Linux 4.19.133
[linux/fpc-iii.git] / drivers / staging / octeon-usb / octeon-hcd.c
blobcff5e790b196640feb4b1af3ac53d8a05444fdee
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
5 * for more details.
7 * Copyright (C) 2008 Cavium Networks
9 * Some parts of the code were originally released under BSD license:
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12 * reserved.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met:
18 * * Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
21 * * Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials provided
24 * with the distribution.
26 * * Neither the name of Cavium Networks nor the names of
27 * its contributors may be used to endorse or promote products
28 * derived from this software without specific prior written
29 * permission.
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
34 * countries.
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/platform_device.h>
55 #include <asm/octeon/octeon.h>
57 #include "octeon-hcd.h"
59 /**
60 * enum cvmx_usb_speed - the possible USB device speeds
62 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
63 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
64 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
66 enum cvmx_usb_speed {
67 CVMX_USB_SPEED_HIGH = 0,
68 CVMX_USB_SPEED_FULL = 1,
69 CVMX_USB_SPEED_LOW = 2,
72 /**
73 * enum cvmx_usb_transfer - the possible USB transfer types
75 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
76 * transfers
77 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
78 * priority periodic transfers
79 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
80 * transfers
81 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
82 * periodic transfers
84 enum cvmx_usb_transfer {
85 CVMX_USB_TRANSFER_CONTROL = 0,
86 CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
87 CVMX_USB_TRANSFER_BULK = 2,
88 CVMX_USB_TRANSFER_INTERRUPT = 3,
91 /**
92 * enum cvmx_usb_direction - the transfer directions
94 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
95 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
97 enum cvmx_usb_direction {
98 CVMX_USB_DIRECTION_OUT,
99 CVMX_USB_DIRECTION_IN,
103 * enum cvmx_usb_status - possible callback function status codes
105 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
106 * any errors
107 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
108 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
109 * by a user call to cvmx_usb_cancel
110 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
111 * error status
112 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
113 * from the device
114 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
115 * device even after a number of retries
116 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
117 * error even after a number of retries
118 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
119 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
120 * even after a number of retries
122 enum cvmx_usb_status {
123 CVMX_USB_STATUS_OK,
124 CVMX_USB_STATUS_SHORT,
125 CVMX_USB_STATUS_CANCEL,
126 CVMX_USB_STATUS_ERROR,
127 CVMX_USB_STATUS_STALL,
128 CVMX_USB_STATUS_XACTERR,
129 CVMX_USB_STATUS_DATATGLERR,
130 CVMX_USB_STATUS_BABBLEERR,
131 CVMX_USB_STATUS_FRAMEERR,
135 * struct cvmx_usb_port_status - the USB port status information
137 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
138 * @port_over_current: 1 = Over current detected, 0 = Over current not
139 * detected. Octeon doesn't support over current detection.
140 * @port_powered: 1 = Port power is being supplied to the device, 0 =
141 * power is off. Octeon doesn't support turning port power
142 * off.
143 * @port_speed: Current port speed.
144 * @connected: 1 = A device is connected to the port, 0 = No device is
145 * connected.
146 * @connect_change: 1 = Device connected state changed since the last set
147 * status call.
149 struct cvmx_usb_port_status {
150 u32 reserved : 25;
151 u32 port_enabled : 1;
152 u32 port_over_current : 1;
153 u32 port_powered : 1;
154 enum cvmx_usb_speed port_speed : 2;
155 u32 connected : 1;
156 u32 connect_change : 1;
160 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
162 * @offset: This is the offset in bytes into the main buffer where this data
163 * is stored.
164 * @length: This is the length in bytes of the data.
165 * @status: This is the status of this individual packet transfer.
167 struct cvmx_usb_iso_packet {
168 int offset;
169 int length;
170 enum cvmx_usb_status status;
174 * enum cvmx_usb_initialize_flags - flags used by the initialization function
176 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
177 * as clock source at USB_XO and
178 * USB_XI.
179 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
180 * board clock source at USB_XO.
181 * USB_XI should be tied to GND.
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
183 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
184 * crystal
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
186 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
187 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
188 * data transfer use for the USB
190 enum cvmx_usb_initialize_flags {
191 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
192 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
193 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
196 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
197 /* Bits 3-4 used to encode the clock frequency */
198 CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
202 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
204 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
205 * actively using hardware.
206 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
207 * pipe is in the ping state.
209 enum cvmx_usb_pipe_flags {
210 CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
211 CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
214 /* Maximum number of times to retry failed transactions */
215 #define MAX_RETRIES 3
217 /* Maximum number of hardware channels supported by the USB block */
218 #define MAX_CHANNELS 8
221 * The low level hardware can transfer a maximum of this number of bytes in each
222 * transfer. The field is 19 bits wide
224 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
227 * The low level hardware can transfer a maximum of this number of packets in
228 * each transfer. The field is 10 bits wide
230 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
233 * Logical transactions may take numerous low level
234 * transactions, especially when splits are concerned. This
235 * enum represents all of the possible stages a transaction can
236 * be in. Note that split completes are always even. This is so
237 * the NAK handler can backup to the previous low level
238 * transaction with a simple clearing of bit 0.
240 enum cvmx_usb_stage {
241 CVMX_USB_STAGE_NON_CONTROL,
242 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
243 CVMX_USB_STAGE_SETUP,
244 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
245 CVMX_USB_STAGE_DATA,
246 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
247 CVMX_USB_STAGE_STATUS,
248 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
252 * struct cvmx_usb_transaction - describes each pending USB transaction
253 * regardless of type. These are linked together
254 * to form a list of pending requests for a pipe.
256 * @node: List node for transactions in the pipe.
257 * @type: Type of transaction, duplicated of the pipe.
258 * @flags: State flags for this transaction.
259 * @buffer: User's physical buffer address to read/write.
260 * @buffer_length: Size of the user's buffer in bytes.
261 * @control_header: For control transactions, physical address of the 8
262 * byte standard header.
263 * @iso_start_frame: For ISO transactions, the starting frame number.
264 * @iso_number_packets: For ISO transactions, the number of packets in the
265 * request.
266 * @iso_packets: For ISO transactions, the sub packets in the request.
267 * @actual_bytes: Actual bytes transfer for this transaction.
268 * @stage: For control transactions, the current stage.
269 * @urb: URB.
271 struct cvmx_usb_transaction {
272 struct list_head node;
273 enum cvmx_usb_transfer type;
274 u64 buffer;
275 int buffer_length;
276 u64 control_header;
277 int iso_start_frame;
278 int iso_number_packets;
279 struct cvmx_usb_iso_packet *iso_packets;
280 int xfersize;
281 int pktcnt;
282 int retries;
283 int actual_bytes;
284 enum cvmx_usb_stage stage;
285 struct urb *urb;
289 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
290 * and some USB device. It contains a list of pending
291 * request to the device.
293 * @node: List node for pipe list
294 * @next: Pipe after this one in the list
295 * @transactions: List of pending transactions
296 * @interval: For periodic pipes, the interval between packets in
297 * frames
298 * @next_tx_frame: The next frame this pipe is allowed to transmit on
299 * @flags: State flags for this pipe
300 * @device_speed: Speed of device connected to this pipe
301 * @transfer_type: Type of transaction supported by this pipe
302 * @transfer_dir: IN or OUT. Ignored for Control
303 * @multi_count: Max packet in a row for the device
304 * @max_packet: The device's maximum packet size in bytes
305 * @device_addr: USB device address at other end of pipe
306 * @endpoint_num: USB endpoint number at other end of pipe
307 * @hub_device_addr: Hub address this device is connected to
308 * @hub_port: Hub port this device is connected to
309 * @pid_toggle: This toggles between 0/1 on every packet send to track
310 * the data pid needed
311 * @channel: Hardware DMA channel for this pipe
312 * @split_sc_frame: The low order bits of the frame number the split
313 * complete should be sent on
315 struct cvmx_usb_pipe {
316 struct list_head node;
317 struct list_head transactions;
318 u64 interval;
319 u64 next_tx_frame;
320 enum cvmx_usb_pipe_flags flags;
321 enum cvmx_usb_speed device_speed;
322 enum cvmx_usb_transfer transfer_type;
323 enum cvmx_usb_direction transfer_dir;
324 int multi_count;
325 u16 max_packet;
326 u8 device_addr;
327 u8 endpoint_num;
328 u8 hub_device_addr;
329 u8 hub_port;
330 u8 pid_toggle;
331 u8 channel;
332 s8 split_sc_frame;
335 struct cvmx_usb_tx_fifo {
336 struct {
337 int channel;
338 int size;
339 u64 address;
340 } entry[MAX_CHANNELS + 1];
341 int head;
342 int tail;
346 * struct octeon_hcd - the state of the USB block
348 * lock: Serialization lock.
349 * init_flags: Flags passed to initialize.
350 * index: Which USB block this is for.
351 * idle_hardware_channels: Bit set for every idle hardware channel.
352 * usbcx_hprt: Stored port status so we don't need to read a CSR to
353 * determine splits.
354 * pipe_for_channel: Map channels to pipes.
355 * pipe: Storage for pipes.
356 * indent: Used by debug output to indent functions.
357 * port_status: Last port status used for change notification.
358 * idle_pipes: List of open pipes that have no transactions.
359 * active_pipes: Active pipes indexed by transfer type.
360 * frame_number: Increments every SOF interrupt for time keeping.
361 * active_split: Points to the current active split, or NULL.
363 struct octeon_hcd {
364 spinlock_t lock; /* serialization lock */
365 int init_flags;
366 int index;
367 int idle_hardware_channels;
368 union cvmx_usbcx_hprt usbcx_hprt;
369 struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
370 int indent;
371 struct cvmx_usb_port_status port_status;
372 struct list_head idle_pipes;
373 struct list_head active_pipes[4];
374 u64 frame_number;
375 struct cvmx_usb_transaction *active_split;
376 struct cvmx_usb_tx_fifo periodic;
377 struct cvmx_usb_tx_fifo nonperiodic;
380 /* This macro spins on a register waiting for it to reach a condition. */
381 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec) \
382 ({int result; \
383 do { \
384 u64 done = cvmx_get_cycle() + (u64)timeout_usec * \
385 octeon_get_clock_rate() / 1000000; \
386 union _union c; \
388 while (1) { \
389 c.u32 = cvmx_usb_read_csr32(usb, address); \
391 if (cond) { \
392 result = 0; \
393 break; \
394 } else if (cvmx_get_cycle() > done) { \
395 result = -1; \
396 break; \
397 } else \
398 __delay(100); \
400 } while (0); \
401 result; })
404 * This macro logically sets a single field in a CSR. It does the sequence
405 * read, modify, and write
407 #define USB_SET_FIELD32(address, _union, field, value) \
408 do { \
409 union _union c; \
411 c.u32 = cvmx_usb_read_csr32(usb, address); \
412 c.s.field = value; \
413 cvmx_usb_write_csr32(usb, address, c.u32); \
414 } while (0)
416 /* Returns the IO address to push/pop stuff data from the FIFOs */
417 #define USB_FIFO_ADDRESS(channel, usb_index) \
418 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
421 * struct octeon_temp_buffer - a bounce buffer for USB transfers
422 * @orig_buffer: the original buffer passed by the USB stack
423 * @data: the newly allocated temporary buffer (excluding meta-data)
425 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
426 * the buffer is too short, we need to allocate a temporary one, and this struct
427 * represents it.
429 struct octeon_temp_buffer {
430 void *orig_buffer;
431 u8 data[0];
434 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
436 return container_of((void *)p, struct usb_hcd, hcd_priv);
440 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
441 * (if needed)
442 * @urb: URB.
443 * @mem_flags: Memory allocation flags.
445 * This function allocates a temporary bounce buffer whenever it's needed
446 * due to HW limitations.
448 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
450 struct octeon_temp_buffer *temp;
452 if (urb->num_sgs || urb->sg ||
453 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
454 !(urb->transfer_buffer_length % sizeof(u32)))
455 return 0;
457 temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
458 sizeof(*temp), mem_flags);
459 if (!temp)
460 return -ENOMEM;
462 temp->orig_buffer = urb->transfer_buffer;
463 if (usb_urb_dir_out(urb))
464 memcpy(temp->data, urb->transfer_buffer,
465 urb->transfer_buffer_length);
466 urb->transfer_buffer = temp->data;
467 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
469 return 0;
473 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
474 * @urb: URB.
476 * Frees a buffer allocated by octeon_alloc_temp_buffer().
478 static void octeon_free_temp_buffer(struct urb *urb)
480 struct octeon_temp_buffer *temp;
481 size_t length;
483 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
484 return;
486 temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
487 data);
488 if (usb_urb_dir_in(urb)) {
489 if (usb_pipeisoc(urb->pipe))
490 length = urb->transfer_buffer_length;
491 else
492 length = urb->actual_length;
494 memcpy(temp->orig_buffer, urb->transfer_buffer, length);
496 urb->transfer_buffer = temp->orig_buffer;
497 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
498 kfree(temp);
502 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
503 * @hcd: USB HCD structure.
504 * @urb: URB.
505 * @mem_flags: Memory allocation flags.
507 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
508 gfp_t mem_flags)
510 int ret;
512 ret = octeon_alloc_temp_buffer(urb, mem_flags);
513 if (ret)
514 return ret;
516 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
517 if (ret)
518 octeon_free_temp_buffer(urb);
520 return ret;
524 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
525 * @hcd: USB HCD structure.
526 * @urb: URB.
528 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
530 usb_hcd_unmap_urb_for_dma(hcd, urb);
531 octeon_free_temp_buffer(urb);
535 * Read a USB 32bit CSR. It performs the necessary address swizzle
536 * for 32bit CSRs and logs the value in a readable format if
537 * debugging is on.
539 * @usb: USB block this access is for
540 * @address: 64bit address to read
542 * Returns: Result of the read
544 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
546 u32 result = cvmx_read64_uint32(address ^ 4);
547 return result;
551 * Write a USB 32bit CSR. It performs the necessary address
552 * swizzle for 32bit CSRs and logs the value in a readable format
553 * if debugging is on.
555 * @usb: USB block this access is for
556 * @address: 64bit address to write
557 * @value: Value to write
559 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
560 u64 address, u32 value)
562 cvmx_write64_uint32(address ^ 4, value);
563 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
567 * Return non zero if this pipe connects to a non HIGH speed
568 * device through a high speed hub.
570 * @usb: USB block this access is for
571 * @pipe: Pipe to check
573 * Returns: Non zero if we need to do split transactions
575 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
576 struct cvmx_usb_pipe *pipe)
578 return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
579 usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
583 * Trivial utility function to return the correct PID for a pipe
585 * @pipe: pipe to check
587 * Returns: PID for pipe
589 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
591 if (pipe->pid_toggle)
592 return 2; /* Data1 */
593 return 0; /* Data0 */
596 static void cvmx_fifo_setup(struct octeon_hcd *usb)
598 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
599 union cvmx_usbcx_gnptxfsiz npsiz;
600 union cvmx_usbcx_hptxfsiz psiz;
602 usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
603 CVMX_USBCX_GHWCFG3(usb->index));
606 * Program the USBC_GRXFSIZ register to select the size of the receive
607 * FIFO (25%).
609 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
610 rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
613 * Program the USBC_GNPTXFSIZ register to select the size and the start
614 * address of the non-periodic transmit FIFO for nonperiodic
615 * transactions (50%).
617 npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
618 npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
619 npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
620 cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
623 * Program the USBC_HPTXFSIZ register to select the size and start
624 * address of the periodic transmit FIFO for periodic transactions
625 * (25%).
627 psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
628 psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
629 psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
630 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
632 /* Flush all FIFOs */
633 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
634 cvmx_usbcx_grstctl, txfnum, 0x10);
635 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
636 cvmx_usbcx_grstctl, txfflsh, 1);
637 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
638 cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
639 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 cvmx_usbcx_grstctl, rxfflsh, 1);
641 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
642 cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
646 * Shutdown a USB port after a call to cvmx_usb_initialize().
647 * The port should be disabled with all pipes closed when this
648 * function is called.
650 * @usb: USB device state populated by cvmx_usb_initialize().
652 * Returns: 0 or a negative error code.
654 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
656 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
658 /* Make sure all pipes are closed */
659 if (!list_empty(&usb->idle_pipes) ||
660 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
661 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
662 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
663 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
664 return -EBUSY;
666 /* Disable the clocks and put them in power on reset */
667 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
668 usbn_clk_ctl.s.enable = 1;
669 usbn_clk_ctl.s.por = 1;
670 usbn_clk_ctl.s.hclk_rst = 1;
671 usbn_clk_ctl.s.prst = 0;
672 usbn_clk_ctl.s.hrst = 0;
673 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
674 return 0;
678 * Initialize a USB port for use. This must be called before any
679 * other access to the Octeon USB port is made. The port starts
680 * off in the disabled state.
682 * @dev: Pointer to struct device for logging purposes.
683 * @usb: Pointer to struct octeon_hcd.
685 * Returns: 0 or a negative error code.
687 static int cvmx_usb_initialize(struct device *dev,
688 struct octeon_hcd *usb)
690 int channel;
691 int divisor;
692 int retries = 0;
693 union cvmx_usbcx_hcfg usbcx_hcfg;
694 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
695 union cvmx_usbcx_gintsts usbc_gintsts;
696 union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
697 union cvmx_usbcx_gintmsk usbcx_gintmsk;
698 union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
699 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
701 retry:
703 * Power On Reset and PHY Initialization
705 * 1. Wait for DCOK to assert (nothing to do)
707 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
708 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
710 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
711 usbn_clk_ctl.s.por = 1;
712 usbn_clk_ctl.s.hrst = 0;
713 usbn_clk_ctl.s.prst = 0;
714 usbn_clk_ctl.s.hclk_rst = 0;
715 usbn_clk_ctl.s.enable = 0;
717 * 2b. Select the USB reference clock/crystal parameters by writing
718 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
720 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
722 * The USB port uses 12/24/48MHz 2.5V board clock
723 * source at USB_XO. USB_XI should be tied to GND.
724 * Most Octeon evaluation boards require this setting
726 if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
727 OCTEON_IS_MODEL(OCTEON_CN56XX) ||
728 OCTEON_IS_MODEL(OCTEON_CN50XX))
729 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
730 usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
731 else
732 /* From CN52XX manual */
733 usbn_clk_ctl.s.p_rtype = 1;
735 switch (usb->init_flags &
736 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
737 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
738 usbn_clk_ctl.s.p_c_sel = 0;
739 break;
740 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
741 usbn_clk_ctl.s.p_c_sel = 1;
742 break;
743 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
744 usbn_clk_ctl.s.p_c_sel = 2;
745 break;
747 } else {
749 * The USB port uses a 12MHz crystal as clock source
750 * at USB_XO and USB_XI
752 if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
753 /* From CN31XX,CN30XX manual */
754 usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
755 else
756 /* From CN56XX,CN52XX,CN50XX manuals. */
757 usbn_clk_ctl.s.p_rtype = 0;
759 usbn_clk_ctl.s.p_c_sel = 0;
762 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
763 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
764 * such that USB is as close as possible to 125Mhz
766 divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
767 /* Lower than 4 doesn't seem to work properly */
768 if (divisor < 4)
769 divisor = 4;
770 usbn_clk_ctl.s.divide = divisor;
771 usbn_clk_ctl.s.divide2 = 0;
772 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
774 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
775 usbn_clk_ctl.s.hclk_rst = 1;
776 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
777 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
778 __delay(64);
780 * 3. Program the power-on reset field in the USBN clock-control
781 * register:
782 * USBN_CLK_CTL[POR] = 0
784 usbn_clk_ctl.s.por = 0;
785 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
786 /* 4. Wait 1 ms for PHY clock to start */
787 mdelay(1);
789 * 5. Program the Reset input from automatic test equipment field in the
790 * USBP control and status register:
791 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
793 usbn_usbp_ctl_status.u64 =
794 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
795 usbn_usbp_ctl_status.s.ate_reset = 1;
796 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
797 usbn_usbp_ctl_status.u64);
798 /* 6. Wait 10 cycles */
799 __delay(10);
801 * 7. Clear ATE_RESET field in the USBN clock-control register:
802 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
804 usbn_usbp_ctl_status.s.ate_reset = 0;
805 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
806 usbn_usbp_ctl_status.u64);
808 * 8. Program the PHY reset field in the USBN clock-control register:
809 * USBN_CLK_CTL[PRST] = 1
811 usbn_clk_ctl.s.prst = 1;
812 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
814 * 9. Program the USBP control and status register to select host or
815 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
816 * device
818 usbn_usbp_ctl_status.s.hst_mode = 0;
819 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
820 usbn_usbp_ctl_status.u64);
821 /* 10. Wait 1 us */
822 udelay(1);
824 * 11. Program the hreset_n field in the USBN clock-control register:
825 * USBN_CLK_CTL[HRST] = 1
827 usbn_clk_ctl.s.hrst = 1;
828 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
829 /* 12. Proceed to USB core initialization */
830 usbn_clk_ctl.s.enable = 1;
831 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
832 udelay(1);
835 * USB Core Initialization
837 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
838 * determine USB core configuration parameters.
840 * Nothing needed
842 * 2. Program the following fields in the global AHB configuration
843 * register (USBC_GAHBCFG)
844 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
845 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
846 * Nonperiodic TxFIFO empty level (slave mode only),
847 * USBC_GAHBCFG[NPTXFEMPLVL]
848 * Periodic TxFIFO empty level (slave mode only),
849 * USBC_GAHBCFG[PTXFEMPLVL]
850 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
852 usbcx_gahbcfg.u32 = 0;
853 usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
854 CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
855 usbcx_gahbcfg.s.hbstlen = 0;
856 usbcx_gahbcfg.s.nptxfemplvl = 1;
857 usbcx_gahbcfg.s.ptxfemplvl = 1;
858 usbcx_gahbcfg.s.glblintrmsk = 1;
859 cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
860 usbcx_gahbcfg.u32);
863 * 3. Program the following fields in USBC_GUSBCFG register.
864 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
865 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
866 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
867 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
869 usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
870 CVMX_USBCX_GUSBCFG(usb->index));
871 usbcx_gusbcfg.s.toutcal = 0;
872 usbcx_gusbcfg.s.ddrsel = 0;
873 usbcx_gusbcfg.s.usbtrdtim = 0x5;
874 usbcx_gusbcfg.s.phylpwrclksel = 0;
875 cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
876 usbcx_gusbcfg.u32);
879 * 4. The software must unmask the following bits in the USBC_GINTMSK
880 * register.
881 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
882 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
884 usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
885 CVMX_USBCX_GINTMSK(usb->index));
886 usbcx_gintmsk.s.otgintmsk = 1;
887 usbcx_gintmsk.s.modemismsk = 1;
888 usbcx_gintmsk.s.hchintmsk = 1;
889 usbcx_gintmsk.s.sofmsk = 0;
890 /* We need RX FIFO interrupts if we don't have DMA */
891 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
892 usbcx_gintmsk.s.rxflvlmsk = 1;
893 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
894 usbcx_gintmsk.u32);
897 * Disable all channel interrupts. We'll enable them per channel later.
899 for (channel = 0; channel < 8; channel++)
900 cvmx_usb_write_csr32(usb,
901 CVMX_USBCX_HCINTMSKX(channel, usb->index),
905 * Host Port Initialization
907 * 1. Program the host-port interrupt-mask field to unmask,
908 * USBC_GINTMSK[PRTINT] = 1
910 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
911 cvmx_usbcx_gintmsk, prtintmsk, 1);
912 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
913 cvmx_usbcx_gintmsk, disconnintmsk, 1);
916 * 2. Program the USBC_HCFG register to select full-speed host
917 * or high-speed host.
919 usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
920 usbcx_hcfg.s.fslssupp = 0;
921 usbcx_hcfg.s.fslspclksel = 0;
922 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
924 cvmx_fifo_setup(usb);
927 * If the controller is getting port events right after the reset, it
928 * means the initialization failed. Try resetting the controller again
929 * in such case. This is seen to happen after cold boot on DSR-1000N.
931 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
932 CVMX_USBCX_GINTSTS(usb->index));
933 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
934 usbc_gintsts.u32);
935 dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
936 if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
937 return 0;
938 if (retries++ >= 5)
939 return -EAGAIN;
940 dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
941 (int)usbc_gintsts.u32);
942 msleep(50);
943 cvmx_usb_shutdown(usb);
944 msleep(50);
945 goto retry;
949 * Reset a USB port. After this call succeeds, the USB port is
950 * online and servicing requests.
952 * @usb: USB device state populated by cvmx_usb_initialize().
954 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
956 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
957 CVMX_USBCX_HPRT(usb->index));
959 /* Program the port reset bit to start the reset process */
960 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
961 prtrst, 1);
964 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
965 * process to complete.
967 mdelay(50);
969 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
970 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
971 prtrst, 0);
974 * Read the port speed field to get the enumerated speed,
975 * USBC_HPRT[PRTSPD].
977 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
978 CVMX_USBCX_HPRT(usb->index));
982 * Disable a USB port. After this call the USB port will not
983 * generate data transfers and will not generate events.
984 * Transactions in process will fail and call their
985 * associated callbacks.
987 * @usb: USB device state populated by cvmx_usb_initialize().
989 * Returns: 0 or a negative error code.
991 static int cvmx_usb_disable(struct octeon_hcd *usb)
993 /* Disable the port */
994 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
995 prtena, 1);
996 return 0;
1000 * Get the current state of the USB port. Use this call to
1001 * determine if the usb port has anything connected, is enabled,
1002 * or has some sort of error condition. The return value of this
1003 * call has "changed" bits to signal of the value of some fields
1004 * have changed between calls.
1006 * @usb: USB device state populated by cvmx_usb_initialize().
1008 * Returns: Port status information
1010 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1012 union cvmx_usbcx_hprt usbc_hprt;
1013 struct cvmx_usb_port_status result;
1015 memset(&result, 0, sizeof(result));
1017 usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1018 result.port_enabled = usbc_hprt.s.prtena;
1019 result.port_over_current = usbc_hprt.s.prtovrcurract;
1020 result.port_powered = usbc_hprt.s.prtpwr;
1021 result.port_speed = usbc_hprt.s.prtspd;
1022 result.connected = usbc_hprt.s.prtconnsts;
1023 result.connect_change =
1024 result.connected != usb->port_status.connected;
1026 return result;
1030 * Open a virtual pipe between the host and a USB device. A pipe
1031 * must be opened before data can be transferred between a device
1032 * and Octeon.
1034 * @usb: USB device state populated by cvmx_usb_initialize().
1035 * @device_addr:
1036 * USB device address to open the pipe to
1037 * (0-127).
1038 * @endpoint_num:
1039 * USB endpoint number to open the pipe to
1040 * (0-15).
1041 * @device_speed:
1042 * The speed of the device the pipe is going
1043 * to. This must match the device's speed,
1044 * which may be different than the port speed.
1045 * @max_packet: The maximum packet length the device can
1046 * transmit/receive (low speed=0-8, full
1047 * speed=0-1023, high speed=0-1024). This value
1048 * comes from the standard endpoint descriptor
1049 * field wMaxPacketSize bits <10:0>.
1050 * @transfer_type:
1051 * The type of transfer this pipe is for.
1052 * @transfer_dir:
1053 * The direction the pipe is in. This is not
1054 * used for control pipes.
1055 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1056 * this is how often the transfer is scheduled
1057 * for. All other transfers should specify
1058 * zero. The units are in frames (8000/sec at
1059 * high speed, 1000/sec for full speed).
1060 * @multi_count:
1061 * For high speed devices, this is the maximum
1062 * allowed number of packet per microframe.
1063 * Specify zero for non high speed devices. This
1064 * value comes from the standard endpoint descriptor
1065 * field wMaxPacketSize bits <12:11>.
1066 * @hub_device_addr:
1067 * Hub device address this device is connected
1068 * to. Devices connected directly to Octeon
1069 * use zero. This is only used when the device
1070 * is full/low speed behind a high speed hub.
1071 * The address will be of the high speed hub,
1072 * not and full speed hubs after it.
1073 * @hub_port: Which port on the hub the device is
1074 * connected. Use zero for devices connected
1075 * directly to Octeon. Like hub_device_addr,
1076 * this is only used for full/low speed
1077 * devices behind a high speed hub.
1079 * Returns: A non-NULL value is a pipe. NULL means an error.
1081 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1082 int device_addr,
1083 int endpoint_num,
1084 enum cvmx_usb_speed
1085 device_speed,
1086 int max_packet,
1087 enum cvmx_usb_transfer
1088 transfer_type,
1089 enum cvmx_usb_direction
1090 transfer_dir,
1091 int interval, int multi_count,
1092 int hub_device_addr,
1093 int hub_port)
1095 struct cvmx_usb_pipe *pipe;
1097 pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1098 if (!pipe)
1099 return NULL;
1100 if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1101 (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1102 (transfer_type == CVMX_USB_TRANSFER_BULK))
1103 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1104 pipe->device_addr = device_addr;
1105 pipe->endpoint_num = endpoint_num;
1106 pipe->device_speed = device_speed;
1107 pipe->max_packet = max_packet;
1108 pipe->transfer_type = transfer_type;
1109 pipe->transfer_dir = transfer_dir;
1110 INIT_LIST_HEAD(&pipe->transactions);
1113 * All pipes use interval to rate limit NAK processing. Force an
1114 * interval if one wasn't supplied
1116 if (!interval)
1117 interval = 1;
1118 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1119 pipe->interval = interval * 8;
1120 /* Force start splits to be schedule on uFrame 0 */
1121 pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1122 pipe->interval;
1123 } else {
1124 pipe->interval = interval;
1125 pipe->next_tx_frame = usb->frame_number + pipe->interval;
1127 pipe->multi_count = multi_count;
1128 pipe->hub_device_addr = hub_device_addr;
1129 pipe->hub_port = hub_port;
1130 pipe->pid_toggle = 0;
1131 pipe->split_sc_frame = -1;
1132 list_add_tail(&pipe->node, &usb->idle_pipes);
1135 * We don't need to tell the hardware about this pipe yet since
1136 * it doesn't have any submitted requests
1139 return pipe;
1143 * Poll the RX FIFOs and remove data as needed. This function is only used
1144 * in non DMA mode. It is very important that this function be called quickly
1145 * enough to prevent FIFO overflow.
1147 * @usb: USB device state populated by cvmx_usb_initialize().
1149 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1151 union cvmx_usbcx_grxstsph rx_status;
1152 int channel;
1153 int bytes;
1154 u64 address;
1155 u32 *ptr;
1157 rx_status.u32 = cvmx_usb_read_csr32(usb,
1158 CVMX_USBCX_GRXSTSPH(usb->index));
1159 /* Only read data if IN data is there */
1160 if (rx_status.s.pktsts != 2)
1161 return;
1162 /* Check if no data is available */
1163 if (!rx_status.s.bcnt)
1164 return;
1166 channel = rx_status.s.chnum;
1167 bytes = rx_status.s.bcnt;
1168 if (!bytes)
1169 return;
1171 /* Get where the DMA engine would have written this data */
1172 address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1173 channel * 8);
1175 ptr = cvmx_phys_to_ptr(address);
1176 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1177 address + bytes);
1179 /* Loop writing the FIFO data for this packet into memory */
1180 while (bytes > 0) {
1181 *ptr++ = cvmx_usb_read_csr32(usb,
1182 USB_FIFO_ADDRESS(channel, usb->index));
1183 bytes -= 4;
1185 CVMX_SYNCW;
1189 * Fill the TX hardware fifo with data out of the software
1190 * fifos
1192 * @usb: USB device state populated by cvmx_usb_initialize().
1193 * @fifo: Software fifo to use
1194 * @available: Amount of space in the hardware fifo
1196 * Returns: Non zero if the hardware fifo was too small and needs
1197 * to be serviced again.
1199 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1200 struct cvmx_usb_tx_fifo *fifo, int available)
1203 * We're done either when there isn't anymore space or the software FIFO
1204 * is empty
1206 while (available && (fifo->head != fifo->tail)) {
1207 int i = fifo->tail;
1208 const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1209 u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1210 usb->index) ^ 4;
1211 int words = available;
1213 /* Limit the amount of data to what the SW fifo has */
1214 if (fifo->entry[i].size <= available) {
1215 words = fifo->entry[i].size;
1216 fifo->tail++;
1217 if (fifo->tail > MAX_CHANNELS)
1218 fifo->tail = 0;
1221 /* Update the next locations and counts */
1222 available -= words;
1223 fifo->entry[i].address += words * 4;
1224 fifo->entry[i].size -= words;
1227 * Write the HW fifo data. The read every three writes is due
1228 * to an errata on CN3XXX chips
1230 while (words > 3) {
1231 cvmx_write64_uint32(csr_address, *ptr++);
1232 cvmx_write64_uint32(csr_address, *ptr++);
1233 cvmx_write64_uint32(csr_address, *ptr++);
1234 cvmx_read64_uint64(
1235 CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1236 words -= 3;
1238 cvmx_write64_uint32(csr_address, *ptr++);
1239 if (--words) {
1240 cvmx_write64_uint32(csr_address, *ptr++);
1241 if (--words)
1242 cvmx_write64_uint32(csr_address, *ptr++);
1244 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1246 return fifo->head != fifo->tail;
1250 * Check the hardware FIFOs and fill them as needed
1252 * @usb: USB device state populated by cvmx_usb_initialize().
1254 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1256 if (usb->periodic.head != usb->periodic.tail) {
1257 union cvmx_usbcx_hptxsts tx_status;
1259 tx_status.u32 = cvmx_usb_read_csr32(usb,
1260 CVMX_USBCX_HPTXSTS(usb->index));
1261 if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1262 tx_status.s.ptxfspcavail))
1263 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1264 cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1265 else
1266 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1267 cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1270 if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1271 union cvmx_usbcx_gnptxsts tx_status;
1273 tx_status.u32 = cvmx_usb_read_csr32(usb,
1274 CVMX_USBCX_GNPTXSTS(usb->index));
1275 if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1276 tx_status.s.nptxfspcavail))
1277 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1278 cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1279 else
1280 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1281 cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1286 * Fill the TX FIFO with an outgoing packet
1288 * @usb: USB device state populated by cvmx_usb_initialize().
1289 * @channel: Channel number to get packet from
1291 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1293 union cvmx_usbcx_hccharx hcchar;
1294 union cvmx_usbcx_hcspltx usbc_hcsplt;
1295 union cvmx_usbcx_hctsizx usbc_hctsiz;
1296 struct cvmx_usb_tx_fifo *fifo;
1298 /* We only need to fill data on outbound channels */
1299 hcchar.u32 = cvmx_usb_read_csr32(usb,
1300 CVMX_USBCX_HCCHARX(channel, usb->index));
1301 if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1302 return;
1304 /* OUT Splits only have data on the start and not the complete */
1305 usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1306 CVMX_USBCX_HCSPLTX(channel, usb->index));
1307 if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1308 return;
1311 * Find out how many bytes we need to fill and convert it into 32bit
1312 * words.
1314 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1315 CVMX_USBCX_HCTSIZX(channel, usb->index));
1316 if (!usbc_hctsiz.s.xfersize)
1317 return;
1319 if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1320 (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1321 fifo = &usb->periodic;
1322 else
1323 fifo = &usb->nonperiodic;
1325 fifo->entry[fifo->head].channel = channel;
1326 fifo->entry[fifo->head].address =
1327 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1328 channel * 8);
1329 fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1330 fifo->head++;
1331 if (fifo->head > MAX_CHANNELS)
1332 fifo->head = 0;
1334 cvmx_usb_poll_tx_fifo(usb);
1338 * Perform channel specific setup for Control transactions. All
1339 * the generic stuff will already have been done in cvmx_usb_start_channel().
1341 * @usb: USB device state populated by cvmx_usb_initialize().
1342 * @channel: Channel to setup
1343 * @pipe: Pipe for control transaction
1345 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1346 int channel,
1347 struct cvmx_usb_pipe *pipe)
1349 struct usb_hcd *hcd = octeon_to_hcd(usb);
1350 struct device *dev = hcd->self.controller;
1351 struct cvmx_usb_transaction *transaction =
1352 list_first_entry(&pipe->transactions, typeof(*transaction),
1353 node);
1354 struct usb_ctrlrequest *header =
1355 cvmx_phys_to_ptr(transaction->control_header);
1356 int bytes_to_transfer = transaction->buffer_length -
1357 transaction->actual_bytes;
1358 int packets_to_transfer;
1359 union cvmx_usbcx_hctsizx usbc_hctsiz;
1361 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1362 CVMX_USBCX_HCTSIZX(channel, usb->index));
1364 switch (transaction->stage) {
1365 case CVMX_USB_STAGE_NON_CONTROL:
1366 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1367 dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1368 break;
1369 case CVMX_USB_STAGE_SETUP:
1370 usbc_hctsiz.s.pid = 3; /* Setup */
1371 bytes_to_transfer = sizeof(*header);
1372 /* All Control operations start with a setup going OUT */
1373 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1374 cvmx_usbcx_hccharx, epdir,
1375 CVMX_USB_DIRECTION_OUT);
1377 * Setup send the control header instead of the buffer data. The
1378 * buffer data will be used in the next stage
1380 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1381 channel * 8,
1382 transaction->control_header);
1383 break;
1384 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1385 usbc_hctsiz.s.pid = 3; /* Setup */
1386 bytes_to_transfer = 0;
1387 /* All Control operations start with a setup going OUT */
1388 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1389 cvmx_usbcx_hccharx, epdir,
1390 CVMX_USB_DIRECTION_OUT);
1392 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1393 cvmx_usbcx_hcspltx, compsplt, 1);
1394 break;
1395 case CVMX_USB_STAGE_DATA:
1396 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1397 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1398 if (header->bRequestType & USB_DIR_IN)
1399 bytes_to_transfer = 0;
1400 else if (bytes_to_transfer > pipe->max_packet)
1401 bytes_to_transfer = pipe->max_packet;
1403 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1404 cvmx_usbcx_hccharx, epdir,
1405 ((header->bRequestType & USB_DIR_IN) ?
1406 CVMX_USB_DIRECTION_IN :
1407 CVMX_USB_DIRECTION_OUT));
1408 break;
1409 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1410 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1411 if (!(header->bRequestType & USB_DIR_IN))
1412 bytes_to_transfer = 0;
1413 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1414 cvmx_usbcx_hccharx, epdir,
1415 ((header->bRequestType & USB_DIR_IN) ?
1416 CVMX_USB_DIRECTION_IN :
1417 CVMX_USB_DIRECTION_OUT));
1418 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1419 cvmx_usbcx_hcspltx, compsplt, 1);
1420 break;
1421 case CVMX_USB_STAGE_STATUS:
1422 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1423 bytes_to_transfer = 0;
1424 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1425 cvmx_usbcx_hccharx, epdir,
1426 ((header->bRequestType & USB_DIR_IN) ?
1427 CVMX_USB_DIRECTION_OUT :
1428 CVMX_USB_DIRECTION_IN));
1429 break;
1430 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1431 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1432 bytes_to_transfer = 0;
1433 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1434 cvmx_usbcx_hccharx, epdir,
1435 ((header->bRequestType & USB_DIR_IN) ?
1436 CVMX_USB_DIRECTION_OUT :
1437 CVMX_USB_DIRECTION_IN));
1438 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1439 cvmx_usbcx_hcspltx, compsplt, 1);
1440 break;
1444 * Make sure the transfer never exceeds the byte limit of the hardware.
1445 * Further bytes will be sent as continued transactions
1447 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1448 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1449 bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1450 bytes_to_transfer *= pipe->max_packet;
1454 * Calculate the number of packets to transfer. If the length is zero
1455 * we still need to transfer one packet
1457 packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1458 pipe->max_packet);
1459 if (packets_to_transfer == 0) {
1460 packets_to_transfer = 1;
1461 } else if ((packets_to_transfer > 1) &&
1462 (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1464 * Limit to one packet when not using DMA. Channels must be
1465 * restarted between every packet for IN transactions, so there
1466 * is no reason to do multiple packets in a row
1468 packets_to_transfer = 1;
1469 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1470 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1472 * Limit the number of packet and data transferred to what the
1473 * hardware can handle
1475 packets_to_transfer = MAX_TRANSFER_PACKETS;
1476 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1479 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1480 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1482 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1483 usbc_hctsiz.u32);
1487 * Start a channel to perform the pipe's head transaction
1489 * @usb: USB device state populated by cvmx_usb_initialize().
1490 * @channel: Channel to setup
1491 * @pipe: Pipe to start
1493 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1494 struct cvmx_usb_pipe *pipe)
1496 struct cvmx_usb_transaction *transaction =
1497 list_first_entry(&pipe->transactions, typeof(*transaction),
1498 node);
1500 /* Make sure all writes to the DMA region get flushed */
1501 CVMX_SYNCW;
1503 /* Attach the channel to the pipe */
1504 usb->pipe_for_channel[channel] = pipe;
1505 pipe->channel = channel;
1506 pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1508 /* Mark this channel as in use */
1509 usb->idle_hardware_channels &= ~(1 << channel);
1511 /* Enable the channel interrupt bits */
1513 union cvmx_usbcx_hcintx usbc_hcint;
1514 union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1515 union cvmx_usbcx_haintmsk usbc_haintmsk;
1517 /* Clear all channel status bits */
1518 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1519 CVMX_USBCX_HCINTX(channel, usb->index));
1521 cvmx_usb_write_csr32(usb,
1522 CVMX_USBCX_HCINTX(channel, usb->index),
1523 usbc_hcint.u32);
1525 usbc_hcintmsk.u32 = 0;
1526 usbc_hcintmsk.s.chhltdmsk = 1;
1527 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1529 * Channels need these extra interrupts when we aren't
1530 * in DMA mode.
1532 usbc_hcintmsk.s.datatglerrmsk = 1;
1533 usbc_hcintmsk.s.frmovrunmsk = 1;
1534 usbc_hcintmsk.s.bblerrmsk = 1;
1535 usbc_hcintmsk.s.xacterrmsk = 1;
1536 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1538 * Splits don't generate xfercompl, so we need
1539 * ACK and NYET.
1541 usbc_hcintmsk.s.nyetmsk = 1;
1542 usbc_hcintmsk.s.ackmsk = 1;
1544 usbc_hcintmsk.s.nakmsk = 1;
1545 usbc_hcintmsk.s.stallmsk = 1;
1546 usbc_hcintmsk.s.xfercomplmsk = 1;
1548 cvmx_usb_write_csr32(usb,
1549 CVMX_USBCX_HCINTMSKX(channel, usb->index),
1550 usbc_hcintmsk.u32);
1552 /* Enable the channel interrupt to propagate */
1553 usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1554 CVMX_USBCX_HAINTMSK(usb->index));
1555 usbc_haintmsk.s.haintmsk |= 1 << channel;
1556 cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1557 usbc_haintmsk.u32);
1560 /* Setup the location the DMA engine uses. */
1562 u64 reg;
1563 u64 dma_address = transaction->buffer +
1564 transaction->actual_bytes;
1566 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1567 dma_address = transaction->buffer +
1568 transaction->iso_packets[0].offset +
1569 transaction->actual_bytes;
1571 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1572 reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1573 else
1574 reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1575 cvmx_write64_uint64(reg + channel * 8, dma_address);
1578 /* Setup both the size of the transfer and the SPLIT characteristics */
1580 union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1581 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1582 int packets_to_transfer;
1583 int bytes_to_transfer = transaction->buffer_length -
1584 transaction->actual_bytes;
1587 * ISOCHRONOUS transactions store each individual transfer size
1588 * in the packet structure, not the global buffer_length
1590 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1591 bytes_to_transfer =
1592 transaction->iso_packets[0].length -
1593 transaction->actual_bytes;
1596 * We need to do split transactions when we are talking to non
1597 * high speed devices that are behind a high speed hub
1599 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1601 * On the start split phase (stage is even) record the
1602 * frame number we will need to send the split complete.
1603 * We only store the lower two bits since the time ahead
1604 * can only be two frames
1606 if ((transaction->stage & 1) == 0) {
1607 if (transaction->type == CVMX_USB_TRANSFER_BULK)
1608 pipe->split_sc_frame =
1609 (usb->frame_number + 1) & 0x7f;
1610 else
1611 pipe->split_sc_frame =
1612 (usb->frame_number + 2) & 0x7f;
1613 } else {
1614 pipe->split_sc_frame = -1;
1617 usbc_hcsplt.s.spltena = 1;
1618 usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1619 usbc_hcsplt.s.prtaddr = pipe->hub_port;
1620 usbc_hcsplt.s.compsplt = (transaction->stage ==
1621 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1624 * SPLIT transactions can only ever transmit one data
1625 * packet so limit the transfer size to the max packet
1626 * size
1628 if (bytes_to_transfer > pipe->max_packet)
1629 bytes_to_transfer = pipe->max_packet;
1632 * ISOCHRONOUS OUT splits are unique in that they limit
1633 * data transfers to 188 byte chunks representing the
1634 * begin/middle/end of the data or all
1636 if (!usbc_hcsplt.s.compsplt &&
1637 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1638 (pipe->transfer_type ==
1639 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1641 * Clear the split complete frame number as
1642 * there isn't going to be a split complete
1644 pipe->split_sc_frame = -1;
1646 * See if we've started this transfer and sent
1647 * data
1649 if (transaction->actual_bytes == 0) {
1651 * Nothing sent yet, this is either a
1652 * begin or the entire payload
1654 if (bytes_to_transfer <= 188)
1655 /* Entire payload in one go */
1656 usbc_hcsplt.s.xactpos = 3;
1657 else
1658 /* First part of payload */
1659 usbc_hcsplt.s.xactpos = 2;
1660 } else {
1662 * Continuing the previous data, we must
1663 * either be in the middle or at the end
1665 if (bytes_to_transfer <= 188)
1666 /* End of payload */
1667 usbc_hcsplt.s.xactpos = 1;
1668 else
1669 /* Middle of payload */
1670 usbc_hcsplt.s.xactpos = 0;
1673 * Again, the transfer size is limited to 188
1674 * bytes
1676 if (bytes_to_transfer > 188)
1677 bytes_to_transfer = 188;
1682 * Make sure the transfer never exceeds the byte limit of the
1683 * hardware. Further bytes will be sent as continued
1684 * transactions
1686 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1688 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1689 * size
1691 bytes_to_transfer = MAX_TRANSFER_BYTES /
1692 pipe->max_packet;
1693 bytes_to_transfer *= pipe->max_packet;
1697 * Calculate the number of packets to transfer. If the length is
1698 * zero we still need to transfer one packet
1700 packets_to_transfer =
1701 DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1702 if (packets_to_transfer == 0) {
1703 packets_to_transfer = 1;
1704 } else if ((packets_to_transfer > 1) &&
1705 (usb->init_flags &
1706 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1708 * Limit to one packet when not using DMA. Channels must
1709 * be restarted between every packet for IN
1710 * transactions, so there is no reason to do multiple
1711 * packets in a row
1713 packets_to_transfer = 1;
1714 bytes_to_transfer = packets_to_transfer *
1715 pipe->max_packet;
1716 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1718 * Limit the number of packet and data transferred to
1719 * what the hardware can handle
1721 packets_to_transfer = MAX_TRANSFER_PACKETS;
1722 bytes_to_transfer = packets_to_transfer *
1723 pipe->max_packet;
1726 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1727 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1729 /* Update the DATA0/DATA1 toggle */
1730 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1732 * High speed pipes may need a hardware ping before they start
1734 if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1735 usbc_hctsiz.s.dopng = 1;
1737 cvmx_usb_write_csr32(usb,
1738 CVMX_USBCX_HCSPLTX(channel, usb->index),
1739 usbc_hcsplt.u32);
1740 cvmx_usb_write_csr32(usb,
1741 CVMX_USBCX_HCTSIZX(channel, usb->index),
1742 usbc_hctsiz.u32);
1745 /* Setup the Host Channel Characteristics Register */
1747 union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1750 * Set the startframe odd/even properly. This is only used for
1751 * periodic
1753 usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1756 * Set the number of back to back packets allowed by this
1757 * endpoint. Split transactions interpret "ec" as the number of
1758 * immediate retries of failure. These retries happen too
1759 * quickly, so we disable these entirely for splits
1761 if (cvmx_usb_pipe_needs_split(usb, pipe))
1762 usbc_hcchar.s.ec = 1;
1763 else if (pipe->multi_count < 1)
1764 usbc_hcchar.s.ec = 1;
1765 else if (pipe->multi_count > 3)
1766 usbc_hcchar.s.ec = 3;
1767 else
1768 usbc_hcchar.s.ec = pipe->multi_count;
1770 /* Set the rest of the endpoint specific settings */
1771 usbc_hcchar.s.devaddr = pipe->device_addr;
1772 usbc_hcchar.s.eptype = transaction->type;
1773 usbc_hcchar.s.lspddev =
1774 (pipe->device_speed == CVMX_USB_SPEED_LOW);
1775 usbc_hcchar.s.epdir = pipe->transfer_dir;
1776 usbc_hcchar.s.epnum = pipe->endpoint_num;
1777 usbc_hcchar.s.mps = pipe->max_packet;
1778 cvmx_usb_write_csr32(usb,
1779 CVMX_USBCX_HCCHARX(channel, usb->index),
1780 usbc_hcchar.u32);
1783 /* Do transaction type specific fixups as needed */
1784 switch (transaction->type) {
1785 case CVMX_USB_TRANSFER_CONTROL:
1786 cvmx_usb_start_channel_control(usb, channel, pipe);
1787 break;
1788 case CVMX_USB_TRANSFER_BULK:
1789 case CVMX_USB_TRANSFER_INTERRUPT:
1790 break;
1791 case CVMX_USB_TRANSFER_ISOCHRONOUS:
1792 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1794 * ISO transactions require different PIDs depending on
1795 * direction and how many packets are needed
1797 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1798 if (pipe->multi_count < 2) /* Need DATA0 */
1799 USB_SET_FIELD32(
1800 CVMX_USBCX_HCTSIZX(channel,
1801 usb->index),
1802 cvmx_usbcx_hctsizx, pid, 0);
1803 else /* Need MDATA */
1804 USB_SET_FIELD32(
1805 CVMX_USBCX_HCTSIZX(channel,
1806 usb->index),
1807 cvmx_usbcx_hctsizx, pid, 3);
1810 break;
1813 union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1814 cvmx_usb_read_csr32(usb,
1815 CVMX_USBCX_HCTSIZX(channel,
1816 usb->index))
1818 transaction->xfersize = usbc_hctsiz.s.xfersize;
1819 transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1821 /* Remember when we start a split transaction */
1822 if (cvmx_usb_pipe_needs_split(usb, pipe))
1823 usb->active_split = transaction;
1824 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1825 cvmx_usbcx_hccharx, chena, 1);
1826 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1827 cvmx_usb_fill_tx_fifo(usb, channel);
1831 * Find a pipe that is ready to be scheduled to hardware.
1832 * @usb: USB device state populated by cvmx_usb_initialize().
1833 * @xfer_type: Transfer type
1835 * Returns: Pipe or NULL if none are ready
1837 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1838 struct octeon_hcd *usb,
1839 enum cvmx_usb_transfer xfer_type)
1841 struct list_head *list = usb->active_pipes + xfer_type;
1842 u64 current_frame = usb->frame_number;
1843 struct cvmx_usb_pipe *pipe;
1845 list_for_each_entry(pipe, list, node) {
1846 struct cvmx_usb_transaction *t =
1847 list_first_entry(&pipe->transactions, typeof(*t),
1848 node);
1849 if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1850 (pipe->next_tx_frame <= current_frame) &&
1851 ((pipe->split_sc_frame == -1) ||
1852 ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1853 0x40)) &&
1854 (!usb->active_split || (usb->active_split == t))) {
1855 prefetch(t);
1856 return pipe;
1859 return NULL;
1862 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1863 int is_sof)
1865 struct cvmx_usb_pipe *pipe;
1867 /* Find a pipe needing service. */
1868 if (is_sof) {
1870 * Only process periodic pipes on SOF interrupts. This way we
1871 * are sure that the periodic data is sent in the beginning of
1872 * the frame.
1874 pipe = cvmx_usb_find_ready_pipe(usb,
1875 CVMX_USB_TRANSFER_ISOCHRONOUS);
1876 if (pipe)
1877 return pipe;
1878 pipe = cvmx_usb_find_ready_pipe(usb,
1879 CVMX_USB_TRANSFER_INTERRUPT);
1880 if (pipe)
1881 return pipe;
1883 pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1884 if (pipe)
1885 return pipe;
1886 return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1890 * Called whenever a pipe might need to be scheduled to the
1891 * hardware.
1893 * @usb: USB device state populated by cvmx_usb_initialize().
1894 * @is_sof: True if this schedule was called on a SOF interrupt.
1896 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1898 int channel;
1899 struct cvmx_usb_pipe *pipe;
1900 int need_sof;
1901 enum cvmx_usb_transfer ttype;
1903 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1905 * Without DMA we need to be careful to not schedule something
1906 * at the end of a frame and cause an overrun.
1908 union cvmx_usbcx_hfnum hfnum = {
1909 .u32 = cvmx_usb_read_csr32(usb,
1910 CVMX_USBCX_HFNUM(usb->index))
1913 union cvmx_usbcx_hfir hfir = {
1914 .u32 = cvmx_usb_read_csr32(usb,
1915 CVMX_USBCX_HFIR(usb->index))
1918 if (hfnum.s.frrem < hfir.s.frint / 4)
1919 goto done;
1922 while (usb->idle_hardware_channels) {
1923 /* Find an idle channel */
1924 channel = __fls(usb->idle_hardware_channels);
1925 if (unlikely(channel > 7))
1926 break;
1928 pipe = cvmx_usb_next_pipe(usb, is_sof);
1929 if (!pipe)
1930 break;
1932 cvmx_usb_start_channel(usb, channel, pipe);
1935 done:
1937 * Only enable SOF interrupts when we have transactions pending in the
1938 * future that might need to be scheduled
1940 need_sof = 0;
1941 for (ttype = CVMX_USB_TRANSFER_CONTROL;
1942 ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1943 list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1944 if (pipe->next_tx_frame > usb->frame_number) {
1945 need_sof = 1;
1946 break;
1950 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1951 cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1955 enum cvmx_usb_status status,
1956 struct cvmx_usb_pipe *pipe,
1957 struct cvmx_usb_transaction
1958 *transaction,
1959 int bytes_transferred,
1960 struct urb *urb)
1962 struct usb_hcd *hcd = octeon_to_hcd(usb);
1963 struct device *dev = hcd->self.controller;
1965 if (likely(status == CVMX_USB_STATUS_OK))
1966 urb->actual_length = bytes_transferred;
1967 else
1968 urb->actual_length = 0;
1970 urb->hcpriv = NULL;
1972 /* For Isochronous transactions we need to update the URB packet status
1973 * list from data in our private copy
1975 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1976 int i;
1978 * The pointer to the private list is stored in the setup_packet
1979 * field.
1981 struct cvmx_usb_iso_packet *iso_packet =
1982 (struct cvmx_usb_iso_packet *)urb->setup_packet;
1983 /* Recalculate the transfer size by adding up each packet */
1984 urb->actual_length = 0;
1985 for (i = 0; i < urb->number_of_packets; i++) {
1986 if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1987 urb->iso_frame_desc[i].status = 0;
1988 urb->iso_frame_desc[i].actual_length =
1989 iso_packet[i].length;
1990 urb->actual_length +=
1991 urb->iso_frame_desc[i].actual_length;
1992 } else {
1993 dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1994 i, urb->number_of_packets,
1995 iso_packet[i].status, pipe,
1996 transaction, iso_packet[i].length);
1997 urb->iso_frame_desc[i].status = -EREMOTEIO;
2000 /* Free the private list now that we don't need it anymore */
2001 kfree(iso_packet);
2002 urb->setup_packet = NULL;
2005 switch (status) {
2006 case CVMX_USB_STATUS_OK:
2007 urb->status = 0;
2008 break;
2009 case CVMX_USB_STATUS_CANCEL:
2010 if (urb->status == 0)
2011 urb->status = -ENOENT;
2012 break;
2013 case CVMX_USB_STATUS_STALL:
2014 dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2015 pipe, transaction, bytes_transferred);
2016 urb->status = -EPIPE;
2017 break;
2018 case CVMX_USB_STATUS_BABBLEERR:
2019 dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2020 pipe, transaction, bytes_transferred);
2021 urb->status = -EPIPE;
2022 break;
2023 case CVMX_USB_STATUS_SHORT:
2024 dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2025 pipe, transaction, bytes_transferred);
2026 urb->status = -EREMOTEIO;
2027 break;
2028 case CVMX_USB_STATUS_ERROR:
2029 case CVMX_USB_STATUS_XACTERR:
2030 case CVMX_USB_STATUS_DATATGLERR:
2031 case CVMX_USB_STATUS_FRAMEERR:
2032 dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2033 status, pipe, transaction, bytes_transferred);
2034 urb->status = -EPROTO;
2035 break;
2037 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2038 spin_unlock(&usb->lock);
2039 usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2040 spin_lock(&usb->lock);
2044 * Signal the completion of a transaction and free it. The
2045 * transaction will be removed from the pipe transaction list.
2047 * @usb: USB device state populated by cvmx_usb_initialize().
2048 * @pipe: Pipe the transaction is on
2049 * @transaction:
2050 * Transaction that completed
2051 * @complete_code:
2052 * Completion code
2054 static void cvmx_usb_complete(struct octeon_hcd *usb,
2055 struct cvmx_usb_pipe *pipe,
2056 struct cvmx_usb_transaction *transaction,
2057 enum cvmx_usb_status complete_code)
2059 /* If this was a split then clear our split in progress marker */
2060 if (usb->active_split == transaction)
2061 usb->active_split = NULL;
2064 * Isochronous transactions need extra processing as they might not be
2065 * done after a single data transfer
2067 if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2068 /* Update the number of bytes transferred in this ISO packet */
2069 transaction->iso_packets[0].length = transaction->actual_bytes;
2070 transaction->iso_packets[0].status = complete_code;
2073 * If there are more ISOs pending and we succeeded, schedule the
2074 * next one
2076 if ((transaction->iso_number_packets > 1) &&
2077 (complete_code == CVMX_USB_STATUS_OK)) {
2078 /* No bytes transferred for this packet as of yet */
2079 transaction->actual_bytes = 0;
2080 /* One less ISO waiting to transfer */
2081 transaction->iso_number_packets--;
2082 /* Increment to the next location in our packet array */
2083 transaction->iso_packets++;
2084 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2085 return;
2089 /* Remove the transaction from the pipe list */
2090 list_del(&transaction->node);
2091 if (list_empty(&pipe->transactions))
2092 list_move_tail(&pipe->node, &usb->idle_pipes);
2093 octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2094 transaction,
2095 transaction->actual_bytes,
2096 transaction->urb);
2097 kfree(transaction);
2101 * Submit a usb transaction to a pipe. Called for all types
2102 * of transactions.
2104 * @usb:
2105 * @pipe: Which pipe to submit to.
2106 * @type: Transaction type
2107 * @buffer: User buffer for the transaction
2108 * @buffer_length:
2109 * User buffer's length in bytes
2110 * @control_header:
2111 * For control transactions, the 8 byte standard header
2112 * @iso_start_frame:
2113 * For ISO transactions, the start frame
2114 * @iso_number_packets:
2115 * For ISO, the number of packet in the transaction.
2116 * @iso_packets:
2117 * A description of each ISO packet
2118 * @urb: URB for the callback
2120 * Returns: Transaction or NULL on failure.
2122 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2123 struct octeon_hcd *usb,
2124 struct cvmx_usb_pipe *pipe,
2125 enum cvmx_usb_transfer type,
2126 u64 buffer,
2127 int buffer_length,
2128 u64 control_header,
2129 int iso_start_frame,
2130 int iso_number_packets,
2131 struct cvmx_usb_iso_packet *iso_packets,
2132 struct urb *urb)
2134 struct cvmx_usb_transaction *transaction;
2136 if (unlikely(pipe->transfer_type != type))
2137 return NULL;
2139 transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2140 if (unlikely(!transaction))
2141 return NULL;
2143 transaction->type = type;
2144 transaction->buffer = buffer;
2145 transaction->buffer_length = buffer_length;
2146 transaction->control_header = control_header;
2147 /* FIXME: This is not used, implement it. */
2148 transaction->iso_start_frame = iso_start_frame;
2149 transaction->iso_number_packets = iso_number_packets;
2150 transaction->iso_packets = iso_packets;
2151 transaction->urb = urb;
2152 if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2153 transaction->stage = CVMX_USB_STAGE_SETUP;
2154 else
2155 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2157 if (!list_empty(&pipe->transactions)) {
2158 list_add_tail(&transaction->node, &pipe->transactions);
2159 } else {
2160 list_add_tail(&transaction->node, &pipe->transactions);
2161 list_move_tail(&pipe->node,
2162 &usb->active_pipes[pipe->transfer_type]);
2165 * We may need to schedule the pipe if this was the head of the
2166 * pipe.
2168 cvmx_usb_schedule(usb, 0);
2171 return transaction;
2175 * Call to submit a USB Bulk transfer to a pipe.
2177 * @usb: USB device state populated by cvmx_usb_initialize().
2178 * @pipe: Handle to the pipe for the transfer.
2179 * @urb: URB.
2181 * Returns: A submitted transaction or NULL on failure.
2183 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2184 struct octeon_hcd *usb,
2185 struct cvmx_usb_pipe *pipe,
2186 struct urb *urb)
2188 return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2189 urb->transfer_dma,
2190 urb->transfer_buffer_length,
2191 0, /* control_header */
2192 0, /* iso_start_frame */
2193 0, /* iso_number_packets */
2194 NULL, /* iso_packets */
2195 urb);
2199 * Call to submit a USB Interrupt transfer to a pipe.
2201 * @usb: USB device state populated by cvmx_usb_initialize().
2202 * @pipe: Handle to the pipe for the transfer.
2203 * @urb: URB returned when the callback is called.
2205 * Returns: A submitted transaction or NULL on failure.
2207 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2208 struct octeon_hcd *usb,
2209 struct cvmx_usb_pipe *pipe,
2210 struct urb *urb)
2212 return cvmx_usb_submit_transaction(usb, pipe,
2213 CVMX_USB_TRANSFER_INTERRUPT,
2214 urb->transfer_dma,
2215 urb->transfer_buffer_length,
2216 0, /* control_header */
2217 0, /* iso_start_frame */
2218 0, /* iso_number_packets */
2219 NULL, /* iso_packets */
2220 urb);
2224 * Call to submit a USB Control transfer to a pipe.
2226 * @usb: USB device state populated by cvmx_usb_initialize().
2227 * @pipe: Handle to the pipe for the transfer.
2228 * @urb: URB.
2230 * Returns: A submitted transaction or NULL on failure.
2232 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2233 struct octeon_hcd *usb,
2234 struct cvmx_usb_pipe *pipe,
2235 struct urb *urb)
2237 int buffer_length = urb->transfer_buffer_length;
2238 u64 control_header = urb->setup_dma;
2239 struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2241 if ((header->bRequestType & USB_DIR_IN) == 0)
2242 buffer_length = le16_to_cpu(header->wLength);
2244 return cvmx_usb_submit_transaction(usb, pipe,
2245 CVMX_USB_TRANSFER_CONTROL,
2246 urb->transfer_dma, buffer_length,
2247 control_header,
2248 0, /* iso_start_frame */
2249 0, /* iso_number_packets */
2250 NULL, /* iso_packets */
2251 urb);
2255 * Call to submit a USB Isochronous transfer to a pipe.
2257 * @usb: USB device state populated by cvmx_usb_initialize().
2258 * @pipe: Handle to the pipe for the transfer.
2259 * @urb: URB returned when the callback is called.
2261 * Returns: A submitted transaction or NULL on failure.
2263 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2264 struct octeon_hcd *usb,
2265 struct cvmx_usb_pipe *pipe,
2266 struct urb *urb)
2268 struct cvmx_usb_iso_packet *packets;
2270 packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2271 return cvmx_usb_submit_transaction(usb, pipe,
2272 CVMX_USB_TRANSFER_ISOCHRONOUS,
2273 urb->transfer_dma,
2274 urb->transfer_buffer_length,
2275 0, /* control_header */
2276 urb->start_frame,
2277 urb->number_of_packets,
2278 packets, urb);
2282 * Cancel one outstanding request in a pipe. Canceling a request
2283 * can fail if the transaction has already completed before cancel
2284 * is called. Even after a successful cancel call, it may take
2285 * a frame or two for the cvmx_usb_poll() function to call the
2286 * associated callback.
2288 * @usb: USB device state populated by cvmx_usb_initialize().
2289 * @pipe: Pipe to cancel requests in.
2290 * @transaction: Transaction to cancel, returned by the submit function.
2292 * Returns: 0 or a negative error code.
2294 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2295 struct cvmx_usb_pipe *pipe,
2296 struct cvmx_usb_transaction *transaction)
2299 * If the transaction is the HEAD of the queue and scheduled. We need to
2300 * treat it special
2302 if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2303 transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2304 union cvmx_usbcx_hccharx usbc_hcchar;
2306 usb->pipe_for_channel[pipe->channel] = NULL;
2307 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2309 CVMX_SYNCW;
2311 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2312 CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2314 * If the channel isn't enabled then the transaction already
2315 * completed.
2317 if (usbc_hcchar.s.chena) {
2318 usbc_hcchar.s.chdis = 1;
2319 cvmx_usb_write_csr32(usb,
2320 CVMX_USBCX_HCCHARX(pipe->channel,
2321 usb->index),
2322 usbc_hcchar.u32);
2325 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2326 return 0;
2330 * Cancel all outstanding requests in a pipe. Logically all this
2331 * does is call cvmx_usb_cancel() in a loop.
2333 * @usb: USB device state populated by cvmx_usb_initialize().
2334 * @pipe: Pipe to cancel requests in.
2336 * Returns: 0 or a negative error code.
2338 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2339 struct cvmx_usb_pipe *pipe)
2341 struct cvmx_usb_transaction *transaction, *next;
2343 /* Simply loop through and attempt to cancel each transaction */
2344 list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2345 int result = cvmx_usb_cancel(usb, pipe, transaction);
2347 if (unlikely(result != 0))
2348 return result;
2350 return 0;
2354 * Close a pipe created with cvmx_usb_open_pipe().
2356 * @usb: USB device state populated by cvmx_usb_initialize().
2357 * @pipe: Pipe to close.
2359 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2360 * outstanding transfers.
2362 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2363 struct cvmx_usb_pipe *pipe)
2365 /* Fail if the pipe has pending transactions */
2366 if (!list_empty(&pipe->transactions))
2367 return -EBUSY;
2369 list_del(&pipe->node);
2370 kfree(pipe);
2372 return 0;
2376 * Get the current USB protocol level frame number. The frame
2377 * number is always in the range of 0-0x7ff.
2379 * @usb: USB device state populated by cvmx_usb_initialize().
2381 * Returns: USB frame number
2383 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2385 int frame_number;
2386 union cvmx_usbcx_hfnum usbc_hfnum;
2388 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2389 frame_number = usbc_hfnum.s.frnum;
2391 return frame_number;
2394 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2395 struct cvmx_usb_pipe *pipe,
2396 struct cvmx_usb_transaction *transaction,
2397 union cvmx_usbcx_hccharx usbc_hcchar,
2398 int buffer_space_left,
2399 int bytes_in_last_packet)
2401 switch (transaction->stage) {
2402 case CVMX_USB_STAGE_NON_CONTROL:
2403 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2404 /* This should be impossible */
2405 cvmx_usb_complete(usb, pipe, transaction,
2406 CVMX_USB_STATUS_ERROR);
2407 break;
2408 case CVMX_USB_STAGE_SETUP:
2409 pipe->pid_toggle = 1;
2410 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2411 transaction->stage =
2412 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2413 } else {
2414 struct usb_ctrlrequest *header =
2415 cvmx_phys_to_ptr(transaction->control_header);
2416 if (header->wLength)
2417 transaction->stage = CVMX_USB_STAGE_DATA;
2418 else
2419 transaction->stage = CVMX_USB_STAGE_STATUS;
2421 break;
2422 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2424 struct usb_ctrlrequest *header =
2425 cvmx_phys_to_ptr(transaction->control_header);
2426 if (header->wLength)
2427 transaction->stage = CVMX_USB_STAGE_DATA;
2428 else
2429 transaction->stage = CVMX_USB_STAGE_STATUS;
2431 break;
2432 case CVMX_USB_STAGE_DATA:
2433 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2434 transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2436 * For setup OUT data that are splits,
2437 * the hardware doesn't appear to count
2438 * transferred data. Here we manually
2439 * update the data transferred
2441 if (!usbc_hcchar.s.epdir) {
2442 if (buffer_space_left < pipe->max_packet)
2443 transaction->actual_bytes +=
2444 buffer_space_left;
2445 else
2446 transaction->actual_bytes +=
2447 pipe->max_packet;
2449 } else if ((buffer_space_left == 0) ||
2450 (bytes_in_last_packet < pipe->max_packet)) {
2451 pipe->pid_toggle = 1;
2452 transaction->stage = CVMX_USB_STAGE_STATUS;
2454 break;
2455 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2456 if ((buffer_space_left == 0) ||
2457 (bytes_in_last_packet < pipe->max_packet)) {
2458 pipe->pid_toggle = 1;
2459 transaction->stage = CVMX_USB_STAGE_STATUS;
2460 } else {
2461 transaction->stage = CVMX_USB_STAGE_DATA;
2463 break;
2464 case CVMX_USB_STAGE_STATUS:
2465 if (cvmx_usb_pipe_needs_split(usb, pipe))
2466 transaction->stage =
2467 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2468 else
2469 cvmx_usb_complete(usb, pipe, transaction,
2470 CVMX_USB_STATUS_OK);
2471 break;
2472 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2473 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2474 break;
2478 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2479 struct cvmx_usb_pipe *pipe,
2480 struct cvmx_usb_transaction *transaction,
2481 union cvmx_usbcx_hcintx usbc_hcint,
2482 int buffer_space_left,
2483 int bytes_in_last_packet)
2486 * The only time a bulk transfer isn't complete when it finishes with
2487 * an ACK is during a split transaction. For splits we need to continue
2488 * the transfer if more data is needed.
2490 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2491 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2492 transaction->stage =
2493 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2494 else if (buffer_space_left &&
2495 (bytes_in_last_packet == pipe->max_packet))
2496 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2497 else
2498 cvmx_usb_complete(usb, pipe, transaction,
2499 CVMX_USB_STATUS_OK);
2500 } else {
2501 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2502 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2503 (usbc_hcint.s.nak))
2504 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2505 if (!buffer_space_left ||
2506 (bytes_in_last_packet < pipe->max_packet))
2507 cvmx_usb_complete(usb, pipe, transaction,
2508 CVMX_USB_STATUS_OK);
2512 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2513 struct cvmx_usb_pipe *pipe,
2514 struct cvmx_usb_transaction *transaction,
2515 int buffer_space_left,
2516 int bytes_in_last_packet)
2518 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2519 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2520 transaction->stage =
2521 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2522 } else if (buffer_space_left &&
2523 (bytes_in_last_packet == pipe->max_packet)) {
2524 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2525 } else {
2526 pipe->next_tx_frame += pipe->interval;
2527 cvmx_usb_complete(usb, pipe, transaction,
2528 CVMX_USB_STATUS_OK);
2530 } else if (!buffer_space_left ||
2531 (bytes_in_last_packet < pipe->max_packet)) {
2532 pipe->next_tx_frame += pipe->interval;
2533 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2537 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2538 struct cvmx_usb_pipe *pipe,
2539 struct cvmx_usb_transaction *transaction,
2540 int buffer_space_left,
2541 int bytes_in_last_packet,
2542 int bytes_this_transfer)
2544 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2546 * ISOCHRONOUS OUT splits don't require a complete split stage.
2547 * Instead they use a sequence of begin OUT splits to transfer
2548 * the data 188 bytes at a time. Once the transfer is complete,
2549 * the pipe sleeps until the next schedule interval.
2551 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2553 * If no space left or this wasn't a max size packet
2554 * then this transfer is complete. Otherwise start it
2555 * again to send the next 188 bytes
2557 if (!buffer_space_left || (bytes_this_transfer < 188)) {
2558 pipe->next_tx_frame += pipe->interval;
2559 cvmx_usb_complete(usb, pipe, transaction,
2560 CVMX_USB_STATUS_OK);
2562 return;
2564 if (transaction->stage ==
2565 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2567 * We are in the incoming data phase. Keep getting data
2568 * until we run out of space or get a small packet
2570 if ((buffer_space_left == 0) ||
2571 (bytes_in_last_packet < pipe->max_packet)) {
2572 pipe->next_tx_frame += pipe->interval;
2573 cvmx_usb_complete(usb, pipe, transaction,
2574 CVMX_USB_STATUS_OK);
2576 } else {
2577 transaction->stage =
2578 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2580 } else {
2581 pipe->next_tx_frame += pipe->interval;
2582 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2587 * Poll a channel for status
2589 * @usb: USB device
2590 * @channel: Channel to poll
2592 * Returns: Zero on success
2594 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2596 struct usb_hcd *hcd = octeon_to_hcd(usb);
2597 struct device *dev = hcd->self.controller;
2598 union cvmx_usbcx_hcintx usbc_hcint;
2599 union cvmx_usbcx_hctsizx usbc_hctsiz;
2600 union cvmx_usbcx_hccharx usbc_hcchar;
2601 struct cvmx_usb_pipe *pipe;
2602 struct cvmx_usb_transaction *transaction;
2603 int bytes_this_transfer;
2604 int bytes_in_last_packet;
2605 int packets_processed;
2606 int buffer_space_left;
2608 /* Read the interrupt status bits for the channel */
2609 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2610 CVMX_USBCX_HCINTX(channel, usb->index));
2612 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2613 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2614 CVMX_USBCX_HCCHARX(channel, usb->index));
2616 if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2618 * There seems to be a bug in CN31XX which can cause
2619 * interrupt IN transfers to get stuck until we do a
2620 * write of HCCHARX without changing things
2622 cvmx_usb_write_csr32(usb,
2623 CVMX_USBCX_HCCHARX(channel,
2624 usb->index),
2625 usbc_hcchar.u32);
2626 return 0;
2630 * In non DMA mode the channels don't halt themselves. We need
2631 * to manually disable channels that are left running
2633 if (!usbc_hcint.s.chhltd) {
2634 if (usbc_hcchar.s.chena) {
2635 union cvmx_usbcx_hcintmskx hcintmsk;
2636 /* Disable all interrupts except CHHLTD */
2637 hcintmsk.u32 = 0;
2638 hcintmsk.s.chhltdmsk = 1;
2639 cvmx_usb_write_csr32(usb,
2640 CVMX_USBCX_HCINTMSKX(channel, usb->index),
2641 hcintmsk.u32);
2642 usbc_hcchar.s.chdis = 1;
2643 cvmx_usb_write_csr32(usb,
2644 CVMX_USBCX_HCCHARX(channel, usb->index),
2645 usbc_hcchar.u32);
2646 return 0;
2647 } else if (usbc_hcint.s.xfercompl) {
2649 * Successful IN/OUT with transfer complete.
2650 * Channel halt isn't needed.
2652 } else {
2653 dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2654 usb->index, channel);
2655 return 0;
2658 } else {
2660 * There is are no interrupts that we need to process when the
2661 * channel is still running
2663 if (!usbc_hcint.s.chhltd)
2664 return 0;
2667 /* Disable the channel interrupts now that it is done */
2668 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2669 usb->idle_hardware_channels |= (1 << channel);
2671 /* Make sure this channel is tied to a valid pipe */
2672 pipe = usb->pipe_for_channel[channel];
2673 prefetch(pipe);
2674 if (!pipe)
2675 return 0;
2676 transaction = list_first_entry(&pipe->transactions,
2677 typeof(*transaction),
2678 node);
2679 prefetch(transaction);
2682 * Disconnect this pipe from the HW channel. Later the schedule
2683 * function will figure out which pipe needs to go
2685 usb->pipe_for_channel[channel] = NULL;
2686 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2689 * Read the channel config info so we can figure out how much data
2690 * transferred
2692 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2693 CVMX_USBCX_HCCHARX(channel, usb->index));
2694 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2695 CVMX_USBCX_HCTSIZX(channel, usb->index));
2698 * Calculating the number of bytes successfully transferred is dependent
2699 * on the transfer direction
2701 packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2702 if (usbc_hcchar.s.epdir) {
2704 * IN transactions are easy. For every byte received the
2705 * hardware decrements xfersize. All we need to do is subtract
2706 * the current value of xfersize from its starting value and we
2707 * know how many bytes were written to the buffer
2709 bytes_this_transfer = transaction->xfersize -
2710 usbc_hctsiz.s.xfersize;
2711 } else {
2713 * OUT transaction don't decrement xfersize. Instead pktcnt is
2714 * decremented on every successful packet send. The hardware
2715 * does this when it receives an ACK, or NYET. If it doesn't
2716 * receive one of these responses pktcnt doesn't change
2718 bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2720 * The last packet may not be a full transfer if we didn't have
2721 * enough data
2723 if (bytes_this_transfer > transaction->xfersize)
2724 bytes_this_transfer = transaction->xfersize;
2726 /* Figure out how many bytes were in the last packet of the transfer */
2727 if (packets_processed)
2728 bytes_in_last_packet = bytes_this_transfer -
2729 (packets_processed - 1) * usbc_hcchar.s.mps;
2730 else
2731 bytes_in_last_packet = bytes_this_transfer;
2734 * As a special case, setup transactions output the setup header, not
2735 * the user's data. For this reason we don't count setup data as bytes
2736 * transferred
2738 if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2739 (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2740 bytes_this_transfer = 0;
2743 * Add the bytes transferred to the running total. It is important that
2744 * bytes_this_transfer doesn't count any data that needs to be
2745 * retransmitted
2747 transaction->actual_bytes += bytes_this_transfer;
2748 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2749 buffer_space_left = transaction->iso_packets[0].length -
2750 transaction->actual_bytes;
2751 else
2752 buffer_space_left = transaction->buffer_length -
2753 transaction->actual_bytes;
2756 * We need to remember the PID toggle state for the next transaction.
2757 * The hardware already updated it for the next transaction
2759 pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2762 * For high speed bulk out, assume the next transaction will need to do
2763 * a ping before proceeding. If this isn't true the ACK processing below
2764 * will clear this flag
2766 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2767 (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2768 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2769 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2771 if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2773 * In some rare cases the DMA engine seems to get stuck and
2774 * keeps substracting same byte count over and over again. In
2775 * such case we just need to fail every transaction.
2777 cvmx_usb_complete(usb, pipe, transaction,
2778 CVMX_USB_STATUS_ERROR);
2779 return 0;
2782 if (usbc_hcint.s.stall) {
2784 * STALL as a response means this transaction cannot be
2785 * completed because the device can't process transactions. Tell
2786 * the user. Any data that was transferred will be counted on
2787 * the actual bytes transferred
2789 pipe->pid_toggle = 0;
2790 cvmx_usb_complete(usb, pipe, transaction,
2791 CVMX_USB_STATUS_STALL);
2792 } else if (usbc_hcint.s.xacterr) {
2794 * XactErr as a response means the device signaled
2795 * something wrong with the transfer. For example, PID
2796 * toggle errors cause these.
2798 cvmx_usb_complete(usb, pipe, transaction,
2799 CVMX_USB_STATUS_XACTERR);
2800 } else if (usbc_hcint.s.bblerr) {
2801 /* Babble Error (BblErr) */
2802 cvmx_usb_complete(usb, pipe, transaction,
2803 CVMX_USB_STATUS_BABBLEERR);
2804 } else if (usbc_hcint.s.datatglerr) {
2805 /* Data toggle error */
2806 cvmx_usb_complete(usb, pipe, transaction,
2807 CVMX_USB_STATUS_DATATGLERR);
2808 } else if (usbc_hcint.s.nyet) {
2810 * NYET as a response is only allowed in three cases: as a
2811 * response to a ping, as a response to a split transaction, and
2812 * as a response to a bulk out. The ping case is handled by
2813 * hardware, so we only have splits and bulk out
2815 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2816 transaction->retries = 0;
2818 * If there is more data to go then we need to try
2819 * again. Otherwise this transaction is complete
2821 if ((buffer_space_left == 0) ||
2822 (bytes_in_last_packet < pipe->max_packet))
2823 cvmx_usb_complete(usb, pipe,
2824 transaction,
2825 CVMX_USB_STATUS_OK);
2826 } else {
2828 * Split transactions retry the split complete 4 times
2829 * then rewind to the start split and do the entire
2830 * transactions again
2832 transaction->retries++;
2833 if ((transaction->retries & 0x3) == 0) {
2835 * Rewind to the beginning of the transaction by
2836 * anding off the split complete bit
2838 transaction->stage &= ~1;
2839 pipe->split_sc_frame = -1;
2842 } else if (usbc_hcint.s.ack) {
2843 transaction->retries = 0;
2845 * The ACK bit can only be checked after the other error bits.
2846 * This is because a multi packet transfer may succeed in a
2847 * number of packets and then get a different response on the
2848 * last packet. In this case both ACK and the last response bit
2849 * will be set. If none of the other response bits is set, then
2850 * the last packet must have been an ACK
2852 * Since we got an ACK, we know we don't need to do a ping on
2853 * this pipe
2855 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2857 switch (transaction->type) {
2858 case CVMX_USB_TRANSFER_CONTROL:
2859 cvmx_usb_transfer_control(usb, pipe, transaction,
2860 usbc_hcchar,
2861 buffer_space_left,
2862 bytes_in_last_packet);
2863 break;
2864 case CVMX_USB_TRANSFER_BULK:
2865 cvmx_usb_transfer_bulk(usb, pipe, transaction,
2866 usbc_hcint, buffer_space_left,
2867 bytes_in_last_packet);
2868 break;
2869 case CVMX_USB_TRANSFER_INTERRUPT:
2870 cvmx_usb_transfer_intr(usb, pipe, transaction,
2871 buffer_space_left,
2872 bytes_in_last_packet);
2873 break;
2874 case CVMX_USB_TRANSFER_ISOCHRONOUS:
2875 cvmx_usb_transfer_isoc(usb, pipe, transaction,
2876 buffer_space_left,
2877 bytes_in_last_packet,
2878 bytes_this_transfer);
2879 break;
2881 } else if (usbc_hcint.s.nak) {
2883 * If this was a split then clear our split in progress marker.
2885 if (usb->active_split == transaction)
2886 usb->active_split = NULL;
2888 * NAK as a response means the device couldn't accept the
2889 * transaction, but it should be retried in the future. Rewind
2890 * to the beginning of the transaction by anding off the split
2891 * complete bit. Retry in the next interval
2893 transaction->retries = 0;
2894 transaction->stage &= ~1;
2895 pipe->next_tx_frame += pipe->interval;
2896 if (pipe->next_tx_frame < usb->frame_number)
2897 pipe->next_tx_frame = usb->frame_number +
2898 pipe->interval -
2899 (usb->frame_number - pipe->next_tx_frame) %
2900 pipe->interval;
2901 } else {
2902 struct cvmx_usb_port_status port;
2904 port = cvmx_usb_get_status(usb);
2905 if (port.port_enabled) {
2906 /* We'll retry the exact same transaction again */
2907 transaction->retries++;
2908 } else {
2910 * We get channel halted interrupts with no result bits
2911 * sets when the cable is unplugged
2913 cvmx_usb_complete(usb, pipe, transaction,
2914 CVMX_USB_STATUS_ERROR);
2917 return 0;
2920 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2922 spin_unlock(&usb->lock);
2923 usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2924 spin_lock(&usb->lock);
2928 * Poll the USB block for status and call all needed callback
2929 * handlers. This function is meant to be called in the interrupt
2930 * handler for the USB controller. It can also be called
2931 * periodically in a loop for non-interrupt based operation.
2933 * @usb: USB device state populated by cvmx_usb_initialize().
2935 * Returns: 0 or a negative error code.
2937 static int cvmx_usb_poll(struct octeon_hcd *usb)
2939 union cvmx_usbcx_hfnum usbc_hfnum;
2940 union cvmx_usbcx_gintsts usbc_gintsts;
2942 prefetch_range(usb, sizeof(*usb));
2944 /* Update the frame counter */
2945 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2946 if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2947 usb->frame_number += 0x4000;
2948 usb->frame_number &= ~0x3fffull;
2949 usb->frame_number |= usbc_hfnum.s.frnum;
2951 /* Read the pending interrupts */
2952 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2953 CVMX_USBCX_GINTSTS(usb->index));
2955 /* Clear the interrupts now that we know about them */
2956 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2957 usbc_gintsts.u32);
2959 if (usbc_gintsts.s.rxflvl) {
2961 * RxFIFO Non-Empty (RxFLvl)
2962 * Indicates that there is at least one packet pending to be
2963 * read from the RxFIFO.
2965 * In DMA mode this is handled by hardware
2967 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2968 cvmx_usb_poll_rx_fifo(usb);
2970 if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2971 /* Fill the Tx FIFOs when not in DMA mode */
2972 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2973 cvmx_usb_poll_tx_fifo(usb);
2975 if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2976 union cvmx_usbcx_hprt usbc_hprt;
2978 * Disconnect Detected Interrupt (DisconnInt)
2979 * Asserted when a device disconnect is detected.
2981 * Host Port Interrupt (PrtInt)
2982 * The core sets this bit to indicate a change in port status of
2983 * one of the O2P USB core ports in Host mode. The application
2984 * must read the Host Port Control and Status (HPRT) register to
2985 * determine the exact event that caused this interrupt. The
2986 * application must clear the appropriate status bit in the Host
2987 * Port Control and Status register to clear this bit.
2989 * Call the user's port callback
2991 octeon_usb_port_callback(usb);
2992 /* Clear the port change bits */
2993 usbc_hprt.u32 =
2994 cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2995 usbc_hprt.s.prtena = 0;
2996 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2997 usbc_hprt.u32);
2999 if (usbc_gintsts.s.hchint) {
3001 * Host Channels Interrupt (HChInt)
3002 * The core sets this bit to indicate that an interrupt is
3003 * pending on one of the channels of the core (in Host mode).
3004 * The application must read the Host All Channels Interrupt
3005 * (HAINT) register to determine the exact number of the channel
3006 * on which the interrupt occurred, and then read the
3007 * corresponding Host Channel-n Interrupt (HCINTn) register to
3008 * determine the exact cause of the interrupt. The application
3009 * must clear the appropriate status bit in the HCINTn register
3010 * to clear this bit.
3012 union cvmx_usbcx_haint usbc_haint;
3014 usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3015 CVMX_USBCX_HAINT(usb->index));
3016 while (usbc_haint.u32) {
3017 int channel;
3019 channel = __fls(usbc_haint.u32);
3020 cvmx_usb_poll_channel(usb, channel);
3021 usbc_haint.u32 ^= 1 << channel;
3025 cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3027 return 0;
3030 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3031 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3033 return (struct octeon_hcd *)(hcd->hcd_priv);
3036 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3038 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3039 unsigned long flags;
3041 spin_lock_irqsave(&usb->lock, flags);
3042 cvmx_usb_poll(usb);
3043 spin_unlock_irqrestore(&usb->lock, flags);
3044 return IRQ_HANDLED;
3047 static int octeon_usb_start(struct usb_hcd *hcd)
3049 hcd->state = HC_STATE_RUNNING;
3050 return 0;
3053 static void octeon_usb_stop(struct usb_hcd *hcd)
3055 hcd->state = HC_STATE_HALT;
3058 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3060 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3062 return cvmx_usb_get_frame_number(usb);
3065 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3066 struct urb *urb,
3067 gfp_t mem_flags)
3069 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3070 struct device *dev = hcd->self.controller;
3071 struct cvmx_usb_transaction *transaction = NULL;
3072 struct cvmx_usb_pipe *pipe;
3073 unsigned long flags;
3074 struct cvmx_usb_iso_packet *iso_packet;
3075 struct usb_host_endpoint *ep = urb->ep;
3076 int rc;
3078 urb->status = 0;
3079 spin_lock_irqsave(&usb->lock, flags);
3081 rc = usb_hcd_link_urb_to_ep(hcd, urb);
3082 if (rc) {
3083 spin_unlock_irqrestore(&usb->lock, flags);
3084 return rc;
3087 if (!ep->hcpriv) {
3088 enum cvmx_usb_transfer transfer_type;
3089 enum cvmx_usb_speed speed;
3090 int split_device = 0;
3091 int split_port = 0;
3093 switch (usb_pipetype(urb->pipe)) {
3094 case PIPE_ISOCHRONOUS:
3095 transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3096 break;
3097 case PIPE_INTERRUPT:
3098 transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3099 break;
3100 case PIPE_CONTROL:
3101 transfer_type = CVMX_USB_TRANSFER_CONTROL;
3102 break;
3103 default:
3104 transfer_type = CVMX_USB_TRANSFER_BULK;
3105 break;
3107 switch (urb->dev->speed) {
3108 case USB_SPEED_LOW:
3109 speed = CVMX_USB_SPEED_LOW;
3110 break;
3111 case USB_SPEED_FULL:
3112 speed = CVMX_USB_SPEED_FULL;
3113 break;
3114 default:
3115 speed = CVMX_USB_SPEED_HIGH;
3116 break;
3119 * For slow devices on high speed ports we need to find the hub
3120 * that does the speed translation so we know where to send the
3121 * split transactions.
3123 if (speed != CVMX_USB_SPEED_HIGH) {
3125 * Start at this device and work our way up the usb
3126 * tree.
3128 struct usb_device *dev = urb->dev;
3130 while (dev->parent) {
3132 * If our parent is high speed then he'll
3133 * receive the splits.
3135 if (dev->parent->speed == USB_SPEED_HIGH) {
3136 split_device = dev->parent->devnum;
3137 split_port = dev->portnum;
3138 break;
3141 * Move up the tree one level. If we make it all
3142 * the way up the tree, then the port must not
3143 * be in high speed mode and we don't need a
3144 * split.
3146 dev = dev->parent;
3149 pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3150 usb_pipeendpoint(urb->pipe), speed,
3151 le16_to_cpu(ep->desc.wMaxPacketSize)
3152 & 0x7ff,
3153 transfer_type,
3154 usb_pipein(urb->pipe) ?
3155 CVMX_USB_DIRECTION_IN :
3156 CVMX_USB_DIRECTION_OUT,
3157 urb->interval,
3158 (le16_to_cpu(ep->desc.wMaxPacketSize)
3159 >> 11) & 0x3,
3160 split_device, split_port);
3161 if (!pipe) {
3162 usb_hcd_unlink_urb_from_ep(hcd, urb);
3163 spin_unlock_irqrestore(&usb->lock, flags);
3164 dev_dbg(dev, "Failed to create pipe\n");
3165 return -ENOMEM;
3167 ep->hcpriv = pipe;
3168 } else {
3169 pipe = ep->hcpriv;
3172 switch (usb_pipetype(urb->pipe)) {
3173 case PIPE_ISOCHRONOUS:
3174 dev_dbg(dev, "Submit isochronous to %d.%d\n",
3175 usb_pipedevice(urb->pipe),
3176 usb_pipeendpoint(urb->pipe));
3178 * Allocate a structure to use for our private list of
3179 * isochronous packets.
3181 iso_packet = kmalloc_array(urb->number_of_packets,
3182 sizeof(struct cvmx_usb_iso_packet),
3183 GFP_ATOMIC);
3184 if (iso_packet) {
3185 int i;
3186 /* Fill the list with the data from the URB */
3187 for (i = 0; i < urb->number_of_packets; i++) {
3188 iso_packet[i].offset =
3189 urb->iso_frame_desc[i].offset;
3190 iso_packet[i].length =
3191 urb->iso_frame_desc[i].length;
3192 iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3195 * Store a pointer to the list in the URB setup_packet
3196 * field. We know this currently isn't being used and
3197 * this saves us a bunch of logic.
3199 urb->setup_packet = (char *)iso_packet;
3200 transaction = cvmx_usb_submit_isochronous(usb,
3201 pipe, urb);
3203 * If submit failed we need to free our private packet
3204 * list.
3206 if (!transaction) {
3207 urb->setup_packet = NULL;
3208 kfree(iso_packet);
3211 break;
3212 case PIPE_INTERRUPT:
3213 dev_dbg(dev, "Submit interrupt to %d.%d\n",
3214 usb_pipedevice(urb->pipe),
3215 usb_pipeendpoint(urb->pipe));
3216 transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3217 break;
3218 case PIPE_CONTROL:
3219 dev_dbg(dev, "Submit control to %d.%d\n",
3220 usb_pipedevice(urb->pipe),
3221 usb_pipeendpoint(urb->pipe));
3222 transaction = cvmx_usb_submit_control(usb, pipe, urb);
3223 break;
3224 case PIPE_BULK:
3225 dev_dbg(dev, "Submit bulk to %d.%d\n",
3226 usb_pipedevice(urb->pipe),
3227 usb_pipeendpoint(urb->pipe));
3228 transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3229 break;
3231 if (!transaction) {
3232 usb_hcd_unlink_urb_from_ep(hcd, urb);
3233 spin_unlock_irqrestore(&usb->lock, flags);
3234 dev_dbg(dev, "Failed to submit\n");
3235 return -ENOMEM;
3237 urb->hcpriv = transaction;
3238 spin_unlock_irqrestore(&usb->lock, flags);
3239 return 0;
3242 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3243 struct urb *urb,
3244 int status)
3246 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3247 unsigned long flags;
3248 int rc;
3250 if (!urb->dev)
3251 return -EINVAL;
3253 spin_lock_irqsave(&usb->lock, flags);
3255 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3256 if (rc)
3257 goto out;
3259 urb->status = status;
3260 cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3262 out:
3263 spin_unlock_irqrestore(&usb->lock, flags);
3265 return rc;
3268 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3269 struct usb_host_endpoint *ep)
3271 struct device *dev = hcd->self.controller;
3273 if (ep->hcpriv) {
3274 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3275 struct cvmx_usb_pipe *pipe = ep->hcpriv;
3276 unsigned long flags;
3278 spin_lock_irqsave(&usb->lock, flags);
3279 cvmx_usb_cancel_all(usb, pipe);
3280 if (cvmx_usb_close_pipe(usb, pipe))
3281 dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3282 spin_unlock_irqrestore(&usb->lock, flags);
3283 ep->hcpriv = NULL;
3287 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3289 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3290 struct cvmx_usb_port_status port_status;
3291 unsigned long flags;
3293 spin_lock_irqsave(&usb->lock, flags);
3294 port_status = cvmx_usb_get_status(usb);
3295 spin_unlock_irqrestore(&usb->lock, flags);
3296 buf[0] = port_status.connect_change << 1;
3298 return buf[0] != 0;
3301 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3302 u16 wIndex, char *buf, u16 wLength)
3304 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3305 struct device *dev = hcd->self.controller;
3306 struct cvmx_usb_port_status usb_port_status;
3307 int port_status;
3308 struct usb_hub_descriptor *desc;
3309 unsigned long flags;
3311 switch (typeReq) {
3312 case ClearHubFeature:
3313 dev_dbg(dev, "ClearHubFeature\n");
3314 switch (wValue) {
3315 case C_HUB_LOCAL_POWER:
3316 case C_HUB_OVER_CURRENT:
3317 /* Nothing required here */
3318 break;
3319 default:
3320 return -EINVAL;
3322 break;
3323 case ClearPortFeature:
3324 dev_dbg(dev, "ClearPortFeature\n");
3325 if (wIndex != 1) {
3326 dev_dbg(dev, " INVALID\n");
3327 return -EINVAL;
3330 switch (wValue) {
3331 case USB_PORT_FEAT_ENABLE:
3332 dev_dbg(dev, " ENABLE\n");
3333 spin_lock_irqsave(&usb->lock, flags);
3334 cvmx_usb_disable(usb);
3335 spin_unlock_irqrestore(&usb->lock, flags);
3336 break;
3337 case USB_PORT_FEAT_SUSPEND:
3338 dev_dbg(dev, " SUSPEND\n");
3339 /* Not supported on Octeon */
3340 break;
3341 case USB_PORT_FEAT_POWER:
3342 dev_dbg(dev, " POWER\n");
3343 /* Not supported on Octeon */
3344 break;
3345 case USB_PORT_FEAT_INDICATOR:
3346 dev_dbg(dev, " INDICATOR\n");
3347 /* Port inidicator not supported */
3348 break;
3349 case USB_PORT_FEAT_C_CONNECTION:
3350 dev_dbg(dev, " C_CONNECTION\n");
3351 /* Clears drivers internal connect status change flag */
3352 spin_lock_irqsave(&usb->lock, flags);
3353 usb->port_status = cvmx_usb_get_status(usb);
3354 spin_unlock_irqrestore(&usb->lock, flags);
3355 break;
3356 case USB_PORT_FEAT_C_RESET:
3357 dev_dbg(dev, " C_RESET\n");
3359 * Clears the driver's internal Port Reset Change flag.
3361 spin_lock_irqsave(&usb->lock, flags);
3362 usb->port_status = cvmx_usb_get_status(usb);
3363 spin_unlock_irqrestore(&usb->lock, flags);
3364 break;
3365 case USB_PORT_FEAT_C_ENABLE:
3366 dev_dbg(dev, " C_ENABLE\n");
3368 * Clears the driver's internal Port Enable/Disable
3369 * Change flag.
3371 spin_lock_irqsave(&usb->lock, flags);
3372 usb->port_status = cvmx_usb_get_status(usb);
3373 spin_unlock_irqrestore(&usb->lock, flags);
3374 break;
3375 case USB_PORT_FEAT_C_SUSPEND:
3376 dev_dbg(dev, " C_SUSPEND\n");
3378 * Clears the driver's internal Port Suspend Change
3379 * flag, which is set when resume signaling on the host
3380 * port is complete.
3382 break;
3383 case USB_PORT_FEAT_C_OVER_CURRENT:
3384 dev_dbg(dev, " C_OVER_CURRENT\n");
3385 /* Clears the driver's overcurrent Change flag */
3386 spin_lock_irqsave(&usb->lock, flags);
3387 usb->port_status = cvmx_usb_get_status(usb);
3388 spin_unlock_irqrestore(&usb->lock, flags);
3389 break;
3390 default:
3391 dev_dbg(dev, " UNKNOWN\n");
3392 return -EINVAL;
3394 break;
3395 case GetHubDescriptor:
3396 dev_dbg(dev, "GetHubDescriptor\n");
3397 desc = (struct usb_hub_descriptor *)buf;
3398 desc->bDescLength = 9;
3399 desc->bDescriptorType = 0x29;
3400 desc->bNbrPorts = 1;
3401 desc->wHubCharacteristics = cpu_to_le16(0x08);
3402 desc->bPwrOn2PwrGood = 1;
3403 desc->bHubContrCurrent = 0;
3404 desc->u.hs.DeviceRemovable[0] = 0;
3405 desc->u.hs.DeviceRemovable[1] = 0xff;
3406 break;
3407 case GetHubStatus:
3408 dev_dbg(dev, "GetHubStatus\n");
3409 *(__le32 *)buf = 0;
3410 break;
3411 case GetPortStatus:
3412 dev_dbg(dev, "GetPortStatus\n");
3413 if (wIndex != 1) {
3414 dev_dbg(dev, " INVALID\n");
3415 return -EINVAL;
3418 spin_lock_irqsave(&usb->lock, flags);
3419 usb_port_status = cvmx_usb_get_status(usb);
3420 spin_unlock_irqrestore(&usb->lock, flags);
3421 port_status = 0;
3423 if (usb_port_status.connect_change) {
3424 port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3425 dev_dbg(dev, " C_CONNECTION\n");
3428 if (usb_port_status.port_enabled) {
3429 port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3430 dev_dbg(dev, " C_ENABLE\n");
3433 if (usb_port_status.connected) {
3434 port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3435 dev_dbg(dev, " CONNECTION\n");
3438 if (usb_port_status.port_enabled) {
3439 port_status |= (1 << USB_PORT_FEAT_ENABLE);
3440 dev_dbg(dev, " ENABLE\n");
3443 if (usb_port_status.port_over_current) {
3444 port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3445 dev_dbg(dev, " OVER_CURRENT\n");
3448 if (usb_port_status.port_powered) {
3449 port_status |= (1 << USB_PORT_FEAT_POWER);
3450 dev_dbg(dev, " POWER\n");
3453 if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3454 port_status |= USB_PORT_STAT_HIGH_SPEED;
3455 dev_dbg(dev, " HIGHSPEED\n");
3456 } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3457 port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3458 dev_dbg(dev, " LOWSPEED\n");
3461 *((__le32 *)buf) = cpu_to_le32(port_status);
3462 break;
3463 case SetHubFeature:
3464 dev_dbg(dev, "SetHubFeature\n");
3465 /* No HUB features supported */
3466 break;
3467 case SetPortFeature:
3468 dev_dbg(dev, "SetPortFeature\n");
3469 if (wIndex != 1) {
3470 dev_dbg(dev, " INVALID\n");
3471 return -EINVAL;
3474 switch (wValue) {
3475 case USB_PORT_FEAT_SUSPEND:
3476 dev_dbg(dev, " SUSPEND\n");
3477 return -EINVAL;
3478 case USB_PORT_FEAT_POWER:
3479 dev_dbg(dev, " POWER\n");
3481 * Program the port power bit to drive VBUS on the USB.
3483 spin_lock_irqsave(&usb->lock, flags);
3484 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3485 cvmx_usbcx_hprt, prtpwr, 1);
3486 spin_unlock_irqrestore(&usb->lock, flags);
3487 return 0;
3488 case USB_PORT_FEAT_RESET:
3489 dev_dbg(dev, " RESET\n");
3490 spin_lock_irqsave(&usb->lock, flags);
3491 cvmx_usb_reset_port(usb);
3492 spin_unlock_irqrestore(&usb->lock, flags);
3493 return 0;
3494 case USB_PORT_FEAT_INDICATOR:
3495 dev_dbg(dev, " INDICATOR\n");
3496 /* Not supported */
3497 break;
3498 default:
3499 dev_dbg(dev, " UNKNOWN\n");
3500 return -EINVAL;
3502 break;
3503 default:
3504 dev_dbg(dev, "Unknown root hub request\n");
3505 return -EINVAL;
3507 return 0;
3510 static const struct hc_driver octeon_hc_driver = {
3511 .description = "Octeon USB",
3512 .product_desc = "Octeon Host Controller",
3513 .hcd_priv_size = sizeof(struct octeon_hcd),
3514 .irq = octeon_usb_irq,
3515 .flags = HCD_MEMORY | HCD_USB2,
3516 .start = octeon_usb_start,
3517 .stop = octeon_usb_stop,
3518 .urb_enqueue = octeon_usb_urb_enqueue,
3519 .urb_dequeue = octeon_usb_urb_dequeue,
3520 .endpoint_disable = octeon_usb_endpoint_disable,
3521 .get_frame_number = octeon_usb_get_frame_number,
3522 .hub_status_data = octeon_usb_hub_status_data,
3523 .hub_control = octeon_usb_hub_control,
3524 .map_urb_for_dma = octeon_map_urb_for_dma,
3525 .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
3528 static int octeon_usb_probe(struct platform_device *pdev)
3530 int status;
3531 int initialize_flags;
3532 int usb_num;
3533 struct resource *res_mem;
3534 struct device_node *usbn_node;
3535 int irq = platform_get_irq(pdev, 0);
3536 struct device *dev = &pdev->dev;
3537 struct octeon_hcd *usb;
3538 struct usb_hcd *hcd;
3539 u32 clock_rate = 48000000;
3540 bool is_crystal_clock = false;
3541 const char *clock_type;
3542 int i;
3544 if (!dev->of_node) {
3545 dev_err(dev, "Error: empty of_node\n");
3546 return -ENXIO;
3548 usbn_node = dev->of_node->parent;
3550 i = of_property_read_u32(usbn_node,
3551 "clock-frequency", &clock_rate);
3552 if (i)
3553 i = of_property_read_u32(usbn_node,
3554 "refclk-frequency", &clock_rate);
3555 if (i) {
3556 dev_err(dev, "No USBN \"clock-frequency\"\n");
3557 return -ENXIO;
3559 switch (clock_rate) {
3560 case 12000000:
3561 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3562 break;
3563 case 24000000:
3564 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3565 break;
3566 case 48000000:
3567 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3568 break;
3569 default:
3570 dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3571 clock_rate);
3572 return -ENXIO;
3575 i = of_property_read_string(usbn_node,
3576 "cavium,refclk-type", &clock_type);
3577 if (i)
3578 i = of_property_read_string(usbn_node,
3579 "refclk-type", &clock_type);
3581 if (!i && strcmp("crystal", clock_type) == 0)
3582 is_crystal_clock = true;
3584 if (is_crystal_clock)
3585 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3586 else
3587 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3589 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3590 if (!res_mem) {
3591 dev_err(dev, "found no memory resource\n");
3592 return -ENXIO;
3594 usb_num = (res_mem->start >> 44) & 1;
3596 if (irq < 0) {
3597 /* Defective device tree, but we know how to fix it. */
3598 irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3600 irq = irq_create_mapping(NULL, hwirq);
3604 * Set the DMA mask to 64bits so we get buffers already translated for
3605 * DMA.
3607 dev->coherent_dma_mask = ~0;
3608 dev->dma_mask = &dev->coherent_dma_mask;
3611 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3612 * IOB priority registers. Under heavy network load USB
3613 * hardware can be starved by the IOB causing a crash. Give
3614 * it a priority boost if it has been waiting more than 400
3615 * cycles to avoid this situation.
3617 * Testing indicates that a cnt_val of 8192 is not sufficient,
3618 * but no failures are seen with 4096. We choose a value of
3619 * 400 to give a safety factor of 10.
3621 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3622 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3624 pri_cnt.u64 = 0;
3625 pri_cnt.s.cnt_enb = 1;
3626 pri_cnt.s.cnt_val = 400;
3627 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3630 hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3631 if (!hcd) {
3632 dev_dbg(dev, "Failed to allocate memory for HCD\n");
3633 return -1;
3635 hcd->uses_new_polling = 1;
3636 usb = (struct octeon_hcd *)hcd->hcd_priv;
3638 spin_lock_init(&usb->lock);
3640 usb->init_flags = initialize_flags;
3642 /* Initialize the USB state structure */
3643 usb->index = usb_num;
3644 INIT_LIST_HEAD(&usb->idle_pipes);
3645 for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3646 INIT_LIST_HEAD(&usb->active_pipes[i]);
3648 /* Due to an errata, CN31XX doesn't support DMA */
3649 if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3650 usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3651 /* Only use one channel with non DMA */
3652 usb->idle_hardware_channels = 0x1;
3653 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3654 /* CN5XXX have an errata with channel 3 */
3655 usb->idle_hardware_channels = 0xf7;
3656 } else {
3657 usb->idle_hardware_channels = 0xff;
3660 status = cvmx_usb_initialize(dev, usb);
3661 if (status) {
3662 dev_dbg(dev, "USB initialization failed with %d\n", status);
3663 usb_put_hcd(hcd);
3664 return -1;
3667 status = usb_add_hcd(hcd, irq, 0);
3668 if (status) {
3669 dev_dbg(dev, "USB add HCD failed with %d\n", status);
3670 usb_put_hcd(hcd);
3671 return -1;
3673 device_wakeup_enable(hcd->self.controller);
3675 dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3677 return 0;
3680 static int octeon_usb_remove(struct platform_device *pdev)
3682 int status;
3683 struct device *dev = &pdev->dev;
3684 struct usb_hcd *hcd = dev_get_drvdata(dev);
3685 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3686 unsigned long flags;
3688 usb_remove_hcd(hcd);
3689 spin_lock_irqsave(&usb->lock, flags);
3690 status = cvmx_usb_shutdown(usb);
3691 spin_unlock_irqrestore(&usb->lock, flags);
3692 if (status)
3693 dev_dbg(dev, "USB shutdown failed with %d\n", status);
3695 usb_put_hcd(hcd);
3697 return 0;
3700 static const struct of_device_id octeon_usb_match[] = {
3702 .compatible = "cavium,octeon-5750-usbc",
3706 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3708 static struct platform_driver octeon_usb_driver = {
3709 .driver = {
3710 .name = "octeon-hcd",
3711 .of_match_table = octeon_usb_match,
3713 .probe = octeon_usb_probe,
3714 .remove = octeon_usb_remove,
3717 static int __init octeon_usb_driver_init(void)
3719 if (usb_disabled())
3720 return 0;
3722 return platform_driver_register(&octeon_usb_driver);
3724 module_init(octeon_usb_driver_init);
3726 static void __exit octeon_usb_driver_exit(void)
3728 if (usb_disabled())
3729 return;
3731 platform_driver_unregister(&octeon_usb_driver);
3733 module_exit(octeon_usb_driver_exit);
3735 MODULE_LICENSE("GPL");
3736 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3737 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");