1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/otg.h>
42 /*-------------------------------------------------------------------------*/
45 * USB Host Controller Driver framework
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 /*-------------------------------------------------------------------------*/
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded
;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr
);
83 EXPORT_SYMBOL_GPL (usb_bus_idr
);
85 /* used when allocating bus numbers */
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock
); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock
);
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
104 static inline int is_root_hub(struct usb_device
*udev
)
106 return (udev
->parent
== NULL
);
109 /*-------------------------------------------------------------------------*/
112 * Sharable chunks of root hub code.
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor
[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor
[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor
[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor
[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor
[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
227 /*-------------------------------------------------------------------------*/
229 /* Configuration descriptors for our root hubs */
231 static const u8 fs_rh_config_descriptor
[] = {
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
245 0x00, /* __u8 MaxPower; */
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
278 static const u8 hs_rh_config_descriptor
[] = {
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
292 0x00, /* __u8 MaxPower; */
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
327 static const u8 ss_rh_config_descriptor
[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
340 0x00, /* __u8 MaxPower; */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP
, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
377 static int authorized_default
= -1;
378 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
379 MODULE_PARM_DESC(authorized_default
,
380 "Default USB device authorization: 0 is not authorized, 1 is "
381 "authorized, -1 is authorized except for wireless USB (default, "
383 /*-------------------------------------------------------------------------*/
386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
387 * @s: Null-terminated ASCII (actually ISO-8859-1) string
388 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
389 * @len: Length (in bytes; may be odd) of descriptor buffer.
391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * USB String descriptors can contain at most 126 characters; input
396 * strings longer than that are truncated.
399 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
401 unsigned n
, t
= 2 + 2*strlen(s
);
404 t
= 254; /* Longest possible UTF string descriptor */
408 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
416 t
= (unsigned char)*s
++;
422 * rh_string() - provides string descriptors for root hub
423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
424 * @hcd: the host controller for this root hub
425 * @data: buffer for output packet
426 * @len: length of the provided buffer
428 * Produces either a manufacturer, product or serial number string for the
429 * virtual root hub device.
431 * Return: The number of bytes filled in: the length of the descriptor or
432 * of the provided buffer, whichever is less.
435 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
439 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
448 memcpy(data
, langids
, len
);
452 s
= hcd
->self
.bus_name
;
456 s
= hcd
->product_desc
;
460 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
461 init_utsname()->release
, hcd
->driver
->description
);
465 /* Can't happen; caller guarantees it */
469 return ascii2desc(s
, data
, len
);
473 /* Root hub control transfers execute synchronously */
474 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
476 struct usb_ctrlrequest
*cmd
;
477 u16 typeReq
, wValue
, wIndex
, wLength
;
478 u8
*ubuf
= urb
->transfer_buffer
;
482 u8 patch_protocol
= 0;
489 spin_lock_irq(&hcd_root_hub_lock
);
490 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
491 spin_unlock_irq(&hcd_root_hub_lock
);
494 urb
->hcpriv
= hcd
; /* Indicate it's queued */
496 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
497 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
498 wValue
= le16_to_cpu (cmd
->wValue
);
499 wIndex
= le16_to_cpu (cmd
->wIndex
);
500 wLength
= le16_to_cpu (cmd
->wLength
);
502 if (wLength
> urb
->transfer_buffer_length
)
506 * tbuf should be at least as big as the
507 * USB hub descriptor.
509 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
510 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
519 urb
->actual_length
= 0;
522 /* DEVICE REQUESTS */
524 /* The root hub's remote wakeup enable bit is implemented using
525 * driver model wakeup flags. If this system supports wakeup
526 * through USB, userspace may change the default "allow wakeup"
527 * policy through sysfs or these calls.
529 * Most root hubs support wakeup from downstream devices, for
530 * runtime power management (disabling USB clocks and reducing
531 * VBUS power usage). However, not all of them do so; silicon,
532 * board, and BIOS bugs here are not uncommon, so these can't
533 * be treated quite like external hubs.
535 * Likewise, not all root hubs will pass wakeup events upstream,
536 * to wake up the whole system. So don't assume root hub and
537 * controller capabilities are identical.
540 case DeviceRequest
| USB_REQ_GET_STATUS
:
541 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
542 << USB_DEVICE_REMOTE_WAKEUP
)
543 | (1 << USB_DEVICE_SELF_POWERED
);
547 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
548 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
549 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
553 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
554 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
555 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
556 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
560 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
564 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
566 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
567 switch (wValue
& 0xff00) {
568 case USB_DT_DEVICE
<< 8:
569 switch (hcd
->speed
) {
572 bufp
= usb31_rh_dev_descriptor
;
575 bufp
= usb3_rh_dev_descriptor
;
578 bufp
= usb25_rh_dev_descriptor
;
581 bufp
= usb2_rh_dev_descriptor
;
584 bufp
= usb11_rh_dev_descriptor
;
593 case USB_DT_CONFIG
<< 8:
594 switch (hcd
->speed
) {
598 bufp
= ss_rh_config_descriptor
;
599 len
= sizeof ss_rh_config_descriptor
;
603 bufp
= hs_rh_config_descriptor
;
604 len
= sizeof hs_rh_config_descriptor
;
607 bufp
= fs_rh_config_descriptor
;
608 len
= sizeof fs_rh_config_descriptor
;
613 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
616 case USB_DT_STRING
<< 8:
617 if ((wValue
& 0xff) < 4)
618 urb
->actual_length
= rh_string(wValue
& 0xff,
620 else /* unsupported IDs --> "protocol stall" */
623 case USB_DT_BOS
<< 8:
629 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
633 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
635 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
636 /* wValue == urb->dev->devaddr */
637 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
641 /* INTERFACE REQUESTS (no defined feature/status flags) */
643 /* ENDPOINT REQUESTS */
645 case EndpointRequest
| USB_REQ_GET_STATUS
:
646 /* ENDPOINT_HALT flag */
651 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
652 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
653 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
656 /* CLASS REQUESTS (and errors) */
660 /* non-generic request */
666 if (wValue
== HUB_PORT_STATUS
)
669 /* other port status types return 8 bytes */
672 case GetHubDescriptor
:
673 len
= sizeof (struct usb_hub_descriptor
);
675 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
676 /* len is returned by hub_control */
679 status
= hcd
->driver
->hub_control (hcd
,
680 typeReq
, wValue
, wIndex
,
683 if (typeReq
== GetHubDescriptor
)
684 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
685 (struct usb_hub_descriptor
*)tbuf
);
688 /* "protocol stall" on error */
694 if (status
!= -EPIPE
) {
695 dev_dbg (hcd
->self
.controller
,
696 "CTRL: TypeReq=0x%x val=0x%x "
697 "idx=0x%x len=%d ==> %d\n",
698 typeReq
, wValue
, wIndex
,
701 } else if (status
> 0) {
702 /* hub_control may return the length of data copied. */
707 if (urb
->transfer_buffer_length
< len
)
708 len
= urb
->transfer_buffer_length
;
709 urb
->actual_length
= len
;
710 /* always USB_DIR_IN, toward host */
711 memcpy (ubuf
, bufp
, len
);
713 /* report whether RH hardware supports remote wakeup */
715 len
> offsetof (struct usb_config_descriptor
,
717 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
718 |= USB_CONFIG_ATT_WAKEUP
;
720 /* report whether RH hardware has an integrated TT */
721 if (patch_protocol
&&
722 len
> offsetof(struct usb_device_descriptor
,
724 ((struct usb_device_descriptor
*) ubuf
)->
725 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
731 /* any errors get returned through the urb completion */
732 spin_lock_irq(&hcd_root_hub_lock
);
733 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
734 usb_hcd_giveback_urb(hcd
, urb
, status
);
735 spin_unlock_irq(&hcd_root_hub_lock
);
739 /*-------------------------------------------------------------------------*/
742 * Root Hub interrupt transfers are polled using a timer if the
743 * driver requests it; otherwise the driver is responsible for
744 * calling usb_hcd_poll_rh_status() when an event occurs.
746 * Completions are called in_interrupt(), but they may or may not
749 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
754 char buffer
[6]; /* Any root hubs with > 31 ports? */
756 if (unlikely(!hcd
->rh_pollable
))
758 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
761 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
764 /* try to complete the status urb */
765 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
766 urb
= hcd
->status_urb
;
768 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
769 hcd
->status_urb
= NULL
;
770 urb
->actual_length
= length
;
771 memcpy(urb
->transfer_buffer
, buffer
, length
);
773 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
774 usb_hcd_giveback_urb(hcd
, urb
, 0);
777 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
779 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
782 /* The USB 2.0 spec says 256 ms. This is close enough and won't
783 * exceed that limit if HZ is 100. The math is more clunky than
784 * maybe expected, this is to make sure that all timers for USB devices
785 * fire at the same time to give the CPU a break in between */
786 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
787 (length
== 0 && hcd
->status_urb
!= NULL
))
788 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
790 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
793 static void rh_timer_func (struct timer_list
*t
)
795 struct usb_hcd
*_hcd
= from_timer(_hcd
, t
, rh_timer
);
797 usb_hcd_poll_rh_status(_hcd
);
800 /*-------------------------------------------------------------------------*/
802 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
806 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
808 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
809 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
810 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
815 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
819 hcd
->status_urb
= urb
;
820 urb
->hcpriv
= hcd
; /* indicate it's queued */
821 if (!hcd
->uses_new_polling
)
822 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
824 /* If a status change has already occurred, report it ASAP */
825 else if (HCD_POLL_PENDING(hcd
))
826 mod_timer(&hcd
->rh_timer
, jiffies
);
829 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
833 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
835 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
836 return rh_queue_status (hcd
, urb
);
837 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
838 return rh_call_control (hcd
, urb
);
842 /*-------------------------------------------------------------------------*/
844 /* Unlinks of root-hub control URBs are legal, but they don't do anything
845 * since these URBs always execute synchronously.
847 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
852 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
853 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
857 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
860 } else { /* Status URB */
861 if (!hcd
->uses_new_polling
)
862 del_timer (&hcd
->rh_timer
);
863 if (urb
== hcd
->status_urb
) {
864 hcd
->status_urb
= NULL
;
865 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
866 usb_hcd_giveback_urb(hcd
, urb
, status
);
870 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
877 * Show & store the current value of authorized_default
879 static ssize_t
authorized_default_show(struct device
*dev
,
880 struct device_attribute
*attr
, char *buf
)
882 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
883 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
886 hcd
= bus_to_hcd(usb_bus
);
887 return snprintf(buf
, PAGE_SIZE
, "%u\n", !!HCD_DEV_AUTHORIZED(hcd
));
890 static ssize_t
authorized_default_store(struct device
*dev
,
891 struct device_attribute
*attr
,
892 const char *buf
, size_t size
)
896 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
897 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
900 hcd
= bus_to_hcd(usb_bus
);
901 result
= sscanf(buf
, "%u\n", &val
);
904 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
906 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
914 static DEVICE_ATTR_RW(authorized_default
);
917 * interface_authorized_default_show - show default authorization status
920 * note: interface_authorized_default is the default value
921 * for initializing the authorized attribute of interfaces
923 static ssize_t
interface_authorized_default_show(struct device
*dev
,
924 struct device_attribute
*attr
, char *buf
)
926 struct usb_device
*usb_dev
= to_usb_device(dev
);
927 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
929 return sprintf(buf
, "%u\n", !!HCD_INTF_AUTHORIZED(hcd
));
933 * interface_authorized_default_store - store default authorization status
936 * note: interface_authorized_default is the default value
937 * for initializing the authorized attribute of interfaces
939 static ssize_t
interface_authorized_default_store(struct device
*dev
,
940 struct device_attribute
*attr
, const char *buf
, size_t count
)
942 struct usb_device
*usb_dev
= to_usb_device(dev
);
943 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
947 if (strtobool(buf
, &val
) != 0)
951 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
953 clear_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
957 static DEVICE_ATTR_RW(interface_authorized_default
);
959 /* Group all the USB bus attributes */
960 static struct attribute
*usb_bus_attrs
[] = {
961 &dev_attr_authorized_default
.attr
,
962 &dev_attr_interface_authorized_default
.attr
,
966 static const struct attribute_group usb_bus_attr_group
= {
967 .name
= NULL
, /* we want them in the same directory */
968 .attrs
= usb_bus_attrs
,
973 /*-------------------------------------------------------------------------*/
976 * usb_bus_init - shared initialization code
977 * @bus: the bus structure being initialized
979 * This code is used to initialize a usb_bus structure, memory for which is
980 * separately managed.
982 static void usb_bus_init (struct usb_bus
*bus
)
984 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
986 bus
->devnum_next
= 1;
988 bus
->root_hub
= NULL
;
990 bus
->bandwidth_allocated
= 0;
991 bus
->bandwidth_int_reqs
= 0;
992 bus
->bandwidth_isoc_reqs
= 0;
993 mutex_init(&bus
->devnum_next_mutex
);
996 /*-------------------------------------------------------------------------*/
999 * usb_register_bus - registers the USB host controller with the usb core
1000 * @bus: pointer to the bus to register
1001 * Context: !in_interrupt()
1003 * Assigns a bus number, and links the controller into usbcore data
1004 * structures so that it can be seen by scanning the bus list.
1006 * Return: 0 if successful. A negative error code otherwise.
1008 static int usb_register_bus(struct usb_bus
*bus
)
1010 int result
= -E2BIG
;
1013 mutex_lock(&usb_bus_idr_lock
);
1014 busnum
= idr_alloc(&usb_bus_idr
, bus
, 1, USB_MAXBUS
, GFP_KERNEL
);
1016 pr_err("%s: failed to get bus number\n", usbcore_name
);
1017 goto error_find_busnum
;
1019 bus
->busnum
= busnum
;
1020 mutex_unlock(&usb_bus_idr_lock
);
1022 usb_notify_add_bus(bus
);
1024 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
1025 "number %d\n", bus
->busnum
);
1029 mutex_unlock(&usb_bus_idr_lock
);
1034 * usb_deregister_bus - deregisters the USB host controller
1035 * @bus: pointer to the bus to deregister
1036 * Context: !in_interrupt()
1038 * Recycles the bus number, and unlinks the controller from usbcore data
1039 * structures so that it won't be seen by scanning the bus list.
1041 static void usb_deregister_bus (struct usb_bus
*bus
)
1043 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
1046 * NOTE: make sure that all the devices are removed by the
1047 * controller code, as well as having it call this when cleaning
1050 mutex_lock(&usb_bus_idr_lock
);
1051 idr_remove(&usb_bus_idr
, bus
->busnum
);
1052 mutex_unlock(&usb_bus_idr_lock
);
1054 usb_notify_remove_bus(bus
);
1058 * register_root_hub - called by usb_add_hcd() to register a root hub
1059 * @hcd: host controller for this root hub
1061 * This function registers the root hub with the USB subsystem. It sets up
1062 * the device properly in the device tree and then calls usb_new_device()
1063 * to register the usb device. It also assigns the root hub's USB address
1066 * Return: 0 if successful. A negative error code otherwise.
1068 static int register_root_hub(struct usb_hcd
*hcd
)
1070 struct device
*parent_dev
= hcd
->self
.controller
;
1071 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
1072 const int devnum
= 1;
1075 usb_dev
->devnum
= devnum
;
1076 usb_dev
->bus
->devnum_next
= devnum
+ 1;
1077 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
1078 sizeof usb_dev
->bus
->devmap
.devicemap
);
1079 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
1080 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
1082 mutex_lock(&usb_bus_idr_lock
);
1084 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
1085 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
1086 if (retval
!= sizeof usb_dev
->descriptor
) {
1087 mutex_unlock(&usb_bus_idr_lock
);
1088 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
1089 dev_name(&usb_dev
->dev
), retval
);
1090 return (retval
< 0) ? retval
: -EMSGSIZE
;
1093 if (le16_to_cpu(usb_dev
->descriptor
.bcdUSB
) >= 0x0201) {
1094 retval
= usb_get_bos_descriptor(usb_dev
);
1096 usb_dev
->lpm_capable
= usb_device_supports_lpm(usb_dev
);
1097 } else if (usb_dev
->speed
>= USB_SPEED_SUPER
) {
1098 mutex_unlock(&usb_bus_idr_lock
);
1099 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1100 dev_name(&usb_dev
->dev
), retval
);
1105 retval
= usb_new_device (usb_dev
);
1107 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1108 dev_name(&usb_dev
->dev
), retval
);
1110 spin_lock_irq (&hcd_root_hub_lock
);
1111 hcd
->rh_registered
= 1;
1112 spin_unlock_irq (&hcd_root_hub_lock
);
1114 /* Did the HC die before the root hub was registered? */
1116 usb_hc_died (hcd
); /* This time clean up */
1118 mutex_unlock(&usb_bus_idr_lock
);
1124 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1125 * @bus: the bus which the root hub belongs to
1126 * @portnum: the port which is being resumed
1128 * HCDs should call this function when they know that a resume signal is
1129 * being sent to a root-hub port. The root hub will be prevented from
1130 * going into autosuspend until usb_hcd_end_port_resume() is called.
1132 * The bus's private lock must be held by the caller.
1134 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1136 unsigned bit
= 1 << portnum
;
1138 if (!(bus
->resuming_ports
& bit
)) {
1139 bus
->resuming_ports
|= bit
;
1140 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1143 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1146 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1147 * @bus: the bus which the root hub belongs to
1148 * @portnum: the port which is being resumed
1150 * HCDs should call this function when they know that a resume signal has
1151 * stopped being sent to a root-hub port. The root hub will be allowed to
1152 * autosuspend again.
1154 * The bus's private lock must be held by the caller.
1156 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1158 unsigned bit
= 1 << portnum
;
1160 if (bus
->resuming_ports
& bit
) {
1161 bus
->resuming_ports
&= ~bit
;
1162 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1165 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1167 /*-------------------------------------------------------------------------*/
1170 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1171 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1172 * @is_input: true iff the transaction sends data to the host
1173 * @isoc: true for isochronous transactions, false for interrupt ones
1174 * @bytecount: how many bytes in the transaction.
1176 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1179 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1180 * scheduled in software, this function is only used for such scheduling.
1182 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1187 case USB_SPEED_LOW
: /* INTR only */
1189 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1190 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1192 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1193 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1195 case USB_SPEED_FULL
: /* ISOC or INTR */
1197 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1198 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1200 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1201 return 9107L + BW_HOST_DELAY
+ tmp
;
1203 case USB_SPEED_HIGH
: /* ISOC or INTR */
1204 /* FIXME adjust for input vs output */
1206 tmp
= HS_NSECS_ISO (bytecount
);
1208 tmp
= HS_NSECS (bytecount
);
1211 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1215 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1218 /*-------------------------------------------------------------------------*/
1221 * Generic HC operations.
1224 /*-------------------------------------------------------------------------*/
1227 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1228 * @hcd: host controller to which @urb was submitted
1229 * @urb: URB being submitted
1231 * Host controller drivers should call this routine in their enqueue()
1232 * method. The HCD's private spinlock must be held and interrupts must
1233 * be disabled. The actions carried out here are required for URB
1234 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1236 * Return: 0 for no error, otherwise a negative error code (in which case
1237 * the enqueue() method must fail). If no error occurs but enqueue() fails
1238 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1239 * the private spinlock and returning.
1241 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1245 spin_lock(&hcd_urb_list_lock
);
1247 /* Check that the URB isn't being killed */
1248 if (unlikely(atomic_read(&urb
->reject
))) {
1253 if (unlikely(!urb
->ep
->enabled
)) {
1258 if (unlikely(!urb
->dev
->can_submit
)) {
1264 * Check the host controller's state and add the URB to the
1267 if (HCD_RH_RUNNING(hcd
)) {
1269 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1275 spin_unlock(&hcd_urb_list_lock
);
1278 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1281 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1282 * @hcd: host controller to which @urb was submitted
1283 * @urb: URB being checked for unlinkability
1284 * @status: error code to store in @urb if the unlink succeeds
1286 * Host controller drivers should call this routine in their dequeue()
1287 * method. The HCD's private spinlock must be held and interrupts must
1288 * be disabled. The actions carried out here are required for making
1289 * sure than an unlink is valid.
1291 * Return: 0 for no error, otherwise a negative error code (in which case
1292 * the dequeue() method must fail). The possible error codes are:
1294 * -EIDRM: @urb was not submitted or has already completed.
1295 * The completion function may not have been called yet.
1297 * -EBUSY: @urb has already been unlinked.
1299 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1302 struct list_head
*tmp
;
1304 /* insist the urb is still queued */
1305 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1306 if (tmp
== &urb
->urb_list
)
1309 if (tmp
!= &urb
->urb_list
)
1312 /* Any status except -EINPROGRESS means something already started to
1313 * unlink this URB from the hardware. So there's no more work to do.
1317 urb
->unlinked
= status
;
1320 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1323 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1324 * @hcd: host controller to which @urb was submitted
1325 * @urb: URB being unlinked
1327 * Host controller drivers should call this routine before calling
1328 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1329 * interrupts must be disabled. The actions carried out here are required
1330 * for URB completion.
1332 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1334 /* clear all state linking urb to this dev (and hcd) */
1335 spin_lock(&hcd_urb_list_lock
);
1336 list_del_init(&urb
->urb_list
);
1337 spin_unlock(&hcd_urb_list_lock
);
1339 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1342 * Some usb host controllers can only perform dma using a small SRAM area.
1343 * The usb core itself is however optimized for host controllers that can dma
1344 * using regular system memory - like pci devices doing bus mastering.
1346 * To support host controllers with limited dma capabilities we provide dma
1347 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1348 * For this to work properly the host controller code must first use the
1349 * function dma_declare_coherent_memory() to point out which memory area
1350 * that should be used for dma allocations.
1352 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1353 * dma using dma_alloc_coherent() which in turn allocates from the memory
1354 * area pointed out with dma_declare_coherent_memory().
1356 * So, to summarize...
1358 * - We need "local" memory, canonical example being
1359 * a small SRAM on a discrete controller being the
1360 * only memory that the controller can read ...
1361 * (a) "normal" kernel memory is no good, and
1362 * (b) there's not enough to share
1364 * - The only *portable* hook for such stuff in the
1365 * DMA framework is dma_declare_coherent_memory()
1367 * - So we use that, even though the primary requirement
1368 * is that the memory be "local" (hence addressable
1369 * by that device), not "coherent".
1373 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1374 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1375 void **vaddr_handle
, size_t size
,
1376 enum dma_data_direction dir
)
1378 unsigned char *vaddr
;
1380 if (*vaddr_handle
== NULL
) {
1385 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1386 mem_flags
, dma_handle
);
1391 * Store the virtual address of the buffer at the end
1392 * of the allocated dma buffer. The size of the buffer
1393 * may be uneven so use unaligned functions instead
1394 * of just rounding up. It makes sense to optimize for
1395 * memory footprint over access speed since the amount
1396 * of memory available for dma may be limited.
1398 put_unaligned((unsigned long)*vaddr_handle
,
1399 (unsigned long *)(vaddr
+ size
));
1401 if (dir
== DMA_TO_DEVICE
)
1402 memcpy(vaddr
, *vaddr_handle
, size
);
1404 *vaddr_handle
= vaddr
;
1408 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1409 void **vaddr_handle
, size_t size
,
1410 enum dma_data_direction dir
)
1412 unsigned char *vaddr
= *vaddr_handle
;
1414 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1416 if (dir
== DMA_FROM_DEVICE
)
1417 memcpy(vaddr
, *vaddr_handle
, size
);
1419 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1421 *vaddr_handle
= vaddr
;
1425 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1427 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1428 (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
))
1429 dma_unmap_single(hcd
->self
.sysdev
,
1431 sizeof(struct usb_ctrlrequest
),
1433 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1434 hcd_free_coherent(urb
->dev
->bus
,
1436 (void **) &urb
->setup_packet
,
1437 sizeof(struct usb_ctrlrequest
),
1440 /* Make it safe to call this routine more than once */
1441 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1443 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1445 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1447 if (hcd
->driver
->unmap_urb_for_dma
)
1448 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1450 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1453 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1455 enum dma_data_direction dir
;
1457 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1459 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1460 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1461 (urb
->transfer_flags
& URB_DMA_MAP_SG
))
1462 dma_unmap_sg(hcd
->self
.sysdev
,
1466 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1467 (urb
->transfer_flags
& URB_DMA_MAP_PAGE
))
1468 dma_unmap_page(hcd
->self
.sysdev
,
1470 urb
->transfer_buffer_length
,
1472 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1473 (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
))
1474 dma_unmap_single(hcd
->self
.sysdev
,
1476 urb
->transfer_buffer_length
,
1478 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1479 hcd_free_coherent(urb
->dev
->bus
,
1481 &urb
->transfer_buffer
,
1482 urb
->transfer_buffer_length
,
1485 /* Make it safe to call this routine more than once */
1486 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1487 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1489 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1491 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1494 if (hcd
->driver
->map_urb_for_dma
)
1495 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1497 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1500 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1503 enum dma_data_direction dir
;
1506 /* Map the URB's buffers for DMA access.
1507 * Lower level HCD code should use *_dma exclusively,
1508 * unless it uses pio or talks to another transport,
1509 * or uses the provided scatter gather list for bulk.
1512 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1513 if (hcd
->self
.uses_pio_for_control
)
1515 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1516 if (is_vmalloc_addr(urb
->setup_packet
)) {
1517 WARN_ONCE(1, "setup packet is not dma capable\n");
1519 } else if (object_is_on_stack(urb
->setup_packet
)) {
1520 WARN_ONCE(1, "setup packet is on stack\n");
1524 urb
->setup_dma
= dma_map_single(
1527 sizeof(struct usb_ctrlrequest
),
1529 if (dma_mapping_error(hcd
->self
.sysdev
,
1532 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1533 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1534 ret
= hcd_alloc_coherent(
1535 urb
->dev
->bus
, mem_flags
,
1537 (void **)&urb
->setup_packet
,
1538 sizeof(struct usb_ctrlrequest
),
1542 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1546 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1547 if (urb
->transfer_buffer_length
!= 0
1548 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1549 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1553 /* We don't support sg for isoc transfers ! */
1554 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1567 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1568 urb
->num_mapped_sgs
= n
;
1569 if (n
!= urb
->num_sgs
)
1570 urb
->transfer_flags
|=
1571 URB_DMA_SG_COMBINED
;
1572 } else if (urb
->sg
) {
1573 struct scatterlist
*sg
= urb
->sg
;
1574 urb
->transfer_dma
= dma_map_page(
1578 urb
->transfer_buffer_length
,
1580 if (dma_mapping_error(hcd
->self
.sysdev
,
1584 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1585 } else if (is_vmalloc_addr(urb
->transfer_buffer
)) {
1586 WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 } else if (object_is_on_stack(urb
->transfer_buffer
)) {
1589 WARN_ONCE(1, "transfer buffer is on stack\n");
1592 urb
->transfer_dma
= dma_map_single(
1594 urb
->transfer_buffer
,
1595 urb
->transfer_buffer_length
,
1597 if (dma_mapping_error(hcd
->self
.sysdev
,
1601 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1603 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1604 ret
= hcd_alloc_coherent(
1605 urb
->dev
->bus
, mem_flags
,
1607 &urb
->transfer_buffer
,
1608 urb
->transfer_buffer_length
,
1611 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1613 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1614 URB_SETUP_MAP_LOCAL
)))
1615 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1619 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1621 /*-------------------------------------------------------------------------*/
1623 /* may be called in any context with a valid urb->dev usecount
1624 * caller surrenders "ownership" of urb
1625 * expects usb_submit_urb() to have sanity checked and conditioned all
1628 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1631 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1633 /* increment urb's reference count as part of giving it to the HCD
1634 * (which will control it). HCD guarantees that it either returns
1635 * an error or calls giveback(), but not both.
1638 atomic_inc(&urb
->use_count
);
1639 atomic_inc(&urb
->dev
->urbnum
);
1640 usbmon_urb_submit(&hcd
->self
, urb
);
1642 /* NOTE requirements on root-hub callers (usbfs and the hub
1643 * driver, for now): URBs' urb->transfer_buffer must be
1644 * valid and usb_buffer_{sync,unmap}() not be needed, since
1645 * they could clobber root hub response data. Also, control
1646 * URBs must be submitted in process context with interrupts
1650 if (is_root_hub(urb
->dev
)) {
1651 status
= rh_urb_enqueue(hcd
, urb
);
1653 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1654 if (likely(status
== 0)) {
1655 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1656 if (unlikely(status
))
1657 unmap_urb_for_dma(hcd
, urb
);
1661 if (unlikely(status
)) {
1662 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1664 INIT_LIST_HEAD(&urb
->urb_list
);
1665 atomic_dec(&urb
->use_count
);
1666 atomic_dec(&urb
->dev
->urbnum
);
1667 if (atomic_read(&urb
->reject
))
1668 wake_up(&usb_kill_urb_queue
);
1674 /*-------------------------------------------------------------------------*/
1676 /* this makes the hcd giveback() the urb more quickly, by kicking it
1677 * off hardware queues (which may take a while) and returning it as
1678 * soon as practical. we've already set up the urb's return status,
1679 * but we can't know if the callback completed already.
1681 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1685 if (is_root_hub(urb
->dev
))
1686 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1689 /* The only reason an HCD might fail this call is if
1690 * it has not yet fully queued the urb to begin with.
1691 * Such failures should be harmless. */
1692 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1698 * called in any context
1700 * caller guarantees urb won't be recycled till both unlink()
1701 * and the urb's completion function return
1703 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1705 struct usb_hcd
*hcd
;
1706 struct usb_device
*udev
= urb
->dev
;
1707 int retval
= -EIDRM
;
1708 unsigned long flags
;
1710 /* Prevent the device and bus from going away while
1711 * the unlink is carried out. If they are already gone
1712 * then urb->use_count must be 0, since disconnected
1713 * devices can't have any active URBs.
1715 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1716 if (atomic_read(&urb
->use_count
) > 0) {
1720 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1722 hcd
= bus_to_hcd(urb
->dev
->bus
);
1723 retval
= unlink1(hcd
, urb
, status
);
1725 retval
= -EINPROGRESS
;
1726 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1727 dev_dbg(&udev
->dev
, "hcd_unlink_urb %pK fail %d\n",
1734 /*-------------------------------------------------------------------------*/
1736 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1738 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1739 struct usb_anchor
*anchor
= urb
->anchor
;
1740 int status
= urb
->unlinked
;
1741 unsigned long flags
;
1744 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1745 urb
->actual_length
< urb
->transfer_buffer_length
&&
1747 status
= -EREMOTEIO
;
1749 unmap_urb_for_dma(hcd
, urb
);
1750 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1751 usb_anchor_suspend_wakeups(anchor
);
1752 usb_unanchor_urb(urb
);
1753 if (likely(status
== 0))
1754 usb_led_activity(USB_LED_EVENT_HOST
);
1756 /* pass ownership to the completion handler */
1757 urb
->status
= status
;
1760 * We disable local IRQs here avoid possible deadlock because
1761 * drivers may call spin_lock() to hold lock which might be
1762 * acquired in one hard interrupt handler.
1764 * The local_irq_save()/local_irq_restore() around complete()
1765 * will be removed if current USB drivers have been cleaned up
1766 * and no one may trigger the above deadlock situation when
1767 * running complete() in tasklet.
1769 local_irq_save(flags
);
1771 local_irq_restore(flags
);
1773 usb_anchor_resume_wakeups(anchor
);
1774 atomic_dec(&urb
->use_count
);
1775 if (unlikely(atomic_read(&urb
->reject
)))
1776 wake_up(&usb_kill_urb_queue
);
1780 static void usb_giveback_urb_bh(unsigned long param
)
1782 struct giveback_urb_bh
*bh
= (struct giveback_urb_bh
*)param
;
1783 struct list_head local_list
;
1785 spin_lock_irq(&bh
->lock
);
1788 list_replace_init(&bh
->head
, &local_list
);
1789 spin_unlock_irq(&bh
->lock
);
1791 while (!list_empty(&local_list
)) {
1794 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1795 list_del_init(&urb
->urb_list
);
1796 bh
->completing_ep
= urb
->ep
;
1797 __usb_hcd_giveback_urb(urb
);
1798 bh
->completing_ep
= NULL
;
1801 /* check if there are new URBs to giveback */
1802 spin_lock_irq(&bh
->lock
);
1803 if (!list_empty(&bh
->head
))
1805 bh
->running
= false;
1806 spin_unlock_irq(&bh
->lock
);
1810 * usb_hcd_giveback_urb - return URB from HCD to device driver
1811 * @hcd: host controller returning the URB
1812 * @urb: urb being returned to the USB device driver.
1813 * @status: completion status code for the URB.
1814 * Context: in_interrupt()
1816 * This hands the URB from HCD to its USB device driver, using its
1817 * completion function. The HCD has freed all per-urb resources
1818 * (and is done using urb->hcpriv). It also released all HCD locks;
1819 * the device driver won't cause problems if it frees, modifies,
1820 * or resubmits this URB.
1822 * If @urb was unlinked, the value of @status will be overridden by
1823 * @urb->unlinked. Erroneous short transfers are detected in case
1824 * the HCD hasn't checked for them.
1826 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1828 struct giveback_urb_bh
*bh
;
1829 bool running
, high_prio_bh
;
1831 /* pass status to tasklet via unlinked */
1832 if (likely(!urb
->unlinked
))
1833 urb
->unlinked
= status
;
1835 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1836 __usb_hcd_giveback_urb(urb
);
1840 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1841 bh
= &hcd
->high_prio_bh
;
1842 high_prio_bh
= true;
1844 bh
= &hcd
->low_prio_bh
;
1845 high_prio_bh
= false;
1848 spin_lock(&bh
->lock
);
1849 list_add_tail(&urb
->urb_list
, &bh
->head
);
1850 running
= bh
->running
;
1851 spin_unlock(&bh
->lock
);
1855 else if (high_prio_bh
)
1856 tasklet_hi_schedule(&bh
->bh
);
1858 tasklet_schedule(&bh
->bh
);
1860 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1862 /*-------------------------------------------------------------------------*/
1864 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1865 * queue to drain completely. The caller must first insure that no more
1866 * URBs can be submitted for this endpoint.
1868 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1869 struct usb_host_endpoint
*ep
)
1871 struct usb_hcd
*hcd
;
1877 hcd
= bus_to_hcd(udev
->bus
);
1879 /* No more submits can occur */
1880 spin_lock_irq(&hcd_urb_list_lock
);
1882 list_for_each_entry_reverse(urb
, &ep
->urb_list
, urb_list
) {
1888 is_in
= usb_urb_dir_in(urb
);
1889 spin_unlock(&hcd_urb_list_lock
);
1892 unlink1(hcd
, urb
, -ESHUTDOWN
);
1893 dev_dbg (hcd
->self
.controller
,
1894 "shutdown urb %pK ep%d%s%s\n",
1895 urb
, usb_endpoint_num(&ep
->desc
),
1896 is_in
? "in" : "out",
1899 switch (usb_endpoint_type(&ep
->desc
)) {
1900 case USB_ENDPOINT_XFER_CONTROL
:
1902 case USB_ENDPOINT_XFER_BULK
:
1904 case USB_ENDPOINT_XFER_INT
:
1913 /* list contents may have changed */
1914 spin_lock(&hcd_urb_list_lock
);
1917 spin_unlock_irq(&hcd_urb_list_lock
);
1919 /* Wait until the endpoint queue is completely empty */
1920 while (!list_empty (&ep
->urb_list
)) {
1921 spin_lock_irq(&hcd_urb_list_lock
);
1923 /* The list may have changed while we acquired the spinlock */
1925 if (!list_empty (&ep
->urb_list
)) {
1926 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1930 spin_unlock_irq(&hcd_urb_list_lock
);
1940 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1942 * @udev: target &usb_device
1943 * @new_config: new configuration to install
1944 * @cur_alt: the current alternate interface setting
1945 * @new_alt: alternate interface setting that is being installed
1947 * To change configurations, pass in the new configuration in new_config,
1948 * and pass NULL for cur_alt and new_alt.
1950 * To reset a device's configuration (put the device in the ADDRESSED state),
1951 * pass in NULL for new_config, cur_alt, and new_alt.
1953 * To change alternate interface settings, pass in NULL for new_config,
1954 * pass in the current alternate interface setting in cur_alt,
1955 * and pass in the new alternate interface setting in new_alt.
1957 * Return: An error if the requested bandwidth change exceeds the
1958 * bus bandwidth or host controller internal resources.
1960 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1961 struct usb_host_config
*new_config
,
1962 struct usb_host_interface
*cur_alt
,
1963 struct usb_host_interface
*new_alt
)
1965 int num_intfs
, i
, j
;
1966 struct usb_host_interface
*alt
= NULL
;
1968 struct usb_hcd
*hcd
;
1969 struct usb_host_endpoint
*ep
;
1971 hcd
= bus_to_hcd(udev
->bus
);
1972 if (!hcd
->driver
->check_bandwidth
)
1975 /* Configuration is being removed - set configuration 0 */
1976 if (!new_config
&& !cur_alt
) {
1977 for (i
= 1; i
< 16; ++i
) {
1978 ep
= udev
->ep_out
[i
];
1980 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1981 ep
= udev
->ep_in
[i
];
1983 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1985 hcd
->driver
->check_bandwidth(hcd
, udev
);
1988 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1989 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1990 * of the bus. There will always be bandwidth for endpoint 0, so it's
1994 num_intfs
= new_config
->desc
.bNumInterfaces
;
1995 /* Remove endpoints (except endpoint 0, which is always on the
1996 * schedule) from the old config from the schedule
1998 for (i
= 1; i
< 16; ++i
) {
1999 ep
= udev
->ep_out
[i
];
2001 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
2005 ep
= udev
->ep_in
[i
];
2007 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
2012 for (i
= 0; i
< num_intfs
; ++i
) {
2013 struct usb_host_interface
*first_alt
;
2016 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
2017 iface_num
= first_alt
->desc
.bInterfaceNumber
;
2018 /* Set up endpoints for alternate interface setting 0 */
2019 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
2021 /* No alt setting 0? Pick the first setting. */
2024 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
2025 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
2031 if (cur_alt
&& new_alt
) {
2032 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
2033 cur_alt
->desc
.bInterfaceNumber
);
2037 if (iface
->resetting_device
) {
2039 * The USB core just reset the device, so the xHCI host
2040 * and the device will think alt setting 0 is installed.
2041 * However, the USB core will pass in the alternate
2042 * setting installed before the reset as cur_alt. Dig
2043 * out the alternate setting 0 structure, or the first
2044 * alternate setting if a broken device doesn't have alt
2047 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
2049 cur_alt
= &iface
->altsetting
[0];
2052 /* Drop all the endpoints in the current alt setting */
2053 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
2054 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
2055 &cur_alt
->endpoint
[i
]);
2059 /* Add all the endpoints in the new alt setting */
2060 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
2061 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
2062 &new_alt
->endpoint
[i
]);
2067 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
2070 hcd
->driver
->reset_bandwidth(hcd
, udev
);
2074 /* Disables the endpoint: synchronizes with the hcd to make sure all
2075 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2076 * have been called previously. Use for set_configuration, set_interface,
2077 * driver removal, physical disconnect.
2079 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2080 * type, maxpacket size, toggle, halt status, and scheduling.
2082 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
2083 struct usb_host_endpoint
*ep
)
2085 struct usb_hcd
*hcd
;
2088 hcd
= bus_to_hcd(udev
->bus
);
2089 if (hcd
->driver
->endpoint_disable
)
2090 hcd
->driver
->endpoint_disable(hcd
, ep
);
2094 * usb_hcd_reset_endpoint - reset host endpoint state
2095 * @udev: USB device.
2096 * @ep: the endpoint to reset.
2098 * Resets any host endpoint state such as the toggle bit, sequence
2099 * number and current window.
2101 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
2102 struct usb_host_endpoint
*ep
)
2104 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2106 if (hcd
->driver
->endpoint_reset
)
2107 hcd
->driver
->endpoint_reset(hcd
, ep
);
2109 int epnum
= usb_endpoint_num(&ep
->desc
);
2110 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
2111 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
2113 usb_settoggle(udev
, epnum
, is_out
, 0);
2115 usb_settoggle(udev
, epnum
, !is_out
, 0);
2120 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2121 * @interface: alternate setting that includes all endpoints.
2122 * @eps: array of endpoints that need streams.
2123 * @num_eps: number of endpoints in the array.
2124 * @num_streams: number of streams to allocate.
2125 * @mem_flags: flags hcd should use to allocate memory.
2127 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2128 * Drivers may queue multiple transfers to different stream IDs, which may
2129 * complete in a different order than they were queued.
2131 * Return: On success, the number of allocated streams. On failure, a negative
2134 int usb_alloc_streams(struct usb_interface
*interface
,
2135 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2136 unsigned int num_streams
, gfp_t mem_flags
)
2138 struct usb_hcd
*hcd
;
2139 struct usb_device
*dev
;
2142 dev
= interface_to_usbdev(interface
);
2143 hcd
= bus_to_hcd(dev
->bus
);
2144 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2146 if (dev
->speed
< USB_SPEED_SUPER
)
2148 if (dev
->state
< USB_STATE_CONFIGURED
)
2151 for (i
= 0; i
< num_eps
; i
++) {
2152 /* Streams only apply to bulk endpoints. */
2153 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2155 /* Re-alloc is not allowed */
2156 if (eps
[i
]->streams
)
2160 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2161 num_streams
, mem_flags
);
2165 for (i
= 0; i
< num_eps
; i
++)
2166 eps
[i
]->streams
= ret
;
2170 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2173 * usb_free_streams - free bulk endpoint stream IDs.
2174 * @interface: alternate setting that includes all endpoints.
2175 * @eps: array of endpoints to remove streams from.
2176 * @num_eps: number of endpoints in the array.
2177 * @mem_flags: flags hcd should use to allocate memory.
2179 * Reverts a group of bulk endpoints back to not using stream IDs.
2180 * Can fail if we are given bad arguments, or HCD is broken.
2182 * Return: 0 on success. On failure, a negative error code.
2184 int usb_free_streams(struct usb_interface
*interface
,
2185 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2188 struct usb_hcd
*hcd
;
2189 struct usb_device
*dev
;
2192 dev
= interface_to_usbdev(interface
);
2193 hcd
= bus_to_hcd(dev
->bus
);
2194 if (dev
->speed
< USB_SPEED_SUPER
)
2197 /* Double-free is not allowed */
2198 for (i
= 0; i
< num_eps
; i
++)
2199 if (!eps
[i
] || !eps
[i
]->streams
)
2202 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2206 for (i
= 0; i
< num_eps
; i
++)
2207 eps
[i
]->streams
= 0;
2211 EXPORT_SYMBOL_GPL(usb_free_streams
);
2213 /* Protect against drivers that try to unlink URBs after the device
2214 * is gone, by waiting until all unlinks for @udev are finished.
2215 * Since we don't currently track URBs by device, simply wait until
2216 * nothing is running in the locked region of usb_hcd_unlink_urb().
2218 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2220 spin_lock_irq(&hcd_urb_unlink_lock
);
2221 spin_unlock_irq(&hcd_urb_unlink_lock
);
2224 /*-------------------------------------------------------------------------*/
2226 /* called in any context */
2227 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2229 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2231 if (!HCD_RH_RUNNING(hcd
))
2233 return hcd
->driver
->get_frame_number (hcd
);
2236 /*-------------------------------------------------------------------------*/
2240 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2242 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2244 int old_state
= hcd
->state
;
2246 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2247 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2248 rhdev
->do_remote_wakeup
);
2249 if (HCD_DEAD(hcd
)) {
2250 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2254 if (!hcd
->driver
->bus_suspend
) {
2257 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2258 hcd
->state
= HC_STATE_QUIESCING
;
2259 status
= hcd
->driver
->bus_suspend(hcd
);
2262 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2263 hcd
->state
= HC_STATE_SUSPENDED
;
2265 if (!PMSG_IS_AUTO(msg
))
2266 usb_phy_roothub_suspend(hcd
->self
.sysdev
,
2269 /* Did we race with a root-hub wakeup event? */
2270 if (rhdev
->do_remote_wakeup
) {
2273 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2275 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2276 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2281 spin_lock_irq(&hcd_root_hub_lock
);
2282 if (!HCD_DEAD(hcd
)) {
2283 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2284 hcd
->state
= old_state
;
2286 spin_unlock_irq(&hcd_root_hub_lock
);
2287 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2293 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2295 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2297 int old_state
= hcd
->state
;
2299 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2300 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2301 if (HCD_DEAD(hcd
)) {
2302 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2306 if (!PMSG_IS_AUTO(msg
)) {
2307 status
= usb_phy_roothub_resume(hcd
->self
.sysdev
,
2313 if (!hcd
->driver
->bus_resume
)
2315 if (HCD_RH_RUNNING(hcd
))
2318 hcd
->state
= HC_STATE_RESUMING
;
2319 status
= hcd
->driver
->bus_resume(hcd
);
2320 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2322 struct usb_device
*udev
;
2325 spin_lock_irq(&hcd_root_hub_lock
);
2326 if (!HCD_DEAD(hcd
)) {
2327 usb_set_device_state(rhdev
, rhdev
->actconfig
2328 ? USB_STATE_CONFIGURED
2329 : USB_STATE_ADDRESS
);
2330 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2331 hcd
->state
= HC_STATE_RUNNING
;
2333 spin_unlock_irq(&hcd_root_hub_lock
);
2336 * Check whether any of the enabled ports on the root hub are
2337 * unsuspended. If they are then a TRSMRCY delay is needed
2338 * (this is what the USB-2 spec calls a "global resume").
2339 * Otherwise we can skip the delay.
2341 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2342 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2343 !udev
->port_is_suspended
) {
2344 usleep_range(10000, 11000); /* TRSMRCY */
2349 hcd
->state
= old_state
;
2350 usb_phy_roothub_suspend(hcd
->self
.sysdev
, hcd
->phy_roothub
);
2351 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2353 if (status
!= -ESHUTDOWN
)
2359 /* Workqueue routine for root-hub remote wakeup */
2360 static void hcd_resume_work(struct work_struct
*work
)
2362 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2363 struct usb_device
*udev
= hcd
->self
.root_hub
;
2365 usb_remote_wakeup(udev
);
2369 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2370 * @hcd: host controller for this root hub
2372 * The USB host controller calls this function when its root hub is
2373 * suspended (with the remote wakeup feature enabled) and a remote
2374 * wakeup request is received. The routine submits a workqueue request
2375 * to resume the root hub (that is, manage its downstream ports again).
2377 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2379 unsigned long flags
;
2381 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2382 if (hcd
->rh_registered
) {
2383 pm_wakeup_event(&hcd
->self
.root_hub
->dev
, 0);
2384 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2385 queue_work(pm_wq
, &hcd
->wakeup_work
);
2387 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2389 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2391 #endif /* CONFIG_PM */
2393 /*-------------------------------------------------------------------------*/
2395 #ifdef CONFIG_USB_OTG
2398 * usb_bus_start_enum - start immediate enumeration (for OTG)
2399 * @bus: the bus (must use hcd framework)
2400 * @port_num: 1-based number of port; usually bus->otg_port
2401 * Context: in_interrupt()
2403 * Starts enumeration, with an immediate reset followed later by
2404 * hub_wq identifying and possibly configuring the device.
2405 * This is needed by OTG controller drivers, where it helps meet
2406 * HNP protocol timing requirements for starting a port reset.
2408 * Return: 0 if successful.
2410 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2412 struct usb_hcd
*hcd
;
2413 int status
= -EOPNOTSUPP
;
2415 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2416 * boards with root hubs hooked up to internal devices (instead of
2417 * just the OTG port) may need more attention to resetting...
2419 hcd
= bus_to_hcd(bus
);
2420 if (port_num
&& hcd
->driver
->start_port_reset
)
2421 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2423 /* allocate hub_wq shortly after (first) root port reset finishes;
2424 * it may issue others, until at least 50 msecs have passed.
2427 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2430 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2434 /*-------------------------------------------------------------------------*/
2437 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2438 * @irq: the IRQ being raised
2439 * @__hcd: pointer to the HCD whose IRQ is being signaled
2441 * If the controller isn't HALTed, calls the driver's irq handler.
2442 * Checks whether the controller is now dead.
2444 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2446 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2448 struct usb_hcd
*hcd
= __hcd
;
2451 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2453 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2460 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2462 /*-------------------------------------------------------------------------*/
2465 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2466 * @hcd: pointer to the HCD representing the controller
2468 * This is called by bus glue to report a USB host controller that died
2469 * while operations may still have been pending. It's called automatically
2470 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2472 * Only call this function with the primary HCD.
2474 void usb_hc_died (struct usb_hcd
*hcd
)
2476 unsigned long flags
;
2478 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2480 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2481 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2482 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2483 if (hcd
->rh_registered
) {
2484 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2486 /* make hub_wq clean up old urbs and devices */
2487 usb_set_device_state (hcd
->self
.root_hub
,
2488 USB_STATE_NOTATTACHED
);
2489 usb_kick_hub_wq(hcd
->self
.root_hub
);
2491 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2492 hcd
= hcd
->shared_hcd
;
2493 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2494 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2495 if (hcd
->rh_registered
) {
2496 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2498 /* make hub_wq clean up old urbs and devices */
2499 usb_set_device_state(hcd
->self
.root_hub
,
2500 USB_STATE_NOTATTACHED
);
2501 usb_kick_hub_wq(hcd
->self
.root_hub
);
2504 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2505 /* Make sure that the other roothub is also deallocated. */
2507 EXPORT_SYMBOL_GPL (usb_hc_died
);
2509 /*-------------------------------------------------------------------------*/
2511 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2514 spin_lock_init(&bh
->lock
);
2515 INIT_LIST_HEAD(&bh
->head
);
2516 tasklet_init(&bh
->bh
, usb_giveback_urb_bh
, (unsigned long)bh
);
2519 struct usb_hcd
*__usb_create_hcd(const struct hc_driver
*driver
,
2520 struct device
*sysdev
, struct device
*dev
, const char *bus_name
,
2521 struct usb_hcd
*primary_hcd
)
2523 struct usb_hcd
*hcd
;
2525 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2528 if (primary_hcd
== NULL
) {
2529 hcd
->address0_mutex
= kmalloc(sizeof(*hcd
->address0_mutex
),
2531 if (!hcd
->address0_mutex
) {
2533 dev_dbg(dev
, "hcd address0 mutex alloc failed\n");
2536 mutex_init(hcd
->address0_mutex
);
2537 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2539 if (!hcd
->bandwidth_mutex
) {
2540 kfree(hcd
->address0_mutex
);
2542 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2545 mutex_init(hcd
->bandwidth_mutex
);
2546 dev_set_drvdata(dev
, hcd
);
2548 mutex_lock(&usb_port_peer_mutex
);
2549 hcd
->address0_mutex
= primary_hcd
->address0_mutex
;
2550 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2551 hcd
->primary_hcd
= primary_hcd
;
2552 primary_hcd
->primary_hcd
= primary_hcd
;
2553 hcd
->shared_hcd
= primary_hcd
;
2554 primary_hcd
->shared_hcd
= hcd
;
2555 mutex_unlock(&usb_port_peer_mutex
);
2558 kref_init(&hcd
->kref
);
2560 usb_bus_init(&hcd
->self
);
2561 hcd
->self
.controller
= dev
;
2562 hcd
->self
.sysdev
= sysdev
;
2563 hcd
->self
.bus_name
= bus_name
;
2564 hcd
->self
.uses_dma
= (sysdev
->dma_mask
!= NULL
);
2566 timer_setup(&hcd
->rh_timer
, rh_timer_func
, 0);
2568 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2571 hcd
->driver
= driver
;
2572 hcd
->speed
= driver
->flags
& HCD_MASK
;
2573 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2574 "USB Host Controller";
2577 EXPORT_SYMBOL_GPL(__usb_create_hcd
);
2580 * usb_create_shared_hcd - create and initialize an HCD structure
2581 * @driver: HC driver that will use this hcd
2582 * @dev: device for this HC, stored in hcd->self.controller
2583 * @bus_name: value to store in hcd->self.bus_name
2584 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2585 * PCI device. Only allocate certain resources for the primary HCD
2586 * Context: !in_interrupt()
2588 * Allocate a struct usb_hcd, with extra space at the end for the
2589 * HC driver's private data. Initialize the generic members of the
2592 * Return: On success, a pointer to the created and initialized HCD structure.
2593 * On failure (e.g. if memory is unavailable), %NULL.
2595 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2596 struct device
*dev
, const char *bus_name
,
2597 struct usb_hcd
*primary_hcd
)
2599 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, primary_hcd
);
2601 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2604 * usb_create_hcd - create and initialize an HCD structure
2605 * @driver: HC driver that will use this hcd
2606 * @dev: device for this HC, stored in hcd->self.controller
2607 * @bus_name: value to store in hcd->self.bus_name
2608 * Context: !in_interrupt()
2610 * Allocate a struct usb_hcd, with extra space at the end for the
2611 * HC driver's private data. Initialize the generic members of the
2614 * Return: On success, a pointer to the created and initialized HCD
2615 * structure. On failure (e.g. if memory is unavailable), %NULL.
2617 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2618 struct device
*dev
, const char *bus_name
)
2620 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, NULL
);
2622 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2625 * Roothubs that share one PCI device must also share the bandwidth mutex.
2626 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2629 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2630 * freed. When hcd_release() is called for either hcd in a peer set,
2631 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2633 static void hcd_release(struct kref
*kref
)
2635 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2637 mutex_lock(&usb_port_peer_mutex
);
2638 if (hcd
->shared_hcd
) {
2639 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2641 peer
->shared_hcd
= NULL
;
2642 peer
->primary_hcd
= NULL
;
2644 kfree(hcd
->address0_mutex
);
2645 kfree(hcd
->bandwidth_mutex
);
2647 mutex_unlock(&usb_port_peer_mutex
);
2651 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2654 kref_get (&hcd
->kref
);
2657 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2659 void usb_put_hcd (struct usb_hcd
*hcd
)
2662 kref_put (&hcd
->kref
, hcd_release
);
2664 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2666 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2668 if (!hcd
->primary_hcd
)
2670 return hcd
== hcd
->primary_hcd
;
2672 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2674 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2676 if (!hcd
->driver
->find_raw_port_number
)
2679 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2682 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2683 unsigned int irqnum
, unsigned long irqflags
)
2687 if (hcd
->driver
->irq
) {
2689 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2690 hcd
->driver
->description
, hcd
->self
.busnum
);
2691 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2692 hcd
->irq_descr
, hcd
);
2694 dev_err(hcd
->self
.controller
,
2695 "request interrupt %d failed\n",
2700 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2701 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2702 "io mem" : "io base",
2703 (unsigned long long)hcd
->rsrc_start
);
2706 if (hcd
->rsrc_start
)
2707 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2708 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2709 "io mem" : "io base",
2710 (unsigned long long)hcd
->rsrc_start
);
2716 * Before we free this root hub, flush in-flight peering attempts
2717 * and disable peer lookups
2719 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2721 struct usb_device
*rhdev
;
2723 mutex_lock(&usb_port_peer_mutex
);
2724 rhdev
= hcd
->self
.root_hub
;
2725 hcd
->self
.root_hub
= NULL
;
2726 mutex_unlock(&usb_port_peer_mutex
);
2731 * usb_add_hcd - finish generic HCD structure initialization and register
2732 * @hcd: the usb_hcd structure to initialize
2733 * @irqnum: Interrupt line to allocate
2734 * @irqflags: Interrupt type flags
2736 * Finish the remaining parts of generic HCD initialization: allocate the
2737 * buffers of consistent memory, register the bus, request the IRQ line,
2738 * and call the driver's reset() and start() routines.
2740 int usb_add_hcd(struct usb_hcd
*hcd
,
2741 unsigned int irqnum
, unsigned long irqflags
)
2744 struct usb_device
*rhdev
;
2746 if (!hcd
->skip_phy_initialization
&& usb_hcd_is_primary_hcd(hcd
)) {
2747 hcd
->phy_roothub
= usb_phy_roothub_alloc(hcd
->self
.sysdev
);
2748 if (IS_ERR(hcd
->phy_roothub
))
2749 return PTR_ERR(hcd
->phy_roothub
);
2751 retval
= usb_phy_roothub_init(hcd
->phy_roothub
);
2755 retval
= usb_phy_roothub_power_on(hcd
->phy_roothub
);
2757 goto err_usb_phy_roothub_power_on
;
2760 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2762 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2763 if (authorized_default
< 0 || authorized_default
> 1) {
2765 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2767 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2769 if (authorized_default
)
2770 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2772 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2774 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2776 /* per default all interfaces are authorized */
2777 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
2779 /* HC is in reset state, but accessible. Now do the one-time init,
2780 * bottom up so that hcds can customize the root hubs before hub_wq
2781 * starts talking to them. (Note, bus id is assigned early too.)
2783 retval
= hcd_buffer_create(hcd
);
2785 dev_dbg(hcd
->self
.sysdev
, "pool alloc failed\n");
2786 goto err_create_buf
;
2789 retval
= usb_register_bus(&hcd
->self
);
2791 goto err_register_bus
;
2793 rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0);
2794 if (rhdev
== NULL
) {
2795 dev_err(hcd
->self
.sysdev
, "unable to allocate root hub\n");
2797 goto err_allocate_root_hub
;
2799 mutex_lock(&usb_port_peer_mutex
);
2800 hcd
->self
.root_hub
= rhdev
;
2801 mutex_unlock(&usb_port_peer_mutex
);
2803 rhdev
->rx_lanes
= 1;
2804 rhdev
->tx_lanes
= 1;
2806 switch (hcd
->speed
) {
2808 rhdev
->speed
= USB_SPEED_FULL
;
2811 rhdev
->speed
= USB_SPEED_HIGH
;
2814 rhdev
->speed
= USB_SPEED_WIRELESS
;
2817 rhdev
->speed
= USB_SPEED_SUPER
;
2820 rhdev
->rx_lanes
= 2;
2821 rhdev
->tx_lanes
= 2;
2824 rhdev
->speed
= USB_SPEED_SUPER_PLUS
;
2828 goto err_set_rh_speed
;
2831 /* wakeup flag init defaults to "everything works" for root hubs,
2832 * but drivers can override it in reset() if needed, along with
2833 * recording the overall controller's system wakeup capability.
2835 device_set_wakeup_capable(&rhdev
->dev
, 1);
2837 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2838 * registered. But since the controller can die at any time,
2839 * let's initialize the flag before touching the hardware.
2841 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2843 /* "reset" is misnamed; its role is now one-time init. the controller
2844 * should already have been reset (and boot firmware kicked off etc).
2846 if (hcd
->driver
->reset
) {
2847 retval
= hcd
->driver
->reset(hcd
);
2849 dev_err(hcd
->self
.controller
, "can't setup: %d\n",
2851 goto err_hcd_driver_setup
;
2854 hcd
->rh_pollable
= 1;
2856 /* NOTE: root hub and controller capabilities may not be the same */
2857 if (device_can_wakeup(hcd
->self
.controller
)
2858 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2859 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2861 /* initialize tasklets */
2862 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2863 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2865 /* enable irqs just before we start the controller,
2866 * if the BIOS provides legacy PCI irqs.
2868 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2869 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2871 goto err_request_irq
;
2874 hcd
->state
= HC_STATE_RUNNING
;
2875 retval
= hcd
->driver
->start(hcd
);
2877 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2878 goto err_hcd_driver_start
;
2881 /* starting here, usbcore will pay attention to this root hub */
2882 retval
= register_root_hub(hcd
);
2884 goto err_register_root_hub
;
2886 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2888 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2890 goto error_create_attr_group
;
2892 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2893 usb_hcd_poll_rh_status(hcd
);
2897 error_create_attr_group
:
2898 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2899 if (HC_IS_RUNNING(hcd
->state
))
2900 hcd
->state
= HC_STATE_QUIESCING
;
2901 spin_lock_irq(&hcd_root_hub_lock
);
2902 hcd
->rh_registered
= 0;
2903 spin_unlock_irq(&hcd_root_hub_lock
);
2906 cancel_work_sync(&hcd
->wakeup_work
);
2908 mutex_lock(&usb_bus_idr_lock
);
2909 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2910 mutex_unlock(&usb_bus_idr_lock
);
2911 err_register_root_hub
:
2912 hcd
->rh_pollable
= 0;
2913 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2914 del_timer_sync(&hcd
->rh_timer
);
2915 hcd
->driver
->stop(hcd
);
2916 hcd
->state
= HC_STATE_HALT
;
2917 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2918 del_timer_sync(&hcd
->rh_timer
);
2919 err_hcd_driver_start
:
2920 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2921 free_irq(irqnum
, hcd
);
2923 err_hcd_driver_setup
:
2925 usb_put_invalidate_rhdev(hcd
);
2926 err_allocate_root_hub
:
2927 usb_deregister_bus(&hcd
->self
);
2929 hcd_buffer_destroy(hcd
);
2931 usb_phy_roothub_power_off(hcd
->phy_roothub
);
2932 err_usb_phy_roothub_power_on
:
2933 usb_phy_roothub_exit(hcd
->phy_roothub
);
2937 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2940 * usb_remove_hcd - shutdown processing for generic HCDs
2941 * @hcd: the usb_hcd structure to remove
2942 * Context: !in_interrupt()
2944 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2945 * invoking the HCD's stop() method.
2947 void usb_remove_hcd(struct usb_hcd
*hcd
)
2949 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2951 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2954 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2956 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2957 if (HC_IS_RUNNING (hcd
->state
))
2958 hcd
->state
= HC_STATE_QUIESCING
;
2960 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2961 spin_lock_irq (&hcd_root_hub_lock
);
2962 hcd
->rh_registered
= 0;
2963 spin_unlock_irq (&hcd_root_hub_lock
);
2966 cancel_work_sync(&hcd
->wakeup_work
);
2969 mutex_lock(&usb_bus_idr_lock
);
2970 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2971 mutex_unlock(&usb_bus_idr_lock
);
2974 * tasklet_kill() isn't needed here because:
2975 * - driver's disconnect() called from usb_disconnect() should
2976 * make sure its URBs are completed during the disconnect()
2979 * - it is too late to run complete() here since driver may have
2980 * been removed already now
2983 /* Prevent any more root-hub status calls from the timer.
2984 * The HCD might still restart the timer (if a port status change
2985 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2986 * the hub_status_data() callback.
2988 hcd
->rh_pollable
= 0;
2989 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2990 del_timer_sync(&hcd
->rh_timer
);
2992 hcd
->driver
->stop(hcd
);
2993 hcd
->state
= HC_STATE_HALT
;
2995 /* In case the HCD restarted the timer, stop it again. */
2996 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2997 del_timer_sync(&hcd
->rh_timer
);
2999 if (usb_hcd_is_primary_hcd(hcd
)) {
3001 free_irq(hcd
->irq
, hcd
);
3004 usb_deregister_bus(&hcd
->self
);
3005 hcd_buffer_destroy(hcd
);
3007 usb_phy_roothub_power_off(hcd
->phy_roothub
);
3008 usb_phy_roothub_exit(hcd
->phy_roothub
);
3010 usb_put_invalidate_rhdev(hcd
);
3013 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
3016 usb_hcd_platform_shutdown(struct platform_device
*dev
)
3018 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
3020 /* No need for pm_runtime_put(), we're shutting down */
3021 pm_runtime_get_sync(&dev
->dev
);
3023 if (hcd
->driver
->shutdown
)
3024 hcd
->driver
->shutdown(hcd
);
3026 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
3028 /*-------------------------------------------------------------------------*/
3030 #if IS_ENABLED(CONFIG_USB_MON)
3032 const struct usb_mon_operations
*mon_ops
;
3035 * The registration is unlocked.
3036 * We do it this way because we do not want to lock in hot paths.
3038 * Notice that the code is minimally error-proof. Because usbmon needs
3039 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3042 int usb_mon_register(const struct usb_mon_operations
*ops
)
3052 EXPORT_SYMBOL_GPL (usb_mon_register
);
3054 void usb_mon_deregister (void)
3057 if (mon_ops
== NULL
) {
3058 printk(KERN_ERR
"USB: monitor was not registered\n");
3064 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
3066 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */