4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
50 #include "internals.h"
52 static DEFINE_IDR(spi_master_idr
);
54 static void spidev_release(struct device
*dev
)
56 struct spi_device
*spi
= to_spi_device(dev
);
58 /* spi controllers may cleanup for released devices */
59 if (spi
->controller
->cleanup
)
60 spi
->controller
->cleanup(spi
);
62 spi_controller_put(spi
->controller
);
67 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
69 const struct spi_device
*spi
= to_spi_device(dev
);
72 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
76 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
78 static DEVICE_ATTR_RO(modalias
);
80 #define SPI_STATISTICS_ATTRS(field, file) \
81 static ssize_t spi_controller_##field##_show(struct device *dev, \
82 struct device_attribute *attr, \
85 struct spi_controller *ctlr = container_of(dev, \
86 struct spi_controller, dev); \
87 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
89 static struct device_attribute dev_attr_spi_controller_##field = { \
90 .attr = { .name = file, .mode = 0444 }, \
91 .show = spi_controller_##field##_show, \
93 static ssize_t spi_device_##field##_show(struct device *dev, \
94 struct device_attribute *attr, \
97 struct spi_device *spi = to_spi_device(dev); \
98 return spi_statistics_##field##_show(&spi->statistics, buf); \
100 static struct device_attribute dev_attr_spi_device_##field = { \
101 .attr = { .name = file, .mode = 0444 }, \
102 .show = spi_device_##field##_show, \
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
109 unsigned long flags; \
111 spin_lock_irqsave(&stat->lock, flags); \
112 len = sprintf(buf, format_string, stat->field); \
113 spin_unlock_irqrestore(&stat->lock, flags); \
116 SPI_STATISTICS_ATTRS(name, file)
118 #define SPI_STATISTICS_SHOW(field, format_string) \
119 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
120 field, format_string)
122 SPI_STATISTICS_SHOW(messages
, "%lu");
123 SPI_STATISTICS_SHOW(transfers
, "%lu");
124 SPI_STATISTICS_SHOW(errors
, "%lu");
125 SPI_STATISTICS_SHOW(timedout
, "%lu");
127 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
129 SPI_STATISTICS_SHOW(spi_async
, "%lu");
131 SPI_STATISTICS_SHOW(bytes
, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
136 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
137 "transfer_bytes_histo_" number, \
138 transfer_bytes_histo[index], "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
157 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
159 static struct attribute
*spi_dev_attrs
[] = {
160 &dev_attr_modalias
.attr
,
164 static const struct attribute_group spi_dev_group
= {
165 .attrs
= spi_dev_attrs
,
168 static struct attribute
*spi_device_statistics_attrs
[] = {
169 &dev_attr_spi_device_messages
.attr
,
170 &dev_attr_spi_device_transfers
.attr
,
171 &dev_attr_spi_device_errors
.attr
,
172 &dev_attr_spi_device_timedout
.attr
,
173 &dev_attr_spi_device_spi_sync
.attr
,
174 &dev_attr_spi_device_spi_sync_immediate
.attr
,
175 &dev_attr_spi_device_spi_async
.attr
,
176 &dev_attr_spi_device_bytes
.attr
,
177 &dev_attr_spi_device_bytes_rx
.attr
,
178 &dev_attr_spi_device_bytes_tx
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
185 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
186 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
187 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
188 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
189 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
190 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
191 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
192 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
193 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
194 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
195 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
196 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
200 static const struct attribute_group spi_device_statistics_group
= {
201 .name
= "statistics",
202 .attrs
= spi_device_statistics_attrs
,
205 static const struct attribute_group
*spi_dev_groups
[] = {
207 &spi_device_statistics_group
,
211 static struct attribute
*spi_controller_statistics_attrs
[] = {
212 &dev_attr_spi_controller_messages
.attr
,
213 &dev_attr_spi_controller_transfers
.attr
,
214 &dev_attr_spi_controller_errors
.attr
,
215 &dev_attr_spi_controller_timedout
.attr
,
216 &dev_attr_spi_controller_spi_sync
.attr
,
217 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
218 &dev_attr_spi_controller_spi_async
.attr
,
219 &dev_attr_spi_controller_bytes
.attr
,
220 &dev_attr_spi_controller_bytes_rx
.attr
,
221 &dev_attr_spi_controller_bytes_tx
.attr
,
222 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
223 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
224 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
225 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
226 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
227 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
228 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
229 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
230 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
231 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
232 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
233 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
234 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
235 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
236 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
237 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
238 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
239 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
243 static const struct attribute_group spi_controller_statistics_group
= {
244 .name
= "statistics",
245 .attrs
= spi_controller_statistics_attrs
,
248 static const struct attribute_group
*spi_master_groups
[] = {
249 &spi_controller_statistics_group
,
253 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
254 struct spi_transfer
*xfer
,
255 struct spi_controller
*ctlr
)
258 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
263 spin_lock_irqsave(&stats
->lock
, flags
);
266 stats
->transfer_bytes_histo
[l2len
]++;
268 stats
->bytes
+= xfer
->len
;
269 if ((xfer
->tx_buf
) &&
270 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
271 stats
->bytes_tx
+= xfer
->len
;
272 if ((xfer
->rx_buf
) &&
273 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
274 stats
->bytes_rx
+= xfer
->len
;
276 spin_unlock_irqrestore(&stats
->lock
, flags
);
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281 * and the sysfs version makes coldplug work too.
284 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
285 const struct spi_device
*sdev
)
287 while (id
->name
[0]) {
288 if (!strcmp(sdev
->modalias
, id
->name
))
295 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
297 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
299 return spi_match_id(sdrv
->id_table
, sdev
);
301 EXPORT_SYMBOL_GPL(spi_get_device_id
);
303 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
305 const struct spi_device
*spi
= to_spi_device(dev
);
306 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
308 /* Attempt an OF style match */
309 if (of_driver_match_device(dev
, drv
))
313 if (acpi_driver_match_device(dev
, drv
))
317 return !!spi_match_id(sdrv
->id_table
, spi
);
319 return strcmp(spi
->modalias
, drv
->name
) == 0;
322 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
324 const struct spi_device
*spi
= to_spi_device(dev
);
327 rc
= acpi_device_uevent_modalias(dev
, env
);
331 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
334 struct bus_type spi_bus_type
= {
336 .dev_groups
= spi_dev_groups
,
337 .match
= spi_match_device
,
338 .uevent
= spi_uevent
,
340 EXPORT_SYMBOL_GPL(spi_bus_type
);
343 static int spi_drv_probe(struct device
*dev
)
345 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
346 struct spi_device
*spi
= to_spi_device(dev
);
349 ret
= of_clk_set_defaults(dev
->of_node
, false);
354 spi
->irq
= of_irq_get(dev
->of_node
, 0);
355 if (spi
->irq
== -EPROBE_DEFER
)
356 return -EPROBE_DEFER
;
361 ret
= dev_pm_domain_attach(dev
, true);
365 ret
= sdrv
->probe(spi
);
367 dev_pm_domain_detach(dev
, true);
372 static int spi_drv_remove(struct device
*dev
)
374 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
377 ret
= sdrv
->remove(to_spi_device(dev
));
378 dev_pm_domain_detach(dev
, true);
383 static void spi_drv_shutdown(struct device
*dev
)
385 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
387 sdrv
->shutdown(to_spi_device(dev
));
391 * __spi_register_driver - register a SPI driver
392 * @owner: owner module of the driver to register
393 * @sdrv: the driver to register
396 * Return: zero on success, else a negative error code.
398 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
400 sdrv
->driver
.owner
= owner
;
401 sdrv
->driver
.bus
= &spi_bus_type
;
403 sdrv
->driver
.probe
= spi_drv_probe
;
405 sdrv
->driver
.remove
= spi_drv_remove
;
407 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
408 return driver_register(&sdrv
->driver
);
410 EXPORT_SYMBOL_GPL(__spi_register_driver
);
412 /*-------------------------------------------------------------------------*/
414 /* SPI devices should normally not be created by SPI device drivers; that
415 * would make them board-specific. Similarly with SPI controller drivers.
416 * Device registration normally goes into like arch/.../mach.../board-YYY.c
417 * with other readonly (flashable) information about mainboard devices.
421 struct list_head list
;
422 struct spi_board_info board_info
;
425 static LIST_HEAD(board_list
);
426 static LIST_HEAD(spi_controller_list
);
429 * Used to protect add/del opertion for board_info list and
430 * spi_controller list, and their matching process
431 * also used to protect object of type struct idr
433 static DEFINE_MUTEX(board_lock
);
436 * spi_alloc_device - Allocate a new SPI device
437 * @ctlr: Controller to which device is connected
440 * Allows a driver to allocate and initialize a spi_device without
441 * registering it immediately. This allows a driver to directly
442 * fill the spi_device with device parameters before calling
443 * spi_add_device() on it.
445 * Caller is responsible to call spi_add_device() on the returned
446 * spi_device structure to add it to the SPI controller. If the caller
447 * needs to discard the spi_device without adding it, then it should
448 * call spi_dev_put() on it.
450 * Return: a pointer to the new device, or NULL.
452 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
454 struct spi_device
*spi
;
456 if (!spi_controller_get(ctlr
))
459 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
461 spi_controller_put(ctlr
);
465 spi
->master
= spi
->controller
= ctlr
;
466 spi
->dev
.parent
= &ctlr
->dev
;
467 spi
->dev
.bus
= &spi_bus_type
;
468 spi
->dev
.release
= spidev_release
;
469 spi
->cs_gpio
= -ENOENT
;
471 spin_lock_init(&spi
->statistics
.lock
);
473 device_initialize(&spi
->dev
);
476 EXPORT_SYMBOL_GPL(spi_alloc_device
);
478 static void spi_dev_set_name(struct spi_device
*spi
)
480 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
483 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
487 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
491 static int spi_dev_check(struct device
*dev
, void *data
)
493 struct spi_device
*spi
= to_spi_device(dev
);
494 struct spi_device
*new_spi
= data
;
496 if (spi
->controller
== new_spi
->controller
&&
497 spi
->chip_select
== new_spi
->chip_select
)
503 * spi_add_device - Add spi_device allocated with spi_alloc_device
504 * @spi: spi_device to register
506 * Companion function to spi_alloc_device. Devices allocated with
507 * spi_alloc_device can be added onto the spi bus with this function.
509 * Return: 0 on success; negative errno on failure
511 int spi_add_device(struct spi_device
*spi
)
513 static DEFINE_MUTEX(spi_add_lock
);
514 struct spi_controller
*ctlr
= spi
->controller
;
515 struct device
*dev
= ctlr
->dev
.parent
;
518 /* Chipselects are numbered 0..max; validate. */
519 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
520 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
521 ctlr
->num_chipselect
);
525 /* Set the bus ID string */
526 spi_dev_set_name(spi
);
528 /* We need to make sure there's no other device with this
529 * chipselect **BEFORE** we call setup(), else we'll trash
530 * its configuration. Lock against concurrent add() calls.
532 mutex_lock(&spi_add_lock
);
534 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
536 dev_err(dev
, "chipselect %d already in use\n",
542 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
544 /* Drivers may modify this initial i/o setup, but will
545 * normally rely on the device being setup. Devices
546 * using SPI_CS_HIGH can't coexist well otherwise...
548 status
= spi_setup(spi
);
550 dev_err(dev
, "can't setup %s, status %d\n",
551 dev_name(&spi
->dev
), status
);
555 /* Device may be bound to an active driver when this returns */
556 status
= device_add(&spi
->dev
);
558 dev_err(dev
, "can't add %s, status %d\n",
559 dev_name(&spi
->dev
), status
);
561 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
564 mutex_unlock(&spi_add_lock
);
567 EXPORT_SYMBOL_GPL(spi_add_device
);
570 * spi_new_device - instantiate one new SPI device
571 * @ctlr: Controller to which device is connected
572 * @chip: Describes the SPI device
575 * On typical mainboards, this is purely internal; and it's not needed
576 * after board init creates the hard-wired devices. Some development
577 * platforms may not be able to use spi_register_board_info though, and
578 * this is exported so that for example a USB or parport based adapter
579 * driver could add devices (which it would learn about out-of-band).
581 * Return: the new device, or NULL.
583 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
584 struct spi_board_info
*chip
)
586 struct spi_device
*proxy
;
589 /* NOTE: caller did any chip->bus_num checks necessary.
591 * Also, unless we change the return value convention to use
592 * error-or-pointer (not NULL-or-pointer), troubleshootability
593 * suggests syslogged diagnostics are best here (ugh).
596 proxy
= spi_alloc_device(ctlr
);
600 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
602 proxy
->chip_select
= chip
->chip_select
;
603 proxy
->max_speed_hz
= chip
->max_speed_hz
;
604 proxy
->mode
= chip
->mode
;
605 proxy
->irq
= chip
->irq
;
606 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
607 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
608 proxy
->controller_data
= chip
->controller_data
;
609 proxy
->controller_state
= NULL
;
611 if (chip
->properties
) {
612 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
615 "failed to add properties to '%s': %d\n",
616 chip
->modalias
, status
);
621 status
= spi_add_device(proxy
);
623 goto err_remove_props
;
628 if (chip
->properties
)
629 device_remove_properties(&proxy
->dev
);
634 EXPORT_SYMBOL_GPL(spi_new_device
);
637 * spi_unregister_device - unregister a single SPI device
638 * @spi: spi_device to unregister
640 * Start making the passed SPI device vanish. Normally this would be handled
641 * by spi_unregister_controller().
643 void spi_unregister_device(struct spi_device
*spi
)
648 if (spi
->dev
.of_node
) {
649 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
650 of_node_put(spi
->dev
.of_node
);
652 if (ACPI_COMPANION(&spi
->dev
))
653 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
654 device_unregister(&spi
->dev
);
656 EXPORT_SYMBOL_GPL(spi_unregister_device
);
658 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
659 struct spi_board_info
*bi
)
661 struct spi_device
*dev
;
663 if (ctlr
->bus_num
!= bi
->bus_num
)
666 dev
= spi_new_device(ctlr
, bi
);
668 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
673 * spi_register_board_info - register SPI devices for a given board
674 * @info: array of chip descriptors
675 * @n: how many descriptors are provided
678 * Board-specific early init code calls this (probably during arch_initcall)
679 * with segments of the SPI device table. Any device nodes are created later,
680 * after the relevant parent SPI controller (bus_num) is defined. We keep
681 * this table of devices forever, so that reloading a controller driver will
682 * not make Linux forget about these hard-wired devices.
684 * Other code can also call this, e.g. a particular add-on board might provide
685 * SPI devices through its expansion connector, so code initializing that board
686 * would naturally declare its SPI devices.
688 * The board info passed can safely be __initdata ... but be careful of
689 * any embedded pointers (platform_data, etc), they're copied as-is.
690 * Device properties are deep-copied though.
692 * Return: zero on success, else a negative error code.
694 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
696 struct boardinfo
*bi
;
702 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
706 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
707 struct spi_controller
*ctlr
;
709 memcpy(&bi
->board_info
, info
, sizeof(*info
));
710 if (info
->properties
) {
711 bi
->board_info
.properties
=
712 property_entries_dup(info
->properties
);
713 if (IS_ERR(bi
->board_info
.properties
))
714 return PTR_ERR(bi
->board_info
.properties
);
717 mutex_lock(&board_lock
);
718 list_add_tail(&bi
->list
, &board_list
);
719 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
720 spi_match_controller_to_boardinfo(ctlr
,
722 mutex_unlock(&board_lock
);
728 /*-------------------------------------------------------------------------*/
730 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
732 if (spi
->mode
& SPI_CS_HIGH
)
735 if (gpio_is_valid(spi
->cs_gpio
)) {
736 gpio_set_value(spi
->cs_gpio
, !enable
);
737 /* Some SPI masters need both GPIO CS & slave_select */
738 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
739 spi
->controller
->set_cs
)
740 spi
->controller
->set_cs(spi
, !enable
);
741 } else if (spi
->controller
->set_cs
) {
742 spi
->controller
->set_cs(spi
, !enable
);
746 #ifdef CONFIG_HAS_DMA
747 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
748 struct sg_table
*sgt
, void *buf
, size_t len
,
749 enum dma_data_direction dir
)
751 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
752 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
753 #ifdef CONFIG_HIGHMEM
754 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
755 (unsigned long)buf
< (PKMAP_BASE
+
756 (LAST_PKMAP
* PAGE_SIZE
)));
758 const bool kmap_buf
= false;
762 struct page
*vm_page
;
763 struct scatterlist
*sg
;
768 if (vmalloced_buf
|| kmap_buf
) {
769 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
770 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
771 } else if (virt_addr_valid(buf
)) {
772 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
773 sgs
= DIV_ROUND_UP(len
, desc_len
);
778 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
783 for (i
= 0; i
< sgs
; i
++) {
785 if (vmalloced_buf
|| kmap_buf
) {
787 * Next scatterlist entry size is the minimum between
788 * the desc_len and the remaining buffer length that
791 min
= min_t(size_t, desc_len
,
793 PAGE_SIZE
- offset_in_page(buf
)));
795 vm_page
= vmalloc_to_page(buf
);
797 vm_page
= kmap_to_page(buf
);
802 sg_set_page(sg
, vm_page
,
803 min
, offset_in_page(buf
));
805 min
= min_t(size_t, len
, desc_len
);
807 sg_set_buf(sg
, sg_buf
, min
);
815 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
828 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
829 struct sg_table
*sgt
, enum dma_data_direction dir
)
831 if (sgt
->orig_nents
) {
832 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
837 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
839 struct device
*tx_dev
, *rx_dev
;
840 struct spi_transfer
*xfer
;
847 tx_dev
= ctlr
->dma_tx
->device
->dev
;
849 tx_dev
= ctlr
->dev
.parent
;
852 rx_dev
= ctlr
->dma_rx
->device
->dev
;
854 rx_dev
= ctlr
->dev
.parent
;
856 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
857 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
860 if (xfer
->tx_buf
!= NULL
) {
861 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
862 (void *)xfer
->tx_buf
, xfer
->len
,
868 if (xfer
->rx_buf
!= NULL
) {
869 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
870 xfer
->rx_buf
, xfer
->len
,
873 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
880 ctlr
->cur_msg_mapped
= true;
885 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
887 struct spi_transfer
*xfer
;
888 struct device
*tx_dev
, *rx_dev
;
890 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
894 tx_dev
= ctlr
->dma_tx
->device
->dev
;
896 tx_dev
= ctlr
->dev
.parent
;
899 rx_dev
= ctlr
->dma_rx
->device
->dev
;
901 rx_dev
= ctlr
->dev
.parent
;
903 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
904 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
907 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
908 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
913 #else /* !CONFIG_HAS_DMA */
914 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
915 struct spi_message
*msg
)
920 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
921 struct spi_message
*msg
)
925 #endif /* !CONFIG_HAS_DMA */
927 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
928 struct spi_message
*msg
)
930 struct spi_transfer
*xfer
;
932 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
934 * Restore the original value of tx_buf or rx_buf if they are
937 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
939 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
943 return __spi_unmap_msg(ctlr
, msg
);
946 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
948 struct spi_transfer
*xfer
;
950 unsigned int max_tx
, max_rx
;
952 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
956 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
957 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
959 max_tx
= max(xfer
->len
, max_tx
);
960 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
962 max_rx
= max(xfer
->len
, max_rx
);
966 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
967 GFP_KERNEL
| GFP_DMA
);
970 ctlr
->dummy_tx
= tmp
;
971 memset(tmp
, 0, max_tx
);
975 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
976 GFP_KERNEL
| GFP_DMA
);
979 ctlr
->dummy_rx
= tmp
;
982 if (max_tx
|| max_rx
) {
983 list_for_each_entry(xfer
, &msg
->transfers
,
988 xfer
->tx_buf
= ctlr
->dummy_tx
;
990 xfer
->rx_buf
= ctlr
->dummy_rx
;
995 return __spi_map_msg(ctlr
, msg
);
999 * spi_transfer_one_message - Default implementation of transfer_one_message()
1001 * This is a standard implementation of transfer_one_message() for
1002 * drivers which implement a transfer_one() operation. It provides
1003 * standard handling of delays and chip select management.
1005 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1006 struct spi_message
*msg
)
1008 struct spi_transfer
*xfer
;
1009 bool keep_cs
= false;
1011 unsigned long long ms
= 1;
1012 struct spi_statistics
*statm
= &ctlr
->statistics
;
1013 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1015 spi_set_cs(msg
->spi
, true);
1017 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1018 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1020 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1021 trace_spi_transfer_start(msg
, xfer
);
1023 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1024 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1026 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1027 reinit_completion(&ctlr
->xfer_completion
);
1029 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1031 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1033 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1035 dev_err(&msg
->spi
->dev
,
1036 "SPI transfer failed: %d\n", ret
);
1042 ms
= 8LL * 1000LL * xfer
->len
;
1043 do_div(ms
, xfer
->speed_hz
);
1044 ms
+= ms
+ 200; /* some tolerance */
1049 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1050 msecs_to_jiffies(ms
));
1054 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1056 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1058 dev_err(&msg
->spi
->dev
,
1059 "SPI transfer timed out\n");
1060 msg
->status
= -ETIMEDOUT
;
1064 dev_err(&msg
->spi
->dev
,
1065 "Bufferless transfer has length %u\n",
1069 trace_spi_transfer_stop(msg
, xfer
);
1071 if (msg
->status
!= -EINPROGRESS
)
1074 if (xfer
->delay_usecs
) {
1075 u16 us
= xfer
->delay_usecs
;
1080 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1083 if (xfer
->cs_change
) {
1084 if (list_is_last(&xfer
->transfer_list
,
1088 spi_set_cs(msg
->spi
, false);
1090 spi_set_cs(msg
->spi
, true);
1094 msg
->actual_length
+= xfer
->len
;
1098 if (ret
!= 0 || !keep_cs
)
1099 spi_set_cs(msg
->spi
, false);
1101 if (msg
->status
== -EINPROGRESS
)
1104 if (msg
->status
&& ctlr
->handle_err
)
1105 ctlr
->handle_err(ctlr
, msg
);
1107 spi_res_release(ctlr
, msg
);
1109 spi_finalize_current_message(ctlr
);
1115 * spi_finalize_current_transfer - report completion of a transfer
1116 * @ctlr: the controller reporting completion
1118 * Called by SPI drivers using the core transfer_one_message()
1119 * implementation to notify it that the current interrupt driven
1120 * transfer has finished and the next one may be scheduled.
1122 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1124 complete(&ctlr
->xfer_completion
);
1126 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1129 * __spi_pump_messages - function which processes spi message queue
1130 * @ctlr: controller to process queue for
1131 * @in_kthread: true if we are in the context of the message pump thread
1133 * This function checks if there is any spi message in the queue that
1134 * needs processing and if so call out to the driver to initialize hardware
1135 * and transfer each message.
1137 * Note that it is called both from the kthread itself and also from
1138 * inside spi_sync(); the queue extraction handling at the top of the
1139 * function should deal with this safely.
1141 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1143 unsigned long flags
;
1144 bool was_busy
= false;
1148 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1150 /* Make sure we are not already running a message */
1151 if (ctlr
->cur_msg
) {
1152 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1156 /* If another context is idling the device then defer */
1158 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1159 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1163 /* Check if the queue is idle */
1164 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1166 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1170 /* Only do teardown in the thread */
1172 kthread_queue_work(&ctlr
->kworker
,
1173 &ctlr
->pump_messages
);
1174 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1179 ctlr
->idling
= true;
1180 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1182 kfree(ctlr
->dummy_rx
);
1183 ctlr
->dummy_rx
= NULL
;
1184 kfree(ctlr
->dummy_tx
);
1185 ctlr
->dummy_tx
= NULL
;
1186 if (ctlr
->unprepare_transfer_hardware
&&
1187 ctlr
->unprepare_transfer_hardware(ctlr
))
1189 "failed to unprepare transfer hardware\n");
1190 if (ctlr
->auto_runtime_pm
) {
1191 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1192 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1194 trace_spi_controller_idle(ctlr
);
1196 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1197 ctlr
->idling
= false;
1198 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1202 /* Extract head of queue */
1204 list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1206 list_del_init(&ctlr
->cur_msg
->queue
);
1211 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1213 mutex_lock(&ctlr
->io_mutex
);
1215 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1216 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1218 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1219 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1221 mutex_unlock(&ctlr
->io_mutex
);
1227 trace_spi_controller_busy(ctlr
);
1229 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1230 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1233 "failed to prepare transfer hardware\n");
1235 if (ctlr
->auto_runtime_pm
)
1236 pm_runtime_put(ctlr
->dev
.parent
);
1237 mutex_unlock(&ctlr
->io_mutex
);
1242 trace_spi_message_start(ctlr
->cur_msg
);
1244 if (ctlr
->prepare_message
) {
1245 ret
= ctlr
->prepare_message(ctlr
, ctlr
->cur_msg
);
1247 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1249 ctlr
->cur_msg
->status
= ret
;
1250 spi_finalize_current_message(ctlr
);
1253 ctlr
->cur_msg_prepared
= true;
1256 ret
= spi_map_msg(ctlr
, ctlr
->cur_msg
);
1258 ctlr
->cur_msg
->status
= ret
;
1259 spi_finalize_current_message(ctlr
);
1263 ret
= ctlr
->transfer_one_message(ctlr
, ctlr
->cur_msg
);
1266 "failed to transfer one message from queue\n");
1271 mutex_unlock(&ctlr
->io_mutex
);
1273 /* Prod the scheduler in case transfer_one() was busy waiting */
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1282 static void spi_pump_messages(struct kthread_work
*work
)
1284 struct spi_controller
*ctlr
=
1285 container_of(work
, struct spi_controller
, pump_messages
);
1287 __spi_pump_messages(ctlr
, true);
1290 static int spi_init_queue(struct spi_controller
*ctlr
)
1292 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1294 ctlr
->running
= false;
1297 kthread_init_worker(&ctlr
->kworker
);
1298 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1299 "%s", dev_name(&ctlr
->dev
));
1300 if (IS_ERR(ctlr
->kworker_task
)) {
1301 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1302 return PTR_ERR(ctlr
->kworker_task
);
1304 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1307 * Controller config will indicate if this controller should run the
1308 * message pump with high (realtime) priority to reduce the transfer
1309 * latency on the bus by minimising the delay between a transfer
1310 * request and the scheduling of the message pump thread. Without this
1311 * setting the message pump thread will remain at default priority.
1314 dev_info(&ctlr
->dev
,
1315 "will run message pump with realtime priority\n");
1316 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1323 * spi_get_next_queued_message() - called by driver to check for queued
1325 * @ctlr: the controller to check for queued messages
1327 * If there are more messages in the queue, the next message is returned from
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1332 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1334 struct spi_message
*next
;
1335 unsigned long flags
;
1337 /* get a pointer to the next message, if any */
1338 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1339 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1341 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1354 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1356 struct spi_message
*mesg
;
1357 unsigned long flags
;
1360 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1361 mesg
= ctlr
->cur_msg
;
1362 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1364 spi_unmap_msg(ctlr
, mesg
);
1366 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1367 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1369 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1374 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1375 ctlr
->cur_msg
= NULL
;
1376 ctlr
->cur_msg_prepared
= false;
1377 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1378 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1380 trace_spi_message_done(mesg
);
1384 mesg
->complete(mesg
->context
);
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1388 static int spi_start_queue(struct spi_controller
*ctlr
)
1390 unsigned long flags
;
1392 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1394 if (ctlr
->running
|| ctlr
->busy
) {
1395 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1399 ctlr
->running
= true;
1400 ctlr
->cur_msg
= NULL
;
1401 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1403 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1408 static int spi_stop_queue(struct spi_controller
*ctlr
)
1410 unsigned long flags
;
1411 unsigned limit
= 500;
1414 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1417 * This is a bit lame, but is optimized for the common execution path.
1418 * A wait_queue on the ctlr->busy could be used, but then the common
1419 * execution path (pump_messages) would be required to call wake_up or
1420 * friends on every SPI message. Do this instead.
1422 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1423 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1424 usleep_range(10000, 11000);
1425 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1428 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1431 ctlr
->running
= false;
1433 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1436 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1442 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1446 ret
= spi_stop_queue(ctlr
);
1449 * kthread_flush_worker will block until all work is done.
1450 * If the reason that stop_queue timed out is that the work will never
1451 * finish, then it does no good to call flush/stop thread, so
1455 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1459 kthread_flush_worker(&ctlr
->kworker
);
1460 kthread_stop(ctlr
->kworker_task
);
1465 static int __spi_queued_transfer(struct spi_device
*spi
,
1466 struct spi_message
*msg
,
1469 struct spi_controller
*ctlr
= spi
->controller
;
1470 unsigned long flags
;
1472 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1474 if (!ctlr
->running
) {
1475 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1478 msg
->actual_length
= 0;
1479 msg
->status
= -EINPROGRESS
;
1481 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1482 if (!ctlr
->busy
&& need_pump
)
1483 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1485 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1494 * Return: zero on success, else a negative error code.
1496 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1498 return __spi_queued_transfer(spi
, msg
, true);
1501 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1505 ctlr
->transfer
= spi_queued_transfer
;
1506 if (!ctlr
->transfer_one_message
)
1507 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1509 /* Initialize and start queue */
1510 ret
= spi_init_queue(ctlr
);
1512 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1513 goto err_init_queue
;
1515 ctlr
->queued
= true;
1516 ret
= spi_start_queue(ctlr
);
1518 dev_err(&ctlr
->dev
, "problem starting queue\n");
1519 goto err_start_queue
;
1525 spi_destroy_queue(ctlr
);
1531 * spi_flush_queue - Send all pending messages in the queue from the callers'
1533 * @ctlr: controller to process queue for
1535 * This should be used when one wants to ensure all pending messages have been
1536 * sent before doing something. Is used by the spi-mem code to make sure SPI
1537 * memory operations do not preempt regular SPI transfers that have been queued
1538 * before the spi-mem operation.
1540 void spi_flush_queue(struct spi_controller
*ctlr
)
1542 if (ctlr
->transfer
== spi_queued_transfer
)
1543 __spi_pump_messages(ctlr
, false);
1546 /*-------------------------------------------------------------------------*/
1548 #if defined(CONFIG_OF)
1549 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1550 struct device_node
*nc
)
1555 /* Mode (clock phase/polarity/etc.) */
1556 if (of_property_read_bool(nc
, "spi-cpha"))
1557 spi
->mode
|= SPI_CPHA
;
1558 if (of_property_read_bool(nc
, "spi-cpol"))
1559 spi
->mode
|= SPI_CPOL
;
1560 if (of_property_read_bool(nc
, "spi-cs-high"))
1561 spi
->mode
|= SPI_CS_HIGH
;
1562 if (of_property_read_bool(nc
, "spi-3wire"))
1563 spi
->mode
|= SPI_3WIRE
;
1564 if (of_property_read_bool(nc
, "spi-lsb-first"))
1565 spi
->mode
|= SPI_LSB_FIRST
;
1567 /* Device DUAL/QUAD mode */
1568 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1573 spi
->mode
|= SPI_TX_DUAL
;
1576 spi
->mode
|= SPI_TX_QUAD
;
1579 dev_warn(&ctlr
->dev
,
1580 "spi-tx-bus-width %d not supported\n",
1586 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1591 spi
->mode
|= SPI_RX_DUAL
;
1594 spi
->mode
|= SPI_RX_QUAD
;
1597 dev_warn(&ctlr
->dev
,
1598 "spi-rx-bus-width %d not supported\n",
1604 if (spi_controller_is_slave(ctlr
)) {
1605 if (strcmp(nc
->name
, "slave")) {
1606 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1613 /* Device address */
1614 rc
= of_property_read_u32(nc
, "reg", &value
);
1616 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1620 spi
->chip_select
= value
;
1623 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1626 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc
, rc
);
1629 spi
->max_speed_hz
= value
;
1634 static struct spi_device
*
1635 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1637 struct spi_device
*spi
;
1640 /* Alloc an spi_device */
1641 spi
= spi_alloc_device(ctlr
);
1643 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1648 /* Select device driver */
1649 rc
= of_modalias_node(nc
, spi
->modalias
,
1650 sizeof(spi
->modalias
));
1652 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1656 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1660 /* Store a pointer to the node in the device structure */
1662 spi
->dev
.of_node
= nc
;
1664 /* Register the new device */
1665 rc
= spi_add_device(spi
);
1667 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
1668 goto err_of_node_put
;
1681 * of_register_spi_devices() - Register child devices onto the SPI bus
1682 * @ctlr: Pointer to spi_controller device
1684 * Registers an spi_device for each child node of controller node which
1685 * represents a valid SPI slave.
1687 static void of_register_spi_devices(struct spi_controller
*ctlr
)
1689 struct spi_device
*spi
;
1690 struct device_node
*nc
;
1692 if (!ctlr
->dev
.of_node
)
1695 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
1696 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
1698 spi
= of_register_spi_device(ctlr
, nc
);
1700 dev_warn(&ctlr
->dev
,
1701 "Failed to create SPI device for %pOF\n", nc
);
1702 of_node_clear_flag(nc
, OF_POPULATED
);
1707 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
1711 static void acpi_spi_parse_apple_properties(struct spi_device
*spi
)
1713 struct acpi_device
*dev
= ACPI_COMPANION(&spi
->dev
);
1714 const union acpi_object
*obj
;
1716 if (!x86_apple_machine
)
1719 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
1720 && obj
->buffer
.length
>= 4)
1721 spi
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
1723 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
1724 && obj
->buffer
.length
== 8)
1725 spi
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
1727 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
1728 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
1729 spi
->mode
|= SPI_LSB_FIRST
;
1731 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
1732 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1733 spi
->mode
|= SPI_CPOL
;
1735 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
1736 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1737 spi
->mode
|= SPI_CPHA
;
1740 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1742 struct spi_device
*spi
= data
;
1743 struct spi_controller
*ctlr
= spi
->controller
;
1745 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1746 struct acpi_resource_spi_serialbus
*sb
;
1748 sb
= &ares
->data
.spi_serial_bus
;
1749 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1751 * ACPI DeviceSelection numbering is handled by the
1752 * host controller driver in Windows and can vary
1753 * from driver to driver. In Linux we always expect
1754 * 0 .. max - 1 so we need to ask the driver to
1755 * translate between the two schemes.
1757 if (ctlr
->fw_translate_cs
) {
1758 int cs
= ctlr
->fw_translate_cs(ctlr
,
1759 sb
->device_selection
);
1762 spi
->chip_select
= cs
;
1764 spi
->chip_select
= sb
->device_selection
;
1767 spi
->max_speed_hz
= sb
->connection_speed
;
1769 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1770 spi
->mode
|= SPI_CPHA
;
1771 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1772 spi
->mode
|= SPI_CPOL
;
1773 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1774 spi
->mode
|= SPI_CS_HIGH
;
1776 } else if (spi
->irq
< 0) {
1779 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1783 /* Always tell the ACPI core to skip this resource */
1787 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
1788 struct acpi_device
*adev
)
1790 struct list_head resource_list
;
1791 struct spi_device
*spi
;
1794 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
1795 acpi_device_enumerated(adev
))
1798 spi
= spi_alloc_device(ctlr
);
1800 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
1801 dev_name(&adev
->dev
));
1802 return AE_NO_MEMORY
;
1805 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1808 INIT_LIST_HEAD(&resource_list
);
1809 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1810 acpi_spi_add_resource
, spi
);
1811 acpi_dev_free_resource_list(&resource_list
);
1813 acpi_spi_parse_apple_properties(spi
);
1815 if (ret
< 0 || !spi
->max_speed_hz
) {
1820 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
1821 sizeof(spi
->modalias
));
1824 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
1826 acpi_device_set_enumerated(adev
);
1828 adev
->power
.flags
.ignore_parent
= true;
1829 if (spi_add_device(spi
)) {
1830 adev
->power
.flags
.ignore_parent
= false;
1831 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
1832 dev_name(&adev
->dev
));
1839 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1840 void *data
, void **return_value
)
1842 struct spi_controller
*ctlr
= data
;
1843 struct acpi_device
*adev
;
1845 if (acpi_bus_get_device(handle
, &adev
))
1848 return acpi_register_spi_device(ctlr
, adev
);
1851 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
1856 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
1860 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1861 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
1862 if (ACPI_FAILURE(status
))
1863 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
1866 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
1867 #endif /* CONFIG_ACPI */
1869 static void spi_controller_release(struct device
*dev
)
1871 struct spi_controller
*ctlr
;
1873 ctlr
= container_of(dev
, struct spi_controller
, dev
);
1877 static struct class spi_master_class
= {
1878 .name
= "spi_master",
1879 .owner
= THIS_MODULE
,
1880 .dev_release
= spi_controller_release
,
1881 .dev_groups
= spi_master_groups
,
1884 #ifdef CONFIG_SPI_SLAVE
1886 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1888 * @spi: device used for the current transfer
1890 int spi_slave_abort(struct spi_device
*spi
)
1892 struct spi_controller
*ctlr
= spi
->controller
;
1894 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
1895 return ctlr
->slave_abort(ctlr
);
1899 EXPORT_SYMBOL_GPL(spi_slave_abort
);
1901 static int match_true(struct device
*dev
, void *data
)
1906 static ssize_t
spi_slave_show(struct device
*dev
,
1907 struct device_attribute
*attr
, char *buf
)
1909 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
1911 struct device
*child
;
1913 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
1914 return sprintf(buf
, "%s\n",
1915 child
? to_spi_device(child
)->modalias
: NULL
);
1918 static ssize_t
spi_slave_store(struct device
*dev
,
1919 struct device_attribute
*attr
, const char *buf
,
1922 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
1924 struct spi_device
*spi
;
1925 struct device
*child
;
1929 rc
= sscanf(buf
, "%31s", name
);
1930 if (rc
!= 1 || !name
[0])
1933 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
1935 /* Remove registered slave */
1936 device_unregister(child
);
1940 if (strcmp(name
, "(null)")) {
1941 /* Register new slave */
1942 spi
= spi_alloc_device(ctlr
);
1946 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
1948 rc
= spi_add_device(spi
);
1958 static DEVICE_ATTR(slave
, 0644, spi_slave_show
, spi_slave_store
);
1960 static struct attribute
*spi_slave_attrs
[] = {
1961 &dev_attr_slave
.attr
,
1965 static const struct attribute_group spi_slave_group
= {
1966 .attrs
= spi_slave_attrs
,
1969 static const struct attribute_group
*spi_slave_groups
[] = {
1970 &spi_controller_statistics_group
,
1975 static struct class spi_slave_class
= {
1976 .name
= "spi_slave",
1977 .owner
= THIS_MODULE
,
1978 .dev_release
= spi_controller_release
,
1979 .dev_groups
= spi_slave_groups
,
1982 extern struct class spi_slave_class
; /* dummy */
1986 * __spi_alloc_controller - allocate an SPI master or slave controller
1987 * @dev: the controller, possibly using the platform_bus
1988 * @size: how much zeroed driver-private data to allocate; the pointer to this
1989 * memory is in the driver_data field of the returned device,
1990 * accessible with spi_controller_get_devdata().
1991 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1992 * slave (true) controller
1993 * Context: can sleep
1995 * This call is used only by SPI controller drivers, which are the
1996 * only ones directly touching chip registers. It's how they allocate
1997 * an spi_controller structure, prior to calling spi_register_controller().
1999 * This must be called from context that can sleep.
2001 * The caller is responsible for assigning the bus number and initializing the
2002 * controller's methods before calling spi_register_controller(); and (after
2003 * errors adding the device) calling spi_controller_put() to prevent a memory
2006 * Return: the SPI controller structure on success, else NULL.
2008 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2009 unsigned int size
, bool slave
)
2011 struct spi_controller
*ctlr
;
2016 ctlr
= kzalloc(size
+ sizeof(*ctlr
), GFP_KERNEL
);
2020 device_initialize(&ctlr
->dev
);
2022 ctlr
->num_chipselect
= 1;
2023 ctlr
->slave
= slave
;
2024 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2025 ctlr
->dev
.class = &spi_slave_class
;
2027 ctlr
->dev
.class = &spi_master_class
;
2028 ctlr
->dev
.parent
= dev
;
2029 pm_suspend_ignore_children(&ctlr
->dev
, true);
2030 spi_controller_set_devdata(ctlr
, &ctlr
[1]);
2034 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2037 static int of_spi_register_master(struct spi_controller
*ctlr
)
2040 struct device_node
*np
= ctlr
->dev
.of_node
;
2045 nb
= of_gpio_named_count(np
, "cs-gpios");
2046 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2048 /* Return error only for an incorrectly formed cs-gpios property */
2049 if (nb
== 0 || nb
== -ENOENT
)
2054 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2056 ctlr
->cs_gpios
= cs
;
2058 if (!ctlr
->cs_gpios
)
2061 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2064 for (i
= 0; i
< nb
; i
++)
2065 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2070 static int of_spi_register_master(struct spi_controller
*ctlr
)
2076 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2079 * The controller may implement only the high-level SPI-memory like
2080 * operations if it does not support regular SPI transfers, and this is
2082 * If ->mem_ops is NULL, we request that at least one of the
2083 * ->transfer_xxx() method be implemented.
2085 if (ctlr
->mem_ops
) {
2086 if (!ctlr
->mem_ops
->exec_op
)
2088 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2089 !ctlr
->transfer_one_message
) {
2097 * spi_register_controller - register SPI master or slave controller
2098 * @ctlr: initialized master, originally from spi_alloc_master() or
2100 * Context: can sleep
2102 * SPI controllers connect to their drivers using some non-SPI bus,
2103 * such as the platform bus. The final stage of probe() in that code
2104 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2106 * SPI controllers use board specific (often SOC specific) bus numbers,
2107 * and board-specific addressing for SPI devices combines those numbers
2108 * with chip select numbers. Since SPI does not directly support dynamic
2109 * device identification, boards need configuration tables telling which
2110 * chip is at which address.
2112 * This must be called from context that can sleep. It returns zero on
2113 * success, else a negative error code (dropping the controller's refcount).
2114 * After a successful return, the caller is responsible for calling
2115 * spi_unregister_controller().
2117 * Return: zero on success, else a negative error code.
2119 int spi_register_controller(struct spi_controller
*ctlr
)
2121 struct device
*dev
= ctlr
->dev
.parent
;
2122 struct boardinfo
*bi
;
2123 int status
= -ENODEV
;
2124 int id
, first_dynamic
;
2130 * Make sure all necessary hooks are implemented before registering
2131 * the SPI controller.
2133 status
= spi_controller_check_ops(ctlr
);
2137 if (!spi_controller_is_slave(ctlr
)) {
2138 status
= of_spi_register_master(ctlr
);
2143 /* even if it's just one always-selected device, there must
2144 * be at least one chipselect
2146 if (ctlr
->num_chipselect
== 0)
2148 if (ctlr
->bus_num
>= 0) {
2149 /* devices with a fixed bus num must check-in with the num */
2150 mutex_lock(&board_lock
);
2151 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2152 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2153 mutex_unlock(&board_lock
);
2154 if (WARN(id
< 0, "couldn't get idr"))
2155 return id
== -ENOSPC
? -EBUSY
: id
;
2157 } else if (ctlr
->dev
.of_node
) {
2158 /* allocate dynamic bus number using Linux idr */
2159 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2162 mutex_lock(&board_lock
);
2163 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2164 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2165 mutex_unlock(&board_lock
);
2166 if (WARN(id
< 0, "couldn't get idr"))
2167 return id
== -ENOSPC
? -EBUSY
: id
;
2170 if (ctlr
->bus_num
< 0) {
2171 first_dynamic
= of_alias_get_highest_id("spi");
2172 if (first_dynamic
< 0)
2177 mutex_lock(&board_lock
);
2178 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2180 mutex_unlock(&board_lock
);
2181 if (WARN(id
< 0, "couldn't get idr"))
2185 INIT_LIST_HEAD(&ctlr
->queue
);
2186 spin_lock_init(&ctlr
->queue_lock
);
2187 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2188 mutex_init(&ctlr
->bus_lock_mutex
);
2189 mutex_init(&ctlr
->io_mutex
);
2190 ctlr
->bus_lock_flag
= 0;
2191 init_completion(&ctlr
->xfer_completion
);
2192 if (!ctlr
->max_dma_len
)
2193 ctlr
->max_dma_len
= INT_MAX
;
2195 /* register the device, then userspace will see it.
2196 * registration fails if the bus ID is in use.
2198 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2199 status
= device_add(&ctlr
->dev
);
2202 mutex_lock(&board_lock
);
2203 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2204 mutex_unlock(&board_lock
);
2207 dev_dbg(dev
, "registered %s %s\n",
2208 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2209 dev_name(&ctlr
->dev
));
2212 * If we're using a queued driver, start the queue. Note that we don't
2213 * need the queueing logic if the driver is only supporting high-level
2214 * memory operations.
2216 if (ctlr
->transfer
) {
2217 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2218 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2219 status
= spi_controller_initialize_queue(ctlr
);
2221 device_del(&ctlr
->dev
);
2223 mutex_lock(&board_lock
);
2224 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2225 mutex_unlock(&board_lock
);
2229 /* add statistics */
2230 spin_lock_init(&ctlr
->statistics
.lock
);
2232 mutex_lock(&board_lock
);
2233 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2234 list_for_each_entry(bi
, &board_list
, list
)
2235 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2236 mutex_unlock(&board_lock
);
2238 /* Register devices from the device tree and ACPI */
2239 of_register_spi_devices(ctlr
);
2240 acpi_register_spi_devices(ctlr
);
2244 EXPORT_SYMBOL_GPL(spi_register_controller
);
2246 static void devm_spi_unregister(struct device
*dev
, void *res
)
2248 spi_unregister_controller(*(struct spi_controller
**)res
);
2252 * devm_spi_register_controller - register managed SPI master or slave
2254 * @dev: device managing SPI controller
2255 * @ctlr: initialized controller, originally from spi_alloc_master() or
2257 * Context: can sleep
2259 * Register a SPI device as with spi_register_controller() which will
2260 * automatically be unregistered and freed.
2262 * Return: zero on success, else a negative error code.
2264 int devm_spi_register_controller(struct device
*dev
,
2265 struct spi_controller
*ctlr
)
2267 struct spi_controller
**ptr
;
2270 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2274 ret
= spi_register_controller(ctlr
);
2277 devres_add(dev
, ptr
);
2284 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2286 static int __unregister(struct device
*dev
, void *null
)
2288 spi_unregister_device(to_spi_device(dev
));
2293 * spi_unregister_controller - unregister SPI master or slave controller
2294 * @ctlr: the controller being unregistered
2295 * Context: can sleep
2297 * This call is used only by SPI controller drivers, which are the
2298 * only ones directly touching chip registers.
2300 * This must be called from context that can sleep.
2302 * Note that this function also drops a reference to the controller.
2304 void spi_unregister_controller(struct spi_controller
*ctlr
)
2306 struct spi_controller
*found
;
2307 int id
= ctlr
->bus_num
;
2309 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2311 /* First make sure that this controller was ever added */
2312 mutex_lock(&board_lock
);
2313 found
= idr_find(&spi_master_idr
, id
);
2314 mutex_unlock(&board_lock
);
2316 if (spi_destroy_queue(ctlr
))
2317 dev_err(&ctlr
->dev
, "queue remove failed\n");
2319 mutex_lock(&board_lock
);
2320 list_del(&ctlr
->list
);
2321 mutex_unlock(&board_lock
);
2323 device_unregister(&ctlr
->dev
);
2325 mutex_lock(&board_lock
);
2327 idr_remove(&spi_master_idr
, id
);
2328 mutex_unlock(&board_lock
);
2330 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2332 int spi_controller_suspend(struct spi_controller
*ctlr
)
2336 /* Basically no-ops for non-queued controllers */
2340 ret
= spi_stop_queue(ctlr
);
2342 dev_err(&ctlr
->dev
, "queue stop failed\n");
2346 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2348 int spi_controller_resume(struct spi_controller
*ctlr
)
2355 ret
= spi_start_queue(ctlr
);
2357 dev_err(&ctlr
->dev
, "queue restart failed\n");
2361 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2363 static int __spi_controller_match(struct device
*dev
, const void *data
)
2365 struct spi_controller
*ctlr
;
2366 const u16
*bus_num
= data
;
2368 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2369 return ctlr
->bus_num
== *bus_num
;
2373 * spi_busnum_to_master - look up master associated with bus_num
2374 * @bus_num: the master's bus number
2375 * Context: can sleep
2377 * This call may be used with devices that are registered after
2378 * arch init time. It returns a refcounted pointer to the relevant
2379 * spi_controller (which the caller must release), or NULL if there is
2380 * no such master registered.
2382 * Return: the SPI master structure on success, else NULL.
2384 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2387 struct spi_controller
*ctlr
= NULL
;
2389 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2390 __spi_controller_match
);
2392 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2393 /* reference got in class_find_device */
2396 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2398 /*-------------------------------------------------------------------------*/
2400 /* Core methods for SPI resource management */
2403 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2404 * during the processing of a spi_message while using
2406 * @spi: the spi device for which we allocate memory
2407 * @release: the release code to execute for this resource
2408 * @size: size to alloc and return
2409 * @gfp: GFP allocation flags
2411 * Return: the pointer to the allocated data
2413 * This may get enhanced in the future to allocate from a memory pool
2414 * of the @spi_device or @spi_controller to avoid repeated allocations.
2416 void *spi_res_alloc(struct spi_device
*spi
,
2417 spi_res_release_t release
,
2418 size_t size
, gfp_t gfp
)
2420 struct spi_res
*sres
;
2422 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2426 INIT_LIST_HEAD(&sres
->entry
);
2427 sres
->release
= release
;
2431 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2434 * spi_res_free - free an spi resource
2435 * @res: pointer to the custom data of a resource
2438 void spi_res_free(void *res
)
2440 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2445 WARN_ON(!list_empty(&sres
->entry
));
2448 EXPORT_SYMBOL_GPL(spi_res_free
);
2451 * spi_res_add - add a spi_res to the spi_message
2452 * @message: the spi message
2453 * @res: the spi_resource
2455 void spi_res_add(struct spi_message
*message
, void *res
)
2457 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2459 WARN_ON(!list_empty(&sres
->entry
));
2460 list_add_tail(&sres
->entry
, &message
->resources
);
2462 EXPORT_SYMBOL_GPL(spi_res_add
);
2465 * spi_res_release - release all spi resources for this message
2466 * @ctlr: the @spi_controller
2467 * @message: the @spi_message
2469 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2471 struct spi_res
*res
;
2473 while (!list_empty(&message
->resources
)) {
2474 res
= list_last_entry(&message
->resources
,
2475 struct spi_res
, entry
);
2478 res
->release(ctlr
, message
, res
->data
);
2480 list_del(&res
->entry
);
2485 EXPORT_SYMBOL_GPL(spi_res_release
);
2487 /*-------------------------------------------------------------------------*/
2489 /* Core methods for spi_message alterations */
2491 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2492 struct spi_message
*msg
,
2495 struct spi_replaced_transfers
*rxfer
= res
;
2498 /* call extra callback if requested */
2500 rxfer
->release(ctlr
, msg
, res
);
2502 /* insert replaced transfers back into the message */
2503 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2505 /* remove the formerly inserted entries */
2506 for (i
= 0; i
< rxfer
->inserted
; i
++)
2507 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2511 * spi_replace_transfers - replace transfers with several transfers
2512 * and register change with spi_message.resources
2513 * @msg: the spi_message we work upon
2514 * @xfer_first: the first spi_transfer we want to replace
2515 * @remove: number of transfers to remove
2516 * @insert: the number of transfers we want to insert instead
2517 * @release: extra release code necessary in some circumstances
2518 * @extradatasize: extra data to allocate (with alignment guarantees
2519 * of struct @spi_transfer)
2522 * Returns: pointer to @spi_replaced_transfers,
2523 * PTR_ERR(...) in case of errors.
2525 struct spi_replaced_transfers
*spi_replace_transfers(
2526 struct spi_message
*msg
,
2527 struct spi_transfer
*xfer_first
,
2530 spi_replaced_release_t release
,
2531 size_t extradatasize
,
2534 struct spi_replaced_transfers
*rxfer
;
2535 struct spi_transfer
*xfer
;
2538 /* allocate the structure using spi_res */
2539 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2540 insert
* sizeof(struct spi_transfer
)
2541 + sizeof(struct spi_replaced_transfers
)
2545 return ERR_PTR(-ENOMEM
);
2547 /* the release code to invoke before running the generic release */
2548 rxfer
->release
= release
;
2550 /* assign extradata */
2553 &rxfer
->inserted_transfers
[insert
];
2555 /* init the replaced_transfers list */
2556 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2558 /* assign the list_entry after which we should reinsert
2559 * the @replaced_transfers - it may be spi_message.messages!
2561 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
2563 /* remove the requested number of transfers */
2564 for (i
= 0; i
< remove
; i
++) {
2565 /* if the entry after replaced_after it is msg->transfers
2566 * then we have been requested to remove more transfers
2567 * than are in the list
2569 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
2570 dev_err(&msg
->spi
->dev
,
2571 "requested to remove more spi_transfers than are available\n");
2572 /* insert replaced transfers back into the message */
2573 list_splice(&rxfer
->replaced_transfers
,
2574 rxfer
->replaced_after
);
2576 /* free the spi_replace_transfer structure */
2577 spi_res_free(rxfer
);
2579 /* and return with an error */
2580 return ERR_PTR(-EINVAL
);
2583 /* remove the entry after replaced_after from list of
2584 * transfers and add it to list of replaced_transfers
2586 list_move_tail(rxfer
->replaced_after
->next
,
2587 &rxfer
->replaced_transfers
);
2590 /* create copy of the given xfer with identical settings
2591 * based on the first transfer to get removed
2593 for (i
= 0; i
< insert
; i
++) {
2594 /* we need to run in reverse order */
2595 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
2597 /* copy all spi_transfer data */
2598 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
2601 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
2603 /* clear cs_change and delay_usecs for all but the last */
2605 xfer
->cs_change
= false;
2606 xfer
->delay_usecs
= 0;
2610 /* set up inserted */
2611 rxfer
->inserted
= insert
;
2613 /* and register it with spi_res/spi_message */
2614 spi_res_add(msg
, rxfer
);
2618 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
2620 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
2621 struct spi_message
*msg
,
2622 struct spi_transfer
**xferp
,
2626 struct spi_transfer
*xfer
= *xferp
, *xfers
;
2627 struct spi_replaced_transfers
*srt
;
2631 /* warn once about this fact that we are splitting a transfer */
2632 dev_warn_once(&msg
->spi
->dev
,
2633 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2634 xfer
->len
, maxsize
);
2636 /* calculate how many we have to replace */
2637 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
2639 /* create replacement */
2640 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
2642 return PTR_ERR(srt
);
2643 xfers
= srt
->inserted_transfers
;
2645 /* now handle each of those newly inserted spi_transfers
2646 * note that the replacements spi_transfers all are preset
2647 * to the same values as *xferp, so tx_buf, rx_buf and len
2648 * are all identical (as well as most others)
2649 * so we just have to fix up len and the pointers.
2651 * this also includes support for the depreciated
2652 * spi_message.is_dma_mapped interface
2655 /* the first transfer just needs the length modified, so we
2656 * run it outside the loop
2658 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
2660 /* all the others need rx_buf/tx_buf also set */
2661 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
2662 /* update rx_buf, tx_buf and dma */
2663 if (xfers
[i
].rx_buf
)
2664 xfers
[i
].rx_buf
+= offset
;
2665 if (xfers
[i
].rx_dma
)
2666 xfers
[i
].rx_dma
+= offset
;
2667 if (xfers
[i
].tx_buf
)
2668 xfers
[i
].tx_buf
+= offset
;
2669 if (xfers
[i
].tx_dma
)
2670 xfers
[i
].tx_dma
+= offset
;
2673 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
2676 /* we set up xferp to the last entry we have inserted,
2677 * so that we skip those already split transfers
2679 *xferp
= &xfers
[count
- 1];
2681 /* increment statistics counters */
2682 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
2683 transfers_split_maxsize
);
2684 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
2685 transfers_split_maxsize
);
2691 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2692 * when an individual transfer exceeds a
2694 * @ctlr: the @spi_controller for this transfer
2695 * @msg: the @spi_message to transform
2696 * @maxsize: the maximum when to apply this
2697 * @gfp: GFP allocation flags
2699 * Return: status of transformation
2701 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
2702 struct spi_message
*msg
,
2706 struct spi_transfer
*xfer
;
2709 /* iterate over the transfer_list,
2710 * but note that xfer is advanced to the last transfer inserted
2711 * to avoid checking sizes again unnecessarily (also xfer does
2712 * potentiall belong to a different list by the time the
2713 * replacement has happened
2715 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
2716 if (xfer
->len
> maxsize
) {
2717 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
2726 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
2728 /*-------------------------------------------------------------------------*/
2730 /* Core methods for SPI controller protocol drivers. Some of the
2731 * other core methods are currently defined as inline functions.
2734 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
2737 if (ctlr
->bits_per_word_mask
) {
2738 /* Only 32 bits fit in the mask */
2739 if (bits_per_word
> 32)
2741 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
2749 * spi_setup - setup SPI mode and clock rate
2750 * @spi: the device whose settings are being modified
2751 * Context: can sleep, and no requests are queued to the device
2753 * SPI protocol drivers may need to update the transfer mode if the
2754 * device doesn't work with its default. They may likewise need
2755 * to update clock rates or word sizes from initial values. This function
2756 * changes those settings, and must be called from a context that can sleep.
2757 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2758 * effect the next time the device is selected and data is transferred to
2759 * or from it. When this function returns, the spi device is deselected.
2761 * Note that this call will fail if the protocol driver specifies an option
2762 * that the underlying controller or its driver does not support. For
2763 * example, not all hardware supports wire transfers using nine bit words,
2764 * LSB-first wire encoding, or active-high chipselects.
2766 * Return: zero on success, else a negative error code.
2768 int spi_setup(struct spi_device
*spi
)
2770 unsigned bad_bits
, ugly_bits
;
2773 /* check mode to prevent that DUAL and QUAD set at the same time
2775 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2776 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2778 "setup: can not select dual and quad at the same time\n");
2781 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2783 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2784 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2786 /* help drivers fail *cleanly* when they need options
2787 * that aren't supported with their current controller
2789 bad_bits
= spi
->mode
& ~spi
->controller
->mode_bits
;
2790 ugly_bits
= bad_bits
&
2791 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2794 "setup: ignoring unsupported mode bits %x\n",
2796 spi
->mode
&= ~ugly_bits
;
2797 bad_bits
&= ~ugly_bits
;
2800 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2805 if (!spi
->bits_per_word
)
2806 spi
->bits_per_word
= 8;
2808 status
= __spi_validate_bits_per_word(spi
->controller
,
2809 spi
->bits_per_word
);
2813 if (!spi
->max_speed_hz
)
2814 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
2816 if (spi
->controller
->setup
)
2817 status
= spi
->controller
->setup(spi
);
2819 spi_set_cs(spi
, false);
2821 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2822 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2823 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2824 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2825 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2826 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2827 spi
->bits_per_word
, spi
->max_speed_hz
,
2832 EXPORT_SYMBOL_GPL(spi_setup
);
2834 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2836 struct spi_controller
*ctlr
= spi
->controller
;
2837 struct spi_transfer
*xfer
;
2840 if (list_empty(&message
->transfers
))
2843 /* Half-duplex links include original MicroWire, and ones with
2844 * only one data pin like SPI_3WIRE (switches direction) or where
2845 * either MOSI or MISO is missing. They can also be caused by
2846 * software limitations.
2848 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
2849 (spi
->mode
& SPI_3WIRE
)) {
2850 unsigned flags
= ctlr
->flags
;
2852 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2853 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2855 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
2857 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
2863 * Set transfer bits_per_word and max speed as spi device default if
2864 * it is not set for this transfer.
2865 * Set transfer tx_nbits and rx_nbits as single transfer default
2866 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2868 message
->frame_length
= 0;
2869 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2870 message
->frame_length
+= xfer
->len
;
2871 if (!xfer
->bits_per_word
)
2872 xfer
->bits_per_word
= spi
->bits_per_word
;
2874 if (!xfer
->speed_hz
)
2875 xfer
->speed_hz
= spi
->max_speed_hz
;
2876 if (!xfer
->speed_hz
)
2877 xfer
->speed_hz
= ctlr
->max_speed_hz
;
2879 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
2880 xfer
->speed_hz
= ctlr
->max_speed_hz
;
2882 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
2886 * SPI transfer length should be multiple of SPI word size
2887 * where SPI word size should be power-of-two multiple
2889 if (xfer
->bits_per_word
<= 8)
2891 else if (xfer
->bits_per_word
<= 16)
2896 /* No partial transfers accepted */
2897 if (xfer
->len
% w_size
)
2900 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
2901 xfer
->speed_hz
< ctlr
->min_speed_hz
)
2904 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2905 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2906 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2907 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2908 /* check transfer tx/rx_nbits:
2909 * 1. check the value matches one of single, dual and quad
2910 * 2. check tx/rx_nbits match the mode in spi_device
2913 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2914 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2915 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2917 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2918 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2920 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2921 !(spi
->mode
& SPI_TX_QUAD
))
2924 /* check transfer rx_nbits */
2926 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2927 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2928 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2930 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2931 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2933 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2934 !(spi
->mode
& SPI_RX_QUAD
))
2939 message
->status
= -EINPROGRESS
;
2944 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2946 struct spi_controller
*ctlr
= spi
->controller
;
2949 * Some controllers do not support doing regular SPI transfers. Return
2950 * ENOTSUPP when this is the case.
2952 if (!ctlr
->transfer
)
2957 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
2958 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2960 trace_spi_message_submit(message
);
2962 return ctlr
->transfer(spi
, message
);
2966 * spi_async - asynchronous SPI transfer
2967 * @spi: device with which data will be exchanged
2968 * @message: describes the data transfers, including completion callback
2969 * Context: any (irqs may be blocked, etc)
2971 * This call may be used in_irq and other contexts which can't sleep,
2972 * as well as from task contexts which can sleep.
2974 * The completion callback is invoked in a context which can't sleep.
2975 * Before that invocation, the value of message->status is undefined.
2976 * When the callback is issued, message->status holds either zero (to
2977 * indicate complete success) or a negative error code. After that
2978 * callback returns, the driver which issued the transfer request may
2979 * deallocate the associated memory; it's no longer in use by any SPI
2980 * core or controller driver code.
2982 * Note that although all messages to a spi_device are handled in
2983 * FIFO order, messages may go to different devices in other orders.
2984 * Some device might be higher priority, or have various "hard" access
2985 * time requirements, for example.
2987 * On detection of any fault during the transfer, processing of
2988 * the entire message is aborted, and the device is deselected.
2989 * Until returning from the associated message completion callback,
2990 * no other spi_message queued to that device will be processed.
2991 * (This rule applies equally to all the synchronous transfer calls,
2992 * which are wrappers around this core asynchronous primitive.)
2994 * Return: zero on success, else a negative error code.
2996 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2998 struct spi_controller
*ctlr
= spi
->controller
;
3000 unsigned long flags
;
3002 ret
= __spi_validate(spi
, message
);
3006 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3008 if (ctlr
->bus_lock_flag
)
3011 ret
= __spi_async(spi
, message
);
3013 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3017 EXPORT_SYMBOL_GPL(spi_async
);
3020 * spi_async_locked - version of spi_async with exclusive bus usage
3021 * @spi: device with which data will be exchanged
3022 * @message: describes the data transfers, including completion callback
3023 * Context: any (irqs may be blocked, etc)
3025 * This call may be used in_irq and other contexts which can't sleep,
3026 * as well as from task contexts which can sleep.
3028 * The completion callback is invoked in a context which can't sleep.
3029 * Before that invocation, the value of message->status is undefined.
3030 * When the callback is issued, message->status holds either zero (to
3031 * indicate complete success) or a negative error code. After that
3032 * callback returns, the driver which issued the transfer request may
3033 * deallocate the associated memory; it's no longer in use by any SPI
3034 * core or controller driver code.
3036 * Note that although all messages to a spi_device are handled in
3037 * FIFO order, messages may go to different devices in other orders.
3038 * Some device might be higher priority, or have various "hard" access
3039 * time requirements, for example.
3041 * On detection of any fault during the transfer, processing of
3042 * the entire message is aborted, and the device is deselected.
3043 * Until returning from the associated message completion callback,
3044 * no other spi_message queued to that device will be processed.
3045 * (This rule applies equally to all the synchronous transfer calls,
3046 * which are wrappers around this core asynchronous primitive.)
3048 * Return: zero on success, else a negative error code.
3050 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3052 struct spi_controller
*ctlr
= spi
->controller
;
3054 unsigned long flags
;
3056 ret
= __spi_validate(spi
, message
);
3060 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3062 ret
= __spi_async(spi
, message
);
3064 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3069 EXPORT_SYMBOL_GPL(spi_async_locked
);
3071 /*-------------------------------------------------------------------------*/
3073 /* Utility methods for SPI protocol drivers, layered on
3074 * top of the core. Some other utility methods are defined as
3078 static void spi_complete(void *arg
)
3083 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3085 DECLARE_COMPLETION_ONSTACK(done
);
3087 struct spi_controller
*ctlr
= spi
->controller
;
3088 unsigned long flags
;
3090 status
= __spi_validate(spi
, message
);
3094 message
->complete
= spi_complete
;
3095 message
->context
= &done
;
3098 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3099 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3101 /* If we're not using the legacy transfer method then we will
3102 * try to transfer in the calling context so special case.
3103 * This code would be less tricky if we could remove the
3104 * support for driver implemented message queues.
3106 if (ctlr
->transfer
== spi_queued_transfer
) {
3107 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3109 trace_spi_message_submit(message
);
3111 status
= __spi_queued_transfer(spi
, message
, false);
3113 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3115 status
= spi_async_locked(spi
, message
);
3119 /* Push out the messages in the calling context if we
3122 if (ctlr
->transfer
== spi_queued_transfer
) {
3123 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3124 spi_sync_immediate
);
3125 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3126 spi_sync_immediate
);
3127 __spi_pump_messages(ctlr
, false);
3130 wait_for_completion(&done
);
3131 status
= message
->status
;
3133 message
->context
= NULL
;
3138 * spi_sync - blocking/synchronous SPI data transfers
3139 * @spi: device with which data will be exchanged
3140 * @message: describes the data transfers
3141 * Context: can sleep
3143 * This call may only be used from a context that may sleep. The sleep
3144 * is non-interruptible, and has no timeout. Low-overhead controller
3145 * drivers may DMA directly into and out of the message buffers.
3147 * Note that the SPI device's chip select is active during the message,
3148 * and then is normally disabled between messages. Drivers for some
3149 * frequently-used devices may want to minimize costs of selecting a chip,
3150 * by leaving it selected in anticipation that the next message will go
3151 * to the same chip. (That may increase power usage.)
3153 * Also, the caller is guaranteeing that the memory associated with the
3154 * message will not be freed before this call returns.
3156 * Return: zero on success, else a negative error code.
3158 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3162 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3163 ret
= __spi_sync(spi
, message
);
3164 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3168 EXPORT_SYMBOL_GPL(spi_sync
);
3171 * spi_sync_locked - version of spi_sync with exclusive bus usage
3172 * @spi: device with which data will be exchanged
3173 * @message: describes the data transfers
3174 * Context: can sleep
3176 * This call may only be used from a context that may sleep. The sleep
3177 * is non-interruptible, and has no timeout. Low-overhead controller
3178 * drivers may DMA directly into and out of the message buffers.
3180 * This call should be used by drivers that require exclusive access to the
3181 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3182 * be released by a spi_bus_unlock call when the exclusive access is over.
3184 * Return: zero on success, else a negative error code.
3186 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3188 return __spi_sync(spi
, message
);
3190 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3193 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3194 * @ctlr: SPI bus master that should be locked for exclusive bus access
3195 * Context: can sleep
3197 * This call may only be used from a context that may sleep. The sleep
3198 * is non-interruptible, and has no timeout.
3200 * This call should be used by drivers that require exclusive access to the
3201 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3202 * exclusive access is over. Data transfer must be done by spi_sync_locked
3203 * and spi_async_locked calls when the SPI bus lock is held.
3205 * Return: always zero.
3207 int spi_bus_lock(struct spi_controller
*ctlr
)
3209 unsigned long flags
;
3211 mutex_lock(&ctlr
->bus_lock_mutex
);
3213 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3214 ctlr
->bus_lock_flag
= 1;
3215 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3217 /* mutex remains locked until spi_bus_unlock is called */
3221 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3224 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3225 * @ctlr: SPI bus master that was locked for exclusive bus access
3226 * Context: can sleep
3228 * This call may only be used from a context that may sleep. The sleep
3229 * is non-interruptible, and has no timeout.
3231 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3234 * Return: always zero.
3236 int spi_bus_unlock(struct spi_controller
*ctlr
)
3238 ctlr
->bus_lock_flag
= 0;
3240 mutex_unlock(&ctlr
->bus_lock_mutex
);
3244 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3246 /* portable code must never pass more than 32 bytes */
3247 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3252 * spi_write_then_read - SPI synchronous write followed by read
3253 * @spi: device with which data will be exchanged
3254 * @txbuf: data to be written (need not be dma-safe)
3255 * @n_tx: size of txbuf, in bytes
3256 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3257 * @n_rx: size of rxbuf, in bytes
3258 * Context: can sleep
3260 * This performs a half duplex MicroWire style transaction with the
3261 * device, sending txbuf and then reading rxbuf. The return value
3262 * is zero for success, else a negative errno status code.
3263 * This call may only be used from a context that may sleep.
3265 * Parameters to this routine are always copied using a small buffer;
3266 * portable code should never use this for more than 32 bytes.
3267 * Performance-sensitive or bulk transfer code should instead use
3268 * spi_{async,sync}() calls with dma-safe buffers.
3270 * Return: zero on success, else a negative error code.
3272 int spi_write_then_read(struct spi_device
*spi
,
3273 const void *txbuf
, unsigned n_tx
,
3274 void *rxbuf
, unsigned n_rx
)
3276 static DEFINE_MUTEX(lock
);
3279 struct spi_message message
;
3280 struct spi_transfer x
[2];
3283 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3284 * copying here, (as a pure convenience thing), but we can
3285 * keep heap costs out of the hot path unless someone else is
3286 * using the pre-allocated buffer or the transfer is too large.
3288 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3289 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3290 GFP_KERNEL
| GFP_DMA
);
3297 spi_message_init(&message
);
3298 memset(x
, 0, sizeof(x
));
3301 spi_message_add_tail(&x
[0], &message
);
3305 spi_message_add_tail(&x
[1], &message
);
3308 memcpy(local_buf
, txbuf
, n_tx
);
3309 x
[0].tx_buf
= local_buf
;
3310 x
[1].rx_buf
= local_buf
+ n_tx
;
3313 status
= spi_sync(spi
, &message
);
3315 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3317 if (x
[0].tx_buf
== buf
)
3318 mutex_unlock(&lock
);
3324 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3326 /*-------------------------------------------------------------------------*/
3328 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3329 static int __spi_of_device_match(struct device
*dev
, void *data
)
3331 return dev
->of_node
== data
;
3334 /* must call put_device() when done with returned spi_device device */
3335 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3337 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
3338 __spi_of_device_match
);
3339 return dev
? to_spi_device(dev
) : NULL
;
3342 static int __spi_of_controller_match(struct device
*dev
, const void *data
)
3344 return dev
->of_node
== data
;
3347 /* the spi controllers are not using spi_bus, so we find it with another way */
3348 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3352 dev
= class_find_device(&spi_master_class
, NULL
, node
,
3353 __spi_of_controller_match
);
3354 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3355 dev
= class_find_device(&spi_slave_class
, NULL
, node
,
3356 __spi_of_controller_match
);
3360 /* reference got in class_find_device */
3361 return container_of(dev
, struct spi_controller
, dev
);
3364 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3367 struct of_reconfig_data
*rd
= arg
;
3368 struct spi_controller
*ctlr
;
3369 struct spi_device
*spi
;
3371 switch (of_reconfig_get_state_change(action
, arg
)) {
3372 case OF_RECONFIG_CHANGE_ADD
:
3373 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3375 return NOTIFY_OK
; /* not for us */
3377 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3378 put_device(&ctlr
->dev
);
3382 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3383 put_device(&ctlr
->dev
);
3386 pr_err("%s: failed to create for '%pOF'\n",
3388 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3389 return notifier_from_errno(PTR_ERR(spi
));
3393 case OF_RECONFIG_CHANGE_REMOVE
:
3394 /* already depopulated? */
3395 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3398 /* find our device by node */
3399 spi
= of_find_spi_device_by_node(rd
->dn
);
3401 return NOTIFY_OK
; /* no? not meant for us */
3403 /* unregister takes one ref away */
3404 spi_unregister_device(spi
);
3406 /* and put the reference of the find */
3407 put_device(&spi
->dev
);
3414 static struct notifier_block spi_of_notifier
= {
3415 .notifier_call
= of_spi_notify
,
3417 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418 extern struct notifier_block spi_of_notifier
;
3419 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3421 #if IS_ENABLED(CONFIG_ACPI)
3422 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
3424 return ACPI_COMPANION(dev
->parent
) == data
;
3427 static int spi_acpi_device_match(struct device
*dev
, void *data
)
3429 return ACPI_COMPANION(dev
) == data
;
3432 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
3436 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
3437 spi_acpi_controller_match
);
3438 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3439 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
3440 spi_acpi_controller_match
);
3444 return container_of(dev
, struct spi_controller
, dev
);
3447 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
3451 dev
= bus_find_device(&spi_bus_type
, NULL
, adev
, spi_acpi_device_match
);
3453 return dev
? to_spi_device(dev
) : NULL
;
3456 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
3459 struct acpi_device
*adev
= arg
;
3460 struct spi_controller
*ctlr
;
3461 struct spi_device
*spi
;
3464 case ACPI_RECONFIG_DEVICE_ADD
:
3465 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
3469 acpi_register_spi_device(ctlr
, adev
);
3470 put_device(&ctlr
->dev
);
3472 case ACPI_RECONFIG_DEVICE_REMOVE
:
3473 if (!acpi_device_enumerated(adev
))
3476 spi
= acpi_spi_find_device_by_adev(adev
);
3480 spi_unregister_device(spi
);
3481 put_device(&spi
->dev
);
3488 static struct notifier_block spi_acpi_notifier
= {
3489 .notifier_call
= acpi_spi_notify
,
3492 extern struct notifier_block spi_acpi_notifier
;
3495 static int __init
spi_init(void)
3499 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
3505 status
= bus_register(&spi_bus_type
);
3509 status
= class_register(&spi_master_class
);
3513 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
3514 status
= class_register(&spi_slave_class
);
3519 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
3520 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
3521 if (IS_ENABLED(CONFIG_ACPI
))
3522 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
3527 class_unregister(&spi_master_class
);
3529 bus_unregister(&spi_bus_type
);
3537 /* board_info is normally registered in arch_initcall(),
3538 * but even essential drivers wait till later
3540 * REVISIT only boardinfo really needs static linking. the rest (device and
3541 * driver registration) _could_ be dynamically linked (modular) ... costs
3542 * include needing to have boardinfo data structures be much more public.
3544 postcore_initcall(spi_init
);