Linux 4.19.133
[linux/fpc-iii.git] / drivers / thunderbolt / switch.c
blob010a50ac4881cebb3ed031803600ca6105fd9bc3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt Cactus Ridge driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 */
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sched/signal.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
17 #include "tb.h"
19 /* Switch NVM support */
21 #define NVM_DEVID 0x05
22 #define NVM_VERSION 0x08
23 #define NVM_CSS 0x10
24 #define NVM_FLASH_SIZE 0x45
26 #define NVM_MIN_SIZE SZ_32K
27 #define NVM_MAX_SIZE SZ_512K
29 static DEFINE_IDA(nvm_ida);
31 struct nvm_auth_status {
32 struct list_head list;
33 uuid_t uuid;
34 u32 status;
38 * Hold NVM authentication failure status per switch This information
39 * needs to stay around even when the switch gets power cycled so we
40 * keep it separately.
42 static LIST_HEAD(nvm_auth_status_cache);
43 static DEFINE_MUTEX(nvm_auth_status_lock);
45 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 struct nvm_auth_status *st;
49 list_for_each_entry(st, &nvm_auth_status_cache, list) {
50 if (uuid_equal(&st->uuid, sw->uuid))
51 return st;
54 return NULL;
57 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 struct nvm_auth_status *st;
61 mutex_lock(&nvm_auth_status_lock);
62 st = __nvm_get_auth_status(sw);
63 mutex_unlock(&nvm_auth_status_lock);
65 *status = st ? st->status : 0;
68 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 struct nvm_auth_status *st;
72 if (WARN_ON(!sw->uuid))
73 return;
75 mutex_lock(&nvm_auth_status_lock);
76 st = __nvm_get_auth_status(sw);
78 if (!st) {
79 st = kzalloc(sizeof(*st), GFP_KERNEL);
80 if (!st)
81 goto unlock;
83 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
84 INIT_LIST_HEAD(&st->list);
85 list_add_tail(&st->list, &nvm_auth_status_cache);
88 st->status = status;
89 unlock:
90 mutex_unlock(&nvm_auth_status_lock);
93 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 struct nvm_auth_status *st;
97 mutex_lock(&nvm_auth_status_lock);
98 st = __nvm_get_auth_status(sw);
99 if (st) {
100 list_del(&st->list);
101 kfree(st);
103 mutex_unlock(&nvm_auth_status_lock);
106 static int nvm_validate_and_write(struct tb_switch *sw)
108 unsigned int image_size, hdr_size;
109 const u8 *buf = sw->nvm->buf;
110 u16 ds_size;
111 int ret;
113 if (!buf)
114 return -EINVAL;
116 image_size = sw->nvm->buf_data_size;
117 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
118 return -EINVAL;
121 * FARB pointer must point inside the image and must at least
122 * contain parts of the digital section we will be reading here.
124 hdr_size = (*(u32 *)buf) & 0xffffff;
125 if (hdr_size + NVM_DEVID + 2 >= image_size)
126 return -EINVAL;
128 /* Digital section start should be aligned to 4k page */
129 if (!IS_ALIGNED(hdr_size, SZ_4K))
130 return -EINVAL;
133 * Read digital section size and check that it also fits inside
134 * the image.
136 ds_size = *(u16 *)(buf + hdr_size);
137 if (ds_size >= image_size)
138 return -EINVAL;
140 if (!sw->safe_mode) {
141 u16 device_id;
144 * Make sure the device ID in the image matches the one
145 * we read from the switch config space.
147 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
148 if (device_id != sw->config.device_id)
149 return -EINVAL;
151 if (sw->generation < 3) {
152 /* Write CSS headers first */
153 ret = dma_port_flash_write(sw->dma_port,
154 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
155 DMA_PORT_CSS_MAX_SIZE);
156 if (ret)
157 return ret;
160 /* Skip headers in the image */
161 buf += hdr_size;
162 image_size -= hdr_size;
165 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
168 static int nvm_authenticate_host(struct tb_switch *sw)
170 int ret = 0;
173 * Root switch NVM upgrade requires that we disconnect the
174 * existing paths first (in case it is not in safe mode
175 * already).
177 if (!sw->safe_mode) {
178 u32 status;
180 ret = tb_domain_disconnect_all_paths(sw->tb);
181 if (ret)
182 return ret;
184 * The host controller goes away pretty soon after this if
185 * everything goes well so getting timeout is expected.
187 ret = dma_port_flash_update_auth(sw->dma_port);
188 if (!ret || ret == -ETIMEDOUT)
189 return 0;
192 * Any error from update auth operation requires power
193 * cycling of the host router.
195 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
196 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
197 nvm_set_auth_status(sw, status);
201 * From safe mode we can get out by just power cycling the
202 * switch.
204 dma_port_power_cycle(sw->dma_port);
205 return ret;
208 static int nvm_authenticate_device(struct tb_switch *sw)
210 int ret, retries = 10;
212 ret = dma_port_flash_update_auth(sw->dma_port);
213 switch (ret) {
214 case 0:
215 case -ETIMEDOUT:
216 case -EACCES:
217 case -EINVAL:
218 /* Power cycle is required */
219 break;
220 default:
221 return ret;
225 * Poll here for the authentication status. It takes some time
226 * for the device to respond (we get timeout for a while). Once
227 * we get response the device needs to be power cycled in order
228 * to the new NVM to be taken into use.
230 do {
231 u32 status;
233 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
234 if (ret < 0 && ret != -ETIMEDOUT)
235 return ret;
236 if (ret > 0) {
237 if (status) {
238 tb_sw_warn(sw, "failed to authenticate NVM\n");
239 nvm_set_auth_status(sw, status);
242 tb_sw_info(sw, "power cycling the switch now\n");
243 dma_port_power_cycle(sw->dma_port);
244 return 0;
247 msleep(500);
248 } while (--retries);
250 return -ETIMEDOUT;
253 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
254 size_t bytes)
256 struct tb_switch *sw = priv;
257 int ret;
259 pm_runtime_get_sync(&sw->dev);
260 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
261 pm_runtime_mark_last_busy(&sw->dev);
262 pm_runtime_put_autosuspend(&sw->dev);
264 return ret;
267 static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
268 size_t bytes)
270 return -EPERM;
273 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
274 size_t bytes)
276 struct tb_switch *sw = priv;
277 int ret = 0;
279 if (!mutex_trylock(&sw->tb->lock))
280 return restart_syscall();
283 * Since writing the NVM image might require some special steps,
284 * for example when CSS headers are written, we cache the image
285 * locally here and handle the special cases when the user asks
286 * us to authenticate the image.
288 if (!sw->nvm->buf) {
289 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
290 if (!sw->nvm->buf) {
291 ret = -ENOMEM;
292 goto unlock;
296 sw->nvm->buf_data_size = offset + bytes;
297 memcpy(sw->nvm->buf + offset, val, bytes);
299 unlock:
300 mutex_unlock(&sw->tb->lock);
302 return ret;
305 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
306 size_t size, bool active)
308 struct nvmem_config config;
310 memset(&config, 0, sizeof(config));
312 if (active) {
313 config.name = "nvm_active";
314 config.reg_read = tb_switch_nvm_read;
315 config.read_only = true;
316 } else {
317 config.name = "nvm_non_active";
318 config.reg_read = tb_switch_nvm_no_read;
319 config.reg_write = tb_switch_nvm_write;
320 config.root_only = true;
323 config.id = id;
324 config.stride = 4;
325 config.word_size = 4;
326 config.size = size;
327 config.dev = &sw->dev;
328 config.owner = THIS_MODULE;
329 config.priv = sw;
331 return nvmem_register(&config);
334 static int tb_switch_nvm_add(struct tb_switch *sw)
336 struct nvmem_device *nvm_dev;
337 struct tb_switch_nvm *nvm;
338 u32 val;
339 int ret;
341 if (!sw->dma_port)
342 return 0;
344 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
345 if (!nvm)
346 return -ENOMEM;
348 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
351 * If the switch is in safe-mode the only accessible portion of
352 * the NVM is the non-active one where userspace is expected to
353 * write new functional NVM.
355 if (!sw->safe_mode) {
356 u32 nvm_size, hdr_size;
358 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
359 sizeof(val));
360 if (ret)
361 goto err_ida;
363 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
364 nvm_size = (SZ_1M << (val & 7)) / 8;
365 nvm_size = (nvm_size - hdr_size) / 2;
367 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
368 sizeof(val));
369 if (ret)
370 goto err_ida;
372 nvm->major = val >> 16;
373 nvm->minor = val >> 8;
375 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
376 if (IS_ERR(nvm_dev)) {
377 ret = PTR_ERR(nvm_dev);
378 goto err_ida;
380 nvm->active = nvm_dev;
383 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
384 if (IS_ERR(nvm_dev)) {
385 ret = PTR_ERR(nvm_dev);
386 goto err_nvm_active;
388 nvm->non_active = nvm_dev;
390 sw->nvm = nvm;
391 return 0;
393 err_nvm_active:
394 if (nvm->active)
395 nvmem_unregister(nvm->active);
396 err_ida:
397 ida_simple_remove(&nvm_ida, nvm->id);
398 kfree(nvm);
400 return ret;
403 static void tb_switch_nvm_remove(struct tb_switch *sw)
405 struct tb_switch_nvm *nvm;
407 nvm = sw->nvm;
408 sw->nvm = NULL;
410 if (!nvm)
411 return;
413 /* Remove authentication status in case the switch is unplugged */
414 if (!nvm->authenticating)
415 nvm_clear_auth_status(sw);
417 nvmem_unregister(nvm->non_active);
418 if (nvm->active)
419 nvmem_unregister(nvm->active);
420 ida_simple_remove(&nvm_ida, nvm->id);
421 vfree(nvm->buf);
422 kfree(nvm);
425 /* port utility functions */
427 static const char *tb_port_type(struct tb_regs_port_header *port)
429 switch (port->type >> 16) {
430 case 0:
431 switch ((u8) port->type) {
432 case 0:
433 return "Inactive";
434 case 1:
435 return "Port";
436 case 2:
437 return "NHI";
438 default:
439 return "unknown";
441 case 0x2:
442 return "Ethernet";
443 case 0x8:
444 return "SATA";
445 case 0xe:
446 return "DP/HDMI";
447 case 0x10:
448 return "PCIe";
449 case 0x20:
450 return "USB";
451 default:
452 return "unknown";
456 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
458 tb_info(tb,
459 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
460 port->port_number, port->vendor_id, port->device_id,
461 port->revision, port->thunderbolt_version, tb_port_type(port),
462 port->type);
463 tb_info(tb, " Max hop id (in/out): %d/%d\n",
464 port->max_in_hop_id, port->max_out_hop_id);
465 tb_info(tb, " Max counters: %d\n", port->max_counters);
466 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits);
470 * tb_port_state() - get connectedness state of a port
472 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
474 * Return: Returns an enum tb_port_state on success or an error code on failure.
476 static int tb_port_state(struct tb_port *port)
478 struct tb_cap_phy phy;
479 int res;
480 if (port->cap_phy == 0) {
481 tb_port_WARN(port, "does not have a PHY\n");
482 return -EINVAL;
484 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
485 if (res)
486 return res;
487 return phy.state;
491 * tb_wait_for_port() - wait for a port to become ready
493 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
494 * wait_if_unplugged is set then we also wait if the port is in state
495 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
496 * switch resume). Otherwise we only wait if a device is registered but the link
497 * has not yet been established.
499 * Return: Returns an error code on failure. Returns 0 if the port is not
500 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
501 * if the port is connected and in state TB_PORT_UP.
503 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
505 int retries = 10;
506 int state;
507 if (!port->cap_phy) {
508 tb_port_WARN(port, "does not have PHY\n");
509 return -EINVAL;
511 if (tb_is_upstream_port(port)) {
512 tb_port_WARN(port, "is the upstream port\n");
513 return -EINVAL;
516 while (retries--) {
517 state = tb_port_state(port);
518 if (state < 0)
519 return state;
520 if (state == TB_PORT_DISABLED) {
521 tb_port_info(port, "is disabled (state: 0)\n");
522 return 0;
524 if (state == TB_PORT_UNPLUGGED) {
525 if (wait_if_unplugged) {
526 /* used during resume */
527 tb_port_info(port,
528 "is unplugged (state: 7), retrying...\n");
529 msleep(100);
530 continue;
532 tb_port_info(port, "is unplugged (state: 7)\n");
533 return 0;
535 if (state == TB_PORT_UP) {
536 tb_port_info(port,
537 "is connected, link is up (state: 2)\n");
538 return 1;
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 * time.
545 tb_port_info(port,
546 "is connected, link is not up (state: %d), retrying...\n",
547 state);
548 msleep(100);
550 tb_port_warn(port,
551 "failed to reach state TB_PORT_UP. Ignoring port...\n");
552 return 0;
556 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558 * Change the number of NFC credits allocated to @port by @credits. To remove
559 * NFC credits pass a negative amount of credits.
561 * Return: Returns 0 on success or an error code on failure.
563 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
565 if (credits == 0)
566 return 0;
567 tb_port_info(port,
568 "adding %#x NFC credits (%#x -> %#x)",
569 credits,
570 port->config.nfc_credits,
571 port->config.nfc_credits + credits);
572 port->config.nfc_credits += credits;
573 return tb_port_write(port, &port->config.nfc_credits,
574 TB_CFG_PORT, 4, 1);
578 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
580 * Return: Returns 0 on success or an error code on failure.
582 int tb_port_clear_counter(struct tb_port *port, int counter)
584 u32 zero[3] = { 0, 0, 0 };
585 tb_port_info(port, "clearing counter %d\n", counter);
586 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
590 * tb_init_port() - initialize a port
592 * This is a helper method for tb_switch_alloc. Does not check or initialize
593 * any downstream switches.
595 * Return: Returns 0 on success or an error code on failure.
597 static int tb_init_port(struct tb_port *port)
599 int res;
600 int cap;
602 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
603 if (res)
604 return res;
606 /* Port 0 is the switch itself and has no PHY. */
607 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
608 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
610 if (cap > 0)
611 port->cap_phy = cap;
612 else
613 tb_port_WARN(port, "non switch port without a PHY\n");
616 tb_dump_port(port->sw->tb, &port->config);
618 /* TODO: Read dual link port, DP port and more from EEPROM. */
619 return 0;
623 /* switch utility functions */
625 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
627 tb_info(tb,
628 " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
629 sw->vendor_id, sw->device_id, sw->revision,
630 sw->thunderbolt_version);
631 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number);
632 tb_info(tb, " Config:\n");
633 tb_info(tb,
634 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
635 sw->upstream_port_number, sw->depth,
636 (((u64) sw->route_hi) << 32) | sw->route_lo,
637 sw->enabled, sw->plug_events_delay);
638 tb_info(tb,
639 " unknown1: %#x unknown4: %#x\n",
640 sw->__unknown1, sw->__unknown4);
644 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
646 * Return: Returns 0 on success or an error code on failure.
648 int tb_switch_reset(struct tb *tb, u64 route)
650 struct tb_cfg_result res;
651 struct tb_regs_switch_header header = {
652 header.route_hi = route >> 32,
653 header.route_lo = route,
654 header.enabled = true,
656 tb_info(tb, "resetting switch at %llx\n", route);
657 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
658 0, 2, 2, 2);
659 if (res.err)
660 return res.err;
661 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
662 if (res.err > 0)
663 return -EIO;
664 return res.err;
668 * tb_plug_events_active() - enable/disable plug events on a switch
670 * Also configures a sane plug_events_delay of 255ms.
672 * Return: Returns 0 on success or an error code on failure.
674 static int tb_plug_events_active(struct tb_switch *sw, bool active)
676 u32 data;
677 int res;
679 if (!sw->config.enabled)
680 return 0;
682 sw->config.plug_events_delay = 0xff;
683 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
684 if (res)
685 return res;
687 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
688 if (res)
689 return res;
691 if (active) {
692 data = data & 0xFFFFFF83;
693 switch (sw->config.device_id) {
694 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
695 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
696 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
697 break;
698 default:
699 data |= 4;
701 } else {
702 data = data | 0x7c;
704 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
705 sw->cap_plug_events + 1, 1);
708 static ssize_t authorized_show(struct device *dev,
709 struct device_attribute *attr,
710 char *buf)
712 struct tb_switch *sw = tb_to_switch(dev);
714 return sprintf(buf, "%u\n", sw->authorized);
717 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
719 int ret = -EINVAL;
721 if (!mutex_trylock(&sw->tb->lock))
722 return restart_syscall();
724 if (sw->authorized)
725 goto unlock;
728 * Make sure there is no PCIe rescan ongoing when a new PCIe
729 * tunnel is created. Otherwise the PCIe rescan code might find
730 * the new tunnel too early.
732 pci_lock_rescan_remove();
733 pm_runtime_get_sync(&sw->dev);
735 switch (val) {
736 /* Approve switch */
737 case 1:
738 if (sw->key)
739 ret = tb_domain_approve_switch_key(sw->tb, sw);
740 else
741 ret = tb_domain_approve_switch(sw->tb, sw);
742 break;
744 /* Challenge switch */
745 case 2:
746 if (sw->key)
747 ret = tb_domain_challenge_switch_key(sw->tb, sw);
748 break;
750 default:
751 break;
754 pm_runtime_mark_last_busy(&sw->dev);
755 pm_runtime_put_autosuspend(&sw->dev);
756 pci_unlock_rescan_remove();
758 if (!ret) {
759 sw->authorized = val;
760 /* Notify status change to the userspace */
761 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
764 unlock:
765 mutex_unlock(&sw->tb->lock);
766 return ret;
769 static ssize_t authorized_store(struct device *dev,
770 struct device_attribute *attr,
771 const char *buf, size_t count)
773 struct tb_switch *sw = tb_to_switch(dev);
774 unsigned int val;
775 ssize_t ret;
777 ret = kstrtouint(buf, 0, &val);
778 if (ret)
779 return ret;
780 if (val > 2)
781 return -EINVAL;
783 ret = tb_switch_set_authorized(sw, val);
785 return ret ? ret : count;
787 static DEVICE_ATTR_RW(authorized);
789 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
792 struct tb_switch *sw = tb_to_switch(dev);
794 return sprintf(buf, "%u\n", sw->boot);
796 static DEVICE_ATTR_RO(boot);
798 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
799 char *buf)
801 struct tb_switch *sw = tb_to_switch(dev);
803 return sprintf(buf, "%#x\n", sw->device);
805 static DEVICE_ATTR_RO(device);
807 static ssize_t
808 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
810 struct tb_switch *sw = tb_to_switch(dev);
812 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
814 static DEVICE_ATTR_RO(device_name);
816 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
817 char *buf)
819 struct tb_switch *sw = tb_to_switch(dev);
820 ssize_t ret;
822 if (!mutex_trylock(&sw->tb->lock))
823 return restart_syscall();
825 if (sw->key)
826 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
827 else
828 ret = sprintf(buf, "\n");
830 mutex_unlock(&sw->tb->lock);
831 return ret;
834 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
835 const char *buf, size_t count)
837 struct tb_switch *sw = tb_to_switch(dev);
838 u8 key[TB_SWITCH_KEY_SIZE];
839 ssize_t ret = count;
840 bool clear = false;
842 if (!strcmp(buf, "\n"))
843 clear = true;
844 else if (hex2bin(key, buf, sizeof(key)))
845 return -EINVAL;
847 if (!mutex_trylock(&sw->tb->lock))
848 return restart_syscall();
850 if (sw->authorized) {
851 ret = -EBUSY;
852 } else {
853 kfree(sw->key);
854 if (clear) {
855 sw->key = NULL;
856 } else {
857 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
858 if (!sw->key)
859 ret = -ENOMEM;
863 mutex_unlock(&sw->tb->lock);
864 return ret;
866 static DEVICE_ATTR(key, 0600, key_show, key_store);
868 static void nvm_authenticate_start(struct tb_switch *sw)
870 struct pci_dev *root_port;
873 * During host router NVM upgrade we should not allow root port to
874 * go into D3cold because some root ports cannot trigger PME
875 * itself. To be on the safe side keep the root port in D0 during
876 * the whole upgrade process.
878 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
879 if (root_port)
880 pm_runtime_get_noresume(&root_port->dev);
883 static void nvm_authenticate_complete(struct tb_switch *sw)
885 struct pci_dev *root_port;
887 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
888 if (root_port)
889 pm_runtime_put(&root_port->dev);
892 static ssize_t nvm_authenticate_show(struct device *dev,
893 struct device_attribute *attr, char *buf)
895 struct tb_switch *sw = tb_to_switch(dev);
896 u32 status;
898 nvm_get_auth_status(sw, &status);
899 return sprintf(buf, "%#x\n", status);
902 static ssize_t nvm_authenticate_store(struct device *dev,
903 struct device_attribute *attr, const char *buf, size_t count)
905 struct tb_switch *sw = tb_to_switch(dev);
906 bool val;
907 int ret;
909 if (!mutex_trylock(&sw->tb->lock))
910 return restart_syscall();
912 /* If NVMem devices are not yet added */
913 if (!sw->nvm) {
914 ret = -EAGAIN;
915 goto exit_unlock;
918 ret = kstrtobool(buf, &val);
919 if (ret)
920 goto exit_unlock;
922 /* Always clear the authentication status */
923 nvm_clear_auth_status(sw);
925 if (val) {
926 if (!sw->nvm->buf) {
927 ret = -EINVAL;
928 goto exit_unlock;
931 pm_runtime_get_sync(&sw->dev);
932 ret = nvm_validate_and_write(sw);
933 if (ret) {
934 pm_runtime_mark_last_busy(&sw->dev);
935 pm_runtime_put_autosuspend(&sw->dev);
936 goto exit_unlock;
939 sw->nvm->authenticating = true;
941 if (!tb_route(sw)) {
943 * Keep root port from suspending as long as the
944 * NVM upgrade process is running.
946 nvm_authenticate_start(sw);
947 ret = nvm_authenticate_host(sw);
948 } else {
949 ret = nvm_authenticate_device(sw);
951 pm_runtime_mark_last_busy(&sw->dev);
952 pm_runtime_put_autosuspend(&sw->dev);
955 exit_unlock:
956 mutex_unlock(&sw->tb->lock);
958 if (ret)
959 return ret;
960 return count;
962 static DEVICE_ATTR_RW(nvm_authenticate);
964 static ssize_t nvm_version_show(struct device *dev,
965 struct device_attribute *attr, char *buf)
967 struct tb_switch *sw = tb_to_switch(dev);
968 int ret;
970 if (!mutex_trylock(&sw->tb->lock))
971 return restart_syscall();
973 if (sw->safe_mode)
974 ret = -ENODATA;
975 else if (!sw->nvm)
976 ret = -EAGAIN;
977 else
978 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
980 mutex_unlock(&sw->tb->lock);
982 return ret;
984 static DEVICE_ATTR_RO(nvm_version);
986 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
987 char *buf)
989 struct tb_switch *sw = tb_to_switch(dev);
991 return sprintf(buf, "%#x\n", sw->vendor);
993 static DEVICE_ATTR_RO(vendor);
995 static ssize_t
996 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
998 struct tb_switch *sw = tb_to_switch(dev);
1000 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1002 static DEVICE_ATTR_RO(vendor_name);
1004 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1005 char *buf)
1007 struct tb_switch *sw = tb_to_switch(dev);
1009 return sprintf(buf, "%pUb\n", sw->uuid);
1011 static DEVICE_ATTR_RO(unique_id);
1013 static struct attribute *switch_attrs[] = {
1014 &dev_attr_authorized.attr,
1015 &dev_attr_boot.attr,
1016 &dev_attr_device.attr,
1017 &dev_attr_device_name.attr,
1018 &dev_attr_key.attr,
1019 &dev_attr_nvm_authenticate.attr,
1020 &dev_attr_nvm_version.attr,
1021 &dev_attr_vendor.attr,
1022 &dev_attr_vendor_name.attr,
1023 &dev_attr_unique_id.attr,
1024 NULL,
1027 static umode_t switch_attr_is_visible(struct kobject *kobj,
1028 struct attribute *attr, int n)
1030 struct device *dev = container_of(kobj, struct device, kobj);
1031 struct tb_switch *sw = tb_to_switch(dev);
1033 if (attr == &dev_attr_key.attr) {
1034 if (tb_route(sw) &&
1035 sw->tb->security_level == TB_SECURITY_SECURE &&
1036 sw->security_level == TB_SECURITY_SECURE)
1037 return attr->mode;
1038 return 0;
1039 } else if (attr == &dev_attr_nvm_authenticate.attr ||
1040 attr == &dev_attr_nvm_version.attr) {
1041 if (sw->dma_port)
1042 return attr->mode;
1043 return 0;
1044 } else if (attr == &dev_attr_boot.attr) {
1045 if (tb_route(sw))
1046 return attr->mode;
1047 return 0;
1050 return sw->safe_mode ? 0 : attr->mode;
1053 static struct attribute_group switch_group = {
1054 .is_visible = switch_attr_is_visible,
1055 .attrs = switch_attrs,
1058 static const struct attribute_group *switch_groups[] = {
1059 &switch_group,
1060 NULL,
1063 static void tb_switch_release(struct device *dev)
1065 struct tb_switch *sw = tb_to_switch(dev);
1067 dma_port_free(sw->dma_port);
1069 kfree(sw->uuid);
1070 kfree(sw->device_name);
1071 kfree(sw->vendor_name);
1072 kfree(sw->ports);
1073 kfree(sw->drom);
1074 kfree(sw->key);
1075 kfree(sw);
1079 * Currently only need to provide the callbacks. Everything else is handled
1080 * in the connection manager.
1082 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1084 return 0;
1087 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1089 return 0;
1092 static const struct dev_pm_ops tb_switch_pm_ops = {
1093 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1094 NULL)
1097 struct device_type tb_switch_type = {
1098 .name = "thunderbolt_device",
1099 .release = tb_switch_release,
1100 .pm = &tb_switch_pm_ops,
1103 static int tb_switch_get_generation(struct tb_switch *sw)
1105 switch (sw->config.device_id) {
1106 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1107 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1108 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1109 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1110 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1111 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1112 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1113 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1114 return 1;
1116 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1117 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1118 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1119 return 2;
1121 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1122 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1123 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1124 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1125 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1126 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1127 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1128 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1129 return 3;
1131 default:
1133 * For unknown switches assume generation to be 1 to be
1134 * on the safe side.
1136 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1137 sw->config.device_id);
1138 return 1;
1143 * tb_switch_alloc() - allocate a switch
1144 * @tb: Pointer to the owning domain
1145 * @parent: Parent device for this switch
1146 * @route: Route string for this switch
1148 * Allocates and initializes a switch. Will not upload configuration to
1149 * the switch. For that you need to call tb_switch_configure()
1150 * separately. The returned switch should be released by calling
1151 * tb_switch_put().
1153 * Return: Pointer to the allocated switch or %NULL in case of failure
1155 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1156 u64 route)
1158 int i;
1159 int cap;
1160 struct tb_switch *sw;
1161 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1162 if (upstream_port < 0)
1163 return NULL;
1165 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1166 if (!sw)
1167 return NULL;
1169 sw->tb = tb;
1170 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1171 goto err_free_sw_ports;
1173 tb_info(tb, "current switch config:\n");
1174 tb_dump_switch(tb, &sw->config);
1176 /* configure switch */
1177 sw->config.upstream_port_number = upstream_port;
1178 sw->config.depth = tb_route_length(route);
1179 sw->config.route_lo = route;
1180 sw->config.route_hi = route >> 32;
1181 sw->config.enabled = 0;
1183 /* initialize ports */
1184 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1185 GFP_KERNEL);
1186 if (!sw->ports)
1187 goto err_free_sw_ports;
1189 for (i = 0; i <= sw->config.max_port_number; i++) {
1190 /* minimum setup for tb_find_cap and tb_drom_read to work */
1191 sw->ports[i].sw = sw;
1192 sw->ports[i].port = i;
1195 sw->generation = tb_switch_get_generation(sw);
1197 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1198 if (cap < 0) {
1199 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1200 goto err_free_sw_ports;
1202 sw->cap_plug_events = cap;
1204 /* Root switch is always authorized */
1205 if (!route)
1206 sw->authorized = true;
1208 device_initialize(&sw->dev);
1209 sw->dev.parent = parent;
1210 sw->dev.bus = &tb_bus_type;
1211 sw->dev.type = &tb_switch_type;
1212 sw->dev.groups = switch_groups;
1213 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1215 return sw;
1217 err_free_sw_ports:
1218 kfree(sw->ports);
1219 kfree(sw);
1221 return NULL;
1225 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1226 * @tb: Pointer to the owning domain
1227 * @parent: Parent device for this switch
1228 * @route: Route string for this switch
1230 * This creates a switch in safe mode. This means the switch pretty much
1231 * lacks all capabilities except DMA configuration port before it is
1232 * flashed with a valid NVM firmware.
1234 * The returned switch must be released by calling tb_switch_put().
1236 * Return: Pointer to the allocated switch or %NULL in case of failure
1238 struct tb_switch *
1239 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1241 struct tb_switch *sw;
1243 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1244 if (!sw)
1245 return NULL;
1247 sw->tb = tb;
1248 sw->config.depth = tb_route_length(route);
1249 sw->config.route_hi = upper_32_bits(route);
1250 sw->config.route_lo = lower_32_bits(route);
1251 sw->safe_mode = true;
1253 device_initialize(&sw->dev);
1254 sw->dev.parent = parent;
1255 sw->dev.bus = &tb_bus_type;
1256 sw->dev.type = &tb_switch_type;
1257 sw->dev.groups = switch_groups;
1258 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1260 return sw;
1264 * tb_switch_configure() - Uploads configuration to the switch
1265 * @sw: Switch to configure
1267 * Call this function before the switch is added to the system. It will
1268 * upload configuration to the switch and makes it available for the
1269 * connection manager to use.
1271 * Return: %0 in case of success and negative errno in case of failure
1273 int tb_switch_configure(struct tb_switch *sw)
1275 struct tb *tb = sw->tb;
1276 u64 route;
1277 int ret;
1279 route = tb_route(sw);
1280 tb_info(tb,
1281 "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1282 route, tb_route_length(route), sw->config.upstream_port_number);
1284 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1285 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1286 sw->config.vendor_id);
1288 sw->config.enabled = 1;
1290 /* upload configuration */
1291 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1292 if (ret)
1293 return ret;
1295 return tb_plug_events_active(sw, true);
1298 static int tb_switch_set_uuid(struct tb_switch *sw)
1300 u32 uuid[4];
1301 int cap, ret;
1303 ret = 0;
1304 if (sw->uuid)
1305 return ret;
1308 * The newer controllers include fused UUID as part of link
1309 * controller specific registers
1311 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1312 if (cap > 0) {
1313 ret = tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1314 if (ret)
1315 return ret;
1316 } else {
1318 * ICM generates UUID based on UID and fills the upper
1319 * two words with ones. This is not strictly following
1320 * UUID format but we want to be compatible with it so
1321 * we do the same here.
1323 uuid[0] = sw->uid & 0xffffffff;
1324 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1325 uuid[2] = 0xffffffff;
1326 uuid[3] = 0xffffffff;
1329 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1330 if (!sw->uuid)
1331 ret = -ENOMEM;
1332 return ret;
1335 static int tb_switch_add_dma_port(struct tb_switch *sw)
1337 u32 status;
1338 int ret;
1340 switch (sw->generation) {
1341 case 2:
1342 /* Only root switch can be upgraded */
1343 if (tb_route(sw))
1344 return 0;
1346 /* fallthrough */
1347 case 3:
1348 ret = tb_switch_set_uuid(sw);
1349 if (ret)
1350 return ret;
1351 break;
1353 default:
1355 * DMA port is the only thing available when the switch
1356 * is in safe mode.
1358 if (!sw->safe_mode)
1359 return 0;
1360 break;
1363 if (sw->no_nvm_upgrade)
1364 return 0;
1366 sw->dma_port = dma_port_alloc(sw);
1367 if (!sw->dma_port)
1368 return 0;
1371 * If there is status already set then authentication failed
1372 * when the dma_port_flash_update_auth() returned. Power cycling
1373 * is not needed (it was done already) so only thing we do here
1374 * is to unblock runtime PM of the root port.
1376 nvm_get_auth_status(sw, &status);
1377 if (status) {
1378 if (!tb_route(sw))
1379 nvm_authenticate_complete(sw);
1380 return 0;
1384 * Check status of the previous flash authentication. If there
1385 * is one we need to power cycle the switch in any case to make
1386 * it functional again.
1388 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1389 if (ret <= 0)
1390 return ret;
1392 /* Now we can allow root port to suspend again */
1393 if (!tb_route(sw))
1394 nvm_authenticate_complete(sw);
1396 if (status) {
1397 tb_sw_info(sw, "switch flash authentication failed\n");
1398 nvm_set_auth_status(sw, status);
1401 tb_sw_info(sw, "power cycling the switch now\n");
1402 dma_port_power_cycle(sw->dma_port);
1405 * We return error here which causes the switch adding failure.
1406 * It should appear back after power cycle is complete.
1408 return -ESHUTDOWN;
1412 * tb_switch_add() - Add a switch to the domain
1413 * @sw: Switch to add
1415 * This is the last step in adding switch to the domain. It will read
1416 * identification information from DROM and initializes ports so that
1417 * they can be used to connect other switches. The switch will be
1418 * exposed to the userspace when this function successfully returns. To
1419 * remove and release the switch, call tb_switch_remove().
1421 * Return: %0 in case of success and negative errno in case of failure
1423 int tb_switch_add(struct tb_switch *sw)
1425 int i, ret;
1428 * Initialize DMA control port now before we read DROM. Recent
1429 * host controllers have more complete DROM on NVM that includes
1430 * vendor and model identification strings which we then expose
1431 * to the userspace. NVM can be accessed through DMA
1432 * configuration based mailbox.
1434 ret = tb_switch_add_dma_port(sw);
1435 if (ret)
1436 return ret;
1438 if (!sw->safe_mode) {
1439 /* read drom */
1440 ret = tb_drom_read(sw);
1441 if (ret) {
1442 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1443 return ret;
1445 tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1447 ret = tb_switch_set_uuid(sw);
1448 if (ret)
1449 return ret;
1451 for (i = 0; i <= sw->config.max_port_number; i++) {
1452 if (sw->ports[i].disabled) {
1453 tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1454 continue;
1456 ret = tb_init_port(&sw->ports[i]);
1457 if (ret)
1458 return ret;
1462 ret = device_add(&sw->dev);
1463 if (ret)
1464 return ret;
1466 ret = tb_switch_nvm_add(sw);
1467 if (ret) {
1468 device_del(&sw->dev);
1469 return ret;
1472 pm_runtime_set_active(&sw->dev);
1473 if (sw->rpm) {
1474 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1475 pm_runtime_use_autosuspend(&sw->dev);
1476 pm_runtime_mark_last_busy(&sw->dev);
1477 pm_runtime_enable(&sw->dev);
1478 pm_request_autosuspend(&sw->dev);
1481 return 0;
1485 * tb_switch_remove() - Remove and release a switch
1486 * @sw: Switch to remove
1488 * This will remove the switch from the domain and release it after last
1489 * reference count drops to zero. If there are switches connected below
1490 * this switch, they will be removed as well.
1492 void tb_switch_remove(struct tb_switch *sw)
1494 int i;
1496 if (sw->rpm) {
1497 pm_runtime_get_sync(&sw->dev);
1498 pm_runtime_disable(&sw->dev);
1501 /* port 0 is the switch itself and never has a remote */
1502 for (i = 1; i <= sw->config.max_port_number; i++) {
1503 if (tb_is_upstream_port(&sw->ports[i]))
1504 continue;
1505 if (sw->ports[i].remote)
1506 tb_switch_remove(sw->ports[i].remote->sw);
1507 sw->ports[i].remote = NULL;
1508 if (sw->ports[i].xdomain)
1509 tb_xdomain_remove(sw->ports[i].xdomain);
1510 sw->ports[i].xdomain = NULL;
1513 if (!sw->is_unplugged)
1514 tb_plug_events_active(sw, false);
1516 tb_switch_nvm_remove(sw);
1517 device_unregister(&sw->dev);
1521 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1523 void tb_sw_set_unplugged(struct tb_switch *sw)
1525 int i;
1526 if (sw == sw->tb->root_switch) {
1527 tb_sw_WARN(sw, "cannot unplug root switch\n");
1528 return;
1530 if (sw->is_unplugged) {
1531 tb_sw_WARN(sw, "is_unplugged already set\n");
1532 return;
1534 sw->is_unplugged = true;
1535 for (i = 0; i <= sw->config.max_port_number; i++) {
1536 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1537 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1541 int tb_switch_resume(struct tb_switch *sw)
1543 int i, err;
1544 tb_sw_info(sw, "resuming switch\n");
1547 * Check for UID of the connected switches except for root
1548 * switch which we assume cannot be removed.
1550 if (tb_route(sw)) {
1551 u64 uid;
1553 err = tb_drom_read_uid_only(sw, &uid);
1554 if (err) {
1555 tb_sw_warn(sw, "uid read failed\n");
1556 return err;
1558 if (sw->uid != uid) {
1559 tb_sw_info(sw,
1560 "changed while suspended (uid %#llx -> %#llx)\n",
1561 sw->uid, uid);
1562 return -ENODEV;
1566 /* upload configuration */
1567 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1568 if (err)
1569 return err;
1571 err = tb_plug_events_active(sw, true);
1572 if (err)
1573 return err;
1575 /* check for surviving downstream switches */
1576 for (i = 1; i <= sw->config.max_port_number; i++) {
1577 struct tb_port *port = &sw->ports[i];
1578 if (tb_is_upstream_port(port))
1579 continue;
1580 if (!port->remote)
1581 continue;
1582 if (tb_wait_for_port(port, true) <= 0
1583 || tb_switch_resume(port->remote->sw)) {
1584 tb_port_warn(port,
1585 "lost during suspend, disconnecting\n");
1586 tb_sw_set_unplugged(port->remote->sw);
1589 return 0;
1592 void tb_switch_suspend(struct tb_switch *sw)
1594 int i, err;
1595 err = tb_plug_events_active(sw, false);
1596 if (err)
1597 return;
1599 for (i = 1; i <= sw->config.max_port_number; i++) {
1600 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1601 tb_switch_suspend(sw->ports[i].remote->sw);
1604 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1605 * effect?
1609 struct tb_sw_lookup {
1610 struct tb *tb;
1611 u8 link;
1612 u8 depth;
1613 const uuid_t *uuid;
1614 u64 route;
1617 static int tb_switch_match(struct device *dev, void *data)
1619 struct tb_switch *sw = tb_to_switch(dev);
1620 struct tb_sw_lookup *lookup = data;
1622 if (!sw)
1623 return 0;
1624 if (sw->tb != lookup->tb)
1625 return 0;
1627 if (lookup->uuid)
1628 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1630 if (lookup->route) {
1631 return sw->config.route_lo == lower_32_bits(lookup->route) &&
1632 sw->config.route_hi == upper_32_bits(lookup->route);
1635 /* Root switch is matched only by depth */
1636 if (!lookup->depth)
1637 return !sw->depth;
1639 return sw->link == lookup->link && sw->depth == lookup->depth;
1643 * tb_switch_find_by_link_depth() - Find switch by link and depth
1644 * @tb: Domain the switch belongs
1645 * @link: Link number the switch is connected
1646 * @depth: Depth of the switch in link
1648 * Returned switch has reference count increased so the caller needs to
1649 * call tb_switch_put() when done with the switch.
1651 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1653 struct tb_sw_lookup lookup;
1654 struct device *dev;
1656 memset(&lookup, 0, sizeof(lookup));
1657 lookup.tb = tb;
1658 lookup.link = link;
1659 lookup.depth = depth;
1661 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1662 if (dev)
1663 return tb_to_switch(dev);
1665 return NULL;
1669 * tb_switch_find_by_uuid() - Find switch by UUID
1670 * @tb: Domain the switch belongs
1671 * @uuid: UUID to look for
1673 * Returned switch has reference count increased so the caller needs to
1674 * call tb_switch_put() when done with the switch.
1676 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1678 struct tb_sw_lookup lookup;
1679 struct device *dev;
1681 memset(&lookup, 0, sizeof(lookup));
1682 lookup.tb = tb;
1683 lookup.uuid = uuid;
1685 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1686 if (dev)
1687 return tb_to_switch(dev);
1689 return NULL;
1693 * tb_switch_find_by_route() - Find switch by route string
1694 * @tb: Domain the switch belongs
1695 * @route: Route string to look for
1697 * Returned switch has reference count increased so the caller needs to
1698 * call tb_switch_put() when done with the switch.
1700 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1702 struct tb_sw_lookup lookup;
1703 struct device *dev;
1705 if (!route)
1706 return tb_switch_get(tb->root_switch);
1708 memset(&lookup, 0, sizeof(lookup));
1709 lookup.tb = tb;
1710 lookup.route = route;
1712 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1713 if (dev)
1714 return tb_to_switch(dev);
1716 return NULL;
1719 void tb_switch_exit(void)
1721 ida_destroy(&nvm_ida);