1 // SPDX-License-Identifier: GPL-2.0
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
7 * Copyright (C) 2008 Cavium Networks
9 * Some parts of the code were originally released under BSD license:
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
18 * * Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
21 * * Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials provided
24 * with the distribution.
26 * * Neither the name of Cavium Networks nor the names of
27 * its contributors may be used to endorse or promote products
28 * derived from this software without specific prior written
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/platform_device.h>
55 #include <asm/octeon/octeon.h>
57 #include "octeon-hcd.h"
60 * enum cvmx_usb_speed - the possible USB device speeds
62 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
63 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
64 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
67 CVMX_USB_SPEED_HIGH
= 0,
68 CVMX_USB_SPEED_FULL
= 1,
69 CVMX_USB_SPEED_LOW
= 2,
73 * enum cvmx_usb_transfer - the possible USB transfer types
75 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
77 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
78 * priority periodic transfers
79 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
81 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
84 enum cvmx_usb_transfer
{
85 CVMX_USB_TRANSFER_CONTROL
= 0,
86 CVMX_USB_TRANSFER_ISOCHRONOUS
= 1,
87 CVMX_USB_TRANSFER_BULK
= 2,
88 CVMX_USB_TRANSFER_INTERRUPT
= 3,
92 * enum cvmx_usb_direction - the transfer directions
94 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
95 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
97 enum cvmx_usb_direction
{
98 CVMX_USB_DIRECTION_OUT
,
99 CVMX_USB_DIRECTION_IN
,
103 * enum cvmx_usb_status - possible callback function status codes
105 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
107 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
108 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
109 * by a user call to cvmx_usb_cancel
110 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
112 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
114 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
115 * device even after a number of retries
116 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
117 * error even after a number of retries
118 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
119 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
120 * even after a number of retries
122 enum cvmx_usb_status
{
124 CVMX_USB_STATUS_SHORT
,
125 CVMX_USB_STATUS_CANCEL
,
126 CVMX_USB_STATUS_ERROR
,
127 CVMX_USB_STATUS_STALL
,
128 CVMX_USB_STATUS_XACTERR
,
129 CVMX_USB_STATUS_DATATGLERR
,
130 CVMX_USB_STATUS_BABBLEERR
,
131 CVMX_USB_STATUS_FRAMEERR
,
135 * struct cvmx_usb_port_status - the USB port status information
137 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
138 * @port_over_current: 1 = Over current detected, 0 = Over current not
139 * detected. Octeon doesn't support over current detection.
140 * @port_powered: 1 = Port power is being supplied to the device, 0 =
141 * power is off. Octeon doesn't support turning port power
143 * @port_speed: Current port speed.
144 * @connected: 1 = A device is connected to the port, 0 = No device is
146 * @connect_change: 1 = Device connected state changed since the last set
149 struct cvmx_usb_port_status
{
151 u32 port_enabled
: 1;
152 u32 port_over_current
: 1;
153 u32 port_powered
: 1;
154 enum cvmx_usb_speed port_speed
: 2;
156 u32 connect_change
: 1;
160 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
162 * @offset: This is the offset in bytes into the main buffer where this data
164 * @length: This is the length in bytes of the data.
165 * @status: This is the status of this individual packet transfer.
167 struct cvmx_usb_iso_packet
{
170 enum cvmx_usb_status status
;
174 * enum cvmx_usb_initialize_flags - flags used by the initialization function
176 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
177 * as clock source at USB_XO and
179 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
180 * board clock source at USB_XO.
181 * USB_XI should be tied to GND.
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
183 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
186 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
187 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
188 * data transfer use for the USB
190 enum cvmx_usb_initialize_flags
{
191 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
= 1 << 0,
192 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
= 1 << 1,
193 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
= 3 << 3,
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
= 1 << 3,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
= 2 << 3,
196 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
= 3 << 3,
197 /* Bits 3-4 used to encode the clock frequency */
198 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
= 1 << 5,
202 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
204 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
205 * actively using hardware.
206 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
207 * pipe is in the ping state.
209 enum cvmx_usb_pipe_flags
{
210 CVMX_USB_PIPE_FLAGS_SCHEDULED
= 1 << 17,
211 CVMX_USB_PIPE_FLAGS_NEED_PING
= 1 << 18,
214 /* Maximum number of times to retry failed transactions */
215 #define MAX_RETRIES 3
217 /* Maximum number of hardware channels supported by the USB block */
218 #define MAX_CHANNELS 8
221 * The low level hardware can transfer a maximum of this number of bytes in each
222 * transfer. The field is 19 bits wide
224 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
227 * The low level hardware can transfer a maximum of this number of packets in
228 * each transfer. The field is 10 bits wide
230 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
233 * Logical transactions may take numerous low level
234 * transactions, especially when splits are concerned. This
235 * enum represents all of the possible stages a transaction can
236 * be in. Note that split completes are always even. This is so
237 * the NAK handler can backup to the previous low level
238 * transaction with a simple clearing of bit 0.
240 enum cvmx_usb_stage
{
241 CVMX_USB_STAGE_NON_CONTROL
,
242 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
,
243 CVMX_USB_STAGE_SETUP
,
244 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
,
246 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
,
247 CVMX_USB_STAGE_STATUS
,
248 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
,
252 * struct cvmx_usb_transaction - describes each pending USB transaction
253 * regardless of type. These are linked together
254 * to form a list of pending requests for a pipe.
256 * @node: List node for transactions in the pipe.
257 * @type: Type of transaction, duplicated of the pipe.
258 * @flags: State flags for this transaction.
259 * @buffer: User's physical buffer address to read/write.
260 * @buffer_length: Size of the user's buffer in bytes.
261 * @control_header: For control transactions, physical address of the 8
262 * byte standard header.
263 * @iso_start_frame: For ISO transactions, the starting frame number.
264 * @iso_number_packets: For ISO transactions, the number of packets in the
266 * @iso_packets: For ISO transactions, the sub packets in the request.
267 * @actual_bytes: Actual bytes transfer for this transaction.
268 * @stage: For control transactions, the current stage.
271 struct cvmx_usb_transaction
{
272 struct list_head node
;
273 enum cvmx_usb_transfer type
;
278 int iso_number_packets
;
279 struct cvmx_usb_iso_packet
*iso_packets
;
284 enum cvmx_usb_stage stage
;
289 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
290 * and some USB device. It contains a list of pending
291 * request to the device.
293 * @node: List node for pipe list
294 * @next: Pipe after this one in the list
295 * @transactions: List of pending transactions
296 * @interval: For periodic pipes, the interval between packets in
298 * @next_tx_frame: The next frame this pipe is allowed to transmit on
299 * @flags: State flags for this pipe
300 * @device_speed: Speed of device connected to this pipe
301 * @transfer_type: Type of transaction supported by this pipe
302 * @transfer_dir: IN or OUT. Ignored for Control
303 * @multi_count: Max packet in a row for the device
304 * @max_packet: The device's maximum packet size in bytes
305 * @device_addr: USB device address at other end of pipe
306 * @endpoint_num: USB endpoint number at other end of pipe
307 * @hub_device_addr: Hub address this device is connected to
308 * @hub_port: Hub port this device is connected to
309 * @pid_toggle: This toggles between 0/1 on every packet send to track
310 * the data pid needed
311 * @channel: Hardware DMA channel for this pipe
312 * @split_sc_frame: The low order bits of the frame number the split
313 * complete should be sent on
315 struct cvmx_usb_pipe
{
316 struct list_head node
;
317 struct list_head transactions
;
320 enum cvmx_usb_pipe_flags flags
;
321 enum cvmx_usb_speed device_speed
;
322 enum cvmx_usb_transfer transfer_type
;
323 enum cvmx_usb_direction transfer_dir
;
335 struct cvmx_usb_tx_fifo
{
340 } entry
[MAX_CHANNELS
+ 1];
346 * struct octeon_hcd - the state of the USB block
348 * lock: Serialization lock.
349 * init_flags: Flags passed to initialize.
350 * index: Which USB block this is for.
351 * idle_hardware_channels: Bit set for every idle hardware channel.
352 * usbcx_hprt: Stored port status so we don't need to read a CSR to
354 * pipe_for_channel: Map channels to pipes.
355 * pipe: Storage for pipes.
356 * indent: Used by debug output to indent functions.
357 * port_status: Last port status used for change notification.
358 * idle_pipes: List of open pipes that have no transactions.
359 * active_pipes: Active pipes indexed by transfer type.
360 * frame_number: Increments every SOF interrupt for time keeping.
361 * active_split: Points to the current active split, or NULL.
364 spinlock_t lock
; /* serialization lock */
367 int idle_hardware_channels
;
368 union cvmx_usbcx_hprt usbcx_hprt
;
369 struct cvmx_usb_pipe
*pipe_for_channel
[MAX_CHANNELS
];
371 struct cvmx_usb_port_status port_status
;
372 struct list_head idle_pipes
;
373 struct list_head active_pipes
[4];
375 struct cvmx_usb_transaction
*active_split
;
376 struct cvmx_usb_tx_fifo periodic
;
377 struct cvmx_usb_tx_fifo nonperiodic
;
380 /* This macro spins on a register waiting for it to reach a condition. */
381 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec) \
384 u64 done = cvmx_get_cycle() + (u64)timeout_usec * \
385 octeon_get_clock_rate() / 1000000; \
389 c.u32 = cvmx_usb_read_csr32(usb, address); \
394 } else if (cvmx_get_cycle() > done) { \
404 * This macro logically sets a single field in a CSR. It does the sequence
405 * read, modify, and write
407 #define USB_SET_FIELD32(address, _union, field, value) \
411 c.u32 = cvmx_usb_read_csr32(usb, address); \
413 cvmx_usb_write_csr32(usb, address, c.u32); \
416 /* Returns the IO address to push/pop stuff data from the FIFOs */
417 #define USB_FIFO_ADDRESS(channel, usb_index) \
418 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
421 * struct octeon_temp_buffer - a bounce buffer for USB transfers
422 * @orig_buffer: the original buffer passed by the USB stack
423 * @data: the newly allocated temporary buffer (excluding meta-data)
425 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
426 * the buffer is too short, we need to allocate a temporary one, and this struct
429 struct octeon_temp_buffer
{
434 static inline struct usb_hcd
*octeon_to_hcd(struct octeon_hcd
*p
)
436 return container_of((void *)p
, struct usb_hcd
, hcd_priv
);
440 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
443 * @mem_flags: Memory allocation flags.
445 * This function allocates a temporary bounce buffer whenever it's needed
446 * due to HW limitations.
448 static int octeon_alloc_temp_buffer(struct urb
*urb
, gfp_t mem_flags
)
450 struct octeon_temp_buffer
*temp
;
452 if (urb
->num_sgs
|| urb
->sg
||
453 (urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
) ||
454 !(urb
->transfer_buffer_length
% sizeof(u32
)))
457 temp
= kmalloc(ALIGN(urb
->transfer_buffer_length
, sizeof(u32
)) +
458 sizeof(*temp
), mem_flags
);
462 temp
->orig_buffer
= urb
->transfer_buffer
;
463 if (usb_urb_dir_out(urb
))
464 memcpy(temp
->data
, urb
->transfer_buffer
,
465 urb
->transfer_buffer_length
);
466 urb
->transfer_buffer
= temp
->data
;
467 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
473 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
476 * Frees a buffer allocated by octeon_alloc_temp_buffer().
478 static void octeon_free_temp_buffer(struct urb
*urb
)
480 struct octeon_temp_buffer
*temp
;
483 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
486 temp
= container_of(urb
->transfer_buffer
, struct octeon_temp_buffer
,
488 if (usb_urb_dir_in(urb
)) {
489 if (usb_pipeisoc(urb
->pipe
))
490 length
= urb
->transfer_buffer_length
;
492 length
= urb
->actual_length
;
494 memcpy(temp
->orig_buffer
, urb
->transfer_buffer
, length
);
496 urb
->transfer_buffer
= temp
->orig_buffer
;
497 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
502 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
503 * @hcd: USB HCD structure.
505 * @mem_flags: Memory allocation flags.
507 static int octeon_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
512 ret
= octeon_alloc_temp_buffer(urb
, mem_flags
);
516 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
518 octeon_free_temp_buffer(urb
);
524 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
525 * @hcd: USB HCD structure.
528 static void octeon_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
530 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
531 octeon_free_temp_buffer(urb
);
535 * Read a USB 32bit CSR. It performs the necessary address swizzle
536 * for 32bit CSRs and logs the value in a readable format if
539 * @usb: USB block this access is for
540 * @address: 64bit address to read
542 * Returns: Result of the read
544 static inline u32
cvmx_usb_read_csr32(struct octeon_hcd
*usb
, u64 address
)
546 u32 result
= cvmx_read64_uint32(address
^ 4);
551 * Write a USB 32bit CSR. It performs the necessary address
552 * swizzle for 32bit CSRs and logs the value in a readable format
553 * if debugging is on.
555 * @usb: USB block this access is for
556 * @address: 64bit address to write
557 * @value: Value to write
559 static inline void cvmx_usb_write_csr32(struct octeon_hcd
*usb
,
560 u64 address
, u32 value
)
562 cvmx_write64_uint32(address
^ 4, value
);
563 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
567 * Return non zero if this pipe connects to a non HIGH speed
568 * device through a high speed hub.
570 * @usb: USB block this access is for
571 * @pipe: Pipe to check
573 * Returns: Non zero if we need to do split transactions
575 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd
*usb
,
576 struct cvmx_usb_pipe
*pipe
)
578 return pipe
->device_speed
!= CVMX_USB_SPEED_HIGH
&&
579 usb
->usbcx_hprt
.s
.prtspd
== CVMX_USB_SPEED_HIGH
;
583 * Trivial utility function to return the correct PID for a pipe
585 * @pipe: pipe to check
587 * Returns: PID for pipe
589 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe
*pipe
)
591 if (pipe
->pid_toggle
)
592 return 2; /* Data1 */
593 return 0; /* Data0 */
596 static void cvmx_fifo_setup(struct octeon_hcd
*usb
)
598 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3
;
599 union cvmx_usbcx_gnptxfsiz npsiz
;
600 union cvmx_usbcx_hptxfsiz psiz
;
602 usbcx_ghwcfg3
.u32
= cvmx_usb_read_csr32(usb
,
603 CVMX_USBCX_GHWCFG3(usb
->index
));
606 * Program the USBC_GRXFSIZ register to select the size of the receive
609 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb
->index
), cvmx_usbcx_grxfsiz
,
610 rxfdep
, usbcx_ghwcfg3
.s
.dfifodepth
/ 4);
613 * Program the USBC_GNPTXFSIZ register to select the size and the start
614 * address of the non-periodic transmit FIFO for nonperiodic
615 * transactions (50%).
617 npsiz
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_GNPTXFSIZ(usb
->index
));
618 npsiz
.s
.nptxfdep
= usbcx_ghwcfg3
.s
.dfifodepth
/ 2;
619 npsiz
.s
.nptxfstaddr
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
620 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GNPTXFSIZ(usb
->index
), npsiz
.u32
);
623 * Program the USBC_HPTXFSIZ register to select the size and start
624 * address of the periodic transmit FIFO for periodic transactions
627 psiz
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPTXFSIZ(usb
->index
));
628 psiz
.s
.ptxfsize
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
629 psiz
.s
.ptxfstaddr
= 3 * usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
630 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPTXFSIZ(usb
->index
), psiz
.u32
);
632 /* Flush all FIFOs */
633 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
634 cvmx_usbcx_grstctl
, txfnum
, 0x10);
635 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
636 cvmx_usbcx_grstctl
, txfflsh
, 1);
637 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
638 cvmx_usbcx_grstctl
, c
.s
.txfflsh
== 0, 100);
639 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
640 cvmx_usbcx_grstctl
, rxfflsh
, 1);
641 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
642 cvmx_usbcx_grstctl
, c
.s
.rxfflsh
== 0, 100);
646 * Shutdown a USB port after a call to cvmx_usb_initialize().
647 * The port should be disabled with all pipes closed when this
648 * function is called.
650 * @usb: USB device state populated by cvmx_usb_initialize().
652 * Returns: 0 or a negative error code.
654 static int cvmx_usb_shutdown(struct octeon_hcd
*usb
)
656 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
658 /* Make sure all pipes are closed */
659 if (!list_empty(&usb
->idle_pipes
) ||
660 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_ISOCHRONOUS
]) ||
661 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_INTERRUPT
]) ||
662 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_CONTROL
]) ||
663 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_BULK
]))
666 /* Disable the clocks and put them in power on reset */
667 usbn_clk_ctl
.u64
= cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
));
668 usbn_clk_ctl
.s
.enable
= 1;
669 usbn_clk_ctl
.s
.por
= 1;
670 usbn_clk_ctl
.s
.hclk_rst
= 1;
671 usbn_clk_ctl
.s
.prst
= 0;
672 usbn_clk_ctl
.s
.hrst
= 0;
673 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
678 * Initialize a USB port for use. This must be called before any
679 * other access to the Octeon USB port is made. The port starts
680 * off in the disabled state.
682 * @dev: Pointer to struct device for logging purposes.
683 * @usb: Pointer to struct octeon_hcd.
685 * Returns: 0 or a negative error code.
687 static int cvmx_usb_initialize(struct device
*dev
,
688 struct octeon_hcd
*usb
)
693 union cvmx_usbcx_hcfg usbcx_hcfg
;
694 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
695 union cvmx_usbcx_gintsts usbc_gintsts
;
696 union cvmx_usbcx_gahbcfg usbcx_gahbcfg
;
697 union cvmx_usbcx_gintmsk usbcx_gintmsk
;
698 union cvmx_usbcx_gusbcfg usbcx_gusbcfg
;
699 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status
;
703 * Power On Reset and PHY Initialization
705 * 1. Wait for DCOK to assert (nothing to do)
707 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
708 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
710 usbn_clk_ctl
.u64
= cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
));
711 usbn_clk_ctl
.s
.por
= 1;
712 usbn_clk_ctl
.s
.hrst
= 0;
713 usbn_clk_ctl
.s
.prst
= 0;
714 usbn_clk_ctl
.s
.hclk_rst
= 0;
715 usbn_clk_ctl
.s
.enable
= 0;
717 * 2b. Select the USB reference clock/crystal parameters by writing
718 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
720 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
) {
722 * The USB port uses 12/24/48MHz 2.5V board clock
723 * source at USB_XO. USB_XI should be tied to GND.
724 * Most Octeon evaluation boards require this setting
726 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
) ||
727 OCTEON_IS_MODEL(OCTEON_CN56XX
) ||
728 OCTEON_IS_MODEL(OCTEON_CN50XX
))
729 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
730 usbn_clk_ctl
.s
.p_rtype
= 2; /* p_rclk=1 & p_xenbn=0 */
732 /* From CN52XX manual */
733 usbn_clk_ctl
.s
.p_rtype
= 1;
735 switch (usb
->init_flags
&
736 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
) {
737 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
:
738 usbn_clk_ctl
.s
.p_c_sel
= 0;
740 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
:
741 usbn_clk_ctl
.s
.p_c_sel
= 1;
743 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
:
744 usbn_clk_ctl
.s
.p_c_sel
= 2;
749 * The USB port uses a 12MHz crystal as clock source
750 * at USB_XO and USB_XI
752 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
))
753 /* From CN31XX,CN30XX manual */
754 usbn_clk_ctl
.s
.p_rtype
= 3; /* p_rclk=1 & p_xenbn=1 */
756 /* From CN56XX,CN52XX,CN50XX manuals. */
757 usbn_clk_ctl
.s
.p_rtype
= 0;
759 usbn_clk_ctl
.s
.p_c_sel
= 0;
762 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
763 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
764 * such that USB is as close as possible to 125Mhz
766 divisor
= DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
767 /* Lower than 4 doesn't seem to work properly */
770 usbn_clk_ctl
.s
.divide
= divisor
;
771 usbn_clk_ctl
.s
.divide2
= 0;
772 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
774 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
775 usbn_clk_ctl
.s
.hclk_rst
= 1;
776 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
777 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
780 * 3. Program the power-on reset field in the USBN clock-control
782 * USBN_CLK_CTL[POR] = 0
784 usbn_clk_ctl
.s
.por
= 0;
785 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
786 /* 4. Wait 1 ms for PHY clock to start */
789 * 5. Program the Reset input from automatic test equipment field in the
790 * USBP control and status register:
791 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
793 usbn_usbp_ctl_status
.u64
=
794 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
));
795 usbn_usbp_ctl_status
.s
.ate_reset
= 1;
796 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
797 usbn_usbp_ctl_status
.u64
);
798 /* 6. Wait 10 cycles */
801 * 7. Clear ATE_RESET field in the USBN clock-control register:
802 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
804 usbn_usbp_ctl_status
.s
.ate_reset
= 0;
805 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
806 usbn_usbp_ctl_status
.u64
);
808 * 8. Program the PHY reset field in the USBN clock-control register:
809 * USBN_CLK_CTL[PRST] = 1
811 usbn_clk_ctl
.s
.prst
= 1;
812 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
814 * 9. Program the USBP control and status register to select host or
815 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
818 usbn_usbp_ctl_status
.s
.hst_mode
= 0;
819 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
820 usbn_usbp_ctl_status
.u64
);
824 * 11. Program the hreset_n field in the USBN clock-control register:
825 * USBN_CLK_CTL[HRST] = 1
827 usbn_clk_ctl
.s
.hrst
= 1;
828 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
829 /* 12. Proceed to USB core initialization */
830 usbn_clk_ctl
.s
.enable
= 1;
831 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
835 * USB Core Initialization
837 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
838 * determine USB core configuration parameters.
842 * 2. Program the following fields in the global AHB configuration
843 * register (USBC_GAHBCFG)
844 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
845 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
846 * Nonperiodic TxFIFO empty level (slave mode only),
847 * USBC_GAHBCFG[NPTXFEMPLVL]
848 * Periodic TxFIFO empty level (slave mode only),
849 * USBC_GAHBCFG[PTXFEMPLVL]
850 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
852 usbcx_gahbcfg
.u32
= 0;
853 usbcx_gahbcfg
.s
.dmaen
= !(usb
->init_flags
&
854 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
);
855 usbcx_gahbcfg
.s
.hbstlen
= 0;
856 usbcx_gahbcfg
.s
.nptxfemplvl
= 1;
857 usbcx_gahbcfg
.s
.ptxfemplvl
= 1;
858 usbcx_gahbcfg
.s
.glblintrmsk
= 1;
859 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GAHBCFG(usb
->index
),
863 * 3. Program the following fields in USBC_GUSBCFG register.
864 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
865 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
866 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
867 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
869 usbcx_gusbcfg
.u32
= cvmx_usb_read_csr32(usb
,
870 CVMX_USBCX_GUSBCFG(usb
->index
));
871 usbcx_gusbcfg
.s
.toutcal
= 0;
872 usbcx_gusbcfg
.s
.ddrsel
= 0;
873 usbcx_gusbcfg
.s
.usbtrdtim
= 0x5;
874 usbcx_gusbcfg
.s
.phylpwrclksel
= 0;
875 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GUSBCFG(usb
->index
),
879 * 4. The software must unmask the following bits in the USBC_GINTMSK
881 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
882 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
884 usbcx_gintmsk
.u32
= cvmx_usb_read_csr32(usb
,
885 CVMX_USBCX_GINTMSK(usb
->index
));
886 usbcx_gintmsk
.s
.otgintmsk
= 1;
887 usbcx_gintmsk
.s
.modemismsk
= 1;
888 usbcx_gintmsk
.s
.hchintmsk
= 1;
889 usbcx_gintmsk
.s
.sofmsk
= 0;
890 /* We need RX FIFO interrupts if we don't have DMA */
891 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
892 usbcx_gintmsk
.s
.rxflvlmsk
= 1;
893 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTMSK(usb
->index
),
897 * Disable all channel interrupts. We'll enable them per channel later.
899 for (channel
= 0; channel
< 8; channel
++)
900 cvmx_usb_write_csr32(usb
,
901 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
905 * Host Port Initialization
907 * 1. Program the host-port interrupt-mask field to unmask,
908 * USBC_GINTMSK[PRTINT] = 1
910 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
911 cvmx_usbcx_gintmsk
, prtintmsk
, 1);
912 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
913 cvmx_usbcx_gintmsk
, disconnintmsk
, 1);
916 * 2. Program the USBC_HCFG register to select full-speed host
917 * or high-speed host.
919 usbcx_hcfg
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HCFG(usb
->index
));
920 usbcx_hcfg
.s
.fslssupp
= 0;
921 usbcx_hcfg
.s
.fslspclksel
= 0;
922 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCFG(usb
->index
), usbcx_hcfg
.u32
);
924 cvmx_fifo_setup(usb
);
927 * If the controller is getting port events right after the reset, it
928 * means the initialization failed. Try resetting the controller again
929 * in such case. This is seen to happen after cold boot on DSR-1000N.
931 usbc_gintsts
.u32
= cvmx_usb_read_csr32(usb
,
932 CVMX_USBCX_GINTSTS(usb
->index
));
933 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
),
935 dev_dbg(dev
, "gintsts after reset: 0x%x\n", (int)usbc_gintsts
.u32
);
936 if (!usbc_gintsts
.s
.disconnint
&& !usbc_gintsts
.s
.prtint
)
940 dev_info(dev
, "controller reset failed (gintsts=0x%x) - retrying\n",
941 (int)usbc_gintsts
.u32
);
943 cvmx_usb_shutdown(usb
);
949 * Reset a USB port. After this call succeeds, the USB port is
950 * online and servicing requests.
952 * @usb: USB device state populated by cvmx_usb_initialize().
954 static void cvmx_usb_reset_port(struct octeon_hcd
*usb
)
956 usb
->usbcx_hprt
.u32
= cvmx_usb_read_csr32(usb
,
957 CVMX_USBCX_HPRT(usb
->index
));
959 /* Program the port reset bit to start the reset process */
960 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
964 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
965 * process to complete.
969 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
970 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
974 * Read the port speed field to get the enumerated speed,
977 usb
->usbcx_hprt
.u32
= cvmx_usb_read_csr32(usb
,
978 CVMX_USBCX_HPRT(usb
->index
));
982 * Disable a USB port. After this call the USB port will not
983 * generate data transfers and will not generate events.
984 * Transactions in process will fail and call their
985 * associated callbacks.
987 * @usb: USB device state populated by cvmx_usb_initialize().
989 * Returns: 0 or a negative error code.
991 static int cvmx_usb_disable(struct octeon_hcd
*usb
)
993 /* Disable the port */
994 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
1000 * Get the current state of the USB port. Use this call to
1001 * determine if the usb port has anything connected, is enabled,
1002 * or has some sort of error condition. The return value of this
1003 * call has "changed" bits to signal of the value of some fields
1004 * have changed between calls.
1006 * @usb: USB device state populated by cvmx_usb_initialize().
1008 * Returns: Port status information
1010 static struct cvmx_usb_port_status
cvmx_usb_get_status(struct octeon_hcd
*usb
)
1012 union cvmx_usbcx_hprt usbc_hprt
;
1013 struct cvmx_usb_port_status result
;
1015 memset(&result
, 0, sizeof(result
));
1017 usbc_hprt
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
));
1018 result
.port_enabled
= usbc_hprt
.s
.prtena
;
1019 result
.port_over_current
= usbc_hprt
.s
.prtovrcurract
;
1020 result
.port_powered
= usbc_hprt
.s
.prtpwr
;
1021 result
.port_speed
= usbc_hprt
.s
.prtspd
;
1022 result
.connected
= usbc_hprt
.s
.prtconnsts
;
1023 result
.connect_change
=
1024 result
.connected
!= usb
->port_status
.connected
;
1030 * Open a virtual pipe between the host and a USB device. A pipe
1031 * must be opened before data can be transferred between a device
1034 * @usb: USB device state populated by cvmx_usb_initialize().
1036 * USB device address to open the pipe to
1039 * USB endpoint number to open the pipe to
1042 * The speed of the device the pipe is going
1043 * to. This must match the device's speed,
1044 * which may be different than the port speed.
1045 * @max_packet: The maximum packet length the device can
1046 * transmit/receive (low speed=0-8, full
1047 * speed=0-1023, high speed=0-1024). This value
1048 * comes from the standard endpoint descriptor
1049 * field wMaxPacketSize bits <10:0>.
1051 * The type of transfer this pipe is for.
1053 * The direction the pipe is in. This is not
1054 * used for control pipes.
1055 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1056 * this is how often the transfer is scheduled
1057 * for. All other transfers should specify
1058 * zero. The units are in frames (8000/sec at
1059 * high speed, 1000/sec for full speed).
1061 * For high speed devices, this is the maximum
1062 * allowed number of packet per microframe.
1063 * Specify zero for non high speed devices. This
1064 * value comes from the standard endpoint descriptor
1065 * field wMaxPacketSize bits <12:11>.
1067 * Hub device address this device is connected
1068 * to. Devices connected directly to Octeon
1069 * use zero. This is only used when the device
1070 * is full/low speed behind a high speed hub.
1071 * The address will be of the high speed hub,
1072 * not and full speed hubs after it.
1073 * @hub_port: Which port on the hub the device is
1074 * connected. Use zero for devices connected
1075 * directly to Octeon. Like hub_device_addr,
1076 * this is only used for full/low speed
1077 * devices behind a high speed hub.
1079 * Returns: A non-NULL value is a pipe. NULL means an error.
1081 static struct cvmx_usb_pipe
*cvmx_usb_open_pipe(struct octeon_hcd
*usb
,
1087 enum cvmx_usb_transfer
1089 enum cvmx_usb_direction
1091 int interval
, int multi_count
,
1092 int hub_device_addr
,
1095 struct cvmx_usb_pipe
*pipe
;
1097 pipe
= kzalloc(sizeof(*pipe
), GFP_ATOMIC
);
1100 if ((device_speed
== CVMX_USB_SPEED_HIGH
) &&
1101 (transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
1102 (transfer_type
== CVMX_USB_TRANSFER_BULK
))
1103 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
1104 pipe
->device_addr
= device_addr
;
1105 pipe
->endpoint_num
= endpoint_num
;
1106 pipe
->device_speed
= device_speed
;
1107 pipe
->max_packet
= max_packet
;
1108 pipe
->transfer_type
= transfer_type
;
1109 pipe
->transfer_dir
= transfer_dir
;
1110 INIT_LIST_HEAD(&pipe
->transactions
);
1113 * All pipes use interval to rate limit NAK processing. Force an
1114 * interval if one wasn't supplied
1118 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1119 pipe
->interval
= interval
* 8;
1120 /* Force start splits to be schedule on uFrame 0 */
1121 pipe
->next_tx_frame
= ((usb
->frame_number
+ 7) & ~7) +
1124 pipe
->interval
= interval
;
1125 pipe
->next_tx_frame
= usb
->frame_number
+ pipe
->interval
;
1127 pipe
->multi_count
= multi_count
;
1128 pipe
->hub_device_addr
= hub_device_addr
;
1129 pipe
->hub_port
= hub_port
;
1130 pipe
->pid_toggle
= 0;
1131 pipe
->split_sc_frame
= -1;
1132 list_add_tail(&pipe
->node
, &usb
->idle_pipes
);
1135 * We don't need to tell the hardware about this pipe yet since
1136 * it doesn't have any submitted requests
1143 * Poll the RX FIFOs and remove data as needed. This function is only used
1144 * in non DMA mode. It is very important that this function be called quickly
1145 * enough to prevent FIFO overflow.
1147 * @usb: USB device state populated by cvmx_usb_initialize().
1149 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd
*usb
)
1151 union cvmx_usbcx_grxstsph rx_status
;
1157 rx_status
.u32
= cvmx_usb_read_csr32(usb
,
1158 CVMX_USBCX_GRXSTSPH(usb
->index
));
1159 /* Only read data if IN data is there */
1160 if (rx_status
.s
.pktsts
!= 2)
1162 /* Check if no data is available */
1163 if (!rx_status
.s
.bcnt
)
1166 channel
= rx_status
.s
.chnum
;
1167 bytes
= rx_status
.s
.bcnt
;
1171 /* Get where the DMA engine would have written this data */
1172 address
= cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) +
1175 ptr
= cvmx_phys_to_ptr(address
);
1176 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) + channel
* 8,
1179 /* Loop writing the FIFO data for this packet into memory */
1181 *ptr
++ = cvmx_usb_read_csr32(usb
,
1182 USB_FIFO_ADDRESS(channel
, usb
->index
));
1189 * Fill the TX hardware fifo with data out of the software
1192 * @usb: USB device state populated by cvmx_usb_initialize().
1193 * @fifo: Software fifo to use
1194 * @available: Amount of space in the hardware fifo
1196 * Returns: Non zero if the hardware fifo was too small and needs
1197 * to be serviced again.
1199 static int cvmx_usb_fill_tx_hw(struct octeon_hcd
*usb
,
1200 struct cvmx_usb_tx_fifo
*fifo
, int available
)
1203 * We're done either when there isn't anymore space or the software FIFO
1206 while (available
&& (fifo
->head
!= fifo
->tail
)) {
1208 const u32
*ptr
= cvmx_phys_to_ptr(fifo
->entry
[i
].address
);
1209 u64 csr_address
= USB_FIFO_ADDRESS(fifo
->entry
[i
].channel
,
1211 int words
= available
;
1213 /* Limit the amount of data to what the SW fifo has */
1214 if (fifo
->entry
[i
].size
<= available
) {
1215 words
= fifo
->entry
[i
].size
;
1217 if (fifo
->tail
> MAX_CHANNELS
)
1221 /* Update the next locations and counts */
1223 fifo
->entry
[i
].address
+= words
* 4;
1224 fifo
->entry
[i
].size
-= words
;
1227 * Write the HW fifo data. The read every three writes is due
1228 * to an errata on CN3XXX chips
1231 cvmx_write64_uint32(csr_address
, *ptr
++);
1232 cvmx_write64_uint32(csr_address
, *ptr
++);
1233 cvmx_write64_uint32(csr_address
, *ptr
++);
1235 CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1238 cvmx_write64_uint32(csr_address
, *ptr
++);
1240 cvmx_write64_uint32(csr_address
, *ptr
++);
1242 cvmx_write64_uint32(csr_address
, *ptr
++);
1244 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1246 return fifo
->head
!= fifo
->tail
;
1250 * Check the hardware FIFOs and fill them as needed
1252 * @usb: USB device state populated by cvmx_usb_initialize().
1254 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd
*usb
)
1256 if (usb
->periodic
.head
!= usb
->periodic
.tail
) {
1257 union cvmx_usbcx_hptxsts tx_status
;
1259 tx_status
.u32
= cvmx_usb_read_csr32(usb
,
1260 CVMX_USBCX_HPTXSTS(usb
->index
));
1261 if (cvmx_usb_fill_tx_hw(usb
, &usb
->periodic
,
1262 tx_status
.s
.ptxfspcavail
))
1263 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1264 cvmx_usbcx_gintmsk
, ptxfempmsk
, 1);
1266 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1267 cvmx_usbcx_gintmsk
, ptxfempmsk
, 0);
1270 if (usb
->nonperiodic
.head
!= usb
->nonperiodic
.tail
) {
1271 union cvmx_usbcx_gnptxsts tx_status
;
1273 tx_status
.u32
= cvmx_usb_read_csr32(usb
,
1274 CVMX_USBCX_GNPTXSTS(usb
->index
));
1275 if (cvmx_usb_fill_tx_hw(usb
, &usb
->nonperiodic
,
1276 tx_status
.s
.nptxfspcavail
))
1277 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1278 cvmx_usbcx_gintmsk
, nptxfempmsk
, 1);
1280 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1281 cvmx_usbcx_gintmsk
, nptxfempmsk
, 0);
1286 * Fill the TX FIFO with an outgoing packet
1288 * @usb: USB device state populated by cvmx_usb_initialize().
1289 * @channel: Channel number to get packet from
1291 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd
*usb
, int channel
)
1293 union cvmx_usbcx_hccharx hcchar
;
1294 union cvmx_usbcx_hcspltx usbc_hcsplt
;
1295 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1296 struct cvmx_usb_tx_fifo
*fifo
;
1298 /* We only need to fill data on outbound channels */
1299 hcchar
.u32
= cvmx_usb_read_csr32(usb
,
1300 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
1301 if (hcchar
.s
.epdir
!= CVMX_USB_DIRECTION_OUT
)
1304 /* OUT Splits only have data on the start and not the complete */
1305 usbc_hcsplt
.u32
= cvmx_usb_read_csr32(usb
,
1306 CVMX_USBCX_HCSPLTX(channel
, usb
->index
));
1307 if (usbc_hcsplt
.s
.spltena
&& usbc_hcsplt
.s
.compsplt
)
1311 * Find out how many bytes we need to fill and convert it into 32bit
1314 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
1315 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1316 if (!usbc_hctsiz
.s
.xfersize
)
1319 if ((hcchar
.s
.eptype
== CVMX_USB_TRANSFER_INTERRUPT
) ||
1320 (hcchar
.s
.eptype
== CVMX_USB_TRANSFER_ISOCHRONOUS
))
1321 fifo
= &usb
->periodic
;
1323 fifo
= &usb
->nonperiodic
;
1325 fifo
->entry
[fifo
->head
].channel
= channel
;
1326 fifo
->entry
[fifo
->head
].address
=
1327 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) +
1329 fifo
->entry
[fifo
->head
].size
= (usbc_hctsiz
.s
.xfersize
+ 3) >> 2;
1331 if (fifo
->head
> MAX_CHANNELS
)
1334 cvmx_usb_poll_tx_fifo(usb
);
1338 * Perform channel specific setup for Control transactions. All
1339 * the generic stuff will already have been done in cvmx_usb_start_channel().
1341 * @usb: USB device state populated by cvmx_usb_initialize().
1342 * @channel: Channel to setup
1343 * @pipe: Pipe for control transaction
1345 static void cvmx_usb_start_channel_control(struct octeon_hcd
*usb
,
1347 struct cvmx_usb_pipe
*pipe
)
1349 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
1350 struct device
*dev
= hcd
->self
.controller
;
1351 struct cvmx_usb_transaction
*transaction
=
1352 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1354 struct usb_ctrlrequest
*header
=
1355 cvmx_phys_to_ptr(transaction
->control_header
);
1356 int bytes_to_transfer
= transaction
->buffer_length
-
1357 transaction
->actual_bytes
;
1358 int packets_to_transfer
;
1359 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1361 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
1362 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1364 switch (transaction
->stage
) {
1365 case CVMX_USB_STAGE_NON_CONTROL
:
1366 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
1367 dev_err(dev
, "%s: ERROR - Non control stage\n", __func__
);
1369 case CVMX_USB_STAGE_SETUP
:
1370 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1371 bytes_to_transfer
= sizeof(*header
);
1372 /* All Control operations start with a setup going OUT */
1373 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1374 cvmx_usbcx_hccharx
, epdir
,
1375 CVMX_USB_DIRECTION_OUT
);
1377 * Setup send the control header instead of the buffer data. The
1378 * buffer data will be used in the next stage
1380 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) +
1382 transaction
->control_header
);
1384 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
1385 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1386 bytes_to_transfer
= 0;
1387 /* All Control operations start with a setup going OUT */
1388 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1389 cvmx_usbcx_hccharx
, epdir
,
1390 CVMX_USB_DIRECTION_OUT
);
1392 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1393 cvmx_usbcx_hcspltx
, compsplt
, 1);
1395 case CVMX_USB_STAGE_DATA
:
1396 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1397 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1398 if (header
->bRequestType
& USB_DIR_IN
)
1399 bytes_to_transfer
= 0;
1400 else if (bytes_to_transfer
> pipe
->max_packet
)
1401 bytes_to_transfer
= pipe
->max_packet
;
1403 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1404 cvmx_usbcx_hccharx
, epdir
,
1405 ((header
->bRequestType
& USB_DIR_IN
) ?
1406 CVMX_USB_DIRECTION_IN
:
1407 CVMX_USB_DIRECTION_OUT
));
1409 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
1410 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1411 if (!(header
->bRequestType
& USB_DIR_IN
))
1412 bytes_to_transfer
= 0;
1413 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1414 cvmx_usbcx_hccharx
, epdir
,
1415 ((header
->bRequestType
& USB_DIR_IN
) ?
1416 CVMX_USB_DIRECTION_IN
:
1417 CVMX_USB_DIRECTION_OUT
));
1418 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1419 cvmx_usbcx_hcspltx
, compsplt
, 1);
1421 case CVMX_USB_STAGE_STATUS
:
1422 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1423 bytes_to_transfer
= 0;
1424 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1425 cvmx_usbcx_hccharx
, epdir
,
1426 ((header
->bRequestType
& USB_DIR_IN
) ?
1427 CVMX_USB_DIRECTION_OUT
:
1428 CVMX_USB_DIRECTION_IN
));
1430 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
1431 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1432 bytes_to_transfer
= 0;
1433 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1434 cvmx_usbcx_hccharx
, epdir
,
1435 ((header
->bRequestType
& USB_DIR_IN
) ?
1436 CVMX_USB_DIRECTION_OUT
:
1437 CVMX_USB_DIRECTION_IN
));
1438 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1439 cvmx_usbcx_hcspltx
, compsplt
, 1);
1444 * Make sure the transfer never exceeds the byte limit of the hardware.
1445 * Further bytes will be sent as continued transactions
1447 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1448 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1449 bytes_to_transfer
= MAX_TRANSFER_BYTES
/ pipe
->max_packet
;
1450 bytes_to_transfer
*= pipe
->max_packet
;
1454 * Calculate the number of packets to transfer. If the length is zero
1455 * we still need to transfer one packet
1457 packets_to_transfer
= DIV_ROUND_UP(bytes_to_transfer
,
1459 if (packets_to_transfer
== 0) {
1460 packets_to_transfer
= 1;
1461 } else if ((packets_to_transfer
> 1) &&
1462 (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1464 * Limit to one packet when not using DMA. Channels must be
1465 * restarted between every packet for IN transactions, so there
1466 * is no reason to do multiple packets in a row
1468 packets_to_transfer
= 1;
1469 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1470 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1472 * Limit the number of packet and data transferred to what the
1473 * hardware can handle
1475 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1476 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1479 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1480 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1482 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCTSIZX(channel
, usb
->index
),
1487 * Start a channel to perform the pipe's head transaction
1489 * @usb: USB device state populated by cvmx_usb_initialize().
1490 * @channel: Channel to setup
1491 * @pipe: Pipe to start
1493 static void cvmx_usb_start_channel(struct octeon_hcd
*usb
, int channel
,
1494 struct cvmx_usb_pipe
*pipe
)
1496 struct cvmx_usb_transaction
*transaction
=
1497 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1500 /* Make sure all writes to the DMA region get flushed */
1503 /* Attach the channel to the pipe */
1504 usb
->pipe_for_channel
[channel
] = pipe
;
1505 pipe
->channel
= channel
;
1506 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_SCHEDULED
;
1508 /* Mark this channel as in use */
1509 usb
->idle_hardware_channels
&= ~(1 << channel
);
1511 /* Enable the channel interrupt bits */
1513 union cvmx_usbcx_hcintx usbc_hcint
;
1514 union cvmx_usbcx_hcintmskx usbc_hcintmsk
;
1515 union cvmx_usbcx_haintmsk usbc_haintmsk
;
1517 /* Clear all channel status bits */
1518 usbc_hcint
.u32
= cvmx_usb_read_csr32(usb
,
1519 CVMX_USBCX_HCINTX(channel
, usb
->index
));
1521 cvmx_usb_write_csr32(usb
,
1522 CVMX_USBCX_HCINTX(channel
, usb
->index
),
1525 usbc_hcintmsk
.u32
= 0;
1526 usbc_hcintmsk
.s
.chhltdmsk
= 1;
1527 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
1529 * Channels need these extra interrupts when we aren't
1532 usbc_hcintmsk
.s
.datatglerrmsk
= 1;
1533 usbc_hcintmsk
.s
.frmovrunmsk
= 1;
1534 usbc_hcintmsk
.s
.bblerrmsk
= 1;
1535 usbc_hcintmsk
.s
.xacterrmsk
= 1;
1536 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1538 * Splits don't generate xfercompl, so we need
1541 usbc_hcintmsk
.s
.nyetmsk
= 1;
1542 usbc_hcintmsk
.s
.ackmsk
= 1;
1544 usbc_hcintmsk
.s
.nakmsk
= 1;
1545 usbc_hcintmsk
.s
.stallmsk
= 1;
1546 usbc_hcintmsk
.s
.xfercomplmsk
= 1;
1548 cvmx_usb_write_csr32(usb
,
1549 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
1552 /* Enable the channel interrupt to propagate */
1553 usbc_haintmsk
.u32
= cvmx_usb_read_csr32(usb
,
1554 CVMX_USBCX_HAINTMSK(usb
->index
));
1555 usbc_haintmsk
.s
.haintmsk
|= 1 << channel
;
1556 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HAINTMSK(usb
->index
),
1560 /* Setup the location the DMA engine uses. */
1563 u64 dma_address
= transaction
->buffer
+
1564 transaction
->actual_bytes
;
1566 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1567 dma_address
= transaction
->buffer
+
1568 transaction
->iso_packets
[0].offset
+
1569 transaction
->actual_bytes
;
1571 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
)
1572 reg
= CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
);
1574 reg
= CVMX_USBNX_DMA0_INB_CHN0(usb
->index
);
1575 cvmx_write64_uint64(reg
+ channel
* 8, dma_address
);
1578 /* Setup both the size of the transfer and the SPLIT characteristics */
1580 union cvmx_usbcx_hcspltx usbc_hcsplt
= {.u32
= 0};
1581 union cvmx_usbcx_hctsizx usbc_hctsiz
= {.u32
= 0};
1582 int packets_to_transfer
;
1583 int bytes_to_transfer
= transaction
->buffer_length
-
1584 transaction
->actual_bytes
;
1587 * ISOCHRONOUS transactions store each individual transfer size
1588 * in the packet structure, not the global buffer_length
1590 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1592 transaction
->iso_packets
[0].length
-
1593 transaction
->actual_bytes
;
1596 * We need to do split transactions when we are talking to non
1597 * high speed devices that are behind a high speed hub
1599 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1601 * On the start split phase (stage is even) record the
1602 * frame number we will need to send the split complete.
1603 * We only store the lower two bits since the time ahead
1604 * can only be two frames
1606 if ((transaction
->stage
& 1) == 0) {
1607 if (transaction
->type
== CVMX_USB_TRANSFER_BULK
)
1608 pipe
->split_sc_frame
=
1609 (usb
->frame_number
+ 1) & 0x7f;
1611 pipe
->split_sc_frame
=
1612 (usb
->frame_number
+ 2) & 0x7f;
1614 pipe
->split_sc_frame
= -1;
1617 usbc_hcsplt
.s
.spltena
= 1;
1618 usbc_hcsplt
.s
.hubaddr
= pipe
->hub_device_addr
;
1619 usbc_hcsplt
.s
.prtaddr
= pipe
->hub_port
;
1620 usbc_hcsplt
.s
.compsplt
= (transaction
->stage
==
1621 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
);
1624 * SPLIT transactions can only ever transmit one data
1625 * packet so limit the transfer size to the max packet
1628 if (bytes_to_transfer
> pipe
->max_packet
)
1629 bytes_to_transfer
= pipe
->max_packet
;
1632 * ISOCHRONOUS OUT splits are unique in that they limit
1633 * data transfers to 188 byte chunks representing the
1634 * begin/middle/end of the data or all
1636 if (!usbc_hcsplt
.s
.compsplt
&&
1637 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
1638 (pipe
->transfer_type
==
1639 CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
1641 * Clear the split complete frame number as
1642 * there isn't going to be a split complete
1644 pipe
->split_sc_frame
= -1;
1646 * See if we've started this transfer and sent
1649 if (transaction
->actual_bytes
== 0) {
1651 * Nothing sent yet, this is either a
1652 * begin or the entire payload
1654 if (bytes_to_transfer
<= 188)
1655 /* Entire payload in one go */
1656 usbc_hcsplt
.s
.xactpos
= 3;
1658 /* First part of payload */
1659 usbc_hcsplt
.s
.xactpos
= 2;
1662 * Continuing the previous data, we must
1663 * either be in the middle or at the end
1665 if (bytes_to_transfer
<= 188)
1666 /* End of payload */
1667 usbc_hcsplt
.s
.xactpos
= 1;
1669 /* Middle of payload */
1670 usbc_hcsplt
.s
.xactpos
= 0;
1673 * Again, the transfer size is limited to 188
1676 if (bytes_to_transfer
> 188)
1677 bytes_to_transfer
= 188;
1682 * Make sure the transfer never exceeds the byte limit of the
1683 * hardware. Further bytes will be sent as continued
1686 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1688 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1691 bytes_to_transfer
= MAX_TRANSFER_BYTES
/
1693 bytes_to_transfer
*= pipe
->max_packet
;
1697 * Calculate the number of packets to transfer. If the length is
1698 * zero we still need to transfer one packet
1700 packets_to_transfer
=
1701 DIV_ROUND_UP(bytes_to_transfer
, pipe
->max_packet
);
1702 if (packets_to_transfer
== 0) {
1703 packets_to_transfer
= 1;
1704 } else if ((packets_to_transfer
> 1) &&
1706 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1708 * Limit to one packet when not using DMA. Channels must
1709 * be restarted between every packet for IN
1710 * transactions, so there is no reason to do multiple
1713 packets_to_transfer
= 1;
1714 bytes_to_transfer
= packets_to_transfer
*
1716 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1718 * Limit the number of packet and data transferred to
1719 * what the hardware can handle
1721 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1722 bytes_to_transfer
= packets_to_transfer
*
1726 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1727 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1729 /* Update the DATA0/DATA1 toggle */
1730 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1732 * High speed pipes may need a hardware ping before they start
1734 if (pipe
->flags
& CVMX_USB_PIPE_FLAGS_NEED_PING
)
1735 usbc_hctsiz
.s
.dopng
= 1;
1737 cvmx_usb_write_csr32(usb
,
1738 CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1740 cvmx_usb_write_csr32(usb
,
1741 CVMX_USBCX_HCTSIZX(channel
, usb
->index
),
1745 /* Setup the Host Channel Characteristics Register */
1747 union cvmx_usbcx_hccharx usbc_hcchar
= {.u32
= 0};
1750 * Set the startframe odd/even properly. This is only used for
1753 usbc_hcchar
.s
.oddfrm
= usb
->frame_number
& 1;
1756 * Set the number of back to back packets allowed by this
1757 * endpoint. Split transactions interpret "ec" as the number of
1758 * immediate retries of failure. These retries happen too
1759 * quickly, so we disable these entirely for splits
1761 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
1762 usbc_hcchar
.s
.ec
= 1;
1763 else if (pipe
->multi_count
< 1)
1764 usbc_hcchar
.s
.ec
= 1;
1765 else if (pipe
->multi_count
> 3)
1766 usbc_hcchar
.s
.ec
= 3;
1768 usbc_hcchar
.s
.ec
= pipe
->multi_count
;
1770 /* Set the rest of the endpoint specific settings */
1771 usbc_hcchar
.s
.devaddr
= pipe
->device_addr
;
1772 usbc_hcchar
.s
.eptype
= transaction
->type
;
1773 usbc_hcchar
.s
.lspddev
=
1774 (pipe
->device_speed
== CVMX_USB_SPEED_LOW
);
1775 usbc_hcchar
.s
.epdir
= pipe
->transfer_dir
;
1776 usbc_hcchar
.s
.epnum
= pipe
->endpoint_num
;
1777 usbc_hcchar
.s
.mps
= pipe
->max_packet
;
1778 cvmx_usb_write_csr32(usb
,
1779 CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1783 /* Do transaction type specific fixups as needed */
1784 switch (transaction
->type
) {
1785 case CVMX_USB_TRANSFER_CONTROL
:
1786 cvmx_usb_start_channel_control(usb
, channel
, pipe
);
1788 case CVMX_USB_TRANSFER_BULK
:
1789 case CVMX_USB_TRANSFER_INTERRUPT
:
1791 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
1792 if (!cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1794 * ISO transactions require different PIDs depending on
1795 * direction and how many packets are needed
1797 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
1798 if (pipe
->multi_count
< 2) /* Need DATA0 */
1800 CVMX_USBCX_HCTSIZX(channel
,
1802 cvmx_usbcx_hctsizx
, pid
, 0);
1803 else /* Need MDATA */
1805 CVMX_USBCX_HCTSIZX(channel
,
1807 cvmx_usbcx_hctsizx
, pid
, 3);
1813 union cvmx_usbcx_hctsizx usbc_hctsiz
= { .u32
=
1814 cvmx_usb_read_csr32(usb
,
1815 CVMX_USBCX_HCTSIZX(channel
,
1818 transaction
->xfersize
= usbc_hctsiz
.s
.xfersize
;
1819 transaction
->pktcnt
= usbc_hctsiz
.s
.pktcnt
;
1821 /* Remember when we start a split transaction */
1822 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
1823 usb
->active_split
= transaction
;
1824 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1825 cvmx_usbcx_hccharx
, chena
, 1);
1826 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
1827 cvmx_usb_fill_tx_fifo(usb
, channel
);
1831 * Find a pipe that is ready to be scheduled to hardware.
1832 * @usb: USB device state populated by cvmx_usb_initialize().
1833 * @xfer_type: Transfer type
1835 * Returns: Pipe or NULL if none are ready
1837 static struct cvmx_usb_pipe
*cvmx_usb_find_ready_pipe(
1838 struct octeon_hcd
*usb
,
1839 enum cvmx_usb_transfer xfer_type
)
1841 struct list_head
*list
= usb
->active_pipes
+ xfer_type
;
1842 u64 current_frame
= usb
->frame_number
;
1843 struct cvmx_usb_pipe
*pipe
;
1845 list_for_each_entry(pipe
, list
, node
) {
1846 struct cvmx_usb_transaction
*t
=
1847 list_first_entry(&pipe
->transactions
, typeof(*t
),
1849 if (!(pipe
->flags
& CVMX_USB_PIPE_FLAGS_SCHEDULED
) && t
&&
1850 (pipe
->next_tx_frame
<= current_frame
) &&
1851 ((pipe
->split_sc_frame
== -1) ||
1852 ((((int)current_frame
- pipe
->split_sc_frame
) & 0x7f) <
1854 (!usb
->active_split
|| (usb
->active_split
== t
))) {
1862 static struct cvmx_usb_pipe
*cvmx_usb_next_pipe(struct octeon_hcd
*usb
,
1865 struct cvmx_usb_pipe
*pipe
;
1867 /* Find a pipe needing service. */
1870 * Only process periodic pipes on SOF interrupts. This way we
1871 * are sure that the periodic data is sent in the beginning of
1874 pipe
= cvmx_usb_find_ready_pipe(usb
,
1875 CVMX_USB_TRANSFER_ISOCHRONOUS
);
1878 pipe
= cvmx_usb_find_ready_pipe(usb
,
1879 CVMX_USB_TRANSFER_INTERRUPT
);
1883 pipe
= cvmx_usb_find_ready_pipe(usb
, CVMX_USB_TRANSFER_CONTROL
);
1886 return cvmx_usb_find_ready_pipe(usb
, CVMX_USB_TRANSFER_BULK
);
1890 * Called whenever a pipe might need to be scheduled to the
1893 * @usb: USB device state populated by cvmx_usb_initialize().
1894 * @is_sof: True if this schedule was called on a SOF interrupt.
1896 static void cvmx_usb_schedule(struct octeon_hcd
*usb
, int is_sof
)
1899 struct cvmx_usb_pipe
*pipe
;
1901 enum cvmx_usb_transfer ttype
;
1903 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
1905 * Without DMA we need to be careful to not schedule something
1906 * at the end of a frame and cause an overrun.
1908 union cvmx_usbcx_hfnum hfnum
= {
1909 .u32
= cvmx_usb_read_csr32(usb
,
1910 CVMX_USBCX_HFNUM(usb
->index
))
1913 union cvmx_usbcx_hfir hfir
= {
1914 .u32
= cvmx_usb_read_csr32(usb
,
1915 CVMX_USBCX_HFIR(usb
->index
))
1918 if (hfnum
.s
.frrem
< hfir
.s
.frint
/ 4)
1922 while (usb
->idle_hardware_channels
) {
1923 /* Find an idle channel */
1924 channel
= __fls(usb
->idle_hardware_channels
);
1925 if (unlikely(channel
> 7))
1928 pipe
= cvmx_usb_next_pipe(usb
, is_sof
);
1932 cvmx_usb_start_channel(usb
, channel
, pipe
);
1937 * Only enable SOF interrupts when we have transactions pending in the
1938 * future that might need to be scheduled
1941 for (ttype
= CVMX_USB_TRANSFER_CONTROL
;
1942 ttype
<= CVMX_USB_TRANSFER_INTERRUPT
; ttype
++) {
1943 list_for_each_entry(pipe
, &usb
->active_pipes
[ttype
], node
) {
1944 if (pipe
->next_tx_frame
> usb
->frame_number
) {
1950 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1951 cvmx_usbcx_gintmsk
, sofmsk
, need_sof
);
1954 static void octeon_usb_urb_complete_callback(struct octeon_hcd
*usb
,
1955 enum cvmx_usb_status status
,
1956 struct cvmx_usb_pipe
*pipe
,
1957 struct cvmx_usb_transaction
1959 int bytes_transferred
,
1962 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
1963 struct device
*dev
= hcd
->self
.controller
;
1965 if (likely(status
== CVMX_USB_STATUS_OK
))
1966 urb
->actual_length
= bytes_transferred
;
1968 urb
->actual_length
= 0;
1972 /* For Isochronous transactions we need to update the URB packet status
1973 * list from data in our private copy
1975 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
1978 * The pointer to the private list is stored in the setup_packet
1981 struct cvmx_usb_iso_packet
*iso_packet
=
1982 (struct cvmx_usb_iso_packet
*)urb
->setup_packet
;
1983 /* Recalculate the transfer size by adding up each packet */
1984 urb
->actual_length
= 0;
1985 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
1986 if (iso_packet
[i
].status
== CVMX_USB_STATUS_OK
) {
1987 urb
->iso_frame_desc
[i
].status
= 0;
1988 urb
->iso_frame_desc
[i
].actual_length
=
1989 iso_packet
[i
].length
;
1990 urb
->actual_length
+=
1991 urb
->iso_frame_desc
[i
].actual_length
;
1993 dev_dbg(dev
, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1994 i
, urb
->number_of_packets
,
1995 iso_packet
[i
].status
, pipe
,
1996 transaction
, iso_packet
[i
].length
);
1997 urb
->iso_frame_desc
[i
].status
= -EREMOTEIO
;
2000 /* Free the private list now that we don't need it anymore */
2002 urb
->setup_packet
= NULL
;
2006 case CVMX_USB_STATUS_OK
:
2009 case CVMX_USB_STATUS_CANCEL
:
2010 if (urb
->status
== 0)
2011 urb
->status
= -ENOENT
;
2013 case CVMX_USB_STATUS_STALL
:
2014 dev_dbg(dev
, "status=stall pipe=%p transaction=%p size=%d\n",
2015 pipe
, transaction
, bytes_transferred
);
2016 urb
->status
= -EPIPE
;
2018 case CVMX_USB_STATUS_BABBLEERR
:
2019 dev_dbg(dev
, "status=babble pipe=%p transaction=%p size=%d\n",
2020 pipe
, transaction
, bytes_transferred
);
2021 urb
->status
= -EPIPE
;
2023 case CVMX_USB_STATUS_SHORT
:
2024 dev_dbg(dev
, "status=short pipe=%p transaction=%p size=%d\n",
2025 pipe
, transaction
, bytes_transferred
);
2026 urb
->status
= -EREMOTEIO
;
2028 case CVMX_USB_STATUS_ERROR
:
2029 case CVMX_USB_STATUS_XACTERR
:
2030 case CVMX_USB_STATUS_DATATGLERR
:
2031 case CVMX_USB_STATUS_FRAMEERR
:
2032 dev_dbg(dev
, "status=%d pipe=%p transaction=%p size=%d\n",
2033 status
, pipe
, transaction
, bytes_transferred
);
2034 urb
->status
= -EPROTO
;
2037 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb
), urb
);
2038 spin_unlock(&usb
->lock
);
2039 usb_hcd_giveback_urb(octeon_to_hcd(usb
), urb
, urb
->status
);
2040 spin_lock(&usb
->lock
);
2044 * Signal the completion of a transaction and free it. The
2045 * transaction will be removed from the pipe transaction list.
2047 * @usb: USB device state populated by cvmx_usb_initialize().
2048 * @pipe: Pipe the transaction is on
2050 * Transaction that completed
2054 static void cvmx_usb_complete(struct octeon_hcd
*usb
,
2055 struct cvmx_usb_pipe
*pipe
,
2056 struct cvmx_usb_transaction
*transaction
,
2057 enum cvmx_usb_status complete_code
)
2059 /* If this was a split then clear our split in progress marker */
2060 if (usb
->active_split
== transaction
)
2061 usb
->active_split
= NULL
;
2064 * Isochronous transactions need extra processing as they might not be
2065 * done after a single data transfer
2067 if (unlikely(transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
2068 /* Update the number of bytes transferred in this ISO packet */
2069 transaction
->iso_packets
[0].length
= transaction
->actual_bytes
;
2070 transaction
->iso_packets
[0].status
= complete_code
;
2073 * If there are more ISOs pending and we succeeded, schedule the
2076 if ((transaction
->iso_number_packets
> 1) &&
2077 (complete_code
== CVMX_USB_STATUS_OK
)) {
2078 /* No bytes transferred for this packet as of yet */
2079 transaction
->actual_bytes
= 0;
2080 /* One less ISO waiting to transfer */
2081 transaction
->iso_number_packets
--;
2082 /* Increment to the next location in our packet array */
2083 transaction
->iso_packets
++;
2084 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2089 /* Remove the transaction from the pipe list */
2090 list_del(&transaction
->node
);
2091 if (list_empty(&pipe
->transactions
))
2092 list_move_tail(&pipe
->node
, &usb
->idle_pipes
);
2093 octeon_usb_urb_complete_callback(usb
, complete_code
, pipe
,
2095 transaction
->actual_bytes
,
2101 * Submit a usb transaction to a pipe. Called for all types
2105 * @pipe: Which pipe to submit to.
2106 * @type: Transaction type
2107 * @buffer: User buffer for the transaction
2109 * User buffer's length in bytes
2111 * For control transactions, the 8 byte standard header
2113 * For ISO transactions, the start frame
2114 * @iso_number_packets:
2115 * For ISO, the number of packet in the transaction.
2117 * A description of each ISO packet
2118 * @urb: URB for the callback
2120 * Returns: Transaction or NULL on failure.
2122 static struct cvmx_usb_transaction
*cvmx_usb_submit_transaction(
2123 struct octeon_hcd
*usb
,
2124 struct cvmx_usb_pipe
*pipe
,
2125 enum cvmx_usb_transfer type
,
2129 int iso_start_frame
,
2130 int iso_number_packets
,
2131 struct cvmx_usb_iso_packet
*iso_packets
,
2134 struct cvmx_usb_transaction
*transaction
;
2136 if (unlikely(pipe
->transfer_type
!= type
))
2139 transaction
= kzalloc(sizeof(*transaction
), GFP_ATOMIC
);
2140 if (unlikely(!transaction
))
2143 transaction
->type
= type
;
2144 transaction
->buffer
= buffer
;
2145 transaction
->buffer_length
= buffer_length
;
2146 transaction
->control_header
= control_header
;
2147 /* FIXME: This is not used, implement it. */
2148 transaction
->iso_start_frame
= iso_start_frame
;
2149 transaction
->iso_number_packets
= iso_number_packets
;
2150 transaction
->iso_packets
= iso_packets
;
2151 transaction
->urb
= urb
;
2152 if (transaction
->type
== CVMX_USB_TRANSFER_CONTROL
)
2153 transaction
->stage
= CVMX_USB_STAGE_SETUP
;
2155 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2157 if (!list_empty(&pipe
->transactions
)) {
2158 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2160 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2161 list_move_tail(&pipe
->node
,
2162 &usb
->active_pipes
[pipe
->transfer_type
]);
2165 * We may need to schedule the pipe if this was the head of the
2168 cvmx_usb_schedule(usb
, 0);
2175 * Call to submit a USB Bulk transfer to a pipe.
2177 * @usb: USB device state populated by cvmx_usb_initialize().
2178 * @pipe: Handle to the pipe for the transfer.
2181 * Returns: A submitted transaction or NULL on failure.
2183 static struct cvmx_usb_transaction
*cvmx_usb_submit_bulk(
2184 struct octeon_hcd
*usb
,
2185 struct cvmx_usb_pipe
*pipe
,
2188 return cvmx_usb_submit_transaction(usb
, pipe
, CVMX_USB_TRANSFER_BULK
,
2190 urb
->transfer_buffer_length
,
2191 0, /* control_header */
2192 0, /* iso_start_frame */
2193 0, /* iso_number_packets */
2194 NULL
, /* iso_packets */
2199 * Call to submit a USB Interrupt transfer to a pipe.
2201 * @usb: USB device state populated by cvmx_usb_initialize().
2202 * @pipe: Handle to the pipe for the transfer.
2203 * @urb: URB returned when the callback is called.
2205 * Returns: A submitted transaction or NULL on failure.
2207 static struct cvmx_usb_transaction
*cvmx_usb_submit_interrupt(
2208 struct octeon_hcd
*usb
,
2209 struct cvmx_usb_pipe
*pipe
,
2212 return cvmx_usb_submit_transaction(usb
, pipe
,
2213 CVMX_USB_TRANSFER_INTERRUPT
,
2215 urb
->transfer_buffer_length
,
2216 0, /* control_header */
2217 0, /* iso_start_frame */
2218 0, /* iso_number_packets */
2219 NULL
, /* iso_packets */
2224 * Call to submit a USB Control transfer to a pipe.
2226 * @usb: USB device state populated by cvmx_usb_initialize().
2227 * @pipe: Handle to the pipe for the transfer.
2230 * Returns: A submitted transaction or NULL on failure.
2232 static struct cvmx_usb_transaction
*cvmx_usb_submit_control(
2233 struct octeon_hcd
*usb
,
2234 struct cvmx_usb_pipe
*pipe
,
2237 int buffer_length
= urb
->transfer_buffer_length
;
2238 u64 control_header
= urb
->setup_dma
;
2239 struct usb_ctrlrequest
*header
= cvmx_phys_to_ptr(control_header
);
2241 if ((header
->bRequestType
& USB_DIR_IN
) == 0)
2242 buffer_length
= le16_to_cpu(header
->wLength
);
2244 return cvmx_usb_submit_transaction(usb
, pipe
,
2245 CVMX_USB_TRANSFER_CONTROL
,
2246 urb
->transfer_dma
, buffer_length
,
2248 0, /* iso_start_frame */
2249 0, /* iso_number_packets */
2250 NULL
, /* iso_packets */
2255 * Call to submit a USB Isochronous transfer to a pipe.
2257 * @usb: USB device state populated by cvmx_usb_initialize().
2258 * @pipe: Handle to the pipe for the transfer.
2259 * @urb: URB returned when the callback is called.
2261 * Returns: A submitted transaction or NULL on failure.
2263 static struct cvmx_usb_transaction
*cvmx_usb_submit_isochronous(
2264 struct octeon_hcd
*usb
,
2265 struct cvmx_usb_pipe
*pipe
,
2268 struct cvmx_usb_iso_packet
*packets
;
2270 packets
= (struct cvmx_usb_iso_packet
*)urb
->setup_packet
;
2271 return cvmx_usb_submit_transaction(usb
, pipe
,
2272 CVMX_USB_TRANSFER_ISOCHRONOUS
,
2274 urb
->transfer_buffer_length
,
2275 0, /* control_header */
2277 urb
->number_of_packets
,
2282 * Cancel one outstanding request in a pipe. Canceling a request
2283 * can fail if the transaction has already completed before cancel
2284 * is called. Even after a successful cancel call, it may take
2285 * a frame or two for the cvmx_usb_poll() function to call the
2286 * associated callback.
2288 * @usb: USB device state populated by cvmx_usb_initialize().
2289 * @pipe: Pipe to cancel requests in.
2290 * @transaction: Transaction to cancel, returned by the submit function.
2292 * Returns: 0 or a negative error code.
2294 static int cvmx_usb_cancel(struct octeon_hcd
*usb
,
2295 struct cvmx_usb_pipe
*pipe
,
2296 struct cvmx_usb_transaction
*transaction
)
2299 * If the transaction is the HEAD of the queue and scheduled. We need to
2302 if (list_first_entry(&pipe
->transactions
, typeof(*transaction
), node
) ==
2303 transaction
&& (pipe
->flags
& CVMX_USB_PIPE_FLAGS_SCHEDULED
)) {
2304 union cvmx_usbcx_hccharx usbc_hcchar
;
2306 usb
->pipe_for_channel
[pipe
->channel
] = NULL
;
2307 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2311 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2312 CVMX_USBCX_HCCHARX(pipe
->channel
, usb
->index
));
2314 * If the channel isn't enabled then the transaction already
2317 if (usbc_hcchar
.s
.chena
) {
2318 usbc_hcchar
.s
.chdis
= 1;
2319 cvmx_usb_write_csr32(usb
,
2320 CVMX_USBCX_HCCHARX(pipe
->channel
,
2325 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_CANCEL
);
2330 * Cancel all outstanding requests in a pipe. Logically all this
2331 * does is call cvmx_usb_cancel() in a loop.
2333 * @usb: USB device state populated by cvmx_usb_initialize().
2334 * @pipe: Pipe to cancel requests in.
2336 * Returns: 0 or a negative error code.
2338 static int cvmx_usb_cancel_all(struct octeon_hcd
*usb
,
2339 struct cvmx_usb_pipe
*pipe
)
2341 struct cvmx_usb_transaction
*transaction
, *next
;
2343 /* Simply loop through and attempt to cancel each transaction */
2344 list_for_each_entry_safe(transaction
, next
, &pipe
->transactions
, node
) {
2345 int result
= cvmx_usb_cancel(usb
, pipe
, transaction
);
2347 if (unlikely(result
!= 0))
2354 * Close a pipe created with cvmx_usb_open_pipe().
2356 * @usb: USB device state populated by cvmx_usb_initialize().
2357 * @pipe: Pipe to close.
2359 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2360 * outstanding transfers.
2362 static int cvmx_usb_close_pipe(struct octeon_hcd
*usb
,
2363 struct cvmx_usb_pipe
*pipe
)
2365 /* Fail if the pipe has pending transactions */
2366 if (!list_empty(&pipe
->transactions
))
2369 list_del(&pipe
->node
);
2376 * Get the current USB protocol level frame number. The frame
2377 * number is always in the range of 0-0x7ff.
2379 * @usb: USB device state populated by cvmx_usb_initialize().
2381 * Returns: USB frame number
2383 static int cvmx_usb_get_frame_number(struct octeon_hcd
*usb
)
2386 union cvmx_usbcx_hfnum usbc_hfnum
;
2388 usbc_hfnum
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
));
2389 frame_number
= usbc_hfnum
.s
.frnum
;
2391 return frame_number
;
2394 static void cvmx_usb_transfer_control(struct octeon_hcd
*usb
,
2395 struct cvmx_usb_pipe
*pipe
,
2396 struct cvmx_usb_transaction
*transaction
,
2397 union cvmx_usbcx_hccharx usbc_hcchar
,
2398 int buffer_space_left
,
2399 int bytes_in_last_packet
)
2401 switch (transaction
->stage
) {
2402 case CVMX_USB_STAGE_NON_CONTROL
:
2403 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
2404 /* This should be impossible */
2405 cvmx_usb_complete(usb
, pipe
, transaction
,
2406 CVMX_USB_STATUS_ERROR
);
2408 case CVMX_USB_STAGE_SETUP
:
2409 pipe
->pid_toggle
= 1;
2410 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2411 transaction
->stage
=
2412 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
;
2414 struct usb_ctrlrequest
*header
=
2415 cvmx_phys_to_ptr(transaction
->control_header
);
2416 if (header
->wLength
)
2417 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2419 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2422 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
2424 struct usb_ctrlrequest
*header
=
2425 cvmx_phys_to_ptr(transaction
->control_header
);
2426 if (header
->wLength
)
2427 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2429 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2432 case CVMX_USB_STAGE_DATA
:
2433 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2434 transaction
->stage
= CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
;
2436 * For setup OUT data that are splits,
2437 * the hardware doesn't appear to count
2438 * transferred data. Here we manually
2439 * update the data transferred
2441 if (!usbc_hcchar
.s
.epdir
) {
2442 if (buffer_space_left
< pipe
->max_packet
)
2443 transaction
->actual_bytes
+=
2446 transaction
->actual_bytes
+=
2449 } else if ((buffer_space_left
== 0) ||
2450 (bytes_in_last_packet
< pipe
->max_packet
)) {
2451 pipe
->pid_toggle
= 1;
2452 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2455 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
2456 if ((buffer_space_left
== 0) ||
2457 (bytes_in_last_packet
< pipe
->max_packet
)) {
2458 pipe
->pid_toggle
= 1;
2459 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2461 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2464 case CVMX_USB_STAGE_STATUS
:
2465 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
2466 transaction
->stage
=
2467 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
;
2469 cvmx_usb_complete(usb
, pipe
, transaction
,
2470 CVMX_USB_STATUS_OK
);
2472 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
2473 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2478 static void cvmx_usb_transfer_bulk(struct octeon_hcd
*usb
,
2479 struct cvmx_usb_pipe
*pipe
,
2480 struct cvmx_usb_transaction
*transaction
,
2481 union cvmx_usbcx_hcintx usbc_hcint
,
2482 int buffer_space_left
,
2483 int bytes_in_last_packet
)
2486 * The only time a bulk transfer isn't complete when it finishes with
2487 * an ACK is during a split transaction. For splits we need to continue
2488 * the transfer if more data is needed.
2490 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2491 if (transaction
->stage
== CVMX_USB_STAGE_NON_CONTROL
)
2492 transaction
->stage
=
2493 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2494 else if (buffer_space_left
&&
2495 (bytes_in_last_packet
== pipe
->max_packet
))
2496 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2498 cvmx_usb_complete(usb
, pipe
, transaction
,
2499 CVMX_USB_STATUS_OK
);
2501 if ((pipe
->device_speed
== CVMX_USB_SPEED_HIGH
) &&
2502 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
2504 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
2505 if (!buffer_space_left
||
2506 (bytes_in_last_packet
< pipe
->max_packet
))
2507 cvmx_usb_complete(usb
, pipe
, transaction
,
2508 CVMX_USB_STATUS_OK
);
2512 static void cvmx_usb_transfer_intr(struct octeon_hcd
*usb
,
2513 struct cvmx_usb_pipe
*pipe
,
2514 struct cvmx_usb_transaction
*transaction
,
2515 int buffer_space_left
,
2516 int bytes_in_last_packet
)
2518 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2519 if (transaction
->stage
== CVMX_USB_STAGE_NON_CONTROL
) {
2520 transaction
->stage
=
2521 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2522 } else if (buffer_space_left
&&
2523 (bytes_in_last_packet
== pipe
->max_packet
)) {
2524 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2526 pipe
->next_tx_frame
+= pipe
->interval
;
2527 cvmx_usb_complete(usb
, pipe
, transaction
,
2528 CVMX_USB_STATUS_OK
);
2530 } else if (!buffer_space_left
||
2531 (bytes_in_last_packet
< pipe
->max_packet
)) {
2532 pipe
->next_tx_frame
+= pipe
->interval
;
2533 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2537 static void cvmx_usb_transfer_isoc(struct octeon_hcd
*usb
,
2538 struct cvmx_usb_pipe
*pipe
,
2539 struct cvmx_usb_transaction
*transaction
,
2540 int buffer_space_left
,
2541 int bytes_in_last_packet
,
2542 int bytes_this_transfer
)
2544 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2546 * ISOCHRONOUS OUT splits don't require a complete split stage.
2547 * Instead they use a sequence of begin OUT splits to transfer
2548 * the data 188 bytes at a time. Once the transfer is complete,
2549 * the pipe sleeps until the next schedule interval.
2551 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
2553 * If no space left or this wasn't a max size packet
2554 * then this transfer is complete. Otherwise start it
2555 * again to send the next 188 bytes
2557 if (!buffer_space_left
|| (bytes_this_transfer
< 188)) {
2558 pipe
->next_tx_frame
+= pipe
->interval
;
2559 cvmx_usb_complete(usb
, pipe
, transaction
,
2560 CVMX_USB_STATUS_OK
);
2564 if (transaction
->stage
==
2565 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
) {
2567 * We are in the incoming data phase. Keep getting data
2568 * until we run out of space or get a small packet
2570 if ((buffer_space_left
== 0) ||
2571 (bytes_in_last_packet
< pipe
->max_packet
)) {
2572 pipe
->next_tx_frame
+= pipe
->interval
;
2573 cvmx_usb_complete(usb
, pipe
, transaction
,
2574 CVMX_USB_STATUS_OK
);
2577 transaction
->stage
=
2578 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2581 pipe
->next_tx_frame
+= pipe
->interval
;
2582 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2587 * Poll a channel for status
2590 * @channel: Channel to poll
2592 * Returns: Zero on success
2594 static int cvmx_usb_poll_channel(struct octeon_hcd
*usb
, int channel
)
2596 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
2597 struct device
*dev
= hcd
->self
.controller
;
2598 union cvmx_usbcx_hcintx usbc_hcint
;
2599 union cvmx_usbcx_hctsizx usbc_hctsiz
;
2600 union cvmx_usbcx_hccharx usbc_hcchar
;
2601 struct cvmx_usb_pipe
*pipe
;
2602 struct cvmx_usb_transaction
*transaction
;
2603 int bytes_this_transfer
;
2604 int bytes_in_last_packet
;
2605 int packets_processed
;
2606 int buffer_space_left
;
2608 /* Read the interrupt status bits for the channel */
2609 usbc_hcint
.u32
= cvmx_usb_read_csr32(usb
,
2610 CVMX_USBCX_HCINTX(channel
, usb
->index
));
2612 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
2613 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2614 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2616 if (usbc_hcchar
.s
.chena
&& usbc_hcchar
.s
.chdis
) {
2618 * There seems to be a bug in CN31XX which can cause
2619 * interrupt IN transfers to get stuck until we do a
2620 * write of HCCHARX without changing things
2622 cvmx_usb_write_csr32(usb
,
2623 CVMX_USBCX_HCCHARX(channel
,
2630 * In non DMA mode the channels don't halt themselves. We need
2631 * to manually disable channels that are left running
2633 if (!usbc_hcint
.s
.chhltd
) {
2634 if (usbc_hcchar
.s
.chena
) {
2635 union cvmx_usbcx_hcintmskx hcintmsk
;
2636 /* Disable all interrupts except CHHLTD */
2638 hcintmsk
.s
.chhltdmsk
= 1;
2639 cvmx_usb_write_csr32(usb
,
2640 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
2642 usbc_hcchar
.s
.chdis
= 1;
2643 cvmx_usb_write_csr32(usb
,
2644 CVMX_USBCX_HCCHARX(channel
, usb
->index
),
2647 } else if (usbc_hcint
.s
.xfercompl
) {
2649 * Successful IN/OUT with transfer complete.
2650 * Channel halt isn't needed.
2653 dev_err(dev
, "USB%d: Channel %d interrupt without halt\n",
2654 usb
->index
, channel
);
2660 * There is are no interrupts that we need to process when the
2661 * channel is still running
2663 if (!usbc_hcint
.s
.chhltd
)
2667 /* Disable the channel interrupts now that it is done */
2668 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCINTMSKX(channel
, usb
->index
), 0);
2669 usb
->idle_hardware_channels
|= (1 << channel
);
2671 /* Make sure this channel is tied to a valid pipe */
2672 pipe
= usb
->pipe_for_channel
[channel
];
2676 transaction
= list_first_entry(&pipe
->transactions
,
2677 typeof(*transaction
),
2679 prefetch(transaction
);
2682 * Disconnect this pipe from the HW channel. Later the schedule
2683 * function will figure out which pipe needs to go
2685 usb
->pipe_for_channel
[channel
] = NULL
;
2686 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2689 * Read the channel config info so we can figure out how much data
2692 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2693 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2694 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
2695 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
2698 * Calculating the number of bytes successfully transferred is dependent
2699 * on the transfer direction
2701 packets_processed
= transaction
->pktcnt
- usbc_hctsiz
.s
.pktcnt
;
2702 if (usbc_hcchar
.s
.epdir
) {
2704 * IN transactions are easy. For every byte received the
2705 * hardware decrements xfersize. All we need to do is subtract
2706 * the current value of xfersize from its starting value and we
2707 * know how many bytes were written to the buffer
2709 bytes_this_transfer
= transaction
->xfersize
-
2710 usbc_hctsiz
.s
.xfersize
;
2713 * OUT transaction don't decrement xfersize. Instead pktcnt is
2714 * decremented on every successful packet send. The hardware
2715 * does this when it receives an ACK, or NYET. If it doesn't
2716 * receive one of these responses pktcnt doesn't change
2718 bytes_this_transfer
= packets_processed
* usbc_hcchar
.s
.mps
;
2720 * The last packet may not be a full transfer if we didn't have
2723 if (bytes_this_transfer
> transaction
->xfersize
)
2724 bytes_this_transfer
= transaction
->xfersize
;
2726 /* Figure out how many bytes were in the last packet of the transfer */
2727 if (packets_processed
)
2728 bytes_in_last_packet
= bytes_this_transfer
-
2729 (packets_processed
- 1) * usbc_hcchar
.s
.mps
;
2731 bytes_in_last_packet
= bytes_this_transfer
;
2734 * As a special case, setup transactions output the setup header, not
2735 * the user's data. For this reason we don't count setup data as bytes
2738 if ((transaction
->stage
== CVMX_USB_STAGE_SETUP
) ||
2739 (transaction
->stage
== CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
))
2740 bytes_this_transfer
= 0;
2743 * Add the bytes transferred to the running total. It is important that
2744 * bytes_this_transfer doesn't count any data that needs to be
2747 transaction
->actual_bytes
+= bytes_this_transfer
;
2748 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
2749 buffer_space_left
= transaction
->iso_packets
[0].length
-
2750 transaction
->actual_bytes
;
2752 buffer_space_left
= transaction
->buffer_length
-
2753 transaction
->actual_bytes
;
2756 * We need to remember the PID toggle state for the next transaction.
2757 * The hardware already updated it for the next transaction
2759 pipe
->pid_toggle
= !(usbc_hctsiz
.s
.pid
== 0);
2762 * For high speed bulk out, assume the next transaction will need to do
2763 * a ping before proceeding. If this isn't true the ACK processing below
2764 * will clear this flag
2766 if ((pipe
->device_speed
== CVMX_USB_SPEED_HIGH
) &&
2767 (pipe
->transfer_type
== CVMX_USB_TRANSFER_BULK
) &&
2768 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
))
2769 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
2771 if (unlikely(WARN_ON_ONCE(bytes_this_transfer
< 0))) {
2773 * In some rare cases the DMA engine seems to get stuck and
2774 * keeps substracting same byte count over and over again. In
2775 * such case we just need to fail every transaction.
2777 cvmx_usb_complete(usb
, pipe
, transaction
,
2778 CVMX_USB_STATUS_ERROR
);
2782 if (usbc_hcint
.s
.stall
) {
2784 * STALL as a response means this transaction cannot be
2785 * completed because the device can't process transactions. Tell
2786 * the user. Any data that was transferred will be counted on
2787 * the actual bytes transferred
2789 pipe
->pid_toggle
= 0;
2790 cvmx_usb_complete(usb
, pipe
, transaction
,
2791 CVMX_USB_STATUS_STALL
);
2792 } else if (usbc_hcint
.s
.xacterr
) {
2794 * XactErr as a response means the device signaled
2795 * something wrong with the transfer. For example, PID
2796 * toggle errors cause these.
2798 cvmx_usb_complete(usb
, pipe
, transaction
,
2799 CVMX_USB_STATUS_XACTERR
);
2800 } else if (usbc_hcint
.s
.bblerr
) {
2801 /* Babble Error (BblErr) */
2802 cvmx_usb_complete(usb
, pipe
, transaction
,
2803 CVMX_USB_STATUS_BABBLEERR
);
2804 } else if (usbc_hcint
.s
.datatglerr
) {
2805 /* Data toggle error */
2806 cvmx_usb_complete(usb
, pipe
, transaction
,
2807 CVMX_USB_STATUS_DATATGLERR
);
2808 } else if (usbc_hcint
.s
.nyet
) {
2810 * NYET as a response is only allowed in three cases: as a
2811 * response to a ping, as a response to a split transaction, and
2812 * as a response to a bulk out. The ping case is handled by
2813 * hardware, so we only have splits and bulk out
2815 if (!cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2816 transaction
->retries
= 0;
2818 * If there is more data to go then we need to try
2819 * again. Otherwise this transaction is complete
2821 if ((buffer_space_left
== 0) ||
2822 (bytes_in_last_packet
< pipe
->max_packet
))
2823 cvmx_usb_complete(usb
, pipe
,
2825 CVMX_USB_STATUS_OK
);
2828 * Split transactions retry the split complete 4 times
2829 * then rewind to the start split and do the entire
2830 * transactions again
2832 transaction
->retries
++;
2833 if ((transaction
->retries
& 0x3) == 0) {
2835 * Rewind to the beginning of the transaction by
2836 * anding off the split complete bit
2838 transaction
->stage
&= ~1;
2839 pipe
->split_sc_frame
= -1;
2842 } else if (usbc_hcint
.s
.ack
) {
2843 transaction
->retries
= 0;
2845 * The ACK bit can only be checked after the other error bits.
2846 * This is because a multi packet transfer may succeed in a
2847 * number of packets and then get a different response on the
2848 * last packet. In this case both ACK and the last response bit
2849 * will be set. If none of the other response bits is set, then
2850 * the last packet must have been an ACK
2852 * Since we got an ACK, we know we don't need to do a ping on
2855 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_NEED_PING
;
2857 switch (transaction
->type
) {
2858 case CVMX_USB_TRANSFER_CONTROL
:
2859 cvmx_usb_transfer_control(usb
, pipe
, transaction
,
2862 bytes_in_last_packet
);
2864 case CVMX_USB_TRANSFER_BULK
:
2865 cvmx_usb_transfer_bulk(usb
, pipe
, transaction
,
2866 usbc_hcint
, buffer_space_left
,
2867 bytes_in_last_packet
);
2869 case CVMX_USB_TRANSFER_INTERRUPT
:
2870 cvmx_usb_transfer_intr(usb
, pipe
, transaction
,
2872 bytes_in_last_packet
);
2874 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
2875 cvmx_usb_transfer_isoc(usb
, pipe
, transaction
,
2877 bytes_in_last_packet
,
2878 bytes_this_transfer
);
2881 } else if (usbc_hcint
.s
.nak
) {
2883 * If this was a split then clear our split in progress marker.
2885 if (usb
->active_split
== transaction
)
2886 usb
->active_split
= NULL
;
2888 * NAK as a response means the device couldn't accept the
2889 * transaction, but it should be retried in the future. Rewind
2890 * to the beginning of the transaction by anding off the split
2891 * complete bit. Retry in the next interval
2893 transaction
->retries
= 0;
2894 transaction
->stage
&= ~1;
2895 pipe
->next_tx_frame
+= pipe
->interval
;
2896 if (pipe
->next_tx_frame
< usb
->frame_number
)
2897 pipe
->next_tx_frame
= usb
->frame_number
+
2899 (usb
->frame_number
- pipe
->next_tx_frame
) %
2902 struct cvmx_usb_port_status port
;
2904 port
= cvmx_usb_get_status(usb
);
2905 if (port
.port_enabled
) {
2906 /* We'll retry the exact same transaction again */
2907 transaction
->retries
++;
2910 * We get channel halted interrupts with no result bits
2911 * sets when the cable is unplugged
2913 cvmx_usb_complete(usb
, pipe
, transaction
,
2914 CVMX_USB_STATUS_ERROR
);
2920 static void octeon_usb_port_callback(struct octeon_hcd
*usb
)
2922 spin_unlock(&usb
->lock
);
2923 usb_hcd_poll_rh_status(octeon_to_hcd(usb
));
2924 spin_lock(&usb
->lock
);
2928 * Poll the USB block for status and call all needed callback
2929 * handlers. This function is meant to be called in the interrupt
2930 * handler for the USB controller. It can also be called
2931 * periodically in a loop for non-interrupt based operation.
2933 * @usb: USB device state populated by cvmx_usb_initialize().
2935 * Returns: 0 or a negative error code.
2937 static int cvmx_usb_poll(struct octeon_hcd
*usb
)
2939 union cvmx_usbcx_hfnum usbc_hfnum
;
2940 union cvmx_usbcx_gintsts usbc_gintsts
;
2942 prefetch_range(usb
, sizeof(*usb
));
2944 /* Update the frame counter */
2945 usbc_hfnum
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
));
2946 if ((usb
->frame_number
& 0x3fff) > usbc_hfnum
.s
.frnum
)
2947 usb
->frame_number
+= 0x4000;
2948 usb
->frame_number
&= ~0x3fffull
;
2949 usb
->frame_number
|= usbc_hfnum
.s
.frnum
;
2951 /* Read the pending interrupts */
2952 usbc_gintsts
.u32
= cvmx_usb_read_csr32(usb
,
2953 CVMX_USBCX_GINTSTS(usb
->index
));
2955 /* Clear the interrupts now that we know about them */
2956 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
),
2959 if (usbc_gintsts
.s
.rxflvl
) {
2961 * RxFIFO Non-Empty (RxFLvl)
2962 * Indicates that there is at least one packet pending to be
2963 * read from the RxFIFO.
2965 * In DMA mode this is handled by hardware
2967 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
2968 cvmx_usb_poll_rx_fifo(usb
);
2970 if (usbc_gintsts
.s
.ptxfemp
|| usbc_gintsts
.s
.nptxfemp
) {
2971 /* Fill the Tx FIFOs when not in DMA mode */
2972 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
2973 cvmx_usb_poll_tx_fifo(usb
);
2975 if (usbc_gintsts
.s
.disconnint
|| usbc_gintsts
.s
.prtint
) {
2976 union cvmx_usbcx_hprt usbc_hprt
;
2978 * Disconnect Detected Interrupt (DisconnInt)
2979 * Asserted when a device disconnect is detected.
2981 * Host Port Interrupt (PrtInt)
2982 * The core sets this bit to indicate a change in port status of
2983 * one of the O2P USB core ports in Host mode. The application
2984 * must read the Host Port Control and Status (HPRT) register to
2985 * determine the exact event that caused this interrupt. The
2986 * application must clear the appropriate status bit in the Host
2987 * Port Control and Status register to clear this bit.
2989 * Call the user's port callback
2991 octeon_usb_port_callback(usb
);
2992 /* Clear the port change bits */
2994 cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
));
2995 usbc_hprt
.s
.prtena
= 0;
2996 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
),
2999 if (usbc_gintsts
.s
.hchint
) {
3001 * Host Channels Interrupt (HChInt)
3002 * The core sets this bit to indicate that an interrupt is
3003 * pending on one of the channels of the core (in Host mode).
3004 * The application must read the Host All Channels Interrupt
3005 * (HAINT) register to determine the exact number of the channel
3006 * on which the interrupt occurred, and then read the
3007 * corresponding Host Channel-n Interrupt (HCINTn) register to
3008 * determine the exact cause of the interrupt. The application
3009 * must clear the appropriate status bit in the HCINTn register
3010 * to clear this bit.
3012 union cvmx_usbcx_haint usbc_haint
;
3014 usbc_haint
.u32
= cvmx_usb_read_csr32(usb
,
3015 CVMX_USBCX_HAINT(usb
->index
));
3016 while (usbc_haint
.u32
) {
3019 channel
= __fls(usbc_haint
.u32
);
3020 cvmx_usb_poll_channel(usb
, channel
);
3021 usbc_haint
.u32
^= 1 << channel
;
3025 cvmx_usb_schedule(usb
, usbc_gintsts
.s
.sof
);
3030 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3031 static inline struct octeon_hcd
*hcd_to_octeon(struct usb_hcd
*hcd
)
3033 return (struct octeon_hcd
*)(hcd
->hcd_priv
);
3036 static irqreturn_t
octeon_usb_irq(struct usb_hcd
*hcd
)
3038 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3039 unsigned long flags
;
3041 spin_lock_irqsave(&usb
->lock
, flags
);
3043 spin_unlock_irqrestore(&usb
->lock
, flags
);
3047 static int octeon_usb_start(struct usb_hcd
*hcd
)
3049 hcd
->state
= HC_STATE_RUNNING
;
3053 static void octeon_usb_stop(struct usb_hcd
*hcd
)
3055 hcd
->state
= HC_STATE_HALT
;
3058 static int octeon_usb_get_frame_number(struct usb_hcd
*hcd
)
3060 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3062 return cvmx_usb_get_frame_number(usb
);
3065 static int octeon_usb_urb_enqueue(struct usb_hcd
*hcd
,
3069 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3070 struct device
*dev
= hcd
->self
.controller
;
3071 struct cvmx_usb_transaction
*transaction
= NULL
;
3072 struct cvmx_usb_pipe
*pipe
;
3073 unsigned long flags
;
3074 struct cvmx_usb_iso_packet
*iso_packet
;
3075 struct usb_host_endpoint
*ep
= urb
->ep
;
3079 spin_lock_irqsave(&usb
->lock
, flags
);
3081 rc
= usb_hcd_link_urb_to_ep(hcd
, urb
);
3083 spin_unlock_irqrestore(&usb
->lock
, flags
);
3088 enum cvmx_usb_transfer transfer_type
;
3089 enum cvmx_usb_speed speed
;
3090 int split_device
= 0;
3093 switch (usb_pipetype(urb
->pipe
)) {
3094 case PIPE_ISOCHRONOUS
:
3095 transfer_type
= CVMX_USB_TRANSFER_ISOCHRONOUS
;
3097 case PIPE_INTERRUPT
:
3098 transfer_type
= CVMX_USB_TRANSFER_INTERRUPT
;
3101 transfer_type
= CVMX_USB_TRANSFER_CONTROL
;
3104 transfer_type
= CVMX_USB_TRANSFER_BULK
;
3107 switch (urb
->dev
->speed
) {
3109 speed
= CVMX_USB_SPEED_LOW
;
3111 case USB_SPEED_FULL
:
3112 speed
= CVMX_USB_SPEED_FULL
;
3115 speed
= CVMX_USB_SPEED_HIGH
;
3119 * For slow devices on high speed ports we need to find the hub
3120 * that does the speed translation so we know where to send the
3121 * split transactions.
3123 if (speed
!= CVMX_USB_SPEED_HIGH
) {
3125 * Start at this device and work our way up the usb
3128 struct usb_device
*dev
= urb
->dev
;
3130 while (dev
->parent
) {
3132 * If our parent is high speed then he'll
3133 * receive the splits.
3135 if (dev
->parent
->speed
== USB_SPEED_HIGH
) {
3136 split_device
= dev
->parent
->devnum
;
3137 split_port
= dev
->portnum
;
3141 * Move up the tree one level. If we make it all
3142 * the way up the tree, then the port must not
3143 * be in high speed mode and we don't need a
3149 pipe
= cvmx_usb_open_pipe(usb
, usb_pipedevice(urb
->pipe
),
3150 usb_pipeendpoint(urb
->pipe
), speed
,
3151 le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3154 usb_pipein(urb
->pipe
) ?
3155 CVMX_USB_DIRECTION_IN
:
3156 CVMX_USB_DIRECTION_OUT
,
3158 (le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3160 split_device
, split_port
);
3162 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
3163 spin_unlock_irqrestore(&usb
->lock
, flags
);
3164 dev_dbg(dev
, "Failed to create pipe\n");
3172 switch (usb_pipetype(urb
->pipe
)) {
3173 case PIPE_ISOCHRONOUS
:
3174 dev_dbg(dev
, "Submit isochronous to %d.%d\n",
3175 usb_pipedevice(urb
->pipe
),
3176 usb_pipeendpoint(urb
->pipe
));
3178 * Allocate a structure to use for our private list of
3179 * isochronous packets.
3181 iso_packet
= kmalloc_array(urb
->number_of_packets
,
3182 sizeof(struct cvmx_usb_iso_packet
),
3186 /* Fill the list with the data from the URB */
3187 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
3188 iso_packet
[i
].offset
=
3189 urb
->iso_frame_desc
[i
].offset
;
3190 iso_packet
[i
].length
=
3191 urb
->iso_frame_desc
[i
].length
;
3192 iso_packet
[i
].status
= CVMX_USB_STATUS_ERROR
;
3195 * Store a pointer to the list in the URB setup_packet
3196 * field. We know this currently isn't being used and
3197 * this saves us a bunch of logic.
3199 urb
->setup_packet
= (char *)iso_packet
;
3200 transaction
= cvmx_usb_submit_isochronous(usb
,
3203 * If submit failed we need to free our private packet
3207 urb
->setup_packet
= NULL
;
3212 case PIPE_INTERRUPT
:
3213 dev_dbg(dev
, "Submit interrupt to %d.%d\n",
3214 usb_pipedevice(urb
->pipe
),
3215 usb_pipeendpoint(urb
->pipe
));
3216 transaction
= cvmx_usb_submit_interrupt(usb
, pipe
, urb
);
3219 dev_dbg(dev
, "Submit control to %d.%d\n",
3220 usb_pipedevice(urb
->pipe
),
3221 usb_pipeendpoint(urb
->pipe
));
3222 transaction
= cvmx_usb_submit_control(usb
, pipe
, urb
);
3225 dev_dbg(dev
, "Submit bulk to %d.%d\n",
3226 usb_pipedevice(urb
->pipe
),
3227 usb_pipeendpoint(urb
->pipe
));
3228 transaction
= cvmx_usb_submit_bulk(usb
, pipe
, urb
);
3232 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
3233 spin_unlock_irqrestore(&usb
->lock
, flags
);
3234 dev_dbg(dev
, "Failed to submit\n");
3237 urb
->hcpriv
= transaction
;
3238 spin_unlock_irqrestore(&usb
->lock
, flags
);
3242 static int octeon_usb_urb_dequeue(struct usb_hcd
*hcd
,
3246 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3247 unsigned long flags
;
3253 spin_lock_irqsave(&usb
->lock
, flags
);
3255 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
3259 urb
->status
= status
;
3260 cvmx_usb_cancel(usb
, urb
->ep
->hcpriv
, urb
->hcpriv
);
3263 spin_unlock_irqrestore(&usb
->lock
, flags
);
3268 static void octeon_usb_endpoint_disable(struct usb_hcd
*hcd
,
3269 struct usb_host_endpoint
*ep
)
3271 struct device
*dev
= hcd
->self
.controller
;
3274 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3275 struct cvmx_usb_pipe
*pipe
= ep
->hcpriv
;
3276 unsigned long flags
;
3278 spin_lock_irqsave(&usb
->lock
, flags
);
3279 cvmx_usb_cancel_all(usb
, pipe
);
3280 if (cvmx_usb_close_pipe(usb
, pipe
))
3281 dev_dbg(dev
, "Closing pipe %p failed\n", pipe
);
3282 spin_unlock_irqrestore(&usb
->lock
, flags
);
3287 static int octeon_usb_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3289 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3290 struct cvmx_usb_port_status port_status
;
3291 unsigned long flags
;
3293 spin_lock_irqsave(&usb
->lock
, flags
);
3294 port_status
= cvmx_usb_get_status(usb
);
3295 spin_unlock_irqrestore(&usb
->lock
, flags
);
3296 buf
[0] = port_status
.connect_change
<< 1;
3301 static int octeon_usb_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
3302 u16 wIndex
, char *buf
, u16 wLength
)
3304 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3305 struct device
*dev
= hcd
->self
.controller
;
3306 struct cvmx_usb_port_status usb_port_status
;
3308 struct usb_hub_descriptor
*desc
;
3309 unsigned long flags
;
3312 case ClearHubFeature
:
3313 dev_dbg(dev
, "ClearHubFeature\n");
3315 case C_HUB_LOCAL_POWER
:
3316 case C_HUB_OVER_CURRENT
:
3317 /* Nothing required here */
3323 case ClearPortFeature
:
3324 dev_dbg(dev
, "ClearPortFeature\n");
3326 dev_dbg(dev
, " INVALID\n");
3331 case USB_PORT_FEAT_ENABLE
:
3332 dev_dbg(dev
, " ENABLE\n");
3333 spin_lock_irqsave(&usb
->lock
, flags
);
3334 cvmx_usb_disable(usb
);
3335 spin_unlock_irqrestore(&usb
->lock
, flags
);
3337 case USB_PORT_FEAT_SUSPEND
:
3338 dev_dbg(dev
, " SUSPEND\n");
3339 /* Not supported on Octeon */
3341 case USB_PORT_FEAT_POWER
:
3342 dev_dbg(dev
, " POWER\n");
3343 /* Not supported on Octeon */
3345 case USB_PORT_FEAT_INDICATOR
:
3346 dev_dbg(dev
, " INDICATOR\n");
3347 /* Port inidicator not supported */
3349 case USB_PORT_FEAT_C_CONNECTION
:
3350 dev_dbg(dev
, " C_CONNECTION\n");
3351 /* Clears drivers internal connect status change flag */
3352 spin_lock_irqsave(&usb
->lock
, flags
);
3353 usb
->port_status
= cvmx_usb_get_status(usb
);
3354 spin_unlock_irqrestore(&usb
->lock
, flags
);
3356 case USB_PORT_FEAT_C_RESET
:
3357 dev_dbg(dev
, " C_RESET\n");
3359 * Clears the driver's internal Port Reset Change flag.
3361 spin_lock_irqsave(&usb
->lock
, flags
);
3362 usb
->port_status
= cvmx_usb_get_status(usb
);
3363 spin_unlock_irqrestore(&usb
->lock
, flags
);
3365 case USB_PORT_FEAT_C_ENABLE
:
3366 dev_dbg(dev
, " C_ENABLE\n");
3368 * Clears the driver's internal Port Enable/Disable
3371 spin_lock_irqsave(&usb
->lock
, flags
);
3372 usb
->port_status
= cvmx_usb_get_status(usb
);
3373 spin_unlock_irqrestore(&usb
->lock
, flags
);
3375 case USB_PORT_FEAT_C_SUSPEND
:
3376 dev_dbg(dev
, " C_SUSPEND\n");
3378 * Clears the driver's internal Port Suspend Change
3379 * flag, which is set when resume signaling on the host
3383 case USB_PORT_FEAT_C_OVER_CURRENT
:
3384 dev_dbg(dev
, " C_OVER_CURRENT\n");
3385 /* Clears the driver's overcurrent Change flag */
3386 spin_lock_irqsave(&usb
->lock
, flags
);
3387 usb
->port_status
= cvmx_usb_get_status(usb
);
3388 spin_unlock_irqrestore(&usb
->lock
, flags
);
3391 dev_dbg(dev
, " UNKNOWN\n");
3395 case GetHubDescriptor
:
3396 dev_dbg(dev
, "GetHubDescriptor\n");
3397 desc
= (struct usb_hub_descriptor
*)buf
;
3398 desc
->bDescLength
= 9;
3399 desc
->bDescriptorType
= 0x29;
3400 desc
->bNbrPorts
= 1;
3401 desc
->wHubCharacteristics
= cpu_to_le16(0x08);
3402 desc
->bPwrOn2PwrGood
= 1;
3403 desc
->bHubContrCurrent
= 0;
3404 desc
->u
.hs
.DeviceRemovable
[0] = 0;
3405 desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3408 dev_dbg(dev
, "GetHubStatus\n");
3412 dev_dbg(dev
, "GetPortStatus\n");
3414 dev_dbg(dev
, " INVALID\n");
3418 spin_lock_irqsave(&usb
->lock
, flags
);
3419 usb_port_status
= cvmx_usb_get_status(usb
);
3420 spin_unlock_irqrestore(&usb
->lock
, flags
);
3423 if (usb_port_status
.connect_change
) {
3424 port_status
|= (1 << USB_PORT_FEAT_C_CONNECTION
);
3425 dev_dbg(dev
, " C_CONNECTION\n");
3428 if (usb_port_status
.port_enabled
) {
3429 port_status
|= (1 << USB_PORT_FEAT_C_ENABLE
);
3430 dev_dbg(dev
, " C_ENABLE\n");
3433 if (usb_port_status
.connected
) {
3434 port_status
|= (1 << USB_PORT_FEAT_CONNECTION
);
3435 dev_dbg(dev
, " CONNECTION\n");
3438 if (usb_port_status
.port_enabled
) {
3439 port_status
|= (1 << USB_PORT_FEAT_ENABLE
);
3440 dev_dbg(dev
, " ENABLE\n");
3443 if (usb_port_status
.port_over_current
) {
3444 port_status
|= (1 << USB_PORT_FEAT_OVER_CURRENT
);
3445 dev_dbg(dev
, " OVER_CURRENT\n");
3448 if (usb_port_status
.port_powered
) {
3449 port_status
|= (1 << USB_PORT_FEAT_POWER
);
3450 dev_dbg(dev
, " POWER\n");
3453 if (usb_port_status
.port_speed
== CVMX_USB_SPEED_HIGH
) {
3454 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3455 dev_dbg(dev
, " HIGHSPEED\n");
3456 } else if (usb_port_status
.port_speed
== CVMX_USB_SPEED_LOW
) {
3457 port_status
|= (1 << USB_PORT_FEAT_LOWSPEED
);
3458 dev_dbg(dev
, " LOWSPEED\n");
3461 *((__le32
*)buf
) = cpu_to_le32(port_status
);
3464 dev_dbg(dev
, "SetHubFeature\n");
3465 /* No HUB features supported */
3467 case SetPortFeature
:
3468 dev_dbg(dev
, "SetPortFeature\n");
3470 dev_dbg(dev
, " INVALID\n");
3475 case USB_PORT_FEAT_SUSPEND
:
3476 dev_dbg(dev
, " SUSPEND\n");
3478 case USB_PORT_FEAT_POWER
:
3479 dev_dbg(dev
, " POWER\n");
3481 * Program the port power bit to drive VBUS on the USB.
3483 spin_lock_irqsave(&usb
->lock
, flags
);
3484 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
),
3485 cvmx_usbcx_hprt
, prtpwr
, 1);
3486 spin_unlock_irqrestore(&usb
->lock
, flags
);
3488 case USB_PORT_FEAT_RESET
:
3489 dev_dbg(dev
, " RESET\n");
3490 spin_lock_irqsave(&usb
->lock
, flags
);
3491 cvmx_usb_reset_port(usb
);
3492 spin_unlock_irqrestore(&usb
->lock
, flags
);
3494 case USB_PORT_FEAT_INDICATOR
:
3495 dev_dbg(dev
, " INDICATOR\n");
3499 dev_dbg(dev
, " UNKNOWN\n");
3504 dev_dbg(dev
, "Unknown root hub request\n");
3510 static const struct hc_driver octeon_hc_driver
= {
3511 .description
= "Octeon USB",
3512 .product_desc
= "Octeon Host Controller",
3513 .hcd_priv_size
= sizeof(struct octeon_hcd
),
3514 .irq
= octeon_usb_irq
,
3515 .flags
= HCD_MEMORY
| HCD_USB2
,
3516 .start
= octeon_usb_start
,
3517 .stop
= octeon_usb_stop
,
3518 .urb_enqueue
= octeon_usb_urb_enqueue
,
3519 .urb_dequeue
= octeon_usb_urb_dequeue
,
3520 .endpoint_disable
= octeon_usb_endpoint_disable
,
3521 .get_frame_number
= octeon_usb_get_frame_number
,
3522 .hub_status_data
= octeon_usb_hub_status_data
,
3523 .hub_control
= octeon_usb_hub_control
,
3524 .map_urb_for_dma
= octeon_map_urb_for_dma
,
3525 .unmap_urb_for_dma
= octeon_unmap_urb_for_dma
,
3528 static int octeon_usb_probe(struct platform_device
*pdev
)
3531 int initialize_flags
;
3533 struct resource
*res_mem
;
3534 struct device_node
*usbn_node
;
3535 int irq
= platform_get_irq(pdev
, 0);
3536 struct device
*dev
= &pdev
->dev
;
3537 struct octeon_hcd
*usb
;
3538 struct usb_hcd
*hcd
;
3539 u32 clock_rate
= 48000000;
3540 bool is_crystal_clock
= false;
3541 const char *clock_type
;
3544 if (!dev
->of_node
) {
3545 dev_err(dev
, "Error: empty of_node\n");
3548 usbn_node
= dev
->of_node
->parent
;
3550 i
= of_property_read_u32(usbn_node
,
3551 "clock-frequency", &clock_rate
);
3553 i
= of_property_read_u32(usbn_node
,
3554 "refclk-frequency", &clock_rate
);
3556 dev_err(dev
, "No USBN \"clock-frequency\"\n");
3559 switch (clock_rate
) {
3561 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
;
3564 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
;
3567 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
;
3570 dev_err(dev
, "Illegal USBN \"clock-frequency\" %u\n",
3575 i
= of_property_read_string(usbn_node
,
3576 "cavium,refclk-type", &clock_type
);
3578 i
= of_property_read_string(usbn_node
,
3579 "refclk-type", &clock_type
);
3581 if (!i
&& strcmp("crystal", clock_type
) == 0)
3582 is_crystal_clock
= true;
3584 if (is_crystal_clock
)
3585 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
;
3587 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
;
3589 res_mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3591 dev_err(dev
, "found no memory resource\n");
3594 usb_num
= (res_mem
->start
>> 44) & 1;
3597 /* Defective device tree, but we know how to fix it. */
3598 irq_hw_number_t hwirq
= usb_num
? (1 << 6) + 17 : 56;
3600 irq
= irq_create_mapping(NULL
, hwirq
);
3604 * Set the DMA mask to 64bits so we get buffers already translated for
3607 dev
->coherent_dma_mask
= ~0;
3608 dev
->dma_mask
= &dev
->coherent_dma_mask
;
3611 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3612 * IOB priority registers. Under heavy network load USB
3613 * hardware can be starved by the IOB causing a crash. Give
3614 * it a priority boost if it has been waiting more than 400
3615 * cycles to avoid this situation.
3617 * Testing indicates that a cnt_val of 8192 is not sufficient,
3618 * but no failures are seen with 4096. We choose a value of
3619 * 400 to give a safety factor of 10.
3621 if (OCTEON_IS_MODEL(OCTEON_CN52XX
) || OCTEON_IS_MODEL(OCTEON_CN56XX
)) {
3622 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt
;
3625 pri_cnt
.s
.cnt_enb
= 1;
3626 pri_cnt
.s
.cnt_val
= 400;
3627 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT
, pri_cnt
.u64
);
3630 hcd
= usb_create_hcd(&octeon_hc_driver
, dev
, dev_name(dev
));
3632 dev_dbg(dev
, "Failed to allocate memory for HCD\n");
3635 hcd
->uses_new_polling
= 1;
3636 usb
= (struct octeon_hcd
*)hcd
->hcd_priv
;
3638 spin_lock_init(&usb
->lock
);
3640 usb
->init_flags
= initialize_flags
;
3642 /* Initialize the USB state structure */
3643 usb
->index
= usb_num
;
3644 INIT_LIST_HEAD(&usb
->idle_pipes
);
3645 for (i
= 0; i
< ARRAY_SIZE(usb
->active_pipes
); i
++)
3646 INIT_LIST_HEAD(&usb
->active_pipes
[i
]);
3648 /* Due to an errata, CN31XX doesn't support DMA */
3649 if (OCTEON_IS_MODEL(OCTEON_CN31XX
)) {
3650 usb
->init_flags
|= CVMX_USB_INITIALIZE_FLAGS_NO_DMA
;
3651 /* Only use one channel with non DMA */
3652 usb
->idle_hardware_channels
= 0x1;
3653 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX
)) {
3654 /* CN5XXX have an errata with channel 3 */
3655 usb
->idle_hardware_channels
= 0xf7;
3657 usb
->idle_hardware_channels
= 0xff;
3660 status
= cvmx_usb_initialize(dev
, usb
);
3662 dev_dbg(dev
, "USB initialization failed with %d\n", status
);
3667 status
= usb_add_hcd(hcd
, irq
, 0);
3669 dev_dbg(dev
, "USB add HCD failed with %d\n", status
);
3673 device_wakeup_enable(hcd
->self
.controller
);
3675 dev_info(dev
, "Registered HCD for port %d on irq %d\n", usb_num
, irq
);
3680 static int octeon_usb_remove(struct platform_device
*pdev
)
3683 struct device
*dev
= &pdev
->dev
;
3684 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3685 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3686 unsigned long flags
;
3688 usb_remove_hcd(hcd
);
3689 spin_lock_irqsave(&usb
->lock
, flags
);
3690 status
= cvmx_usb_shutdown(usb
);
3691 spin_unlock_irqrestore(&usb
->lock
, flags
);
3693 dev_dbg(dev
, "USB shutdown failed with %d\n", status
);
3700 static const struct of_device_id octeon_usb_match
[] = {
3702 .compatible
= "cavium,octeon-5750-usbc",
3706 MODULE_DEVICE_TABLE(of
, octeon_usb_match
);
3708 static struct platform_driver octeon_usb_driver
= {
3710 .name
= "octeon-hcd",
3711 .of_match_table
= octeon_usb_match
,
3713 .probe
= octeon_usb_probe
,
3714 .remove
= octeon_usb_remove
,
3717 static int __init
octeon_usb_driver_init(void)
3722 return platform_driver_register(&octeon_usb_driver
);
3724 module_init(octeon_usb_driver_init
);
3726 static void __exit
octeon_usb_driver_exit(void)
3731 platform_driver_unregister(&octeon_usb_driver
);
3733 module_exit(octeon_usb_driver_exit
);
3735 MODULE_LICENSE("GPL");
3736 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3737 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");