Linux 4.19.133
[linux/fpc-iii.git] / drivers / tty / rocket.c
blob6133830f52a3c6ddd1ec9b7a70a3852972c83b77
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * RocketPort device driver for Linux
5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
8 */
11 * Kernel Synchronization:
13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
15 * are not used.
17 * Critical data:
18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
19 * serial port state information and the xmit_buf circular buffer. Protected by
20 * a per port spinlock.
21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
22 * is data to be transmitted. Protected by atomic bit operations.
23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
26 * simultaneous access to the same port by more than one process.
29 /****** Defines ******/
30 #define ROCKET_PARANOIA_CHECK
31 #define ROCKET_DISABLE_SIMUSAGE
33 #undef ROCKET_SOFT_FLOW
34 #undef ROCKET_DEBUG_OPEN
35 #undef ROCKET_DEBUG_INTR
36 #undef ROCKET_DEBUG_WRITE
37 #undef ROCKET_DEBUG_FLOW
38 #undef ROCKET_DEBUG_THROTTLE
39 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
40 #undef ROCKET_DEBUG_RECEIVE
41 #undef ROCKET_DEBUG_HANGUP
42 #undef REV_PCI_ORDER
43 #undef ROCKET_DEBUG_IO
45 #define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
47 /****** Kernel includes ******/
49 #include <linux/module.h>
50 #include <linux/errno.h>
51 #include <linux/major.h>
52 #include <linux/kernel.h>
53 #include <linux/signal.h>
54 #include <linux/slab.h>
55 #include <linux/mm.h>
56 #include <linux/sched.h>
57 #include <linux/timer.h>
58 #include <linux/interrupt.h>
59 #include <linux/tty.h>
60 #include <linux/tty_driver.h>
61 #include <linux/tty_flip.h>
62 #include <linux/serial.h>
63 #include <linux/string.h>
64 #include <linux/fcntl.h>
65 #include <linux/ptrace.h>
66 #include <linux/mutex.h>
67 #include <linux/ioport.h>
68 #include <linux/delay.h>
69 #include <linux/completion.h>
70 #include <linux/wait.h>
71 #include <linux/pci.h>
72 #include <linux/uaccess.h>
73 #include <linux/atomic.h>
74 #include <asm/unaligned.h>
75 #include <linux/bitops.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
79 /****** RocketPort includes ******/
81 #include "rocket_int.h"
82 #include "rocket.h"
84 #define ROCKET_VERSION "2.09"
85 #define ROCKET_DATE "12-June-2003"
87 /****** RocketPort Local Variables ******/
89 static void rp_do_poll(struct timer_list *unused);
91 static struct tty_driver *rocket_driver;
93 static struct rocket_version driver_version = {
94 ROCKET_VERSION, ROCKET_DATE
97 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
98 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
99 /* eg. Bit 0 indicates port 0 has xmit data, ... */
100 static atomic_t rp_num_ports_open; /* Number of serial ports open */
101 static DEFINE_TIMER(rocket_timer, rp_do_poll);
103 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
104 static unsigned long board2;
105 static unsigned long board3;
106 static unsigned long board4;
107 static unsigned long controller;
108 static bool support_low_speed;
109 static unsigned long modem1;
110 static unsigned long modem2;
111 static unsigned long modem3;
112 static unsigned long modem4;
113 static unsigned long pc104_1[8];
114 static unsigned long pc104_2[8];
115 static unsigned long pc104_3[8];
116 static unsigned long pc104_4[8];
117 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
119 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
120 static unsigned long rcktpt_io_addr[NUM_BOARDS];
121 static int rcktpt_type[NUM_BOARDS];
122 static int is_PCI[NUM_BOARDS];
123 static rocketModel_t rocketModel[NUM_BOARDS];
124 static int max_board;
125 static const struct tty_port_operations rocket_port_ops;
128 * The following arrays define the interrupt bits corresponding to each AIOP.
129 * These bits are different between the ISA and regular PCI boards and the
130 * Universal PCI boards.
133 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
134 AIOP_INTR_BIT_0,
135 AIOP_INTR_BIT_1,
136 AIOP_INTR_BIT_2,
137 AIOP_INTR_BIT_3
140 #ifdef CONFIG_PCI
141 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
142 UPCI_AIOP_INTR_BIT_0,
143 UPCI_AIOP_INTR_BIT_1,
144 UPCI_AIOP_INTR_BIT_2,
145 UPCI_AIOP_INTR_BIT_3
147 #endif
149 static Byte_t RData[RDATASIZE] = {
150 0x00, 0x09, 0xf6, 0x82,
151 0x02, 0x09, 0x86, 0xfb,
152 0x04, 0x09, 0x00, 0x0a,
153 0x06, 0x09, 0x01, 0x0a,
154 0x08, 0x09, 0x8a, 0x13,
155 0x0a, 0x09, 0xc5, 0x11,
156 0x0c, 0x09, 0x86, 0x85,
157 0x0e, 0x09, 0x20, 0x0a,
158 0x10, 0x09, 0x21, 0x0a,
159 0x12, 0x09, 0x41, 0xff,
160 0x14, 0x09, 0x82, 0x00,
161 0x16, 0x09, 0x82, 0x7b,
162 0x18, 0x09, 0x8a, 0x7d,
163 0x1a, 0x09, 0x88, 0x81,
164 0x1c, 0x09, 0x86, 0x7a,
165 0x1e, 0x09, 0x84, 0x81,
166 0x20, 0x09, 0x82, 0x7c,
167 0x22, 0x09, 0x0a, 0x0a
170 static Byte_t RRegData[RREGDATASIZE] = {
171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
186 static CONTROLLER_T sController[CTL_SIZE] = {
187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
197 static Byte_t sBitMapClrTbl[8] = {
198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
201 static Byte_t sBitMapSetTbl[8] = {
202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
205 static int sClockPrescale = 0x14;
208 * Line number is the ttySIx number (x), the Minor number. We
209 * assign them sequentially, starting at zero. The following
210 * array keeps track of the line number assigned to a given board/aiop/channel.
212 static unsigned char lineNumbers[MAX_RP_PORTS];
213 static unsigned long nextLineNumber;
215 /***** RocketPort Static Prototypes *********/
216 static int __init init_ISA(int i);
217 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
218 static void rp_flush_buffer(struct tty_struct *tty);
219 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
220 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
221 static void rp_start(struct tty_struct *tty);
222 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
223 int ChanNum);
224 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
225 static void sFlushRxFIFO(CHANNEL_T * ChP);
226 static void sFlushTxFIFO(CHANNEL_T * ChP);
227 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
228 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
229 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
230 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
231 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
232 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
233 ByteIO_t * AiopIOList, int AiopIOListSize,
234 int IRQNum, Byte_t Frequency, int PeriodicOnly);
235 static int sReadAiopID(ByteIO_t io);
236 static int sReadAiopNumChan(WordIO_t io);
238 MODULE_AUTHOR("Theodore Ts'o");
239 MODULE_DESCRIPTION("Comtrol RocketPort driver");
240 module_param_hw(board1, ulong, ioport, 0);
241 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
242 module_param_hw(board2, ulong, ioport, 0);
243 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
244 module_param_hw(board3, ulong, ioport, 0);
245 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
246 module_param_hw(board4, ulong, ioport, 0);
247 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
248 module_param_hw(controller, ulong, ioport, 0);
249 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
250 module_param(support_low_speed, bool, 0);
251 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
252 module_param(modem1, ulong, 0);
253 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
254 module_param(modem2, ulong, 0);
255 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
256 module_param(modem3, ulong, 0);
257 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
258 module_param(modem4, ulong, 0);
259 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
260 module_param_array(pc104_1, ulong, NULL, 0);
261 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
262 module_param_array(pc104_2, ulong, NULL, 0);
263 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
264 module_param_array(pc104_3, ulong, NULL, 0);
265 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
266 module_param_array(pc104_4, ulong, NULL, 0);
267 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
269 static int __init rp_init(void);
270 static void rp_cleanup_module(void);
272 module_init(rp_init);
273 module_exit(rp_cleanup_module);
276 MODULE_LICENSE("Dual BSD/GPL");
278 /*************************************************************************/
279 /* Module code starts here */
281 static inline int rocket_paranoia_check(struct r_port *info,
282 const char *routine)
284 #ifdef ROCKET_PARANOIA_CHECK
285 if (!info)
286 return 1;
287 if (info->magic != RPORT_MAGIC) {
288 printk(KERN_WARNING "Warning: bad magic number for rocketport "
289 "struct in %s\n", routine);
290 return 1;
292 #endif
293 return 0;
297 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
299 * tty layer.
301 static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
302 unsigned int ChanStatus)
304 unsigned int CharNStat;
305 int ToRecv, wRecv, space;
306 unsigned char *cbuf;
308 ToRecv = sGetRxCnt(cp);
309 #ifdef ROCKET_DEBUG_INTR
310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
311 #endif
312 if (ToRecv == 0)
313 return;
316 * if status indicates there are errored characters in the
317 * FIFO, then enter status mode (a word in FIFO holds
318 * character and status).
320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
321 if (!(ChanStatus & STATMODE)) {
322 #ifdef ROCKET_DEBUG_RECEIVE
323 printk(KERN_INFO "Entering STATMODE...\n");
324 #endif
325 ChanStatus |= STATMODE;
326 sEnRxStatusMode(cp);
331 * if we previously entered status mode, then read down the
332 * FIFO one word at a time, pulling apart the character and
333 * the status. Update error counters depending on status
335 if (ChanStatus & STATMODE) {
336 #ifdef ROCKET_DEBUG_RECEIVE
337 printk(KERN_INFO "Ignore %x, read %x...\n",
338 info->ignore_status_mask, info->read_status_mask);
339 #endif
340 while (ToRecv) {
341 char flag;
343 CharNStat = sInW(sGetTxRxDataIO(cp));
344 #ifdef ROCKET_DEBUG_RECEIVE
345 printk(KERN_INFO "%x...\n", CharNStat);
346 #endif
347 if (CharNStat & STMBREAKH)
348 CharNStat &= ~(STMFRAMEH | STMPARITYH);
349 if (CharNStat & info->ignore_status_mask) {
350 ToRecv--;
351 continue;
353 CharNStat &= info->read_status_mask;
354 if (CharNStat & STMBREAKH)
355 flag = TTY_BREAK;
356 else if (CharNStat & STMPARITYH)
357 flag = TTY_PARITY;
358 else if (CharNStat & STMFRAMEH)
359 flag = TTY_FRAME;
360 else if (CharNStat & STMRCVROVRH)
361 flag = TTY_OVERRUN;
362 else
363 flag = TTY_NORMAL;
364 tty_insert_flip_char(&info->port, CharNStat & 0xff,
365 flag);
366 ToRecv--;
370 * after we've emptied the FIFO in status mode, turn
371 * status mode back off
373 if (sGetRxCnt(cp) == 0) {
374 #ifdef ROCKET_DEBUG_RECEIVE
375 printk(KERN_INFO "Status mode off.\n");
376 #endif
377 sDisRxStatusMode(cp);
379 } else {
381 * we aren't in status mode, so read down the FIFO two
382 * characters at time by doing repeated word IO
383 * transfer.
385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
386 if (space < ToRecv) {
387 #ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
389 #endif
390 if (space <= 0)
391 return;
392 ToRecv = space;
394 wRecv = ToRecv >> 1;
395 if (wRecv)
396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
397 if (ToRecv & 1)
398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
400 /* Push the data up to the tty layer */
401 tty_flip_buffer_push(&info->port);
405 * Serial port transmit data function. Called from the timer polling loop as a
406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
410 static void rp_do_transmit(struct r_port *info)
412 int c;
413 CHANNEL_t *cp = &info->channel;
414 struct tty_struct *tty;
415 unsigned long flags;
417 #ifdef ROCKET_DEBUG_INTR
418 printk(KERN_DEBUG "%s\n", __func__);
419 #endif
420 if (!info)
421 return;
422 tty = tty_port_tty_get(&info->port);
424 if (tty == NULL) {
425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
427 return;
430 spin_lock_irqsave(&info->slock, flags);
431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
433 /* Loop sending data to FIFO until done or FIFO full */
434 while (1) {
435 if (tty->stopped)
436 break;
437 c = min(info->xmit_fifo_room, info->xmit_cnt);
438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
439 if (c <= 0 || info->xmit_fifo_room <= 0)
440 break;
441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
442 if (c & 1)
443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
444 info->xmit_tail += c;
445 info->xmit_tail &= XMIT_BUF_SIZE - 1;
446 info->xmit_cnt -= c;
447 info->xmit_fifo_room -= c;
448 #ifdef ROCKET_DEBUG_INTR
449 printk(KERN_INFO "tx %d chars...\n", c);
450 #endif
453 if (info->xmit_cnt == 0)
454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
456 if (info->xmit_cnt < WAKEUP_CHARS) {
457 tty_wakeup(tty);
458 #ifdef ROCKETPORT_HAVE_POLL_WAIT
459 wake_up_interruptible(&tty->poll_wait);
460 #endif
463 spin_unlock_irqrestore(&info->slock, flags);
464 tty_kref_put(tty);
466 #ifdef ROCKET_DEBUG_INTR
467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
468 info->xmit_tail, info->xmit_fifo_room);
469 #endif
473 * Called when a serial port signals it has read data in it's RX FIFO.
474 * It checks what interrupts are pending and services them, including
475 * receiving serial data.
477 static void rp_handle_port(struct r_port *info)
479 CHANNEL_t *cp;
480 unsigned int IntMask, ChanStatus;
482 if (!info)
483 return;
485 if (!tty_port_initialized(&info->port)) {
486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
487 "info->flags & NOT_INIT\n");
488 return;
491 cp = &info->channel;
493 IntMask = sGetChanIntID(cp) & info->intmask;
494 #ifdef ROCKET_DEBUG_INTR
495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
496 #endif
497 ChanStatus = sGetChanStatus(cp);
498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
499 rp_do_receive(info, cp, ChanStatus);
501 if (IntMask & DELTA_CD) { /* CD change */
502 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
504 (ChanStatus & CD_ACT) ? "on" : "off");
505 #endif
506 if (!(ChanStatus & CD_ACT) && info->cd_status) {
507 #ifdef ROCKET_DEBUG_HANGUP
508 printk(KERN_INFO "CD drop, calling hangup.\n");
509 #endif
510 tty_port_tty_hangup(&info->port, false);
512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
513 wake_up_interruptible(&info->port.open_wait);
515 #ifdef ROCKET_DEBUG_INTR
516 if (IntMask & DELTA_CTS) { /* CTS change */
517 printk(KERN_INFO "CTS change...\n");
519 if (IntMask & DELTA_DSR) { /* DSR change */
520 printk(KERN_INFO "DSR change...\n");
522 #endif
526 * The top level polling routine. Repeats every 1/100 HZ (10ms).
528 static void rp_do_poll(struct timer_list *unused)
530 CONTROLLER_t *ctlp;
531 int ctrl, aiop, ch, line;
532 unsigned int xmitmask, i;
533 unsigned int CtlMask;
534 unsigned char AiopMask;
535 Word_t bit;
537 /* Walk through all the boards (ctrl's) */
538 for (ctrl = 0; ctrl < max_board; ctrl++) {
539 if (rcktpt_io_addr[ctrl] <= 0)
540 continue;
542 /* Get a ptr to the board's control struct */
543 ctlp = sCtlNumToCtlPtr(ctrl);
545 /* Get the interrupt status from the board */
546 #ifdef CONFIG_PCI
547 if (ctlp->BusType == isPCI)
548 CtlMask = sPCIGetControllerIntStatus(ctlp);
549 else
550 #endif
551 CtlMask = sGetControllerIntStatus(ctlp);
553 /* Check if any AIOP read bits are set */
554 for (aiop = 0; CtlMask; aiop++) {
555 bit = ctlp->AiopIntrBits[aiop];
556 if (CtlMask & bit) {
557 CtlMask &= ~bit;
558 AiopMask = sGetAiopIntStatus(ctlp, aiop);
560 /* Check if any port read bits are set */
561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
562 if (AiopMask & 1) {
564 /* Get the line number (/dev/ttyRx number). */
565 /* Read the data from the port. */
566 line = GetLineNumber(ctrl, aiop, ch);
567 rp_handle_port(rp_table[line]);
573 xmitmask = xmit_flags[ctrl];
576 * xmit_flags contains bit-significant flags, indicating there is data
577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
578 * 1, ... (32 total possible). The variable i has the aiop and ch
579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
581 if (xmitmask) {
582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
583 if (xmitmask & (1 << i)) {
584 aiop = (i & 0x18) >> 3;
585 ch = i & 0x07;
586 line = GetLineNumber(ctrl, aiop, ch);
587 rp_do_transmit(rp_table[line]);
594 * Reset the timer so we get called at the next clock tick (10ms).
596 if (atomic_read(&rp_num_ports_open))
597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
601 * Initializes the r_port structure for a port, as well as enabling the port on
602 * the board.
603 * Inputs: board, aiop, chan numbers
605 static void __init
606 init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
608 unsigned rocketMode;
609 struct r_port *info;
610 int line;
611 CONTROLLER_T *ctlp;
613 /* Get the next available line number */
614 line = SetLineNumber(board, aiop, chan);
616 ctlp = sCtlNumToCtlPtr(board);
618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
620 if (!info) {
621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
622 line);
623 return;
626 info->magic = RPORT_MAGIC;
627 info->line = line;
628 info->ctlp = ctlp;
629 info->board = board;
630 info->aiop = aiop;
631 info->chan = chan;
632 tty_port_init(&info->port);
633 info->port.ops = &rocket_port_ops;
634 info->flags &= ~ROCKET_MODE_MASK;
635 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
636 switch (pc104[board][line]) {
637 case 422:
638 info->flags |= ROCKET_MODE_RS422;
639 break;
640 case 485:
641 info->flags |= ROCKET_MODE_RS485;
642 break;
643 case 232:
644 default:
645 info->flags |= ROCKET_MODE_RS232;
646 break;
648 else
649 info->flags |= ROCKET_MODE_RS232;
651 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
652 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
653 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
654 board, aiop, chan);
655 tty_port_destroy(&info->port);
656 kfree(info);
657 return;
660 rocketMode = info->flags & ROCKET_MODE_MASK;
662 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
663 sEnRTSToggle(&info->channel);
664 else
665 sDisRTSToggle(&info->channel);
667 if (ctlp->boardType == ROCKET_TYPE_PC104) {
668 switch (rocketMode) {
669 case ROCKET_MODE_RS485:
670 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
671 break;
672 case ROCKET_MODE_RS422:
673 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
674 break;
675 case ROCKET_MODE_RS232:
676 default:
677 if (info->flags & ROCKET_RTS_TOGGLE)
678 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
679 else
680 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
681 break;
684 spin_lock_init(&info->slock);
685 mutex_init(&info->write_mtx);
686 rp_table[line] = info;
687 tty_port_register_device(&info->port, rocket_driver, line,
688 pci_dev ? &pci_dev->dev : NULL);
692 * Configures a rocketport port according to its termio settings. Called from
693 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
695 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
696 struct ktermios *old_termios)
698 unsigned cflag;
699 unsigned long flags;
700 unsigned rocketMode;
701 int bits, baud, divisor;
702 CHANNEL_t *cp;
703 struct ktermios *t = &tty->termios;
705 cp = &info->channel;
706 cflag = t->c_cflag;
708 /* Byte size and parity */
709 if ((cflag & CSIZE) == CS8) {
710 sSetData8(cp);
711 bits = 10;
712 } else {
713 sSetData7(cp);
714 bits = 9;
716 if (cflag & CSTOPB) {
717 sSetStop2(cp);
718 bits++;
719 } else {
720 sSetStop1(cp);
723 if (cflag & PARENB) {
724 sEnParity(cp);
725 bits++;
726 if (cflag & PARODD) {
727 sSetOddParity(cp);
728 } else {
729 sSetEvenParity(cp);
731 } else {
732 sDisParity(cp);
735 /* baud rate */
736 baud = tty_get_baud_rate(tty);
737 if (!baud)
738 baud = 9600;
739 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
740 if ((divisor >= 8192 || divisor < 0) && old_termios) {
741 baud = tty_termios_baud_rate(old_termios);
742 if (!baud)
743 baud = 9600;
744 divisor = (rp_baud_base[info->board] / baud) - 1;
746 if (divisor >= 8192 || divisor < 0) {
747 baud = 9600;
748 divisor = (rp_baud_base[info->board] / baud) - 1;
750 info->cps = baud / bits;
751 sSetBaud(cp, divisor);
753 /* FIXME: Should really back compute a baud rate from the divisor */
754 tty_encode_baud_rate(tty, baud, baud);
756 if (cflag & CRTSCTS) {
757 info->intmask |= DELTA_CTS;
758 sEnCTSFlowCtl(cp);
759 } else {
760 info->intmask &= ~DELTA_CTS;
761 sDisCTSFlowCtl(cp);
763 if (cflag & CLOCAL) {
764 info->intmask &= ~DELTA_CD;
765 } else {
766 spin_lock_irqsave(&info->slock, flags);
767 if (sGetChanStatus(cp) & CD_ACT)
768 info->cd_status = 1;
769 else
770 info->cd_status = 0;
771 info->intmask |= DELTA_CD;
772 spin_unlock_irqrestore(&info->slock, flags);
776 * Handle software flow control in the board
778 #ifdef ROCKET_SOFT_FLOW
779 if (I_IXON(tty)) {
780 sEnTxSoftFlowCtl(cp);
781 if (I_IXANY(tty)) {
782 sEnIXANY(cp);
783 } else {
784 sDisIXANY(cp);
786 sSetTxXONChar(cp, START_CHAR(tty));
787 sSetTxXOFFChar(cp, STOP_CHAR(tty));
788 } else {
789 sDisTxSoftFlowCtl(cp);
790 sDisIXANY(cp);
791 sClrTxXOFF(cp);
793 #endif
796 * Set up ignore/read mask words
798 info->read_status_mask = STMRCVROVRH | 0xFF;
799 if (I_INPCK(tty))
800 info->read_status_mask |= STMFRAMEH | STMPARITYH;
801 if (I_BRKINT(tty) || I_PARMRK(tty))
802 info->read_status_mask |= STMBREAKH;
805 * Characters to ignore
807 info->ignore_status_mask = 0;
808 if (I_IGNPAR(tty))
809 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
810 if (I_IGNBRK(tty)) {
811 info->ignore_status_mask |= STMBREAKH;
813 * If we're ignoring parity and break indicators,
814 * ignore overruns too. (For real raw support).
816 if (I_IGNPAR(tty))
817 info->ignore_status_mask |= STMRCVROVRH;
820 rocketMode = info->flags & ROCKET_MODE_MASK;
822 if ((info->flags & ROCKET_RTS_TOGGLE)
823 || (rocketMode == ROCKET_MODE_RS485))
824 sEnRTSToggle(cp);
825 else
826 sDisRTSToggle(cp);
828 sSetRTS(&info->channel);
830 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
831 switch (rocketMode) {
832 case ROCKET_MODE_RS485:
833 sSetInterfaceMode(cp, InterfaceModeRS485);
834 break;
835 case ROCKET_MODE_RS422:
836 sSetInterfaceMode(cp, InterfaceModeRS422);
837 break;
838 case ROCKET_MODE_RS232:
839 default:
840 if (info->flags & ROCKET_RTS_TOGGLE)
841 sSetInterfaceMode(cp, InterfaceModeRS232T);
842 else
843 sSetInterfaceMode(cp, InterfaceModeRS232);
844 break;
849 static int carrier_raised(struct tty_port *port)
851 struct r_port *info = container_of(port, struct r_port, port);
852 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
855 static void dtr_rts(struct tty_port *port, int on)
857 struct r_port *info = container_of(port, struct r_port, port);
858 if (on) {
859 sSetDTR(&info->channel);
860 sSetRTS(&info->channel);
861 } else {
862 sClrDTR(&info->channel);
863 sClrRTS(&info->channel);
868 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
869 * port's r_port struct. Initializes the port hardware.
871 static int rp_open(struct tty_struct *tty, struct file *filp)
873 struct r_port *info;
874 struct tty_port *port;
875 int retval;
876 CHANNEL_t *cp;
877 unsigned long page;
879 info = rp_table[tty->index];
880 if (info == NULL)
881 return -ENXIO;
882 port = &info->port;
884 page = __get_free_page(GFP_KERNEL);
885 if (!page)
886 return -ENOMEM;
889 * We must not sleep from here until the port is marked fully in use.
891 if (info->xmit_buf)
892 free_page(page);
893 else
894 info->xmit_buf = (unsigned char *) page;
896 tty->driver_data = info;
897 tty_port_tty_set(port, tty);
899 if (port->count++ == 0) {
900 atomic_inc(&rp_num_ports_open);
902 #ifdef ROCKET_DEBUG_OPEN
903 printk(KERN_INFO "rocket mod++ = %d...\n",
904 atomic_read(&rp_num_ports_open));
905 #endif
907 #ifdef ROCKET_DEBUG_OPEN
908 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
909 #endif
912 * Info->count is now 1; so it's safe to sleep now.
914 if (!tty_port_initialized(port)) {
915 cp = &info->channel;
916 sSetRxTrigger(cp, TRIG_1);
917 if (sGetChanStatus(cp) & CD_ACT)
918 info->cd_status = 1;
919 else
920 info->cd_status = 0;
921 sDisRxStatusMode(cp);
922 sFlushRxFIFO(cp);
923 sFlushTxFIFO(cp);
925 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
926 sSetRxTrigger(cp, TRIG_1);
928 sGetChanStatus(cp);
929 sDisRxStatusMode(cp);
930 sClrTxXOFF(cp);
932 sDisCTSFlowCtl(cp);
933 sDisTxSoftFlowCtl(cp);
935 sEnRxFIFO(cp);
936 sEnTransmit(cp);
938 tty_port_set_initialized(&info->port, 1);
940 configure_r_port(tty, info, NULL);
941 if (C_BAUD(tty)) {
942 sSetDTR(cp);
943 sSetRTS(cp);
946 /* Starts (or resets) the maint polling loop */
947 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
949 retval = tty_port_block_til_ready(port, tty, filp);
950 if (retval) {
951 #ifdef ROCKET_DEBUG_OPEN
952 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
953 #endif
954 return retval;
956 return 0;
960 * Exception handler that closes a serial port. info->port.count is considered critical.
962 static void rp_close(struct tty_struct *tty, struct file *filp)
964 struct r_port *info = tty->driver_data;
965 struct tty_port *port = &info->port;
966 int timeout;
967 CHANNEL_t *cp;
969 if (rocket_paranoia_check(info, "rp_close"))
970 return;
972 #ifdef ROCKET_DEBUG_OPEN
973 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
974 #endif
976 if (tty_port_close_start(port, tty, filp) == 0)
977 return;
979 mutex_lock(&port->mutex);
980 cp = &info->channel;
982 * Before we drop DTR, make sure the UART transmitter
983 * has completely drained; this is especially
984 * important if there is a transmit FIFO!
986 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
987 if (timeout == 0)
988 timeout = 1;
989 rp_wait_until_sent(tty, timeout);
990 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
992 sDisTransmit(cp);
993 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
994 sDisCTSFlowCtl(cp);
995 sDisTxSoftFlowCtl(cp);
996 sClrTxXOFF(cp);
997 sFlushRxFIFO(cp);
998 sFlushTxFIFO(cp);
999 sClrRTS(cp);
1000 if (C_HUPCL(tty))
1001 sClrDTR(cp);
1003 rp_flush_buffer(tty);
1005 tty_ldisc_flush(tty);
1007 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1009 /* We can't yet use tty_port_close_end as the buffer handling in this
1010 driver is a bit different to the usual */
1012 if (port->blocked_open) {
1013 if (port->close_delay) {
1014 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1016 wake_up_interruptible(&port->open_wait);
1017 } else {
1018 if (info->xmit_buf) {
1019 free_page((unsigned long) info->xmit_buf);
1020 info->xmit_buf = NULL;
1023 spin_lock_irq(&port->lock);
1024 tty->closing = 0;
1025 spin_unlock_irq(&port->lock);
1026 tty_port_set_initialized(port, 0);
1027 tty_port_set_active(port, 0);
1028 mutex_unlock(&port->mutex);
1029 tty_port_tty_set(port, NULL);
1031 atomic_dec(&rp_num_ports_open);
1033 #ifdef ROCKET_DEBUG_OPEN
1034 printk(KERN_INFO "rocket mod-- = %d...\n",
1035 atomic_read(&rp_num_ports_open));
1036 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037 #endif
1041 static void rp_set_termios(struct tty_struct *tty,
1042 struct ktermios *old_termios)
1044 struct r_port *info = tty->driver_data;
1045 CHANNEL_t *cp;
1046 unsigned cflag;
1048 if (rocket_paranoia_check(info, "rp_set_termios"))
1049 return;
1051 cflag = tty->termios.c_cflag;
1054 * This driver doesn't support CS5 or CS6
1056 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057 tty->termios.c_cflag =
1058 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059 /* Or CMSPAR */
1060 tty->termios.c_cflag &= ~CMSPAR;
1062 configure_r_port(tty, info, old_termios);
1064 cp = &info->channel;
1066 /* Handle transition to B0 status */
1067 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068 sClrDTR(cp);
1069 sClrRTS(cp);
1072 /* Handle transition away from B0 status */
1073 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074 sSetRTS(cp);
1075 sSetDTR(cp);
1078 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1079 rp_start(tty);
1082 static int rp_break(struct tty_struct *tty, int break_state)
1084 struct r_port *info = tty->driver_data;
1085 unsigned long flags;
1087 if (rocket_paranoia_check(info, "rp_break"))
1088 return -EINVAL;
1090 spin_lock_irqsave(&info->slock, flags);
1091 if (break_state == -1)
1092 sSendBreak(&info->channel);
1093 else
1094 sClrBreak(&info->channel);
1095 spin_unlock_irqrestore(&info->slock, flags);
1096 return 0;
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1105 static int sGetChanRI(CHANNEL_T * ChP)
1107 CONTROLLER_t *CtlP = ChP->CtlP;
1108 int ChanNum = ChP->ChanNum;
1109 int RingInd = 0;
1111 if (CtlP->UPCIRingInd)
1112 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113 else if (CtlP->AltChanRingIndicator)
1114 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1118 return RingInd;
1121 /********************************************************************************************/
1122 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1125 * Returns the state of the serial modem control lines. These next 2 functions
1126 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1128 static int rp_tiocmget(struct tty_struct *tty)
1130 struct r_port *info = tty->driver_data;
1131 unsigned int control, result, ChanStatus;
1133 ChanStatus = sGetChanStatusLo(&info->channel);
1134 control = info->channel.TxControl[3];
1135 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1136 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1137 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1142 return result;
1146 * Sets the modem control lines
1148 static int rp_tiocmset(struct tty_struct *tty,
1149 unsigned int set, unsigned int clear)
1151 struct r_port *info = tty->driver_data;
1153 if (set & TIOCM_RTS)
1154 info->channel.TxControl[3] |= SET_RTS;
1155 if (set & TIOCM_DTR)
1156 info->channel.TxControl[3] |= SET_DTR;
1157 if (clear & TIOCM_RTS)
1158 info->channel.TxControl[3] &= ~SET_RTS;
1159 if (clear & TIOCM_DTR)
1160 info->channel.TxControl[3] &= ~SET_DTR;
1162 out32(info->channel.IndexAddr, info->channel.TxControl);
1163 return 0;
1166 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1168 struct rocket_config tmp;
1170 memset(&tmp, 0, sizeof (tmp));
1171 mutex_lock(&info->port.mutex);
1172 tmp.line = info->line;
1173 tmp.flags = info->flags;
1174 tmp.close_delay = info->port.close_delay;
1175 tmp.closing_wait = info->port.closing_wait;
1176 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177 mutex_unlock(&info->port.mutex);
1179 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180 return -EFAULT;
1181 return 0;
1184 static int set_config(struct tty_struct *tty, struct r_port *info,
1185 struct rocket_config __user *new_info)
1187 struct rocket_config new_serial;
1189 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190 return -EFAULT;
1192 mutex_lock(&info->port.mutex);
1193 if (!capable(CAP_SYS_ADMIN))
1195 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196 mutex_unlock(&info->port.mutex);
1197 return -EPERM;
1199 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1200 mutex_unlock(&info->port.mutex);
1201 return 0;
1204 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205 /* warn about deprecation, unless clearing */
1206 if (new_serial.flags & ROCKET_SPD_MASK)
1207 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1210 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211 info->port.close_delay = new_serial.close_delay;
1212 info->port.closing_wait = new_serial.closing_wait;
1214 mutex_unlock(&info->port.mutex);
1216 configure_r_port(tty, info, NULL);
1217 return 0;
1221 * This function fills in a rocket_ports struct with information
1222 * about what boards/ports are in the system. This info is passed
1223 * to user space. See setrocket.c where the info is used to create
1224 * the /dev/ttyRx ports.
1226 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1228 struct rocket_ports tmp;
1229 int board;
1231 memset(&tmp, 0, sizeof (tmp));
1232 tmp.tty_major = rocket_driver->major;
1234 for (board = 0; board < 4; board++) {
1235 tmp.rocketModel[board].model = rocketModel[board].model;
1236 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1237 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1238 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1239 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1241 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1242 return -EFAULT;
1243 return 0;
1246 static int reset_rm2(struct r_port *info, void __user *arg)
1248 int reset;
1250 if (!capable(CAP_SYS_ADMIN))
1251 return -EPERM;
1253 if (copy_from_user(&reset, arg, sizeof (int)))
1254 return -EFAULT;
1255 if (reset)
1256 reset = 1;
1258 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1259 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1260 return -EINVAL;
1262 if (info->ctlp->BusType == isISA)
1263 sModemReset(info->ctlp, info->chan, reset);
1264 else
1265 sPCIModemReset(info->ctlp, info->chan, reset);
1267 return 0;
1270 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1272 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1273 return -EFAULT;
1274 return 0;
1277 /* IOCTL call handler into the driver */
1278 static int rp_ioctl(struct tty_struct *tty,
1279 unsigned int cmd, unsigned long arg)
1281 struct r_port *info = tty->driver_data;
1282 void __user *argp = (void __user *)arg;
1283 int ret = 0;
1285 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1286 return -ENXIO;
1288 switch (cmd) {
1289 case RCKP_GET_STRUCT:
1290 if (copy_to_user(argp, info, sizeof (struct r_port)))
1291 ret = -EFAULT;
1292 break;
1293 case RCKP_GET_CONFIG:
1294 ret = get_config(info, argp);
1295 break;
1296 case RCKP_SET_CONFIG:
1297 ret = set_config(tty, info, argp);
1298 break;
1299 case RCKP_GET_PORTS:
1300 ret = get_ports(info, argp);
1301 break;
1302 case RCKP_RESET_RM2:
1303 ret = reset_rm2(info, argp);
1304 break;
1305 case RCKP_GET_VERSION:
1306 ret = get_version(info, argp);
1307 break;
1308 default:
1309 ret = -ENOIOCTLCMD;
1311 return ret;
1314 static void rp_send_xchar(struct tty_struct *tty, char ch)
1316 struct r_port *info = tty->driver_data;
1317 CHANNEL_t *cp;
1319 if (rocket_paranoia_check(info, "rp_send_xchar"))
1320 return;
1322 cp = &info->channel;
1323 if (sGetTxCnt(cp))
1324 sWriteTxPrioByte(cp, ch);
1325 else
1326 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1329 static void rp_throttle(struct tty_struct *tty)
1331 struct r_port *info = tty->driver_data;
1333 #ifdef ROCKET_DEBUG_THROTTLE
1334 printk(KERN_INFO "throttle %s ....\n", tty->name);
1335 #endif
1337 if (rocket_paranoia_check(info, "rp_throttle"))
1338 return;
1340 if (I_IXOFF(tty))
1341 rp_send_xchar(tty, STOP_CHAR(tty));
1343 sClrRTS(&info->channel);
1346 static void rp_unthrottle(struct tty_struct *tty)
1348 struct r_port *info = tty->driver_data;
1349 #ifdef ROCKET_DEBUG_THROTTLE
1350 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1351 #endif
1353 if (rocket_paranoia_check(info, "rp_unthrottle"))
1354 return;
1356 if (I_IXOFF(tty))
1357 rp_send_xchar(tty, START_CHAR(tty));
1359 sSetRTS(&info->channel);
1363 * ------------------------------------------------------------
1364 * rp_stop() and rp_start()
1366 * This routines are called before setting or resetting tty->stopped.
1367 * They enable or disable transmitter interrupts, as necessary.
1368 * ------------------------------------------------------------
1370 static void rp_stop(struct tty_struct *tty)
1372 struct r_port *info = tty->driver_data;
1374 #ifdef ROCKET_DEBUG_FLOW
1375 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1376 info->xmit_cnt, info->xmit_fifo_room);
1377 #endif
1379 if (rocket_paranoia_check(info, "rp_stop"))
1380 return;
1382 if (sGetTxCnt(&info->channel))
1383 sDisTransmit(&info->channel);
1386 static void rp_start(struct tty_struct *tty)
1388 struct r_port *info = tty->driver_data;
1390 #ifdef ROCKET_DEBUG_FLOW
1391 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1392 info->xmit_cnt, info->xmit_fifo_room);
1393 #endif
1395 if (rocket_paranoia_check(info, "rp_stop"))
1396 return;
1398 sEnTransmit(&info->channel);
1399 set_bit((info->aiop * 8) + info->chan,
1400 (void *) &xmit_flags[info->board]);
1404 * rp_wait_until_sent() --- wait until the transmitter is empty
1406 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1408 struct r_port *info = tty->driver_data;
1409 CHANNEL_t *cp;
1410 unsigned long orig_jiffies;
1411 int check_time, exit_time;
1412 int txcnt;
1414 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1415 return;
1417 cp = &info->channel;
1419 orig_jiffies = jiffies;
1420 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1421 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1422 jiffies);
1423 printk(KERN_INFO "cps=%d...\n", info->cps);
1424 #endif
1425 while (1) {
1426 txcnt = sGetTxCnt(cp);
1427 if (!txcnt) {
1428 if (sGetChanStatusLo(cp) & TXSHRMT)
1429 break;
1430 check_time = (HZ / info->cps) / 5;
1431 } else {
1432 check_time = HZ * txcnt / info->cps;
1434 if (timeout) {
1435 exit_time = orig_jiffies + timeout - jiffies;
1436 if (exit_time <= 0)
1437 break;
1438 if (exit_time < check_time)
1439 check_time = exit_time;
1441 if (check_time == 0)
1442 check_time = 1;
1443 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1444 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1445 jiffies, check_time);
1446 #endif
1447 msleep_interruptible(jiffies_to_msecs(check_time));
1448 if (signal_pending(current))
1449 break;
1451 __set_current_state(TASK_RUNNING);
1452 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1453 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1454 #endif
1458 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1460 static void rp_hangup(struct tty_struct *tty)
1462 CHANNEL_t *cp;
1463 struct r_port *info = tty->driver_data;
1464 unsigned long flags;
1466 if (rocket_paranoia_check(info, "rp_hangup"))
1467 return;
1469 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1470 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1471 #endif
1472 rp_flush_buffer(tty);
1473 spin_lock_irqsave(&info->port.lock, flags);
1474 if (info->port.count)
1475 atomic_dec(&rp_num_ports_open);
1476 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1477 spin_unlock_irqrestore(&info->port.lock, flags);
1479 tty_port_hangup(&info->port);
1481 cp = &info->channel;
1482 sDisRxFIFO(cp);
1483 sDisTransmit(cp);
1484 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1485 sDisCTSFlowCtl(cp);
1486 sDisTxSoftFlowCtl(cp);
1487 sClrTxXOFF(cp);
1488 tty_port_set_initialized(&info->port, 0);
1490 wake_up_interruptible(&info->port.open_wait);
1494 * Exception handler - write char routine. The RocketPort driver uses a
1495 * double-buffering strategy, with the twist that if the in-memory CPU
1496 * buffer is empty, and there's space in the transmit FIFO, the
1497 * writing routines will write directly to transmit FIFO.
1498 * Write buffer and counters protected by spinlocks
1500 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1502 struct r_port *info = tty->driver_data;
1503 CHANNEL_t *cp;
1504 unsigned long flags;
1506 if (rocket_paranoia_check(info, "rp_put_char"))
1507 return 0;
1510 * Grab the port write mutex, locking out other processes that try to
1511 * write to this port
1513 mutex_lock(&info->write_mtx);
1515 #ifdef ROCKET_DEBUG_WRITE
1516 printk(KERN_INFO "rp_put_char %c...\n", ch);
1517 #endif
1519 spin_lock_irqsave(&info->slock, flags);
1520 cp = &info->channel;
1522 if (!tty->stopped && info->xmit_fifo_room == 0)
1523 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1525 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1526 info->xmit_buf[info->xmit_head++] = ch;
1527 info->xmit_head &= XMIT_BUF_SIZE - 1;
1528 info->xmit_cnt++;
1529 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1530 } else {
1531 sOutB(sGetTxRxDataIO(cp), ch);
1532 info->xmit_fifo_room--;
1534 spin_unlock_irqrestore(&info->slock, flags);
1535 mutex_unlock(&info->write_mtx);
1536 return 1;
1540 * Exception handler - write routine, called when user app writes to the device.
1541 * A per port write mutex is used to protect from another process writing to
1542 * this port at the same time. This other process could be running on the other CPU
1543 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1544 * Spinlocks protect the info xmit members.
1546 static int rp_write(struct tty_struct *tty,
1547 const unsigned char *buf, int count)
1549 struct r_port *info = tty->driver_data;
1550 CHANNEL_t *cp;
1551 const unsigned char *b;
1552 int c, retval = 0;
1553 unsigned long flags;
1555 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1556 return 0;
1558 if (mutex_lock_interruptible(&info->write_mtx))
1559 return -ERESTARTSYS;
1561 #ifdef ROCKET_DEBUG_WRITE
1562 printk(KERN_INFO "rp_write %d chars...\n", count);
1563 #endif
1564 cp = &info->channel;
1566 if (!tty->stopped && info->xmit_fifo_room < count)
1567 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1570 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1571 * into FIFO. Use the write queue for temp storage.
1573 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1574 c = min(count, info->xmit_fifo_room);
1575 b = buf;
1577 /* Push data into FIFO, 2 bytes at a time */
1578 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1580 /* If there is a byte remaining, write it */
1581 if (c & 1)
1582 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1584 retval += c;
1585 buf += c;
1586 count -= c;
1588 spin_lock_irqsave(&info->slock, flags);
1589 info->xmit_fifo_room -= c;
1590 spin_unlock_irqrestore(&info->slock, flags);
1593 /* If count is zero, we wrote it all and are done */
1594 if (!count)
1595 goto end;
1597 /* Write remaining data into the port's xmit_buf */
1598 while (1) {
1599 /* Hung up ? */
1600 if (!tty_port_active(&info->port))
1601 goto end;
1602 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1603 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1604 if (c <= 0)
1605 break;
1607 b = buf;
1608 memcpy(info->xmit_buf + info->xmit_head, b, c);
1610 spin_lock_irqsave(&info->slock, flags);
1611 info->xmit_head =
1612 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1613 info->xmit_cnt += c;
1614 spin_unlock_irqrestore(&info->slock, flags);
1616 buf += c;
1617 count -= c;
1618 retval += c;
1621 if ((retval > 0) && !tty->stopped)
1622 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1624 end:
1625 if (info->xmit_cnt < WAKEUP_CHARS) {
1626 tty_wakeup(tty);
1627 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1628 wake_up_interruptible(&tty->poll_wait);
1629 #endif
1631 mutex_unlock(&info->write_mtx);
1632 return retval;
1636 * Return the number of characters that can be sent. We estimate
1637 * only using the in-memory transmit buffer only, and ignore the
1638 * potential space in the transmit FIFO.
1640 static int rp_write_room(struct tty_struct *tty)
1642 struct r_port *info = tty->driver_data;
1643 int ret;
1645 if (rocket_paranoia_check(info, "rp_write_room"))
1646 return 0;
1648 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1649 if (ret < 0)
1650 ret = 0;
1651 #ifdef ROCKET_DEBUG_WRITE
1652 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1653 #endif
1654 return ret;
1658 * Return the number of characters in the buffer. Again, this only
1659 * counts those characters in the in-memory transmit buffer.
1661 static int rp_chars_in_buffer(struct tty_struct *tty)
1663 struct r_port *info = tty->driver_data;
1665 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1666 return 0;
1668 #ifdef ROCKET_DEBUG_WRITE
1669 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1670 #endif
1671 return info->xmit_cnt;
1675 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1676 * r_port struct for the port. Note that spinlock are used to protect info members,
1677 * do not call this function if the spinlock is already held.
1679 static void rp_flush_buffer(struct tty_struct *tty)
1681 struct r_port *info = tty->driver_data;
1682 CHANNEL_t *cp;
1683 unsigned long flags;
1685 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1686 return;
1688 spin_lock_irqsave(&info->slock, flags);
1689 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1690 spin_unlock_irqrestore(&info->slock, flags);
1692 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1693 wake_up_interruptible(&tty->poll_wait);
1694 #endif
1695 tty_wakeup(tty);
1697 cp = &info->channel;
1698 sFlushTxFIFO(cp);
1701 #ifdef CONFIG_PCI
1703 static const struct pci_device_id rocket_pci_ids[] = {
1704 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1705 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1706 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1707 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1708 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1709 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1710 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1711 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1712 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1713 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1714 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1715 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1728 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1730 /* Resets the speaker controller on RocketModem II and III devices */
1731 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1733 ByteIO_t addr;
1735 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1736 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1737 addr = CtlP->AiopIO[0] + 0x4F;
1738 sOutB(addr, 0);
1741 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1742 if ((model == MODEL_UPCI_RM3_8PORT)
1743 || (model == MODEL_UPCI_RM3_4PORT)) {
1744 addr = CtlP->AiopIO[0] + 0x88;
1745 sOutB(addr, 0);
1749 /***************************************************************************
1750 Function: sPCIInitController
1751 Purpose: Initialization of controller global registers and controller
1752 structure.
1753 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1754 IRQNum,Frequency,PeriodicOnly)
1755 CONTROLLER_T *CtlP; Ptr to controller structure
1756 int CtlNum; Controller number
1757 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1758 This list must be in the order the AIOPs will be found on the
1759 controller. Once an AIOP in the list is not found, it is
1760 assumed that there are no more AIOPs on the controller.
1761 int AiopIOListSize; Number of addresses in AiopIOList
1762 int IRQNum; Interrupt Request number. Can be any of the following:
1763 0: Disable global interrupts
1764 3: IRQ 3
1765 4: IRQ 4
1766 5: IRQ 5
1767 9: IRQ 9
1768 10: IRQ 10
1769 11: IRQ 11
1770 12: IRQ 12
1771 15: IRQ 15
1772 Byte_t Frequency: A flag identifying the frequency
1773 of the periodic interrupt, can be any one of the following:
1774 FREQ_DIS - periodic interrupt disabled
1775 FREQ_137HZ - 137 Hertz
1776 FREQ_69HZ - 69 Hertz
1777 FREQ_34HZ - 34 Hertz
1778 FREQ_17HZ - 17 Hertz
1779 FREQ_9HZ - 9 Hertz
1780 FREQ_4HZ - 4 Hertz
1781 If IRQNum is set to 0 the Frequency parameter is
1782 overidden, it is forced to a value of FREQ_DIS.
1783 int PeriodicOnly: 1 if all interrupts except the periodic
1784 interrupt are to be blocked.
1785 0 is both the periodic interrupt and
1786 other channel interrupts are allowed.
1787 If IRQNum is set to 0 the PeriodicOnly parameter is
1788 overidden, it is forced to a value of 0.
1789 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1790 initialization failed.
1792 Comments:
1793 If periodic interrupts are to be disabled but AIOP interrupts
1794 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1796 If interrupts are to be completely disabled set IRQNum to 0.
1798 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1799 invalid combination.
1801 This function performs initialization of global interrupt modes,
1802 but it does not actually enable global interrupts. To enable
1803 and disable global interrupts use functions sEnGlobalInt() and
1804 sDisGlobalInt(). Enabling of global interrupts is normally not
1805 done until all other initializations are complete.
1807 Even if interrupts are globally enabled, they must also be
1808 individually enabled for each channel that is to generate
1809 interrupts.
1811 Warnings: No range checking on any of the parameters is done.
1813 No context switches are allowed while executing this function.
1815 After this function all AIOPs on the controller are disabled,
1816 they can be enabled with sEnAiop().
1818 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1819 ByteIO_t * AiopIOList, int AiopIOListSize,
1820 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1821 int PeriodicOnly, int altChanRingIndicator,
1822 int UPCIRingInd)
1824 int i;
1825 ByteIO_t io;
1827 CtlP->AltChanRingIndicator = altChanRingIndicator;
1828 CtlP->UPCIRingInd = UPCIRingInd;
1829 CtlP->CtlNum = CtlNum;
1830 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1831 CtlP->BusType = isPCI; /* controller release 1 */
1833 if (ConfigIO) {
1834 CtlP->isUPCI = 1;
1835 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1836 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1837 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1838 } else {
1839 CtlP->isUPCI = 0;
1840 CtlP->PCIIO =
1841 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1842 CtlP->AiopIntrBits = aiop_intr_bits;
1845 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1846 /* Init AIOPs */
1847 CtlP->NumAiop = 0;
1848 for (i = 0; i < AiopIOListSize; i++) {
1849 io = AiopIOList[i];
1850 CtlP->AiopIO[i] = (WordIO_t) io;
1851 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1853 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1854 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1855 break; /* done looking for AIOPs */
1857 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1858 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1859 sOutB(io + _INDX_DATA, sClockPrescale);
1860 CtlP->NumAiop++; /* bump count of AIOPs */
1863 if (CtlP->NumAiop == 0)
1864 return (-1);
1865 else
1866 return (CtlP->NumAiop);
1870 * Called when a PCI card is found. Retrieves and stores model information,
1871 * init's aiopic and serial port hardware.
1872 * Inputs: i is the board number (0-n)
1874 static __init int register_PCI(int i, struct pci_dev *dev)
1876 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1877 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1878 CONTROLLER_t *ctlp;
1880 int fast_clock = 0;
1881 int altChanRingIndicator = 0;
1882 int ports_per_aiop = 8;
1883 WordIO_t ConfigIO = 0;
1884 ByteIO_t UPCIRingInd = 0;
1886 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1887 pci_enable_device(dev) || i >= NUM_BOARDS)
1888 return 0;
1890 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1892 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1893 rocketModel[i].loadrm2 = 0;
1894 rocketModel[i].startingPortNumber = nextLineNumber;
1896 /* Depending on the model, set up some config variables */
1897 switch (dev->device) {
1898 case PCI_DEVICE_ID_RP4QUAD:
1899 max_num_aiops = 1;
1900 ports_per_aiop = 4;
1901 rocketModel[i].model = MODEL_RP4QUAD;
1902 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1903 rocketModel[i].numPorts = 4;
1904 break;
1905 case PCI_DEVICE_ID_RP8OCTA:
1906 max_num_aiops = 1;
1907 rocketModel[i].model = MODEL_RP8OCTA;
1908 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1909 rocketModel[i].numPorts = 8;
1910 break;
1911 case PCI_DEVICE_ID_URP8OCTA:
1912 max_num_aiops = 1;
1913 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1914 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1915 rocketModel[i].numPorts = 8;
1916 break;
1917 case PCI_DEVICE_ID_RP8INTF:
1918 max_num_aiops = 1;
1919 rocketModel[i].model = MODEL_RP8INTF;
1920 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1921 rocketModel[i].numPorts = 8;
1922 break;
1923 case PCI_DEVICE_ID_URP8INTF:
1924 max_num_aiops = 1;
1925 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1926 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1927 rocketModel[i].numPorts = 8;
1928 break;
1929 case PCI_DEVICE_ID_RP8J:
1930 max_num_aiops = 1;
1931 rocketModel[i].model = MODEL_RP8J;
1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1933 rocketModel[i].numPorts = 8;
1934 break;
1935 case PCI_DEVICE_ID_RP4J:
1936 max_num_aiops = 1;
1937 ports_per_aiop = 4;
1938 rocketModel[i].model = MODEL_RP4J;
1939 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1940 rocketModel[i].numPorts = 4;
1941 break;
1942 case PCI_DEVICE_ID_RP8SNI:
1943 max_num_aiops = 1;
1944 rocketModel[i].model = MODEL_RP8SNI;
1945 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1946 rocketModel[i].numPorts = 8;
1947 break;
1948 case PCI_DEVICE_ID_RP16SNI:
1949 max_num_aiops = 2;
1950 rocketModel[i].model = MODEL_RP16SNI;
1951 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1952 rocketModel[i].numPorts = 16;
1953 break;
1954 case PCI_DEVICE_ID_RP16INTF:
1955 max_num_aiops = 2;
1956 rocketModel[i].model = MODEL_RP16INTF;
1957 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1958 rocketModel[i].numPorts = 16;
1959 break;
1960 case PCI_DEVICE_ID_URP16INTF:
1961 max_num_aiops = 2;
1962 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1963 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1964 rocketModel[i].numPorts = 16;
1965 break;
1966 case PCI_DEVICE_ID_CRP16INTF:
1967 max_num_aiops = 2;
1968 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1969 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1970 rocketModel[i].numPorts = 16;
1971 break;
1972 case PCI_DEVICE_ID_RP32INTF:
1973 max_num_aiops = 4;
1974 rocketModel[i].model = MODEL_RP32INTF;
1975 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1976 rocketModel[i].numPorts = 32;
1977 break;
1978 case PCI_DEVICE_ID_URP32INTF:
1979 max_num_aiops = 4;
1980 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1981 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1982 rocketModel[i].numPorts = 32;
1983 break;
1984 case PCI_DEVICE_ID_RPP4:
1985 max_num_aiops = 1;
1986 ports_per_aiop = 4;
1987 altChanRingIndicator++;
1988 fast_clock++;
1989 rocketModel[i].model = MODEL_RPP4;
1990 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1991 rocketModel[i].numPorts = 4;
1992 break;
1993 case PCI_DEVICE_ID_RPP8:
1994 max_num_aiops = 2;
1995 ports_per_aiop = 4;
1996 altChanRingIndicator++;
1997 fast_clock++;
1998 rocketModel[i].model = MODEL_RPP8;
1999 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2000 rocketModel[i].numPorts = 8;
2001 break;
2002 case PCI_DEVICE_ID_RP2_232:
2003 max_num_aiops = 1;
2004 ports_per_aiop = 2;
2005 altChanRingIndicator++;
2006 fast_clock++;
2007 rocketModel[i].model = MODEL_RP2_232;
2008 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2009 rocketModel[i].numPorts = 2;
2010 break;
2011 case PCI_DEVICE_ID_RP2_422:
2012 max_num_aiops = 1;
2013 ports_per_aiop = 2;
2014 altChanRingIndicator++;
2015 fast_clock++;
2016 rocketModel[i].model = MODEL_RP2_422;
2017 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2018 rocketModel[i].numPorts = 2;
2019 break;
2020 case PCI_DEVICE_ID_RP6M:
2022 max_num_aiops = 1;
2023 ports_per_aiop = 6;
2025 /* If revision is 1, the rocketmodem flash must be loaded.
2026 * If it is 2 it is a "socketed" version. */
2027 if (dev->revision == 1) {
2028 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2029 rocketModel[i].loadrm2 = 1;
2030 } else {
2031 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2034 rocketModel[i].model = MODEL_RP6M;
2035 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2036 rocketModel[i].numPorts = 6;
2037 break;
2038 case PCI_DEVICE_ID_RP4M:
2039 max_num_aiops = 1;
2040 ports_per_aiop = 4;
2041 if (dev->revision == 1) {
2042 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2043 rocketModel[i].loadrm2 = 1;
2044 } else {
2045 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2048 rocketModel[i].model = MODEL_RP4M;
2049 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2050 rocketModel[i].numPorts = 4;
2051 break;
2052 default:
2053 max_num_aiops = 0;
2054 break;
2058 * Check for UPCI boards.
2061 switch (dev->device) {
2062 case PCI_DEVICE_ID_URP32INTF:
2063 case PCI_DEVICE_ID_URP8INTF:
2064 case PCI_DEVICE_ID_URP16INTF:
2065 case PCI_DEVICE_ID_CRP16INTF:
2066 case PCI_DEVICE_ID_URP8OCTA:
2067 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2068 ConfigIO = pci_resource_start(dev, 1);
2069 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2070 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2073 * Check for octa or quad cable.
2075 if (!
2076 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2077 PCI_GPIO_CTRL_8PORT)) {
2078 ports_per_aiop = 4;
2079 rocketModel[i].numPorts = 4;
2082 break;
2083 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2084 max_num_aiops = 1;
2085 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2086 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2087 rocketModel[i].numPorts = 8;
2088 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2089 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2090 ConfigIO = pci_resource_start(dev, 1);
2091 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2092 break;
2093 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2094 max_num_aiops = 1;
2095 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2096 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2097 rocketModel[i].numPorts = 4;
2098 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2099 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2100 ConfigIO = pci_resource_start(dev, 1);
2101 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2102 break;
2103 default:
2104 break;
2107 if (fast_clock) {
2108 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2109 rp_baud_base[i] = 921600;
2110 } else {
2112 * If support_low_speed is set, use the slow clock
2113 * prescale, which supports 50 bps
2115 if (support_low_speed) {
2116 /* mod 9 (divide by 10) prescale */
2117 sClockPrescale = 0x19;
2118 rp_baud_base[i] = 230400;
2119 } else {
2120 /* mod 4 (divide by 5) prescale */
2121 sClockPrescale = 0x14;
2122 rp_baud_base[i] = 460800;
2126 for (aiop = 0; aiop < max_num_aiops; aiop++)
2127 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2128 ctlp = sCtlNumToCtlPtr(i);
2129 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2130 for (aiop = 0; aiop < max_num_aiops; aiop++)
2131 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2133 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2134 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2135 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2136 rocketModel[i].startingPortNumber,
2137 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2139 if (num_aiops <= 0) {
2140 rcktpt_io_addr[i] = 0;
2141 return (0);
2143 is_PCI[i] = 1;
2145 /* Reset the AIOPIC, init the serial ports */
2146 for (aiop = 0; aiop < num_aiops; aiop++) {
2147 sResetAiopByNum(ctlp, aiop);
2148 num_chan = ports_per_aiop;
2149 for (chan = 0; chan < num_chan; chan++)
2150 init_r_port(i, aiop, chan, dev);
2153 /* Rocket modems must be reset */
2154 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2155 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2156 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2157 num_chan = ports_per_aiop;
2158 for (chan = 0; chan < num_chan; chan++)
2159 sPCIModemReset(ctlp, chan, 1);
2160 msleep(500);
2161 for (chan = 0; chan < num_chan; chan++)
2162 sPCIModemReset(ctlp, chan, 0);
2163 msleep(500);
2164 rmSpeakerReset(ctlp, rocketModel[i].model);
2166 return (1);
2170 * Probes for PCI cards, inits them if found
2171 * Input: board_found = number of ISA boards already found, or the
2172 * starting board number
2173 * Returns: Number of PCI boards found
2175 static int __init init_PCI(int boards_found)
2177 struct pci_dev *dev = NULL;
2178 int count = 0;
2180 /* Work through the PCI device list, pulling out ours */
2181 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2182 if (register_PCI(count + boards_found, dev))
2183 count++;
2185 return (count);
2188 #endif /* CONFIG_PCI */
2191 * Probes for ISA cards
2192 * Input: i = the board number to look for
2193 * Returns: 1 if board found, 0 else
2195 static int __init init_ISA(int i)
2197 int num_aiops, num_chan = 0, total_num_chan = 0;
2198 int aiop, chan;
2199 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2200 CONTROLLER_t *ctlp;
2201 char *type_string;
2203 /* If io_addr is zero, no board configured */
2204 if (rcktpt_io_addr[i] == 0)
2205 return (0);
2207 /* Reserve the IO region */
2208 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2209 printk(KERN_ERR "Unable to reserve IO region for configured "
2210 "ISA RocketPort at address 0x%lx, board not "
2211 "installed...\n", rcktpt_io_addr[i]);
2212 rcktpt_io_addr[i] = 0;
2213 return (0);
2216 ctlp = sCtlNumToCtlPtr(i);
2218 ctlp->boardType = rcktpt_type[i];
2220 switch (rcktpt_type[i]) {
2221 case ROCKET_TYPE_PC104:
2222 type_string = "(PC104)";
2223 break;
2224 case ROCKET_TYPE_MODEM:
2225 type_string = "(RocketModem)";
2226 break;
2227 case ROCKET_TYPE_MODEMII:
2228 type_string = "(RocketModem II)";
2229 break;
2230 default:
2231 type_string = "";
2232 break;
2236 * If support_low_speed is set, use the slow clock prescale,
2237 * which supports 50 bps
2239 if (support_low_speed) {
2240 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2241 rp_baud_base[i] = 230400;
2242 } else {
2243 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2244 rp_baud_base[i] = 460800;
2247 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2248 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2250 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2252 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2253 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2254 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2257 /* If something went wrong initing the AIOP's release the ISA IO memory */
2258 if (num_aiops <= 0) {
2259 release_region(rcktpt_io_addr[i], 64);
2260 rcktpt_io_addr[i] = 0;
2261 return (0);
2264 rocketModel[i].startingPortNumber = nextLineNumber;
2266 for (aiop = 0; aiop < num_aiops; aiop++) {
2267 sResetAiopByNum(ctlp, aiop);
2268 sEnAiop(ctlp, aiop);
2269 num_chan = sGetAiopNumChan(ctlp, aiop);
2270 total_num_chan += num_chan;
2271 for (chan = 0; chan < num_chan; chan++)
2272 init_r_port(i, aiop, chan, NULL);
2274 is_PCI[i] = 0;
2275 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2276 num_chan = sGetAiopNumChan(ctlp, 0);
2277 total_num_chan = num_chan;
2278 for (chan = 0; chan < num_chan; chan++)
2279 sModemReset(ctlp, chan, 1);
2280 msleep(500);
2281 for (chan = 0; chan < num_chan; chan++)
2282 sModemReset(ctlp, chan, 0);
2283 msleep(500);
2284 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2285 } else {
2286 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2288 rocketModel[i].numPorts = total_num_chan;
2289 rocketModel[i].model = MODEL_ISA;
2291 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2292 i, rcktpt_io_addr[i], num_aiops, type_string);
2294 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2295 rocketModel[i].modelString,
2296 rocketModel[i].startingPortNumber,
2297 rocketModel[i].startingPortNumber +
2298 rocketModel[i].numPorts - 1);
2300 return (1);
2303 static const struct tty_operations rocket_ops = {
2304 .open = rp_open,
2305 .close = rp_close,
2306 .write = rp_write,
2307 .put_char = rp_put_char,
2308 .write_room = rp_write_room,
2309 .chars_in_buffer = rp_chars_in_buffer,
2310 .flush_buffer = rp_flush_buffer,
2311 .ioctl = rp_ioctl,
2312 .throttle = rp_throttle,
2313 .unthrottle = rp_unthrottle,
2314 .set_termios = rp_set_termios,
2315 .stop = rp_stop,
2316 .start = rp_start,
2317 .hangup = rp_hangup,
2318 .break_ctl = rp_break,
2319 .send_xchar = rp_send_xchar,
2320 .wait_until_sent = rp_wait_until_sent,
2321 .tiocmget = rp_tiocmget,
2322 .tiocmset = rp_tiocmset,
2325 static const struct tty_port_operations rocket_port_ops = {
2326 .carrier_raised = carrier_raised,
2327 .dtr_rts = dtr_rts,
2331 * The module "startup" routine; it's run when the module is loaded.
2333 static int __init rp_init(void)
2335 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2337 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2338 ROCKET_VERSION, ROCKET_DATE);
2340 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2341 if (!rocket_driver)
2342 goto err;
2345 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2346 * zero, use the default controller IO address of board1 + 0x40.
2348 if (board1) {
2349 if (controller == 0)
2350 controller = board1 + 0x40;
2351 } else {
2352 controller = 0; /* Used as a flag, meaning no ISA boards */
2355 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2356 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2357 printk(KERN_ERR "Unable to reserve IO region for first "
2358 "configured ISA RocketPort controller 0x%lx. "
2359 "Driver exiting\n", controller);
2360 ret = -EBUSY;
2361 goto err_tty;
2364 /* Store ISA variable retrieved from command line or .conf file. */
2365 rcktpt_io_addr[0] = board1;
2366 rcktpt_io_addr[1] = board2;
2367 rcktpt_io_addr[2] = board3;
2368 rcktpt_io_addr[3] = board4;
2370 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2371 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2372 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2373 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2374 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2375 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2376 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2377 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2380 * Set up the tty driver structure and then register this
2381 * driver with the tty layer.
2384 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2385 rocket_driver->name = "ttyR";
2386 rocket_driver->driver_name = "Comtrol RocketPort";
2387 rocket_driver->major = TTY_ROCKET_MAJOR;
2388 rocket_driver->minor_start = 0;
2389 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2390 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2391 rocket_driver->init_termios = tty_std_termios;
2392 rocket_driver->init_termios.c_cflag =
2393 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2394 rocket_driver->init_termios.c_ispeed = 9600;
2395 rocket_driver->init_termios.c_ospeed = 9600;
2396 #ifdef ROCKET_SOFT_FLOW
2397 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2398 #endif
2399 tty_set_operations(rocket_driver, &rocket_ops);
2401 ret = tty_register_driver(rocket_driver);
2402 if (ret < 0) {
2403 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2404 goto err_controller;
2407 #ifdef ROCKET_DEBUG_OPEN
2408 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2409 #endif
2412 * OK, let's probe each of the controllers looking for boards. Any boards found
2413 * will be initialized here.
2415 isa_boards_found = 0;
2416 pci_boards_found = 0;
2418 for (i = 0; i < NUM_BOARDS; i++) {
2419 if (init_ISA(i))
2420 isa_boards_found++;
2423 #ifdef CONFIG_PCI
2424 if (isa_boards_found < NUM_BOARDS)
2425 pci_boards_found = init_PCI(isa_boards_found);
2426 #endif
2428 max_board = pci_boards_found + isa_boards_found;
2430 if (max_board == 0) {
2431 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2432 ret = -ENXIO;
2433 goto err_ttyu;
2436 return 0;
2437 err_ttyu:
2438 tty_unregister_driver(rocket_driver);
2439 err_controller:
2440 if (controller)
2441 release_region(controller, 4);
2442 err_tty:
2443 put_tty_driver(rocket_driver);
2444 err:
2445 return ret;
2449 static void rp_cleanup_module(void)
2451 int retval;
2452 int i;
2454 del_timer_sync(&rocket_timer);
2456 retval = tty_unregister_driver(rocket_driver);
2457 if (retval)
2458 printk(KERN_ERR "Error %d while trying to unregister "
2459 "rocketport driver\n", -retval);
2461 for (i = 0; i < MAX_RP_PORTS; i++)
2462 if (rp_table[i]) {
2463 tty_unregister_device(rocket_driver, i);
2464 tty_port_destroy(&rp_table[i]->port);
2465 kfree(rp_table[i]);
2468 put_tty_driver(rocket_driver);
2470 for (i = 0; i < NUM_BOARDS; i++) {
2471 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2472 continue;
2473 release_region(rcktpt_io_addr[i], 64);
2475 if (controller)
2476 release_region(controller, 4);
2479 /***************************************************************************
2480 Function: sInitController
2481 Purpose: Initialization of controller global registers and controller
2482 structure.
2483 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2484 IRQNum,Frequency,PeriodicOnly)
2485 CONTROLLER_T *CtlP; Ptr to controller structure
2486 int CtlNum; Controller number
2487 ByteIO_t MudbacIO; Mudbac base I/O address.
2488 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2489 This list must be in the order the AIOPs will be found on the
2490 controller. Once an AIOP in the list is not found, it is
2491 assumed that there are no more AIOPs on the controller.
2492 int AiopIOListSize; Number of addresses in AiopIOList
2493 int IRQNum; Interrupt Request number. Can be any of the following:
2494 0: Disable global interrupts
2495 3: IRQ 3
2496 4: IRQ 4
2497 5: IRQ 5
2498 9: IRQ 9
2499 10: IRQ 10
2500 11: IRQ 11
2501 12: IRQ 12
2502 15: IRQ 15
2503 Byte_t Frequency: A flag identifying the frequency
2504 of the periodic interrupt, can be any one of the following:
2505 FREQ_DIS - periodic interrupt disabled
2506 FREQ_137HZ - 137 Hertz
2507 FREQ_69HZ - 69 Hertz
2508 FREQ_34HZ - 34 Hertz
2509 FREQ_17HZ - 17 Hertz
2510 FREQ_9HZ - 9 Hertz
2511 FREQ_4HZ - 4 Hertz
2512 If IRQNum is set to 0 the Frequency parameter is
2513 overidden, it is forced to a value of FREQ_DIS.
2514 int PeriodicOnly: 1 if all interrupts except the periodic
2515 interrupt are to be blocked.
2516 0 is both the periodic interrupt and
2517 other channel interrupts are allowed.
2518 If IRQNum is set to 0 the PeriodicOnly parameter is
2519 overidden, it is forced to a value of 0.
2520 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2521 initialization failed.
2523 Comments:
2524 If periodic interrupts are to be disabled but AIOP interrupts
2525 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2527 If interrupts are to be completely disabled set IRQNum to 0.
2529 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2530 invalid combination.
2532 This function performs initialization of global interrupt modes,
2533 but it does not actually enable global interrupts. To enable
2534 and disable global interrupts use functions sEnGlobalInt() and
2535 sDisGlobalInt(). Enabling of global interrupts is normally not
2536 done until all other initializations are complete.
2538 Even if interrupts are globally enabled, they must also be
2539 individually enabled for each channel that is to generate
2540 interrupts.
2542 Warnings: No range checking on any of the parameters is done.
2544 No context switches are allowed while executing this function.
2546 After this function all AIOPs on the controller are disabled,
2547 they can be enabled with sEnAiop().
2549 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2550 ByteIO_t * AiopIOList, int AiopIOListSize,
2551 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2553 int i;
2554 ByteIO_t io;
2555 int done;
2557 CtlP->AiopIntrBits = aiop_intr_bits;
2558 CtlP->AltChanRingIndicator = 0;
2559 CtlP->CtlNum = CtlNum;
2560 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2561 CtlP->BusType = isISA;
2562 CtlP->MBaseIO = MudbacIO;
2563 CtlP->MReg1IO = MudbacIO + 1;
2564 CtlP->MReg2IO = MudbacIO + 2;
2565 CtlP->MReg3IO = MudbacIO + 3;
2566 #if 1
2567 CtlP->MReg2 = 0; /* interrupt disable */
2568 CtlP->MReg3 = 0; /* no periodic interrupts */
2569 #else
2570 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2571 CtlP->MReg2 = 0; /* interrupt disable */
2572 CtlP->MReg3 = 0; /* no periodic interrupts */
2573 } else {
2574 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2575 CtlP->MReg3 = Frequency; /* set frequency */
2576 if (PeriodicOnly) { /* periodic interrupt only */
2577 CtlP->MReg3 |= PERIODIC_ONLY;
2580 #endif
2581 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2582 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2583 sControllerEOI(CtlP); /* clear EOI if warm init */
2584 /* Init AIOPs */
2585 CtlP->NumAiop = 0;
2586 for (i = done = 0; i < AiopIOListSize; i++) {
2587 io = AiopIOList[i];
2588 CtlP->AiopIO[i] = (WordIO_t) io;
2589 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2590 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2591 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2592 if (done)
2593 continue;
2594 sEnAiop(CtlP, i); /* enable the AIOP */
2595 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2596 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2597 done = 1; /* done looking for AIOPs */
2598 else {
2599 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2600 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2601 sOutB(io + _INDX_DATA, sClockPrescale);
2602 CtlP->NumAiop++; /* bump count of AIOPs */
2604 sDisAiop(CtlP, i); /* disable AIOP */
2607 if (CtlP->NumAiop == 0)
2608 return (-1);
2609 else
2610 return (CtlP->NumAiop);
2613 /***************************************************************************
2614 Function: sReadAiopID
2615 Purpose: Read the AIOP idenfication number directly from an AIOP.
2616 Call: sReadAiopID(io)
2617 ByteIO_t io: AIOP base I/O address
2618 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2619 is replace by an identifying number.
2620 Flag AIOPID_NULL if no valid AIOP is found
2621 Warnings: No context switches are allowed while executing this function.
2624 static int sReadAiopID(ByteIO_t io)
2626 Byte_t AiopID; /* ID byte from AIOP */
2628 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2629 sOutB(io + _CMD_REG, 0x0);
2630 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2631 if (AiopID == 0x06)
2632 return (1);
2633 else /* AIOP does not exist */
2634 return (-1);
2637 /***************************************************************************
2638 Function: sReadAiopNumChan
2639 Purpose: Read the number of channels available in an AIOP directly from
2640 an AIOP.
2641 Call: sReadAiopNumChan(io)
2642 WordIO_t io: AIOP base I/O address
2643 Return: int: The number of channels available
2644 Comments: The number of channels is determined by write/reads from identical
2645 offsets within the SRAM address spaces for channels 0 and 4.
2646 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2647 AIOP, otherwise it is an 8 channel.
2648 Warnings: No context switches are allowed while executing this function.
2650 static int sReadAiopNumChan(WordIO_t io)
2652 Word_t x;
2653 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2655 /* write to chan 0 SRAM */
2656 out32((DWordIO_t) io + _INDX_ADDR, R);
2657 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2658 x = sInW(io + _INDX_DATA);
2659 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2660 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2661 return (8);
2662 else
2663 return (4);
2666 /***************************************************************************
2667 Function: sInitChan
2668 Purpose: Initialization of a channel and channel structure
2669 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2670 CONTROLLER_T *CtlP; Ptr to controller structure
2671 CHANNEL_T *ChP; Ptr to channel structure
2672 int AiopNum; AIOP number within controller
2673 int ChanNum; Channel number within AIOP
2674 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2675 number exceeds number of channels available in AIOP.
2676 Comments: This function must be called before a channel can be used.
2677 Warnings: No range checking on any of the parameters is done.
2679 No context switches are allowed while executing this function.
2681 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2682 int ChanNum)
2684 int i;
2685 WordIO_t AiopIO;
2686 WordIO_t ChIOOff;
2687 Byte_t *ChR;
2688 Word_t ChOff;
2689 static Byte_t R[4];
2690 int brd9600;
2692 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2693 return 0; /* exceeds num chans in AIOP */
2695 /* Channel, AIOP, and controller identifiers */
2696 ChP->CtlP = CtlP;
2697 ChP->ChanID = CtlP->AiopID[AiopNum];
2698 ChP->AiopNum = AiopNum;
2699 ChP->ChanNum = ChanNum;
2701 /* Global direct addresses */
2702 AiopIO = CtlP->AiopIO[AiopNum];
2703 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2704 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2705 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2706 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2707 ChP->IndexData = AiopIO + _INDX_DATA;
2709 /* Channel direct addresses */
2710 ChIOOff = AiopIO + ChP->ChanNum * 2;
2711 ChP->TxRxData = ChIOOff + _TD0;
2712 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2713 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2714 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2716 /* Initialize the channel from the RData array */
2717 for (i = 0; i < RDATASIZE; i += 4) {
2718 R[0] = RData[i];
2719 R[1] = RData[i + 1] + 0x10 * ChanNum;
2720 R[2] = RData[i + 2];
2721 R[3] = RData[i + 3];
2722 out32(ChP->IndexAddr, R);
2725 ChR = ChP->R;
2726 for (i = 0; i < RREGDATASIZE; i += 4) {
2727 ChR[i] = RRegData[i];
2728 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2729 ChR[i + 2] = RRegData[i + 2];
2730 ChR[i + 3] = RRegData[i + 3];
2733 /* Indexed registers */
2734 ChOff = (Word_t) ChanNum *0x1000;
2736 if (sClockPrescale == 0x14)
2737 brd9600 = 47;
2738 else
2739 brd9600 = 23;
2741 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2742 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2743 ChP->BaudDiv[2] = (Byte_t) brd9600;
2744 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2745 out32(ChP->IndexAddr, ChP->BaudDiv);
2747 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2748 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2749 ChP->TxControl[2] = 0;
2750 ChP->TxControl[3] = 0;
2751 out32(ChP->IndexAddr, ChP->TxControl);
2753 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2754 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2755 ChP->RxControl[2] = 0;
2756 ChP->RxControl[3] = 0;
2757 out32(ChP->IndexAddr, ChP->RxControl);
2759 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2760 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2761 ChP->TxEnables[2] = 0;
2762 ChP->TxEnables[3] = 0;
2763 out32(ChP->IndexAddr, ChP->TxEnables);
2765 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2766 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2767 ChP->TxCompare[2] = 0;
2768 ChP->TxCompare[3] = 0;
2769 out32(ChP->IndexAddr, ChP->TxCompare);
2771 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2772 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2773 ChP->TxReplace1[2] = 0;
2774 ChP->TxReplace1[3] = 0;
2775 out32(ChP->IndexAddr, ChP->TxReplace1);
2777 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2778 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2779 ChP->TxReplace2[2] = 0;
2780 ChP->TxReplace2[3] = 0;
2781 out32(ChP->IndexAddr, ChP->TxReplace2);
2783 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2784 ChP->TxFIFO = ChOff + _TX_FIFO;
2786 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2787 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2788 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2789 sOutW(ChP->IndexData, 0);
2790 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2791 ChP->RxFIFO = ChOff + _RX_FIFO;
2793 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2794 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2795 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2796 sOutW(ChP->IndexData, 0);
2797 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2798 sOutW(ChP->IndexData, 0);
2799 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2800 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2801 sOutB(ChP->IndexData, 0);
2802 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2803 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2804 sOutB(ChP->IndexData, 0);
2805 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2806 sEnRxProcessor(ChP); /* start the Rx processor */
2808 return 1;
2811 /***************************************************************************
2812 Function: sStopRxProcessor
2813 Purpose: Stop the receive processor from processing a channel.
2814 Call: sStopRxProcessor(ChP)
2815 CHANNEL_T *ChP; Ptr to channel structure
2817 Comments: The receive processor can be started again with sStartRxProcessor().
2818 This function causes the receive processor to skip over the
2819 stopped channel. It does not stop it from processing other channels.
2821 Warnings: No context switches are allowed while executing this function.
2823 Do not leave the receive processor stopped for more than one
2824 character time.
2826 After calling this function a delay of 4 uS is required to ensure
2827 that the receive processor is no longer processing this channel.
2829 static void sStopRxProcessor(CHANNEL_T * ChP)
2831 Byte_t R[4];
2833 R[0] = ChP->R[0];
2834 R[1] = ChP->R[1];
2835 R[2] = 0x0a;
2836 R[3] = ChP->R[3];
2837 out32(ChP->IndexAddr, R);
2840 /***************************************************************************
2841 Function: sFlushRxFIFO
2842 Purpose: Flush the Rx FIFO
2843 Call: sFlushRxFIFO(ChP)
2844 CHANNEL_T *ChP; Ptr to channel structure
2845 Return: void
2846 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2847 while it is being flushed the receive processor is stopped
2848 and the transmitter is disabled. After these operations a
2849 4 uS delay is done before clearing the pointers to allow
2850 the receive processor to stop. These items are handled inside
2851 this function.
2852 Warnings: No context switches are allowed while executing this function.
2854 static void sFlushRxFIFO(CHANNEL_T * ChP)
2856 int i;
2857 Byte_t Ch; /* channel number within AIOP */
2858 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2860 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2861 return; /* don't need to flush */
2863 RxFIFOEnabled = 0;
2864 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2865 RxFIFOEnabled = 1;
2866 sDisRxFIFO(ChP); /* disable it */
2867 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2868 sInB(ChP->IntChan); /* depends on bus i/o timing */
2870 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2871 Ch = (Byte_t) sGetChanNum(ChP);
2872 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2873 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2874 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2875 sOutW(ChP->IndexData, 0);
2876 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2877 sOutW(ChP->IndexData, 0);
2878 if (RxFIFOEnabled)
2879 sEnRxFIFO(ChP); /* enable Rx FIFO */
2882 /***************************************************************************
2883 Function: sFlushTxFIFO
2884 Purpose: Flush the Tx FIFO
2885 Call: sFlushTxFIFO(ChP)
2886 CHANNEL_T *ChP; Ptr to channel structure
2887 Return: void
2888 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2889 while it is being flushed the receive processor is stopped
2890 and the transmitter is disabled. After these operations a
2891 4 uS delay is done before clearing the pointers to allow
2892 the receive processor to stop. These items are handled inside
2893 this function.
2894 Warnings: No context switches are allowed while executing this function.
2896 static void sFlushTxFIFO(CHANNEL_T * ChP)
2898 int i;
2899 Byte_t Ch; /* channel number within AIOP */
2900 int TxEnabled; /* 1 if transmitter enabled */
2902 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2903 return; /* don't need to flush */
2905 TxEnabled = 0;
2906 if (ChP->TxControl[3] & TX_ENABLE) {
2907 TxEnabled = 1;
2908 sDisTransmit(ChP); /* disable transmitter */
2910 sStopRxProcessor(ChP); /* stop Rx processor */
2911 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2912 sInB(ChP->IntChan); /* depends on bus i/o timing */
2913 Ch = (Byte_t) sGetChanNum(ChP);
2914 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2915 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2916 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2917 sOutW(ChP->IndexData, 0);
2918 if (TxEnabled)
2919 sEnTransmit(ChP); /* enable transmitter */
2920 sStartRxProcessor(ChP); /* restart Rx processor */
2923 /***************************************************************************
2924 Function: sWriteTxPrioByte
2925 Purpose: Write a byte of priority transmit data to a channel
2926 Call: sWriteTxPrioByte(ChP,Data)
2927 CHANNEL_T *ChP; Ptr to channel structure
2928 Byte_t Data; The transmit data byte
2930 Return: int: 1 if the bytes is successfully written, otherwise 0.
2932 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2934 Warnings: No context switches are allowed while executing this function.
2936 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2938 Byte_t DWBuf[4]; /* buffer for double word writes */
2939 Word_t *WordPtr; /* must be far because Win SS != DS */
2940 register DWordIO_t IndexAddr;
2942 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2943 IndexAddr = ChP->IndexAddr;
2944 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2945 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2946 return (0); /* nothing sent */
2948 WordPtr = (Word_t *) (&DWBuf[0]);
2949 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2951 DWBuf[2] = Data; /* data byte value */
2952 out32(IndexAddr, DWBuf); /* write it out */
2954 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2956 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2957 DWBuf[3] = 0; /* priority buffer pointer */
2958 out32(IndexAddr, DWBuf); /* write it out */
2959 } else { /* write it to Tx FIFO */
2961 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2963 return (1); /* 1 byte sent */
2966 /***************************************************************************
2967 Function: sEnInterrupts
2968 Purpose: Enable one or more interrupts for a channel
2969 Call: sEnInterrupts(ChP,Flags)
2970 CHANNEL_T *ChP; Ptr to channel structure
2971 Word_t Flags: Interrupt enable flags, can be any combination
2972 of the following flags:
2973 TXINT_EN: Interrupt on Tx FIFO empty
2974 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2975 sSetRxTrigger())
2976 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2977 MCINT_EN: Interrupt on modem input change
2978 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2979 Interrupt Channel Register.
2980 Return: void
2981 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2982 enabled. If an interrupt enable flag is not set in Flags, that
2983 interrupt will not be changed. Interrupts can be disabled with
2984 function sDisInterrupts().
2986 This function sets the appropriate bit for the channel in the AIOP's
2987 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
2988 this channel's bit to be set in the AIOP's Interrupt Channel Register.
2990 Interrupts must also be globally enabled before channel interrupts
2991 will be passed on to the host. This is done with function
2992 sEnGlobalInt().
2994 In some cases it may be desirable to disable interrupts globally but
2995 enable channel interrupts. This would allow the global interrupt
2996 status register to be used to determine which AIOPs need service.
2998 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3000 Byte_t Mask; /* Interrupt Mask Register */
3002 ChP->RxControl[2] |=
3003 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3005 out32(ChP->IndexAddr, ChP->RxControl);
3007 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3009 out32(ChP->IndexAddr, ChP->TxControl);
3011 if (Flags & CHANINT_EN) {
3012 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3013 sOutB(ChP->IntMask, Mask);
3017 /***************************************************************************
3018 Function: sDisInterrupts
3019 Purpose: Disable one or more interrupts for a channel
3020 Call: sDisInterrupts(ChP,Flags)
3021 CHANNEL_T *ChP; Ptr to channel structure
3022 Word_t Flags: Interrupt flags, can be any combination
3023 of the following flags:
3024 TXINT_EN: Interrupt on Tx FIFO empty
3025 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3026 sSetRxTrigger())
3027 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3028 MCINT_EN: Interrupt on modem input change
3029 CHANINT_EN: Disable channel interrupt signal to the
3030 AIOP's Interrupt Channel Register.
3031 Return: void
3032 Comments: If an interrupt flag is set in Flags, that interrupt will be
3033 disabled. If an interrupt flag is not set in Flags, that
3034 interrupt will not be changed. Interrupts can be enabled with
3035 function sEnInterrupts().
3037 This function clears the appropriate bit for the channel in the AIOP's
3038 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3039 this channel's bit from being set in the AIOP's Interrupt Channel
3040 Register.
3042 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3044 Byte_t Mask; /* Interrupt Mask Register */
3046 ChP->RxControl[2] &=
3047 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3048 out32(ChP->IndexAddr, ChP->RxControl);
3049 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3050 out32(ChP->IndexAddr, ChP->TxControl);
3052 if (Flags & CHANINT_EN) {
3053 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3054 sOutB(ChP->IntMask, Mask);
3058 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3060 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3064 * Not an official SSCI function, but how to reset RocketModems.
3065 * ISA bus version
3067 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3069 ByteIO_t addr;
3070 Byte_t val;
3072 addr = CtlP->AiopIO[0] + 0x400;
3073 val = sInB(CtlP->MReg3IO);
3074 /* if AIOP[1] is not enabled, enable it */
3075 if ((val & 2) == 0) {
3076 val = sInB(CtlP->MReg2IO);
3077 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3078 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3081 sEnAiop(CtlP, 1);
3082 if (!on)
3083 addr += 8;
3084 sOutB(addr + chan, 0); /* apply or remove reset */
3085 sDisAiop(CtlP, 1);
3089 * Not an official SSCI function, but how to reset RocketModems.
3090 * PCI bus version
3092 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3094 ByteIO_t addr;
3096 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3097 if (!on)
3098 addr += 8;
3099 sOutB(addr + chan, 0); /* apply or remove reset */
3102 /* Returns the line number given the controller (board), aiop and channel number */
3103 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3105 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3109 * Stores the line number associated with a given controller (board), aiop
3110 * and channel number.
3111 * Returns: The line number assigned
3113 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3115 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3116 return (nextLineNumber - 1);