DUAL;
1574 break;
1575 case 4:
1576 spi->mode |= SPI_TX_QUAD;
1577 break;
1578 default:
1579 dev_warn(&ctlr->dev,
1580 "spi-tx-bus-width %d not supported\n",
1581 value);
1582 break;
1586 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1587 switch (value) {
1588 case 1:
1589 break;
1590 case 2:
1591 spi->mode |= SPI_RX_DUAL;
1592 break;
1593 case 4:
1594 spi->mode |= SPI_RX_QUAD;
1595 break;
1596 default:
1597 dev_warn(&ctlr->dev,
1598 "spi-rx-bus-width %d not supported\n",
1599 value);
1600 break;
1604 if (spi_controller_is_slave(ctlr)) {
1605 if (strcmp(nc->name, "slave")) {
1606 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1607 nc);
1608 return -EINVAL;
1610 return 0;
1613 /* Device address */
1614 rc = of_property_read_u32(nc, "reg", &value);
1615 if (rc) {
1616 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1617 nc, rc);
1618 return rc;
1620 spi->chip_select = value;
1622 /* Device speed */
1623 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1624 if (rc) {
1625 dev_err(&ctlr->dev,
1626 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1627 return rc;
1629 spi->max_speed_hz = value;
1631 return 0;
1634 static struct spi_device *
1635 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1637 struct spi_device *spi;
1638 int rc;
1640 /* Alloc an spi_device */
1641 spi = spi_alloc_device(ctlr);
1642 if (!spi) {
1643 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1644 rc = -ENOMEM;
1645 goto err_out;
1648 /* Select device driver */
1649 rc = of_modalias_node(nc, spi->modalias,
1650 sizeof(spi->modalias));
1651 if (rc < 0) {
1652 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1653 goto err_out;
1656 rc = of_spi_parse_dt(ctlr, spi, nc);
1657 if (rc)
1658 goto err_out;
1660 /* Store a pointer to the node in the device structure */
1661 of_node_get(nc);
1662 spi->dev.of_node = nc;
1664 /* Register the new device */
1665 rc = spi_add_device(spi);
1666 if (rc) {
1667 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1668 goto err_of_node_put;
1671 return spi;
1673 err_of_node_put:
1674 of_node_put(nc);
1675 err_out:
1676 spi_dev_put(spi);
1677 return ERR_PTR(rc);
1681 * of_register_spi_devices() - Register child devices onto the SPI bus
1682 * @ctlr: Pointer to spi_controller device
1684 * Registers an spi_device for each child node of controller node which
1685 * represents a valid SPI slave.
1687 static void of_register_spi_devices(struct spi_controller *ctlr)
1689 struct spi_device *spi;
1690 struct device_node *nc;
1692 if (!ctlr->dev.of_node)
1693 return;
1695 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1696 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1697 continue;
1698 spi = of_register_spi_device(ctlr, nc);
1699 if (IS_ERR(spi)) {
1700 dev_warn(&ctlr->dev,
1701 "Failed to create SPI device for %pOF\n", nc);
1702 of_node_clear_flag(nc, OF_POPULATED);
1706 #else
1707 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1708 #endif
1710 #ifdef CONFIG_ACPI
1711 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1713 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1714 const union acpi_object *obj;
1716 if (!x86_apple_machine)
1717 return;
1719 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1720 && obj->buffer.length >= 4)
1721 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1723 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1724 && obj->buffer.length == 8)
1725 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1727 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1728 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1729 spi->mode |= SPI_LSB_FIRST;
1731 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1732 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1733 spi->mode |= SPI_CPOL;
1735 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1736 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1737 spi->mode |= SPI_CPHA;
1740 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1742 struct spi_device *spi = data;
1743 struct spi_controller *ctlr = spi->controller;
1745 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1746 struct acpi_resource_spi_serialbus *sb;
1748 sb = &ares->data.spi_serial_bus;
1749 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1751 * ACPI DeviceSelection numbering is handled by the
1752 * host controller driver in Windows and can vary
1753 * from driver to driver. In Linux we always expect
1754 * 0 .. max - 1 so we need to ask the driver to
1755 * translate between the two schemes.
1757 if (ctlr->fw_translate_cs) {
1758 int cs = ctlr->fw_translate_cs(ctlr,
1759 sb->device_selection);
1760 if (cs < 0)
1761 return cs;
1762 spi->chip_select = cs;
1763 } else {
1764 spi->chip_select = sb->device_selection;
1767 spi->max_speed_hz = sb->connection_speed;
1769 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1770 spi->mode |= SPI_CPHA;
1771 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1772 spi->mode |= SPI_CPOL;
1773 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1774 spi->mode |= SPI_CS_HIGH;
1776 } else if (spi->irq < 0) {
1777 struct resource r;
1779 if (acpi_dev_resource_interrupt(ares, 0, &r))
1780 spi->irq = r.start;
1783 /* Always tell the ACPI core to skip this resource */
1784 return 1;
1787 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1788 struct acpi_device *adev)
1790 struct list_head resource_list;
1791 struct spi_device *spi;
1792 int ret;
1794 if (acpi_bus_get_status(adev) || !adev->status.present ||
1795 acpi_device_enumerated(adev))
1796 return AE_OK;
1798 spi = spi_alloc_device(ctlr);
1799 if (!spi) {
1800 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1801 dev_name(&adev->dev));
1802 return AE_NO_MEMORY;
1805 ACPI_COMPANION_SET(&spi->dev, adev);
1806 spi->irq = -1;
1808 INIT_LIST_HEAD(&resource_list);
1809 ret = acpi_dev_get_resources(adev, &resource_list,
1810 acpi_spi_add_resource, spi);
1811 acpi_dev_free_resource_list(&resource_list);
1813 acpi_spi_parse_apple_properties(spi);
1815 if (ret < 0 || !spi->max_speed_hz) {
1816 spi_dev_put(spi);
1817 return AE_OK;
1820 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1821 sizeof(spi->modalias));
1823 if (spi->irq < 0)
1824 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1826 acpi_device_set_enumerated(adev);
1828 adev->power.flags.ignore_parent = true;
1829 if (spi_add_device(spi)) {
1830 adev->power.flags.ignore_parent = false;
1831 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1832 dev_name(&adev->dev));
1833 spi_dev_put(spi);
1836 return AE_OK;
1839 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1840 void *data, void **return_value)
1842 struct spi_controller *ctlr = data;
1843 struct acpi_device *adev;
1845 if (acpi_bus_get_device(handle, &adev))
1846 return AE_OK;
1848 return acpi_register_spi_device(ctlr, adev);
1851 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1853 acpi_status status;
1854 acpi_handle handle;
1856 handle = ACPI_HANDLE(ctlr->dev.parent);
1857 if (!handle)
1858 return;
1860 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1861 acpi_spi_add_device, NULL, ctlr, NULL);
1862 if (ACPI_FAILURE(status))
1863 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1865 #else
1866 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1867 #endif /* CONFIG_ACPI */
1869 static void spi_controller_release(struct device *dev)
1871 struct spi_controller *ctlr;
1873 ctlr = container_of(dev, struct spi_controller, dev);
1874 kfree(ctlr);
1877 static struct class spi_master_class = {
1878 .name = "spi_master",
1879 .owner = THIS_MODULE,
1880 .dev_release = spi_controller_release,
1881 .dev_groups = spi_master_groups,
1884 #ifdef CONFIG_SPI_SLAVE
1886 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1887 * controller
1888 * @spi: device used for the current transfer
1890 int spi_slave_abort(struct spi_device *spi)
1892 struct spi_controller *ctlr = spi->controller;
1894 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1895 return ctlr->slave_abort(ctlr);
1897 return -ENOTSUPP;
1899 EXPORT_SYMBOL_GPL(spi_slave_abort);
1901 static int match_true(struct device *dev, void *data)
1903 return 1;
1906 static ssize_t spi_slave_show(struct device *dev,
1907 struct device_attribute *attr, char *buf)
1909 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1910 dev);
1911 struct device *child;
1913 child = device_find_child(&ctlr->dev, NULL, match_true);
1914 return sprintf(buf, "%s\n",
1915 child ? to_spi_device(child)->modalias : NULL);
1918 static ssize_t spi_slave_store(struct device *dev,
1919 struct device_attribute *attr, const char *buf,
1920 size_t count)
1922 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1923 dev);
1924 struct spi_device *spi;
1925 struct device *child;
1926 char name[32];
1927 int rc;
1929 rc = sscanf(buf, "%31s", name);
1930 if (rc != 1 || !name[0])
1931 return -EINVAL;
1933 child = device_find_child(&ctlr->dev, NULL, match_true);
1934 if (child) {
1935 /* Remove registered slave */
1936 device_unregister(child);
1937 put_device(child);
1940 if (strcmp(name, "(null)")) {
1941 /* Register new slave */
1942 spi = spi_alloc_device(ctlr);
1943 if (!spi)
1944 return -ENOMEM;
1946 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1948 rc = spi_add_device(spi);
1949 if (rc) {
1950 spi_dev_put(spi);
1951 return rc;
1955 return count;
1958 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1960 static struct attribute *spi_slave_attrs[] = {
1961 &dev_attr_slave.attr,
1962 NULL,
1965 static const struct attribute_group spi_slave_group = {
1966 .attrs = spi_slave_attrs,
1969 static const struct attribute_group *spi_slave_groups[] = {
1970 &spi_controller_statistics_group,
1971 &spi_slave_group,
1972 NULL,
1975 static struct class spi_slave_class = {
1976 .name = "spi_slave",
1977 .owner = THIS_MODULE,
1978 .dev_release = spi_controller_release,
1979 .dev_groups = spi_slave_groups,
1981 #else
1982 extern struct class spi_slave_class; /* dummy */
1983 #endif
1986 * __spi_alloc_controller - allocate an SPI master or slave controller
1987 * @dev: the controller, possibly using the platform_bus
1988 * @size: how much zeroed driver-private data to allocate; the pointer to this
1989 * memory is in the driver_data field of the returned device,
1990 * accessible with spi_controller_get_devdata().
1991 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1992 * slave (true) controller
1993 * Context: can sleep
1995 * This call is used only by SPI controller drivers, which are the
1996 * only ones directly touching chip registers. It's how they allocate
1997 * an spi_controller structure, prior to calling spi_register_controller().
1999 * This must be called from context that can sleep.
2001 * The caller is responsible for assigning the bus number and initializing the
2002 * controller's methods before calling spi_register_controller(); and (after
2003 * errors adding the device) calling spi_controller_put() to prevent a memory
2004 * leak.
2006 * Return: the SPI controller structure on success, else NULL.
2008 struct spi_controller *__spi_alloc_controller(struct device *dev,
2009 unsigned int size, bool slave)
2011 struct spi_controller *ctlr;
2013 if (!dev)
2014 return NULL;
2016 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2017 if (!ctlr)
2018 return NULL;
2020 device_initialize(&ctlr->dev);
2021 ctlr->bus_num = -1;
2022 ctlr->num_chipselect = 1;
2023 ctlr->slave = slave;
2024 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2025 ctlr->dev.class = &spi_slave_class;
2026 else
2027 ctlr->dev.class = &spi_master_class;
2028 ctlr->dev.parent = dev;
2029 pm_suspend_ignore_children(&ctlr->dev, true);
2030 spi_controller_set_devdata(ctlr, &ctlr[1]);
2032 return ctlr;
2034 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2036 #ifdef CONFIG_OF
2037 static int of_spi_register_master(struct spi_controller *ctlr)
2039 int nb, i, *cs;
2040 struct device_node *np = ctlr->dev.of_node;
2042 if (!np)
2043 return 0;
2045 nb = of_gpio_named_count(np, "cs-gpios");
2046 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2048 /* Return error only for an incorrectly formed cs-gpios property */
2049 if (nb == 0 || nb == -ENOENT)
2050 return 0;
2051 else if (nb < 0)
2052 return nb;
2054 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2055 GFP_KERNEL);
2056 ctlr->cs_gpios = cs;
2058 if (!ctlr->cs_gpios)
2059 return -ENOMEM;
2061 for (i = 0; i < ctlr->num_chipselect; i++)
2062 cs[i] = -ENOENT;
2064 for (i = 0; i < nb; i++)
2065 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2067 return 0;
2069 #else
2070 static int of_spi_register_master(struct spi_controller *ctlr)
2072 return 0;
2074 #endif
2076 static int spi_controller_check_ops(struct spi_controller *ctlr)
2079 * The controller may implement only the high-level SPI-memory like
2080 * operations if it does not support regular SPI transfers, and this is
2081 * valid use case.
2082 * If ->mem_ops is NULL, we request that at least one of the
2083 * ->transfer_xxx() method be implemented.
2085 if (ctlr->mem_ops) {
2086 if (!ctlr->mem_ops->exec_op)
2087 return -EINVAL;
2088 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2089 !ctlr->transfer_one_message) {
2090 return -EINVAL;
2093 return 0;
2097 * spi_register_controller - register SPI master or slave controller
2098 * @ctlr: initialized master, originally from spi_alloc_master() or
2099 * spi_alloc_slave()
2100 * Context: can sleep
2102 * SPI controllers connect to their drivers using some non-SPI bus,
2103 * such as the platform bus. The final stage of probe() in that code
2104 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2106 * SPI controllers use board specific (often SOC specific) bus numbers,
2107 * and board-specific addressing for SPI devices combines those numbers
2108 * with chip select numbers. Since SPI does not directly support dynamic
2109 * device identification, boards need configuration tables telling which
2110 * chip is at which address.
2112 * This must be called from context that can sleep. It returns zero on
2113 * success, else a negative error code (dropping the controller's refcount).
2114 * After a successful return, the caller is responsible for calling
2115 * spi_unregister_controller().
2117 * Return: zero on success, else a negative error code.
2119 int spi_register_controller(struct spi_controller *ctlr)
2121 struct device *dev = ctlr->dev.parent;
2122 struct boardinfo *bi;
2123 int status = -ENODEV;
2124 int id, first_dynamic;
2126 if (!dev)
2127 return -ENODEV;
2130 * Make sure all necessary hooks are implemented before registering
2131 * the SPI controller.
2133 status = spi_controller_check_ops(ctlr);
2134 if (status)
2135 return status;
2137 if (!spi_controller_is_slave(ctlr)) {
2138 status = of_spi_register_master(ctlr);
2139 if (status)
2140 return status;
2143 /* even if it's just one always-selected device, there must
2144 * be at least one chipselect
2146 if (ctlr->num_chipselect == 0)
2147 return -EINVAL;
2148 if (ctlr->bus_num >= 0) {
2149 /* devices with a fixed bus num must check-in with the num */
2150 mutex_lock(&board_lock);
2151 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2152 ctlr->bus_num + 1, GFP_KERNEL);
2153 mutex_unlock(&board_lock);
2154 if (WARN(id < 0, "couldn't get idr"))
2155 return id == -ENOSPC ? -EBUSY : id;
2156 ctlr->bus_num = id;
2157 } else if (ctlr->dev.of_node) {
2158 /* allocate dynamic bus number using Linux idr */
2159 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2160 if (id >= 0) {
2161 ctlr->bus_num = id;
2162 mutex_lock(&board_lock);
2163 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2164 ctlr->bus_num + 1, GFP_KERNEL);
2165 mutex_unlock(&board_lock);
2166 if (WARN(id < 0, "couldn't get idr"))
2167 return id == -ENOSPC ? -EBUSY : id;
2170 if (ctlr->bus_num < 0) {
2171 first_dynamic = of_alias_get_highest_id("spi");
2172 if (first_dynamic < 0)
2173 first_dynamic = 0;
2174 else
2175 first_dynamic++;
2177 mutex_lock(&board_lock);
2178 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2179 0, GFP_KERNEL);
2180 mutex_unlock(&board_lock);
2181 if (WARN(id < 0, "couldn't get idr"))
2182 return id;
2183 ctlr->bus_num = id;
2185 INIT_LIST_HEAD(&ctlr->queue);
2186 spin_lock_init(&ctlr->queue_lock);
2187 spin_lock_init(&ctlr->bus_lock_spinlock);
2188 mutex_init(&ctlr->bus_lock_mutex);
2189 mutex_init(&ctlr->io_mutex);
2190 ctlr->bus_lock_flag = 0;
2191 init_completion(&ctlr->xfer_completion);
2192 if (!ctlr->max_dma_len)
2193 ctlr->max_dma_len = INT_MAX;
2195 /* register the device, then userspace will see it.
2196 * registration fails if the bus ID is in use.
2198 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2199 status = device_add(&ctlr->dev);
2200 if (status < 0) {
2201 /* free bus id */
2202 mutex_lock(&board_lock);
2203 idr_remove(&spi_master_idr, ctlr->bus_num);
2204 mutex_unlock(&board_lock);
2205 goto done;
2207 dev_dbg(dev, "registered %s %s\n",
2208 spi_controller_is_slave(ctlr) ? "slave" : "master",
2209 dev_name(&ctlr->dev));
2212 * If we're using a queued driver, start the queue. Note that we don't
2213 * need the queueing logic if the driver is only supporting high-level
2214 * memory operations.
2216 if (ctlr->transfer) {
2217 dev_info(dev, "controller is unqueued, this is deprecated\n");
2218 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2219 status = spi_controller_initialize_queue(ctlr);
2220 if (status) {
2221 device_del(&ctlr->dev);
2222 /* free bus id */
2223 mutex_lock(&board_lock);
2224 idr_remove(&spi_master_idr, ctlr->bus_num);
2225 mutex_unlock(&board_lock);
2226 goto done;
2229 /* add statistics */
2230 spin_lock_init(&ctlr->statistics.lock);
2232 mutex_lock(&board_lock);
2233 list_add_tail(&ctlr->list, &spi_controller_list);
2234 list_for_each_entry(bi, &board_list, list)
2235 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2236 mutex_unlock(&board_lock);
2238 /* Register devices from the device tree and ACPI */
2239 of_register_spi_devices(ctlr);
2240 acpi_register_spi_devices(ctlr);
2241 done:
2242 return status;
2244 EXPORT_SYMBOL_GPL(spi_register_controller);
2246 static void devm_spi_unregister(struct device *dev, void *res)
2248 spi_unregister_controller(*(struct spi_controller **)res);
2252 * devm_spi_register_controller - register managed SPI master or slave
2253 * controller
2254 * @dev: device managing SPI controller
2255 * @ctlr: initialized controller, originally from spi_alloc_master() or
2256 * spi_alloc_slave()
2257 * Context: can sleep
2259 * Register a SPI device as with spi_register_controller() which will
2260 * automatically be unregistered and freed.
2262 * Return: zero on success, else a negative error code.
2264 int devm_spi_register_controller(struct device *dev,
2265 struct spi_controller *ctlr)
2267 struct spi_controller **ptr;
2268 int ret;
2270 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2271 if (!ptr)
2272 return -ENOMEM;
2274 ret = spi_register_controller(ctlr);
2275 if (!ret) {
2276 *ptr = ctlr;
2277 devres_add(dev, ptr);
2278 } else {
2279 devres_free(ptr);
2282 return ret;
2284 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2286 static int __unregister(struct device *dev, void *null)
2288 spi_unregister_device(to_spi_device(dev));
2289 return 0;
2293 * spi_unregister_controller - unregister SPI master or slave controller
2294 * @ctlr: the controller being unregistered
2295 * Context: can sleep
2297 * This call is used only by SPI controller drivers, which are the
2298 * only ones directly touching chip registers.
2300 * This must be called from context that can sleep.
2302 * Note that this function also drops a reference to the controller.
2304 void spi_unregister_controller(struct spi_controller *ctlr)
2306 struct spi_controller *found;
2307 int id = ctlr->bus_num;
2309 device_for_each_child(&ctlr->dev, NULL, __unregister);
2311 /* First make sure that this controller was ever added */
2312 mutex_lock(&board_lock);
2313 found = idr_find(&spi_master_idr, id);
2314 mutex_unlock(&board_lock);
2315 if (ctlr->queued) {
2316 if (spi_destroy_queue(ctlr))
2317 dev_err(&ctlr->dev, "queue remove failed\n");
2319 mutex_lock(&board_lock);
2320 list_del(&ctlr->list);
2321 mutex_unlock(&board_lock);
2323 device_unregister(&ctlr->dev);
2324 /* free bus id */
2325 mutex_lock(&board_lock);
2326 if (found == ctlr)
2327 idr_remove(&spi_master_idr, id);
2328 mutex_unlock(&board_lock);
2330 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2332 int spi_controller_suspend(struct spi_controller *ctlr)
2334 int ret;
2336 /* Basically no-ops for non-queued controllers */
2337 if (!ctlr->queued)
2338 return 0;
2340 ret = spi_stop_queue(ctlr);
2341 if (ret)
2342 dev_err(&ctlr->dev, "queue stop failed\n");
2344 return ret;
2346 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2348 int spi_controller_resume(struct spi_controller *ctlr)
2350 int ret;
2352 if (!ctlr->queued)
2353 return 0;
2355 ret = spi_start_queue(ctlr);
2356 if (ret)
2357 dev_err(&ctlr->dev, "queue restart failed\n");
2359 return ret;
2361 EXPORT_SYMBOL_GPL(spi_controller_resume);
2363 static int __spi_controller_match(struct device *dev, const void *data)
2365 struct spi_controller *ctlr;
2366 const u16 *bus_num = data;
2368 ctlr = container_of(dev, struct spi_controller, dev);
2369 return ctlr->bus_num == *bus_num;
2373 * spi_busnum_to_master - look up master associated with bus_num
2374 * @bus_num: the master's bus number
2375 * Context: can sleep
2377 * This call may be used with devices that are registered after
2378 * arch init time. It returns a refcounted pointer to the relevant
2379 * spi_controller (which the caller must release), or NULL if there is
2380 * no such master registered.
2382 * Return: the SPI master structure on success, else NULL.
2384 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2386 struct device *dev;
2387 struct spi_controller *ctlr = NULL;
2389 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2390 __spi_controller_match);
2391 if (dev)
2392 ctlr = container_of(dev, struct spi_controller, dev);
2393 /* reference got in class_find_device */
2394 return ctlr;
2396 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2398 /*-------------------------------------------------------------------------*/
2400 /* Core methods for SPI resource management */
2403 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2404 * during the processing of a spi_message while using
2405 * spi_transfer_one
2406 * @spi: the spi device for which we allocate memory
2407 * @release: the release code to execute for this resource
2408 * @size: size to alloc and return
2409 * @gfp: GFP allocation flags
2411 * Return: the pointer to the allocated data
2413 * This may get enhanced in the future to allocate from a memory pool
2414 * of the @spi_device or @spi_controller to avoid repeated allocations.
2416 void *spi_res_alloc(struct spi_device *spi,
2417 spi_res_release_t release,
2418 size_t size, gfp_t gfp)
2420 struct spi_res *sres;
2422 sres = kzalloc(sizeof(*sres) + size, gfp);
2423 if (!sres)
2424 return NULL;
2426 INIT_LIST_HEAD(&sres->entry);
2427 sres->release = release;
2429 return sres->data;
2431 EXPORT_SYMBOL_GPL(spi_res_alloc);
2434 * spi_res_free - free an spi resource
2435 * @res: pointer to the custom data of a resource
2438 void spi_res_free(void *res)
2440 struct spi_res *sres = container_of(res, struct spi_res, data);
2442 if (!res)
2443 return;
2445 WARN_ON(!list_empty(&sres->entry));
2446 kfree(sres);
2448 EXPORT_SYMBOL_GPL(spi_res_free);
2451 * spi_res_add - add a spi_res to the spi_message
2452 * @message: the spi message
2453 * @res: the spi_resource
2455 void spi_res_add(struct spi_message *message, void *res)
2457 struct spi_res *sres = container_of(res, struct spi_res, data);
2459 WARN_ON(!list_empty(&sres->entry));
2460 list_add_tail(&sres->entry, &message->resources);
2462 EXPORT_SYMBOL_GPL(spi_res_add);
2465 * spi_res_release - release all spi resources for this message
2466 * @ctlr: the @spi_controller
2467 * @message: the @spi_message
2469 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2471 struct spi_res *res;
2473 while (!list_empty(&message->resources)) {
2474 res = list_last_entry(&message->resources,
2475 struct spi_res, entry);
2477 if (res->release)
2478 res->release(ctlr, message, res->data);
2480 list_del(&res->entry);
2482 kfree(res);
2485 EXPORT_SYMBOL_GPL(spi_res_release);
2487 /*-------------------------------------------------------------------------*/
2489 /* Core methods for spi_message alterations */
2491 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2492 struct spi_message *msg,
2493 void *res)
2495 struct spi_replaced_transfers *rxfer = res;
2496 size_t i;
2498 /* call extra callback if requested */
2499 if (rxfer->release)
2500 rxfer->release(ctlr, msg, res);
2502 /* insert replaced transfers back into the message */
2503 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2505 /* remove the formerly inserted entries */
2506 for (i = 0; i < rxfer->inserted; i++)
2507 list_del(&rxfer->inserted_transfers[i].transfer_list);
2511 * spi_replace_transfers - replace transfers with several transfers
2512 * and register change with spi_message.resources
2513 * @msg: the spi_message we work upon
2514 * @xfer_first: the first spi_transfer we want to replace
2515 * @remove: number of transfers to remove
2516 * @insert: the number of transfers we want to insert instead
2517 * @release: extra release code necessary in some circumstances
2518 * @extradatasize: extra data to allocate (with alignment guarantees
2519 * of struct @spi_transfer)
2520 * @gfp: gfp flags
2522 * Returns: pointer to @spi_replaced_transfers,
2523 * PTR_ERR(...) in case of errors.
2525 struct spi_replaced_transfers *spi_replace_transfers(
2526 struct spi_message *msg,
2527 struct spi_transfer *xfer_first,
2528 size_t remove,
2529 size_t insert,
2530 spi_replaced_release_t release,
2531 size_t extradatasize,
2532 gfp_t gfp)
2534 struct spi_replaced_transfers *rxfer;
2535 struct spi_transfer *xfer;
2536 size_t i;
2538 /* allocate the structure using spi_res */
2539 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2540 insert * sizeof(struct spi_transfer)
2541 + sizeof(struct spi_replaced_transfers)
2542 + extradatasize,
2543 gfp);
2544 if (!rxfer)
2545 return ERR_PTR(-ENOMEM);
2547 /* the release code to invoke before running the generic release */
2548 rxfer->release = release;
2550 /* assign extradata */
2551 if (extradatasize)
2552 rxfer->extradata =
2553 &rxfer->inserted_transfers[insert];
2555 /* init the replaced_transfers list */
2556 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2558 /* assign the list_entry after which we should reinsert
2559 * the @replaced_transfers - it may be spi_message.messages!
2561 rxfer->replaced_after = xfer_first->transfer_list.prev;
2563 /* remove the requested number of transfers */
2564 for (i = 0; i < remove; i++) {
2565 /* if the entry after replaced_after it is msg->transfers
2566 * then we have been requested to remove more transfers
2567 * than are in the list
2569 if (rxfer->replaced_after->next == &msg->transfers) {
2570 dev_err(&msg->spi->dev,
2571 "requested to remove more spi_transfers than are available\n");
2572 /* insert replaced transfers back into the message */
2573 list_splice(&rxfer->replaced_transfers,
2574 rxfer->replaced_after);
2576 /* free the spi_replace_transfer structure */
2577 spi_res_free(rxfer);
2579 /* and return with an error */
2580 return ERR_PTR(-EINVAL);
2583 /* remove the entry after replaced_after from list of
2584 * transfers and add it to list of replaced_transfers
2586 list_move_tail(rxfer->replaced_after->next,
2587 &rxfer->replaced_transfers);
2590 /* create copy of the given xfer with identical settings
2591 * based on the first transfer to get removed
2593 for (i = 0; i < insert; i++) {
2594 /* we need to run in reverse order */
2595 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2597 /* copy all spi_transfer data */
2598 memcpy(xfer, xfer_first, sizeof(*xfer));
2600 /* add to list */
2601 list_add(&xfer->transfer_list, rxfer->replaced_after);
2603 /* clear cs_change and delay_usecs for all but the last */
2604 if (i) {
2605 xfer->cs_change = false;
2606 xfer->delay_usecs = 0;
2610 /* set up inserted */
2611 rxfer->inserted = insert;
2613 /* and register it with spi_res/spi_message */
2614 spi_res_add(msg, rxfer);
2616 return rxfer;
2618 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2620 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2621 struct spi_message *msg,
2622 struct spi_transfer **xferp,
2623 size_t maxsize,
2624 gfp_t gfp)
2626 struct spi_transfer *xfer = *xferp, *xfers;
2627 struct spi_replaced_transfers *srt;
2628 size_t offset;
2629 size_t count, i;
2631 /* warn once about this fact that we are splitting a transfer */
2632 dev_warn_once(&msg->spi->dev,
2633 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2634 xfer->len, maxsize);
2636 /* calculate how many we have to replace */
2637 count = DIV_ROUND_UP(xfer->len, maxsize);
2639 /* create replacement */
2640 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2641 if (IS_ERR(srt))
2642 return PTR_ERR(srt);
2643 xfers = srt->inserted_transfers;
2645 /* now handle each of those newly inserted spi_transfers
2646 * note that the replacements spi_transfers all are preset
2647 * to the same values as *xferp, so tx_buf, rx_buf and len
2648 * are all identical (as well as most others)
2649 * so we just have to fix up len and the pointers.
2651 * this also includes support for the depreciated
2652 * spi_message.is_dma_mapped interface
2655 /* the first transfer just needs the length modified, so we
2656 * run it outside the loop
2658 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2660 /* all the others need rx_buf/tx_buf also set */
2661 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2662 /* update rx_buf, tx_buf and dma */
2663 if (xfers[i].rx_buf)
2664 xfers[i].rx_buf += offset;
2665 if (xfers[i].rx_dma)
2666 xfers[i].rx_dma += offset;
2667 if (xfers[i].tx_buf)
2668 xfers[i].tx_buf += offset;
2669 if (xfers[i].tx_dma)
2670 xfers[i].tx_dma += offset;
2672 /* update length */
2673 xfers[i].len = min(maxsize, xfers[i].len - offset);
2676 /* we set up xferp to the last entry we have inserted,
2677 * so that we skip those already split transfers
2679 *xferp = &xfers[count - 1];
2681 /* increment statistics counters */
2682 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2683 transfers_split_maxsize);
2684 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2685 transfers_split_maxsize);
2687 return 0;
2691 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2692 * when an individual transfer exceeds a
2693 * certain size
2694 * @ctlr: the @spi_controller for this transfer
2695 * @msg: the @spi_message to transform
2696 * @maxsize: the maximum when to apply this
2697 * @gfp: GFP allocation flags
2699 * Return: status of transformation
2701 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2702 struct spi_message *msg,
2703 size_t maxsize,
2704 gfp_t gfp)
2706 struct spi_transfer *xfer;
2707 int ret;
2709 /* iterate over the transfer_list,
2710 * but note that xfer is advanced to the last transfer inserted
2711 * to avoid checking sizes again unnecessarily (also xfer does
2712 * potentiall belong to a different list by the time the
2713 * replacement has happened
2715 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2716 if (xfer->len > maxsize) {
2717 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2718 maxsize, gfp);
2719 if (ret)
2720 return ret;
2724 return 0;
2726 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2728 /*-------------------------------------------------------------------------*/
2730 /* Core methods for SPI controller protocol drivers. Some of the
2731 * other core methods are currently defined as inline functions.
2734 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2735 u8 bits_per_word)
2737 if (ctlr->bits_per_word_mask) {
2738 /* Only 32 bits fit in the mask */
2739 if (bits_per_word > 32)
2740 return -EINVAL;
2741 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2742 return -EINVAL;
2745 return 0;
2749 * spi_setup - setup SPI mode and clock rate
2750 * @spi: the device whose settings are being modified
2751 * Context: can sleep, and no requests are queued to the device
2753 * SPI protocol drivers may need to update the transfer mode if the
2754 * device doesn't work with its default. They may likewise need
2755 * to update clock rates or word sizes from initial values. This function
2756 * changes those settings, and must be called from a context that can sleep.
2757 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2758 * effect the next time the device is selected and data is transferred to
2759 * or from it. When this function returns, the spi device is deselected.
2761 * Note that this call will fail if the protocol driver specifies an option
2762 * that the underlying controller or its driver does not support. For
2763 * example, not all hardware supports wire transfers using nine bit words,
2764 * LSB-first wire encoding, or active-high chipselects.
2766 * Return: zero on success, else a negative error code.
2768 int spi_setup(struct spi_device *spi)
2770 unsigned bad_bits, ugly_bits;
2771 int status;
2773 /* check mode to prevent that DUAL and QUAD set at the same time
2775 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2776 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2777 dev_err(&spi->dev,
2778 "setup: can not select dual and quad at the same time\n");
2779 return -EINVAL;
2781 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2783 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2784 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2785 return -EINVAL;
2786 /* help drivers fail *cleanly* when they need options
2787 * that aren't supported with their current controller
2789 bad_bits = spi->mode & ~spi->controller->mode_bits;
2790 ugly_bits = bad_bits &
2791 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2792 if (ugly_bits) {
2793 dev_warn(&spi->dev,
2794 "setup: ignoring unsupported mode bits %x\n",
2795 ugly_bits);
2796 spi->mode &= ~ugly_bits;
2797 bad_bits &= ~ugly_bits;
2799 if (bad_bits) {
2800 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2801 bad_bits);
2802 return -EINVAL;
2805 if (!spi->bits_per_word)
2806 spi->bits_per_word = 8;
2808 status = __spi_validate_bits_per_word(spi->controller,
2809 spi->bits_per_word);
2810 if (status)
2811 return status;
2813 if (!spi->max_speed_hz)
2814 spi->max_speed_hz = spi->controller->max_speed_hz;
2816 if (spi->controller->setup)
2817 status = spi->controller->setup(spi);
2819 spi_set_cs(spi, false);
2821 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2822 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2823 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2824 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2825 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2826 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2827 spi->bits_per_word, spi->max_speed_hz,
2828 status);
2830 return status;
2832 EXPORT_SYMBOL_GPL(spi_setup);
2834 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2836 struct spi_controller *ctlr = spi->controller;
2837 struct spi_transfer *xfer;
2838 int w_size;
2840 if (list_empty(&message->transfers))
2841 return -EINVAL;
2843 /* Half-duplex links include original MicroWire, and ones with
2844 * only one data pin like SPI_3WIRE (switches direction) or where
2845 * either MOSI or MISO is missing. They can also be caused by
2846 * software limitations.
2848 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2849 (spi->mode & SPI_3WIRE)) {
2850 unsigned flags = ctlr->flags;
2852 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2853 if (xfer->rx_buf && xfer->tx_buf)
2854 return -EINVAL;
2855 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2856 return -EINVAL;
2857 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2858 return -EINVAL;
2863 * Set transfer bits_per_word and max speed as spi device default if
2864 * it is not set for this transfer.
2865 * Set transfer tx_nbits and rx_nbits as single transfer default
2866 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2868 message->frame_length = 0;
2869 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2870 message->frame_length += xfer->len;
2871 if (!xfer->bits_per_word)
2872 xfer->bits_per_word = spi->bits_per_word;
2874 if (!xfer->speed_hz)
2875 xfer->speed_hz = spi->max_speed_hz;
2876 if (!xfer->speed_hz)
2877 xfer->speed_hz = ctlr->max_speed_hz;
2879 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2880 xfer->speed_hz = ctlr->max_speed_hz;
2882 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2883 return -EINVAL;
2886 * SPI transfer length should be multiple of SPI word size
2887 * where SPI word size should be power-of-two multiple
2889 if (xfer->bits_per_word <= 8)
2890 w_size = 1;
2891 else if (xfer->bits_per_word <= 16)
2892 w_size = 2;
2893 else
2894 w_size = 4;
2896 /* No partial transfers accepted */
2897 if (xfer->len % w_size)
2898 return -EINVAL;
2900 if (xfer->speed_hz && ctlr->min_speed_hz &&
2901 xfer->speed_hz < ctlr->min_speed_hz)
2902 return -EINVAL;
2904 if (xfer->tx_buf && !xfer->tx_nbits)
2905 xfer->tx_nbits = SPI_NBITS_SINGLE;
2906 if (xfer->rx_buf && !xfer->rx_nbits)
2907 xfer->rx_nbits = SPI_NBITS_SINGLE;
2908 /* check transfer tx/rx_nbits:
2909 * 1. check the value matches one of single, dual and quad
2910 * 2. check tx/rx_nbits match the mode in spi_device
2912 if (xfer->tx_buf) {
2913 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2914 xfer->tx_nbits != SPI_NBITS_DUAL &&
2915 xfer->tx_nbits != SPI_NBITS_QUAD)
2916 return -EINVAL;
2917 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2918 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2919 return -EINVAL;
2920 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2921 !(spi->mode & SPI_TX_QUAD))
2922 return -EINVAL;
2924 /* check transfer rx_nbits */
2925 if (xfer->rx_buf) {
2926 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2927 xfer->rx_nbits != SPI_NBITS_DUAL &&
2928 xfer->rx_nbits != SPI_NBITS_QUAD)
2929 return -EINVAL;
2930 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2931 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2932 return -EINVAL;
2933 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2934 !(spi->mode & SPI_RX_QUAD))
2935 return -EINVAL;
2939 message->status = -EINPROGRESS;
2941 return 0;
2944 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2946 struct spi_controller *ctlr = spi->controller;
2949 * Some controllers do not support doing regular SPI transfers. Return
2950 * ENOTSUPP when this is the case.
2952 if (!ctlr->transfer)
2953 return -ENOTSUPP;
2955 message->spi = spi;
2957 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2958 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2960 trace_spi_message_submit(message);
2962 return ctlr->transfer(spi, message);
2966 * spi_async - asynchronous SPI transfer
2967 * @spi: device with which data will be exchanged
2968 * @message: describes the data transfers, including completion callback
2969 * Context: any (irqs may be blocked, etc)
2971 * This call may be used in_irq and other contexts which can't sleep,
2972 * as well as from task contexts which can sleep.
2974 * The completion callback is invoked in a context which can't sleep.
2975 * Before that invocation, the value of message->status is undefined.
2976 * When the callback is issued, message->status holds either zero (to
2977 * indicate complete success) or a negative error code. After that
2978 * callback returns, the driver which issued the transfer request may
2979 * deallocate the associated memory; it's no longer in use by any SPI
2980 * core or controller driver code.
2982 * Note that although all messages to a spi_device are handled in
2983 * FIFO order, messages may go to different devices in other orders.
2984 * Some device might be higher priority, or have various "hard" access
2985 * time requirements, for example.
2987 * On detection of any fault during the transfer, processing of
2988 * the entire message is aborted, and the device is deselected.
2989 * Until returning from the associated message completion callback,
2990 * no other spi_message queued to that device will be processed.
2991 * (This rule applies equally to all the synchronous transfer calls,
2992 * which are wrappers around this core asynchronous primitive.)
2994 * Return: zero on success, else a negative error code.
2996 int spi_async(struct spi_device *spi, struct spi_message *message)
2998 struct spi_controller *ctlr = spi->controller;
2999 int ret;
3000 unsigned long flags;
3002 ret = __spi_validate(spi, message);
3003 if (ret != 0)
3004 return ret;
3006 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3008 if (ctlr->bus_lock_flag)
3009 ret = -EBUSY;
3010 else
3011 ret = __spi_async(spi, message);
3013 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3015 return ret;
3017 EXPORT_SYMBOL_GPL(spi_async);
3020 * spi_async_locked - version of spi_async with exclusive bus usage
3021 * @spi: device with which data will be exchanged
3022 * @message: describes the data transfers, including completion callback
3023 * Context: any (irqs may be blocked, etc)
3025 * This call may be used in_irq and other contexts which can't sleep,
3026 * as well as from task contexts which can sleep.
3028 * The completion callback is invoked in a context which can't sleep.
3029 * Before that invocation, the value of message->status is undefined.
3030 * When the callback is issued, message->status holds either zero (to
3031 * indicate complete success) or a negative error code. After that
3032 * callback returns, the driver which issued the transfer request may
3033 * deallocate the associated memory; it's no longer in use by any SPI
3034 * core or controller driver code.
3036 * Note that although all messages to a spi_device are handled in
3037 * FIFO order, messages may go to different devices in other orders.
3038 * Some device might be higher priority, or have various "hard" access
3039 * time requirements, for example.
3041 * On detection of any fault during the transfer, processing of
3042 * the entire message is aborted, and the device is deselected.
3043 * Until returning from the associated message completion callback,
3044 * no other spi_message queued to that device will be processed.
3045 * (This rule applies equally to all the synchronous transfer calls,
3046 * which are wrappers around this core asynchronous primitive.)
3048 * Return: zero on success, else a negative error code.
3050 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3052 struct spi_controller *ctlr = spi->controller;
3053 int ret;
3054 unsigned long flags;
3056 ret = __spi_validate(spi, message);
3057 if (ret != 0)
3058 return ret;
3060 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3062 ret = __spi_async(spi, message);
3064 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3066 return ret;
3069 EXPORT_SYMBOL_GPL(spi_async_locked);
3071 /*-------------------------------------------------------------------------*/
3073 /* Utility methods for SPI protocol drivers, layered on
3074 * top of the core. Some other utility methods are defined as
3075 * inline functions.
3078 static void spi_complete(void *arg)
3080 complete(arg);
3083 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3085 DECLARE_COMPLETION_ONSTACK(done);
3086 int status;
3087 struct spi_controller *ctlr = spi->controller;
3088 unsigned long flags;
3090 status = __spi_validate(spi, message);
3091 if (status != 0)
3092 return status;
3094 message->complete = spi_complete;
3095 message->context = &done;
3096 message->spi = spi;
3098 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3099 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3101 /* If we're not using the legacy transfer method then we will
3102 * try to transfer in the calling context so special case.
3103 * This code would be less tricky if we could remove the
3104 * support for driver implemented message queues.
3106 if (ctlr->transfer == spi_queued_transfer) {
3107 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3109 trace_spi_message_submit(message);
3111 status = __spi_queued_transfer(spi, message, false);
3113 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3114 } else {
3115 status = spi_async_locked(spi, message);
3118 if (status == 0) {
3119 /* Push out the messages in the calling context if we
3120 * can.
3122 if (ctlr->transfer == spi_queued_transfer) {
3123 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3124 spi_sync_immediate);
3125 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3126 spi_sync_immediate);
3127 __spi_pump_messages(ctlr, false);
3130 wait_for_completion(&done);
3131 status = message->status;
3133 message->context = NULL;
3134 return status;
3138 * spi_sync - blocking/synchronous SPI data transfers
3139 * @spi: device with which data will be exchanged
3140 * @message: describes the data transfers
3141 * Context: can sleep
3143 * This call may only be used from a context that may sleep. The sleep
3144 * is non-interruptible, and has no timeout. Low-overhead controller
3145 * drivers may DMA directly into and out of the message buffers.
3147 * Note that the SPI device's chip select is active during the message,
3148 * and then is normally disabled between messages. Drivers for some
3149 * frequently-used devices may want to minimize costs of selecting a chip,
3150 * by leaving it selected in anticipation that the next message will go
3151 * to the same chip. (That may increase power usage.)
3153 * Also, the caller is guaranteeing that the memory associated with the
3154 * message will not be freed before this call returns.
3156 * Return: zero on success, else a negative error code.
3158 int spi_sync(struct spi_device *spi, struct spi_message *message)
3160 int ret;
3162 mutex_lock(&spi->controller->bus_lock_mutex);
3163 ret = __spi_sync(spi, message);
3164 mutex_unlock(&spi->controller->bus_lock_mutex);
3166 return ret;
3168 EXPORT_SYMBOL_GPL(spi_sync);
3171 * spi_sync_locked - version of spi_sync with exclusive bus usage
3172 * @spi: device with which data will be exchanged
3173 * @message: describes the data transfers
3174 * Context: can sleep
3176 * This call may only be used from a context that may sleep. The sleep
3177 * is non-interruptible, and has no timeout. Low-overhead controller
3178 * drivers may DMA directly into and out of the message buffers.
3180 * This call should be used by drivers that require exclusive access to the
3181 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3182 * be released by a spi_bus_unlock call when the exclusive access is over.
3184 * Return: zero on success, else a negative error code.
3186 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3188 return __spi_sync(spi, message);
3190 EXPORT_SYMBOL_GPL(spi_sync_locked);
3193 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3194 * @ctlr: SPI bus master that should be locked for exclusive bus access
3195 * Context: can sleep
3197 * This call may only be used from a context that may sleep. The sleep
3198 * is non-interruptible, and has no timeout.
3200 * This call should be used by drivers that require exclusive access to the
3201 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3202 * exclusive access is over. Data transfer must be done by spi_sync_locked
3203 * and spi_async_locked calls when the SPI bus lock is held.
3205 * Return: always zero.
3207 int spi_bus_lock(struct spi_controller *ctlr)
3209 unsigned long flags;
3211 mutex_lock(&ctlr->bus_lock_mutex);
3213 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3214 ctlr->bus_lock_flag = 1;
3215 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3217 /* mutex remains locked until spi_bus_unlock is called */
3219 return 0;
3221 EXPORT_SYMBOL_GPL(spi_bus_lock);
3224 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3225 * @ctlr: SPI bus master that was locked for exclusive bus access
3226 * Context: can sleep
3228 * This call may only be used from a context that may sleep. The sleep
3229 * is non-interruptible, and has no timeout.
3231 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3232 * call.
3234 * Return: always zero.
3236 int spi_bus_unlock(struct spi_controller *ctlr)
3238 ctlr->bus_lock_flag = 0;
3240 mutex_unlock(&ctlr->bus_lock_mutex);
3242 return 0;
3244 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3246 /* portable code must never pass more than 32 bytes */
3247 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3249 static u8 *buf;
3252 * spi_write_then_read - SPI synchronous write followed by read
3253 * @spi: device with which data will be exchanged
3254 * @txbuf: data to be written (need not be dma-safe)
3255 * @n_tx: size of txbuf, in bytes
3256 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3257 * @n_rx: size of rxbuf, in bytes
3258 * Context: can sleep
3260 * This performs a half duplex MicroWire style transaction with the
3261 * device, sending txbuf and then reading rxbuf. The return value
3262 * is zero for success, else a negative errno status code.
3263 * This call may only be used from a context that may sleep.
3265 * Parameters to this routine are always copied using a small buffer;
3266 * portable code should never use this for more than 32 bytes.
3267 * Performance-sensitive or bulk transfer code should instead use
3268 * spi_{async,sync}() calls with dma-safe buffers.
3270 * Return: zero on success, else a negative error code.
3272 int spi_write_then_read(struct spi_device *spi,
3273 const void *txbuf, unsigned n_tx,
3274 void *rxbuf, unsigned n_rx)
3276 static DEFINE_MUTEX(lock);
3278 int status;
3279 struct spi_message message;
3280 struct spi_transfer x[2];
3281 u8 *local_buf;
3283 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3284 * copying here, (as a pure convenience thing), but we can
3285 * keep heap costs out of the hot path unless someone else is
3286 * using the pre-allocated buffer or the transfer is too large.
3288 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3289 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3290 GFP_KERNEL | GFP_DMA);
3291 if (!local_buf)
3292 return -ENOMEM;
3293 } else {
3294 local_buf = buf;
3297 spi_message_init(&message);
3298 memset(x, 0, sizeof(x));
3299 if (n_tx) {
3300 x[0].len = n_tx;
3301 spi_message_add_tail(&x[0], &message);
3303 if (n_rx) {
3304 x[1].len = n_rx;
3305 spi_message_add_tail(&x[1], &message);
3308 memcpy(local_buf, txbuf, n_tx);
3309 x[0].tx_buf = local_buf;
3310 x[1].rx_buf = local_buf + n_tx;
3312 /* do the i/o */
3313 status = spi_sync(spi, &message);
3314 if (status == 0)
3315 memcpy(rxbuf, x[1].rx_buf, n_rx);
3317 if (x[0].tx_buf == buf)
3318 mutex_unlock(&lock);
3319 else
3320 kfree(local_buf);
3322 return status;
3324 EXPORT_SYMBOL_GPL(spi_write_then_read);
3326 /*-------------------------------------------------------------------------*/
3328 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3329 static int __spi_of_device_match(struct device *dev, void *data)
3331 return dev->of_node == data;
3334 /* must call put_device() when done with returned spi_device device */
3335 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3337 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3338 __spi_of_device_match);
3339 return dev ? to_spi_device(dev) : NULL;
3342 static int __spi_of_controller_match(struct device *dev, const void *data)
3344 return dev->of_node == data;
3347 /* the spi controllers are not using spi_bus, so we find it with another way */
3348 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3350 struct device *dev;
3352 dev = class_find_device(&spi_master_class, NULL, node,
3353 __spi_of_controller_match);
3354 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3355 dev = class_find_device(&spi_slave_class, NULL, node,
3356 __spi_of_controller_match);
3357 if (!dev)
3358 return NULL;
3360 /* reference got in class_find_device */
3361 return container_of(dev, struct spi_controller, dev);
3364 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3365 void *arg)
3367 struct of_reconfig_data *rd = arg;
3368 struct spi_controller *ctlr;
3369 struct spi_device *spi;
3371 switch (of_reconfig_get_state_change(action, arg)) {
3372 case OF_RECONFIG_CHANGE_ADD:
3373 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3374 if (ctlr == NULL)
3375 return NOTIFY_OK; /* not for us */
3377 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3378 put_device(&ctlr->dev);
3379 return NOTIFY_OK;
3382 spi = of_register_spi_device(ctlr, rd->dn);
3383 put_device(&ctlr->dev);
3385 if (IS_ERR(spi)) {
3386 pr_err("%s: failed to create for '%pOF'\n",
3387 __func__, rd->dn);
3388 of_node_clear_flag(rd->dn, OF_POPULATED);
3389 return notifier_from_errno(PTR_ERR(spi));
3391 break;
3393 case OF_RECONFIG_CHANGE_REMOVE:
3394 /* already depopulated? */
3395 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3396 return NOTIFY_OK;
3398 /* find our device by node */
3399 spi = of_find_spi_device_by_node(rd->dn);
3400 if (spi == NULL)
3401 return NOTIFY_OK; /* no? not meant for us */
3403 /* unregister takes one ref away */
3404 spi_unregister_device(spi);
3406 /* and put the reference of the find */
3407 put_device(&spi->dev);
3408 break;
3411 return NOTIFY_OK;
3414 static struct notifier_block spi_of_notifier = {
3415 .notifier_call = of_spi_notify,
3417 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418 extern struct notifier_block spi_of_notifier;
3419 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3421 #if IS_ENABLED(CONFIG_ACPI)
3422 static int spi_acpi_controller_match(struct device *dev, const void *data)
3424 return ACPI_COMPANION(dev->parent) == data;
3427 static int spi_acpi_device_match(struct device *dev, void *data)
3429 return ACPI_COMPANION(dev) == data;
3432 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3434 struct device *dev;
3436 dev = class_find_device(&spi_master_class, NULL, adev,
3437 spi_acpi_controller_match);
3438 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3439 dev = class_find_device(&spi_slave_class, NULL, adev,
3440 spi_acpi_controller_match);
3441 if (!dev)
3442 return NULL;
3444 return container_of(dev, struct spi_controller, dev);
3447 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3449 struct device *dev;
3451 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3453 return dev ? to_spi_device(dev) : NULL;
3456 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3457 void *arg)
3459 struct acpi_device *adev = arg;
3460 struct spi_controller *ctlr;
3461 struct spi_device *spi;
3463 switch (value) {
3464 case ACPI_RECONFIG_DEVICE_ADD:
3465 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3466 if (!ctlr)
3467 break;
3469 acpi_register_spi_device(ctlr, adev);
3470 put_device(&ctlr->dev);
3471 break;
3472 case ACPI_RECONFIG_DEVICE_REMOVE:
3473 if (!acpi_device_enumerated(adev))
3474 break;
3476 spi = acpi_spi_find_device_by_adev(adev);
3477 if (!spi)
3478 break;
3480 spi_unregister_device(spi);
3481 put_device(&spi->dev);
3482 break;
3485 return NOTIFY_OK;
3488 static struct notifier_block spi_acpi_notifier = {
3489 .notifier_call = acpi_spi_notify,
3491 #else
3492 extern struct notifier_block spi_acpi_notifier;
3493 #endif
3495 static int __init spi_init(void)
3497 int status;
3499 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3500 if (!buf) {
3501 status = -ENOMEM;
3502 goto err0;
3505 status = bus_register(&spi_bus_type);
3506 if (status < 0)
3507 goto err1;
3509 status = class_register(&spi_master_class);
3510 if (status < 0)
3511 goto err2;
3513 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3514 status = class_register(&spi_slave_class);
3515 if (status < 0)
3516 goto err3;
3519 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3520 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3521 if (IS_ENABLED(CONFIG_ACPI))
3522 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3524 return 0;
3526 err3:
3527 class_unregister(&spi_master_class);
3528 err2:
3529 bus_unregister(&spi_bus_type);
3530 err1:
3531 kfree(buf);
3532 buf = NULL;
3533 err0:
3534 return status;
3537 /* board_info is normally registered in arch_initcall(),
3538 * but even essential drivers wait till later
3540 * REVISIT only boardinfo really needs static linking. the rest (device and
3541 * driver registration) _could_ be dynamically linked (modular) ... costs
3542 * include needing to have boardinfo data structures be much more public.
3544 postcore_initcall(spi_init);