1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * core.h - DesignWare HS OTG Controller common declarations
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
49 * Suggested defines for tracers:
50 * - no_printk: Disable tracing
51 * - pr_info: Print this info to the console
52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
55 #define DWC2_TRACE_SCHEDULER no_printk
56 #define DWC2_TRACE_SCHEDULER_VB no_printk
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...) \
60 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
61 dev_name(hsotg->dev), ##__VA_ARGS__)
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...) \
65 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
66 dev_name(hsotg->dev), ##__VA_ARGS__)
68 /* Maximum number of Endpoints/HostChannels */
69 #define MAX_EPS_CHANNELS 16
71 /* dwc2-hsotg declarations */
72 static const char * const dwc2_hsotg_supply_names
[] = {
73 "vusb_d", /* digital USB supply, 1.2V */
74 "vusb_a", /* analog USB supply, 1.1V */
77 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
82 * Unfortunately there seems to be a limit of the amount of data that can
83 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
84 * packets (which practically means 1 packet and 63 bytes of data) when the
87 * This means if we are wanting to move >127 bytes of data, we need to
88 * split the transactions up, but just doing one packet at a time does
89 * not work (this may be an implicit DATA0 PID on first packet of the
90 * transaction) and doing 2 packets is outside the controller's limits.
92 * If we try to lower the MPS size for EP0, then no transfers work properly
93 * for EP0, and the system will fail basic enumeration. As no cause for this
94 * has currently been found, we cannot support any large IN transfers for
97 #define EP0_MPS_LIMIT 64
100 struct dwc2_hsotg_req
;
103 * struct dwc2_hsotg_ep - driver endpoint definition.
104 * @ep: The gadget layer representation of the endpoint.
105 * @name: The driver generated name for the endpoint.
106 * @queue: Queue of requests for this endpoint.
107 * @parent: Reference back to the parent device structure.
108 * @req: The current request that the endpoint is processing. This is
109 * used to indicate an request has been loaded onto the endpoint
110 * and has yet to be completed (maybe due to data move, or simply
111 * awaiting an ack from the core all the data has been completed).
112 * @debugfs: File entry for debugfs file for this endpoint.
113 * @dir_in: Set to true if this endpoint is of the IN direction, which
114 * means that it is sending data to the Host.
115 * @index: The index for the endpoint registers.
116 * @mc: Multi Count - number of transactions per microframe
117 * @interval: Interval for periodic endpoints, in frames or microframes.
118 * @name: The name array passed to the USB core.
119 * @halted: Set if the endpoint has been halted.
120 * @periodic: Set if this is a periodic ep, such as Interrupt
121 * @isochronous: Set if this is a isochronous ep
122 * @send_zlp: Set if we need to send a zero-length packet.
123 * @desc_list_dma: The DMA address of descriptor chain currently in use.
124 * @desc_list: Pointer to descriptor DMA chain head currently in use.
125 * @desc_count: Count of entries within the DMA descriptor chain of EP.
126 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
127 * @compl_desc: index of next descriptor to be completed by xFerComplete
128 * @total_data: The total number of data bytes done.
129 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
130 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
131 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
132 * @last_load: The offset of data for the last start of request.
133 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
134 * @target_frame: Targeted frame num to setup next ISOC transfer
135 * @frame_overrun: Indicates SOF number overrun in DSTS
137 * This is the driver's state for each registered enpoint, allowing it
138 * to keep track of transactions that need doing. Each endpoint has a
139 * lock to protect the state, to try and avoid using an overall lock
140 * for the host controller as much as possible.
142 * For periodic IN endpoints, we have fifo_size and fifo_load to try
143 * and keep track of the amount of data in the periodic FIFO for each
144 * of these as we don't have a status register that tells us how much
145 * is in each of them. (note, this may actually be useless information
146 * as in shared-fifo mode periodic in acts like a single-frame packet
147 * buffer than a fifo)
149 struct dwc2_hsotg_ep
{
151 struct list_head queue
;
152 struct dwc2_hsotg
*parent
;
153 struct dwc2_hsotg_req
*req
;
154 struct dentry
*debugfs
;
156 unsigned long total_data
;
157 unsigned int size_loaded
;
158 unsigned int last_load
;
159 unsigned int fifo_load
;
160 unsigned short fifo_size
;
161 unsigned short fifo_index
;
163 unsigned char dir_in
;
168 unsigned int halted
:1;
169 unsigned int periodic
:1;
170 unsigned int isochronous
:1;
171 unsigned int send_zlp
:1;
172 unsigned int target_frame
;
173 #define TARGET_FRAME_INITIAL 0xFFFFFFFF
176 dma_addr_t desc_list_dma
;
177 struct dwc2_dma_desc
*desc_list
;
180 unsigned int next_desc
;
181 unsigned int compl_desc
;
187 * struct dwc2_hsotg_req - data transfer request
188 * @req: The USB gadget request
189 * @queue: The list of requests for the endpoint this is queued for.
190 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
192 struct dwc2_hsotg_req
{
193 struct usb_request req
;
194 struct list_head queue
;
198 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
199 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
200 #define call_gadget(_hs, _entry) \
202 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
203 (_hs)->driver && (_hs)->driver->_entry) { \
204 spin_unlock(&_hs->lock); \
205 (_hs)->driver->_entry(&(_hs)->gadget); \
206 spin_lock(&_hs->lock); \
210 #define call_gadget(_hs, _entry) do {} while (0)
214 struct dwc2_host_chan
;
218 DWC2_L0
, /* On state */
219 DWC2_L1
, /* LPM sleep state */
220 DWC2_L2
, /* USB suspend state */
221 DWC2_L3
, /* Off state */
224 /* Gadget ep0 states */
225 enum dwc2_ep0_state
{
234 * struct dwc2_core_params - Parameters for configuring the core
236 * @otg_cap: Specifies the OTG capabilities.
237 * 0 - HNP and SRP capable
238 * 1 - SRP Only capable
239 * 2 - No HNP/SRP capable (always available)
240 * Defaults to best available option (0, 1, then 2)
241 * @host_dma: Specifies whether to use slave or DMA mode for accessing
242 * the data FIFOs. The driver will automatically detect the
243 * value for this parameter if none is specified.
244 * 0 - Slave (always available)
245 * 1 - DMA (default, if available)
246 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
247 * address DMA mode or descriptor DMA mode for accessing
248 * the data FIFOs. The driver will automatically detect the
249 * value for this if none is specified.
251 * 1 - Descriptor DMA (default, if available)
252 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
253 * address DMA mode or descriptor DMA mode for accessing
254 * the data FIFOs in Full Speed mode only. The driver
255 * will automatically detect the value for this if none is
258 * 1 - Descriptor DMA in FS (default, if available)
259 * @speed: Specifies the maximum speed of operation in host and
260 * device mode. The actual speed depends on the speed of
261 * the attached device and the value of phy_type.
263 * (default when phy_type is UTMI+ or ULPI)
265 * (default when phy_type is Full Speed)
266 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
267 * 1 - Allow dynamic FIFO sizing (default, if available)
268 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
269 * are enabled for non-periodic IN endpoints in device
271 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
272 * dynamic FIFO sizing is enabled
274 * Actual maximum value is autodetected and also
276 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
277 * in host mode when dynamic FIFO sizing is enabled
279 * Actual maximum value is autodetected and also
281 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
282 * host mode when dynamic FIFO sizing is enabled
284 * Actual maximum value is autodetected and also
286 * @max_transfer_size: The maximum transfer size supported, in bytes
288 * Actual maximum value is autodetected and also
290 * @max_packet_count: The maximum number of packets in a transfer
292 * Actual maximum value is autodetected and also
294 * @host_channels: The number of host channel registers to use
296 * Actual maximum value is autodetected and also
298 * @phy_type: Specifies the type of PHY interface to use. By default,
299 * the driver will automatically detect the phy_type.
303 * Defaults to best available option (2, 1, then 0)
304 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
305 * is applicable for a phy_type of UTMI+ or ULPI. (For a
306 * ULPI phy_type, this parameter indicates the data width
307 * between the MAC and the ULPI Wrapper.) Also, this
308 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
309 * parameter was set to "8 and 16 bits", meaning that the
310 * core has been configured to work at either data path
312 * 8 or 16 (default 16 if available)
313 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
314 * data rate. This parameter is only applicable if phy_type
316 * 0 - single data rate ULPI interface with 8 bit wide
318 * 1 - double data rate ULPI interface with 4 bit wide
320 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
321 * external supply to drive the VBus
322 * 0 - Internal supply (default)
323 * 1 - External supply
324 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
325 * speed PHY. This parameter is only applicable if phy_type
329 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled.
330 * 0 - Disable (default)
332 * @acg_enable: For enabling Active Clock Gating in the controller
335 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
338 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
339 * when attached to a Full Speed or Low Speed device in
341 * 0 - Don't support low power mode (default)
342 * 1 - Support low power mode
343 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
344 * when connected to a Low Speed device in host
345 * mode. This parameter is applicable only if
346 * host_support_fs_ls_low_power is enabled.
348 * (default when phy_type is UTMI+ or ULPI)
350 * (default when phy_type is Full Speed)
351 * @oc_disable: Flag to disable overcurrent condition.
352 * 0 - Allow overcurrent condition to get detected
353 * 1 - Disable overcurrent condtion to get detected
354 * @ts_dline: Enable Term Select Dline pulsing
357 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
358 * 0 - No (default for core < 2.92a)
359 * 1 - Yes (default for core >= 2.92a)
360 * @ahbcfg: This field allows the default value of the GAHBCFG
361 * register to be overridden
362 * -1 - GAHBCFG value will be set to 0x06
364 * all others - GAHBCFG value will be overridden with
366 * Not all bits can be controlled like this, the
367 * bits defined by GAHBCFG_CTRL_MASK are controlled
368 * by the driver and are ignored in this
369 * configuration value.
370 * @uframe_sched: True to enable the microframe scheduler
371 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
372 * Disable CONIDSTSCHNG controller interrupt in such
376 * @power_down: Specifies whether the controller support power_down.
377 * If power_down is enabled, the controller will enter
378 * power_down in both peripheral and host mode when
381 * 1 - Partial power down
383 * @lpm: Enable LPM support.
386 * @lpm_clock_gating: Enable core PHY clock gating.
389 * @besl: Enable LPM Errata support.
392 * @hird_threshold_en: HIRD or HIRD Threshold enable.
395 * @hird_threshold: Value of BESL or HIRD Threshold.
396 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
398 * 0 - Deactivate the transceiver (default)
399 * 1 - Activate the transceiver
400 * @g_dma: Enables gadget dma usage (default: autodetect).
401 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
402 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
403 * DWORDS from 16-32768 (default: 2048 if
404 * possible, otherwise autodetect).
405 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
406 * DWORDS from 16-32768 (default: 1024 if
407 * possible, otherwise autodetect).
408 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
409 * mode. Each value corresponds to one EP
410 * starting from EP1 (max 15 values). Sizes are
411 * in DWORDS with possible values from from
412 * 16-32768 (default: 256, 256, 256, 256, 768,
413 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
414 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
415 * while full&low speed device connect. And change speed
416 * back to DWC2_SPEED_PARAM_HIGH while device is gone.
420 * The following parameters may be specified when starting the module. These
421 * parameters define how the DWC_otg controller should be configured. A
422 * value of -1 (or any other out of range value) for any parameter means
423 * to read the value from hardware (if possible) or use the builtin
424 * default described above.
426 struct dwc2_core_params
{
428 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
429 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
430 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
433 #define DWC2_PHY_TYPE_PARAM_FS 0
434 #define DWC2_PHY_TYPE_PARAM_UTMI 1
435 #define DWC2_PHY_TYPE_PARAM_ULPI 2
438 #define DWC2_SPEED_PARAM_HIGH 0
439 #define DWC2_SPEED_PARAM_FULL 1
440 #define DWC2_SPEED_PARAM_LOW 2
444 bool phy_ulpi_ext_vbus
;
445 bool enable_dynamic_fifo
;
446 bool en_multiple_tx_fifo
;
453 bool external_id_pin_ctl
;
456 #define DWC2_POWER_DOWN_PARAM_NONE 0
457 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1
458 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2
461 bool lpm_clock_gating
;
463 bool hird_threshold_en
;
465 bool activate_stm_fs_transceiver
;
467 u16 max_packet_count
;
468 u32 max_transfer_size
;
471 /* Host parameters */
473 bool dma_desc_enable
;
474 bool dma_desc_fs_enable
;
475 bool host_support_fs_ls_low_power
;
476 bool host_ls_low_power_phy_clk
;
480 u16 host_rx_fifo_size
;
481 u16 host_nperio_tx_fifo_size
;
482 u16 host_perio_tx_fifo_size
;
484 /* Gadget parameters */
488 u32 g_np_tx_fifo_size
;
489 u32 g_tx_fifo_size
[MAX_EPS_CHANNELS
];
491 bool change_speed_quirk
;
495 * struct dwc2_hw_params - Autodetected parameters.
497 * These parameters are the various parameters read from hardware
498 * registers during initialization. They typically contain the best
499 * supported or maximum value that can be configured in the
500 * corresponding dwc2_core_params value.
502 * The values that are not in dwc2_core_params are documented below.
504 * @op_mode: Mode of Operation
505 * 0 - HNP- and SRP-Capable OTG (Host & Device)
506 * 1 - SRP-Capable OTG (Host & Device)
507 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
508 * 3 - SRP-Capable Device
510 * 5 - SRP-Capable Host
512 * @arch: Architecture
516 * @ipg_isoc_en: This feature indicates that the controller supports
517 * the worst-case scenario of Rx followed by Rx
518 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi
519 * specification for any token following ISOC OUT token.
522 * @power_optimized: Are power optimizations enabled?
523 * @num_dev_ep: Number of device endpoints available
524 * @num_dev_in_eps: Number of device IN endpoints available
525 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
527 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue
530 * @host_perio_tx_q_depth:
531 * Host Mode Periodic Request Queue Depth
533 * @nperio_tx_q_depth:
534 * Non-Periodic Request Queue Depth
536 * @hs_phy_type: High-speed PHY interface type
537 * 0 - High-speed interface not supported
541 * @fs_phy_type: Full-speed PHY interface type
542 * 0 - Full speed interface not supported
543 * 1 - Dedicated full speed interface
544 * 2 - FS pins shared with UTMI+ pins
545 * 3 - FS pins shared with ULPI pins
546 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
547 * @hibernation: Is hibernation enabled?
548 * @utmi_phy_data_width: UTMI+ PHY data width
552 * @snpsid: Value from SNPSID register
553 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
554 * @g_tx_fifo_size: Power-on values of TxFIFO sizes
555 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
556 * address DMA mode or descriptor DMA mode for accessing
557 * the data FIFOs. The driver will automatically detect the
558 * value for this if none is specified.
560 * 1 - Descriptor DMA (default, if available)
561 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
562 * 1 - Allow dynamic FIFO sizing (default, if available)
563 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
564 * are enabled for non-periodic IN endpoints in device
566 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
567 * in host mode when dynamic FIFO sizing is enabled
569 * Actual maximum value is autodetected and also
571 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
572 * host mode when dynamic FIFO sizing is enabled
574 * Actual maximum value is autodetected and also
576 * @max_transfer_size: The maximum transfer size supported, in bytes
578 * Actual maximum value is autodetected and also
580 * @max_packet_count: The maximum number of packets in a transfer
582 * Actual maximum value is autodetected and also
584 * @host_channels: The number of host channel registers to use
586 * Actual maximum value is autodetected and also
588 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
589 * in device mode when dynamic FIFO sizing is enabled
591 * Actual maximum value is autodetected and also
593 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
594 * speed PHY. This parameter is only applicable if phy_type
598 * @acg_enable: For enabling Active Clock Gating in the controller
601 * @lpm_mode: For enabling Link Power Management in the controller
604 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic
605 * FIFO sizing is enabled 16 to 32768
606 * Actual maximum value is autodetected and also
609 struct dwc2_hw_params
{
612 unsigned dma_desc_enable
:1;
613 unsigned enable_dynamic_fifo
:1;
614 unsigned en_multiple_tx_fifo
:1;
615 unsigned rx_fifo_size
:16;
616 unsigned host_nperio_tx_fifo_size
:16;
617 unsigned dev_nperio_tx_fifo_size
:16;
618 unsigned host_perio_tx_fifo_size
:16;
619 unsigned nperio_tx_q_depth
:3;
620 unsigned host_perio_tx_q_depth
:3;
621 unsigned dev_token_q_depth
:5;
622 unsigned max_transfer_size
:26;
623 unsigned max_packet_count
:11;
624 unsigned host_channels
:5;
625 unsigned hs_phy_type
:2;
626 unsigned fs_phy_type
:2;
627 unsigned i2c_enable
:1;
628 unsigned acg_enable
:1;
629 unsigned num_dev_ep
:4;
630 unsigned num_dev_in_eps
: 4;
631 unsigned num_dev_perio_in_ep
:4;
632 unsigned total_fifo_size
:16;
633 unsigned power_optimized
:1;
634 unsigned hibernation
:1;
635 unsigned utmi_phy_data_width
:2;
637 unsigned ipg_isoc_en
:1;
640 u32 g_tx_fifo_size
[MAX_EPS_CHANNELS
];
643 /* Size of control and EP0 buffers */
644 #define DWC2_CTRL_BUFF_SIZE 8
647 * struct dwc2_gregs_backup - Holds global registers state before
648 * entering partial power down
649 * @gotgctl: Backup of GOTGCTL register
650 * @gintmsk: Backup of GINTMSK register
651 * @gahbcfg: Backup of GAHBCFG register
652 * @gusbcfg: Backup of GUSBCFG register
653 * @grxfsiz: Backup of GRXFSIZ register
654 * @gnptxfsiz: Backup of GNPTXFSIZ register
655 * @gi2cctl: Backup of GI2CCTL register
656 * @glpmcfg: Backup of GLPMCFG register
657 * @gdfifocfg: Backup of GDFIFOCFG register
658 * @pcgcctl: Backup of PCGCCTL register
659 * @pcgcctl1: Backup of PCGCCTL1 register
660 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
661 * @gpwrdn: Backup of GPWRDN register
662 * @valid: True if registers values backuped.
664 struct dwc2_gregs_backup
{
681 * struct dwc2_dregs_backup - Holds device registers state before
682 * entering partial power down
683 * @dcfg: Backup of DCFG register
684 * @dctl: Backup of DCTL register
685 * @daintmsk: Backup of DAINTMSK register
686 * @diepmsk: Backup of DIEPMSK register
687 * @doepmsk: Backup of DOEPMSK register
688 * @diepctl: Backup of DIEPCTL register
689 * @dieptsiz: Backup of DIEPTSIZ register
690 * @diepdma: Backup of DIEPDMA register
691 * @doepctl: Backup of DOEPCTL register
692 * @doeptsiz: Backup of DOEPTSIZ register
693 * @doepdma: Backup of DOEPDMA register
694 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
695 * @valid: True if registers values backuped.
697 struct dwc2_dregs_backup
{
703 u32 diepctl
[MAX_EPS_CHANNELS
];
704 u32 dieptsiz
[MAX_EPS_CHANNELS
];
705 u32 diepdma
[MAX_EPS_CHANNELS
];
706 u32 doepctl
[MAX_EPS_CHANNELS
];
707 u32 doeptsiz
[MAX_EPS_CHANNELS
];
708 u32 doepdma
[MAX_EPS_CHANNELS
];
709 u32 dtxfsiz
[MAX_EPS_CHANNELS
];
714 * struct dwc2_hregs_backup - Holds host registers state before
715 * entering partial power down
716 * @hcfg: Backup of HCFG register
717 * @haintmsk: Backup of HAINTMSK register
718 * @hcintmsk: Backup of HCINTMSK register
719 * @hprt0: Backup of HPTR0 register
720 * @hfir: Backup of HFIR register
721 * @hptxfsiz: Backup of HPTXFSIZ register
722 * @valid: True if registers values backuped.
724 struct dwc2_hregs_backup
{
727 u32 hcintmsk
[MAX_EPS_CHANNELS
];
735 * Constants related to high speed periodic scheduling
737 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
738 * reservation point of view it's assumed that the schedule goes right back to
739 * the beginning after the end of the schedule.
741 * What does that mean for scheduling things with a long interval? It means
742 * we'll reserve time for them in every possible microframe that they could
743 * ever be scheduled in. ...but we'll still only actually schedule them as
744 * often as they were requested.
746 * We keep our schedule in a "bitmap" structure. This simplifies having
747 * to keep track of and merge intervals: we just let the bitmap code do most
748 * of the heavy lifting. In a way scheduling is much like memory allocation.
750 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
751 * supposed to schedule for periodic transfers). That's according to spec.
753 * Note that though we only schedule 80% of each microframe, the bitmap that we
754 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
755 * space for each uFrame).
758 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
759 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
760 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
761 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
763 #define DWC2_US_PER_UFRAME 125
764 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
766 #define DWC2_HS_SCHEDULE_UFRAMES 8
767 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
768 DWC2_HS_PERIODIC_US_PER_UFRAME)
771 * Constants related to low speed scheduling
773 * For high speed we schedule every 1us. For low speed that's a bit overkill,
774 * so we make up a unit called a "slice" that's worth 25us. There are 40
775 * slices in a full frame and we can schedule 36 of those (90%) for periodic
778 * Our low speed schedule can be as short as 1 frame or could be longer. When
779 * we only schedule 1 frame it means that we'll need to reserve a time every
780 * frame even for things that only transfer very rarely, so something that runs
781 * every 2048 frames will get time reserved in every frame. Our low speed
782 * schedule can be longer and we'll be able to handle more overlap, but that
783 * will come at increased memory cost and increased time to schedule.
785 * Note: one other advantage of a short low speed schedule is that if we mess
786 * up and miss scheduling we can jump in and use any of the slots that we
787 * happened to reserve.
789 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
790 * the schedule. There will be one schedule per TT.
793 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
795 #define DWC2_US_PER_SLICE 25
796 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
798 #define DWC2_ROUND_US_TO_SLICE(us) \
799 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
802 #define DWC2_LS_PERIODIC_US_PER_FRAME \
804 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
805 (DWC2_LS_PERIODIC_US_PER_FRAME / \
808 #define DWC2_LS_SCHEDULE_FRAMES 1
809 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
810 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
813 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
814 * and periodic schedules
816 * These are common for both host and peripheral modes:
818 * @dev: The struct device pointer
819 * @regs: Pointer to controller regs
820 * @hw_params: Parameters that were autodetected from the
822 * @params: Parameters that define how the core should be configured
823 * @op_state: The operational State, during transitions (a_host=>
824 * a_peripheral and b_device=>b_host) this may not match
825 * the core, but allows the software to determine
827 * @dr_mode: Requested mode of operation, one of following:
828 * - USB_DR_MODE_PERIPHERAL
831 * @hcd_enabled: Host mode sub-driver initialization indicator.
832 * @gadget_enabled: Peripheral mode sub-driver initialization indicator.
833 * @ll_hw_enabled: Status of low-level hardware resources.
834 * @hibernated: True if core is hibernated
835 * @frame_number: Frame number read from the core. For both device
836 * and host modes. The value ranges are from 0
837 * to HFNUM_MAX_FRNUM.
838 * @phy: The otg phy transceiver structure for phy control.
839 * @uphy: The otg phy transceiver structure for old USB phy
841 * @plat: The platform specific configuration data. This can be
842 * removed once all SoCs support usb transceiver.
843 * @supplies: Definition of USB power supplies
844 * @vbus_supply: Regulator supplying vbus.
845 * @phyif: PHY interface width
846 * @lock: Spinlock that protects all the driver data structures
847 * @priv: Stores a pointer to the struct usb_hcd
848 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
849 * transfer are in process of being queued
850 * @srp_success: Stores status of SRP request in the case of a FS PHY
851 * with an I2C interface
852 * @wq_otg: Workqueue object used for handling of some interrupts
853 * @wf_otg: Work object for handling Connector ID Status Change
855 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
856 * @lx_state: Lx state of connected device
857 * @gr_backup: Backup of global registers during suspend
858 * @dr_backup: Backup of device registers during suspend
859 * @hr_backup: Backup of host registers during suspend
860 * @needs_byte_swap: Specifies whether the opposite endianness.
862 * These are for host mode:
864 * @flags: Flags for handling root port state changes
865 * @flags.d32: Contain all root port flags
866 * @flags.b: Separate root port flags from each other
867 * @flags.b.port_connect_status_change: True if root port connect status
869 * @flags.b.port_connect_status: True if device connected to root port
870 * @flags.b.port_reset_change: True if root port reset status changed
871 * @flags.b.port_enable_change: True if root port enable status changed
872 * @flags.b.port_suspend_change: True if root port suspend status changed
873 * @flags.b.port_over_current_change: True if root port over current state
875 * @flags.b.port_l1_change: True if root port l1 status changed
876 * @flags.b.reserved: Reserved bits of root port register
877 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
878 * Transfers associated with these QHs are not currently
879 * assigned to a host channel.
880 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
881 * Transfers associated with these QHs are currently
882 * assigned to a host channel.
883 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
884 * non-periodic schedule
885 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
886 * Transfers associated with these QHs are not currently
887 * assigned to a host channel.
888 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
889 * list of QHs for periodic transfers that are _not_
890 * scheduled for the next frame. Each QH in the list has an
891 * interval counter that determines when it needs to be
892 * scheduled for execution. This scheduling mechanism
893 * allows only a simple calculation for periodic bandwidth
894 * used (i.e. must assume that all periodic transfers may
895 * need to execute in the same frame). However, it greatly
896 * simplifies scheduling and should be sufficient for the
897 * vast majority of OTG hosts, which need to connect to a
898 * small number of peripherals at one time. Items move from
899 * this list to periodic_sched_ready when the QH interval
900 * counter is 0 at SOF.
901 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
902 * the next frame, but have not yet been assigned to host
903 * channels. Items move from this list to
904 * periodic_sched_assigned as host channels become
905 * available during the current frame.
906 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
907 * frame that are assigned to host channels. Items move
908 * from this list to periodic_sched_queued as the
909 * transactions for the QH are queued to the DWC_otg
911 * @periodic_sched_queued: List of periodic QHs that have been queued for
912 * execution. Items move from this list to either
913 * periodic_sched_inactive or periodic_sched_ready when the
914 * channel associated with the transfer is released. If the
915 * interval for the QH is 1, the item moves to
916 * periodic_sched_ready because it must be rescheduled for
917 * the next frame. Otherwise, the item moves to
918 * periodic_sched_inactive.
919 * @split_order: List keeping track of channels doing splits, in order.
920 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
921 * This value is in microseconds per (micro)frame. The
922 * assumption is that all periodic transfers may occur in
923 * the same (micro)frame.
924 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
925 * host is in high speed mode; low speed schedules are
926 * stored elsewhere since we need one per TT.
927 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
928 * SOF enable/disable.
929 * @free_hc_list: Free host channels in the controller. This is a list of
930 * struct dwc2_host_chan items.
931 * @periodic_channels: Number of host channels assigned to periodic transfers.
932 * Currently assuming that there is a dedicated host
933 * channel for each periodic transaction and at least one
934 * host channel is available for non-periodic transactions.
935 * @non_periodic_channels: Number of host channels assigned to non-periodic
937 * @available_host_channels: Number of host channels available for the
938 * microframe scheduler to use
939 * @hc_ptr_array: Array of pointers to the host channel descriptors.
940 * Allows accessing a host channel descriptor given the
941 * host channel number. This is useful in interrupt
943 * @status_buf: Buffer used for data received during the status phase of
944 * a control transfer.
945 * @status_buf_dma: DMA address for status_buf
946 * @start_work: Delayed work for handling host A-cable connection
947 * @reset_work: Delayed work for handling a port reset
948 * @otg_port: OTG port number
949 * @frame_list: Frame list
950 * @frame_list_dma: Frame list DMA address
951 * @frame_list_sz: Frame list size
952 * @desc_gen_cache: Kmem cache for generic descriptors
953 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
954 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf
956 * These are for peripheral mode:
958 * @driver: USB gadget driver
959 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
960 * @num_of_eps: Number of available EPs (excluding EP0)
961 * @debug_root: Root directrory for debugfs.
962 * @ep0_reply: Request used for ep0 reply.
963 * @ep0_buff: Buffer for EP0 reply data, if needed.
964 * @ctrl_buff: Buffer for EP0 control requests.
965 * @ctrl_req: Request for EP0 control packets.
966 * @ep0_state: EP0 control transfers state
967 * @test_mode: USB test mode requested by the host
968 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
969 * remote-wakeup signalling
970 * @setup_desc_dma: EP0 setup stage desc chain DMA address
971 * @setup_desc: EP0 setup stage desc chain pointer
972 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
973 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
974 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
975 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
976 * @irq: Interrupt request line number
977 * @clk: Pointer to otg clock
978 * @reset: Pointer to dwc2 reset controller
979 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10.
980 * @regset: A pointer to a struct debugfs_regset32, which contains
981 * a pointer to an array of register definitions, the
982 * array size and the base address where the register bank
984 * @bus_suspended: True if bus is suspended
985 * @last_frame_num: Number of last frame. Range from 0 to 32768
986 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
987 * defined, for missed SOFs tracking. Array holds that
988 * frame numbers, which not equal to last_frame_num +1
989 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
990 * defined, for missed SOFs tracking.
991 * If current_frame_number != last_frame_num+1
992 * then last_frame_num added to this array
993 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array
994 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed
995 * 0 - if missed SOFs frame numbers not dumbed
996 * @fifo_mem: Total internal RAM for FIFOs (bytes)
997 * @fifo_map: Each bit intend for concrete fifo. If that bit is set,
998 * then that fifo is used
999 * @gadget: Represents a usb slave device
1000 * @connected: Used in slave mode. True if device connected with host
1001 * @eps_in: The IN endpoints being supplied to the gadget framework
1002 * @eps_out: The OUT endpoints being supplied to the gadget framework
1003 * @new_connection: Used in host mode. True if there are new connected
1005 * @enabled: Indicates the enabling state of controller
1011 /** Params detected from hardware */
1012 struct dwc2_hw_params hw_params
;
1013 /** Params to actually use */
1014 struct dwc2_core_params params
;
1015 enum usb_otg_state op_state
;
1016 enum usb_dr_mode dr_mode
;
1017 unsigned int hcd_enabled
:1;
1018 unsigned int gadget_enabled
:1;
1019 unsigned int ll_hw_enabled
:1;
1020 unsigned int hibernated
:1;
1024 struct usb_phy
*uphy
;
1025 struct dwc2_hsotg_plat
*plat
;
1026 struct regulator_bulk_data supplies
[DWC2_NUM_SUPPLIES
];
1027 struct regulator
*vbus_supply
;
1034 struct reset_control
*reset
;
1035 struct reset_control
*reset_ecc
;
1037 unsigned int queuing_high_bandwidth
:1;
1038 unsigned int srp_success
:1;
1040 struct workqueue_struct
*wq_otg
;
1041 struct work_struct wf_otg
;
1042 struct timer_list wkp_timer
;
1043 enum dwc2_lx_state lx_state
;
1044 struct dwc2_gregs_backup gr_backup
;
1045 struct dwc2_dregs_backup dr_backup
;
1046 struct dwc2_hregs_backup hr_backup
;
1048 struct dentry
*debug_root
;
1049 struct debugfs_regset32
*regset
;
1050 bool needs_byte_swap
;
1052 /* DWC OTG HW Release versions */
1053 #define DWC2_CORE_REV_2_71a 0x4f54271a
1054 #define DWC2_CORE_REV_2_72a 0x4f54272a
1055 #define DWC2_CORE_REV_2_80a 0x4f54280a
1056 #define DWC2_CORE_REV_2_90a 0x4f54290a
1057 #define DWC2_CORE_REV_2_91a 0x4f54291a
1058 #define DWC2_CORE_REV_2_92a 0x4f54292a
1059 #define DWC2_CORE_REV_2_94a 0x4f54294a
1060 #define DWC2_CORE_REV_3_00a 0x4f54300a
1061 #define DWC2_CORE_REV_3_10a 0x4f54310a
1062 #define DWC2_CORE_REV_4_00a 0x4f54400a
1063 #define DWC2_FS_IOT_REV_1_00a 0x5531100a
1064 #define DWC2_HS_IOT_REV_1_00a 0x5532100a
1066 /* DWC OTG HW Core ID */
1067 #define DWC2_OTG_ID 0x4f540000
1068 #define DWC2_FS_IOT_ID 0x55310000
1069 #define DWC2_HS_IOT_ID 0x55320000
1071 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1072 union dwc2_hcd_internal_flags
{
1075 unsigned port_connect_status_change
:1;
1076 unsigned port_connect_status
:1;
1077 unsigned port_reset_change
:1;
1078 unsigned port_enable_change
:1;
1079 unsigned port_suspend_change
:1;
1080 unsigned port_over_current_change
:1;
1081 unsigned port_l1_change
:1;
1082 unsigned reserved
:25;
1086 struct list_head non_periodic_sched_inactive
;
1087 struct list_head non_periodic_sched_waiting
;
1088 struct list_head non_periodic_sched_active
;
1089 struct list_head
*non_periodic_qh_ptr
;
1090 struct list_head periodic_sched_inactive
;
1091 struct list_head periodic_sched_ready
;
1092 struct list_head periodic_sched_assigned
;
1093 struct list_head periodic_sched_queued
;
1094 struct list_head split_order
;
1096 unsigned long hs_periodic_bitmap
[
1097 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US
, BITS_PER_LONG
)];
1098 u16 periodic_qh_count
;
1100 bool new_connection
;
1104 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1105 #define FRAME_NUM_ARRAY_SIZE 1000
1106 u16
*frame_num_array
;
1107 u16
*last_frame_num_array
;
1109 int dumped_frame_num_array
;
1112 struct list_head free_hc_list
;
1113 int periodic_channels
;
1114 int non_periodic_channels
;
1115 int available_host_channels
;
1116 struct dwc2_host_chan
*hc_ptr_array
[MAX_EPS_CHANNELS
];
1118 dma_addr_t status_buf_dma
;
1119 #define DWC2_HCD_STATUS_BUF_SIZE 64
1121 struct delayed_work start_work
;
1122 struct delayed_work reset_work
;
1125 dma_addr_t frame_list_dma
;
1127 struct kmem_cache
*desc_gen_cache
;
1128 struct kmem_cache
*desc_hsisoc_cache
;
1129 struct kmem_cache
*unaligned_cache
;
1130 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1132 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1134 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1135 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1136 /* Gadget structures */
1137 struct usb_gadget_driver
*driver
;
1139 unsigned int dedicated_fifos
:1;
1140 unsigned char num_of_eps
;
1143 struct usb_request
*ep0_reply
;
1144 struct usb_request
*ctrl_req
;
1147 enum dwc2_ep0_state ep0_state
;
1150 dma_addr_t setup_desc_dma
[2];
1151 struct dwc2_dma_desc
*setup_desc
[2];
1152 dma_addr_t ctrl_in_desc_dma
;
1153 struct dwc2_dma_desc
*ctrl_in_desc
;
1154 dma_addr_t ctrl_out_desc_dma
;
1155 struct dwc2_dma_desc
*ctrl_out_desc
;
1157 struct usb_gadget gadget
;
1158 unsigned int enabled
:1;
1159 unsigned int connected
:1;
1160 unsigned int remote_wakeup_allowed
:1;
1161 struct dwc2_hsotg_ep
*eps_in
[MAX_EPS_CHANNELS
];
1162 struct dwc2_hsotg_ep
*eps_out
[MAX_EPS_CHANNELS
];
1163 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1166 /* Normal architectures just use readl/write */
1167 static inline u32
dwc2_readl(struct dwc2_hsotg
*hsotg
, u32 offset
)
1171 val
= readl(hsotg
->regs
+ offset
);
1172 if (hsotg
->needs_byte_swap
)
1178 static inline void dwc2_writel(struct dwc2_hsotg
*hsotg
, u32 value
, u32 offset
)
1180 if (hsotg
->needs_byte_swap
)
1181 writel(swab32(value
), hsotg
->regs
+ offset
);
1183 writel(value
, hsotg
->regs
+ offset
);
1185 #ifdef DWC2_LOG_WRITES
1186 pr_info("info:: wrote %08x to %p\n", value
, hsotg
->regs
+ offset
);
1190 static inline void dwc2_readl_rep(struct dwc2_hsotg
*hsotg
, u32 offset
,
1191 void *buffer
, unsigned int count
)
1197 u32 x
= dwc2_readl(hsotg
, offset
);
1203 static inline void dwc2_writel_rep(struct dwc2_hsotg
*hsotg
, u32 offset
,
1204 const void *buffer
, unsigned int count
)
1207 const u32
*buf
= buffer
;
1210 dwc2_writel(hsotg
, *buf
++, offset
);
1215 /* Reasons for halting a host channel */
1216 enum dwc2_halt_status
{
1217 DWC2_HC_XFER_NO_HALT_STATUS
,
1218 DWC2_HC_XFER_COMPLETE
,
1219 DWC2_HC_XFER_URB_COMPLETE
,
1224 DWC2_HC_XFER_XACT_ERR
,
1225 DWC2_HC_XFER_FRAME_OVERRUN
,
1226 DWC2_HC_XFER_BABBLE_ERR
,
1227 DWC2_HC_XFER_DATA_TOGGLE_ERR
,
1228 DWC2_HC_XFER_AHB_ERR
,
1229 DWC2_HC_XFER_PERIODIC_INCOMPLETE
,
1230 DWC2_HC_XFER_URB_DEQUEUE
,
1233 /* Core version information */
1234 static inline bool dwc2_is_iot(struct dwc2_hsotg
*hsotg
)
1236 return (hsotg
->hw_params
.snpsid
& 0xfff00000) == 0x55300000;
1239 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg
*hsotg
)
1241 return (hsotg
->hw_params
.snpsid
& 0xffff0000) == 0x55310000;
1244 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg
*hsotg
)
1246 return (hsotg
->hw_params
.snpsid
& 0xffff0000) == 0x55320000;
1250 * The following functions support initialization of the core driver component
1251 * and the DWC_otg controller
1253 int dwc2_core_reset(struct dwc2_hsotg
*hsotg
, bool skip_wait
);
1254 int dwc2_enter_partial_power_down(struct dwc2_hsotg
*hsotg
);
1255 int dwc2_exit_partial_power_down(struct dwc2_hsotg
*hsotg
, bool restore
);
1256 int dwc2_enter_hibernation(struct dwc2_hsotg
*hsotg
, int is_host
);
1257 int dwc2_exit_hibernation(struct dwc2_hsotg
*hsotg
, int rem_wakeup
,
1258 int reset
, int is_host
);
1260 void dwc2_force_mode(struct dwc2_hsotg
*hsotg
, bool host
);
1261 void dwc2_force_dr_mode(struct dwc2_hsotg
*hsotg
);
1263 bool dwc2_is_controller_alive(struct dwc2_hsotg
*hsotg
);
1266 * Common core Functions.
1267 * The following functions support managing the DWC_otg controller in either
1268 * device or host mode.
1270 void dwc2_read_packet(struct dwc2_hsotg
*hsotg
, u8
*dest
, u16 bytes
);
1271 void dwc2_flush_tx_fifo(struct dwc2_hsotg
*hsotg
, const int num
);
1272 void dwc2_flush_rx_fifo(struct dwc2_hsotg
*hsotg
);
1274 void dwc2_enable_global_interrupts(struct dwc2_hsotg
*hcd
);
1275 void dwc2_disable_global_interrupts(struct dwc2_hsotg
*hcd
);
1277 void dwc2_hib_restore_common(struct dwc2_hsotg
*hsotg
, int rem_wakeup
,
1279 int dwc2_backup_global_registers(struct dwc2_hsotg
*hsotg
);
1280 int dwc2_restore_global_registers(struct dwc2_hsotg
*hsotg
);
1282 void dwc2_enable_acg(struct dwc2_hsotg
*hsotg
);
1284 /* This function should be called on every hardware interrupt. */
1285 irqreturn_t
dwc2_handle_common_intr(int irq
, void *dev
);
1287 /* The device ID match table */
1288 extern const struct of_device_id dwc2_of_match_table
[];
1290 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg
*hsotg
);
1291 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg
*hsotg
);
1293 /* Common polling functions */
1294 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg
*hs_otg
, u32 reg
, u32 bit
,
1296 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg
*hs_otg
, u32 reg
, u32 bit
,
1299 int dwc2_get_hwparams(struct dwc2_hsotg
*hsotg
);
1300 int dwc2_init_params(struct dwc2_hsotg
*hsotg
);
1303 * The following functions check the controller's OTG operation mode
1304 * capability (GHWCFG2.OTG_MODE).
1306 * These functions can be used before the internal hsotg->hw_params
1307 * are read in and cached so they always read directly from the
1310 unsigned int dwc2_op_mode(struct dwc2_hsotg
*hsotg
);
1311 bool dwc2_hw_is_otg(struct dwc2_hsotg
*hsotg
);
1312 bool dwc2_hw_is_host(struct dwc2_hsotg
*hsotg
);
1313 bool dwc2_hw_is_device(struct dwc2_hsotg
*hsotg
);
1316 * Returns the mode of operation, host or device
1318 static inline int dwc2_is_host_mode(struct dwc2_hsotg
*hsotg
)
1320 return (dwc2_readl(hsotg
, GINTSTS
) & GINTSTS_CURMODE_HOST
) != 0;
1323 static inline int dwc2_is_device_mode(struct dwc2_hsotg
*hsotg
)
1325 return (dwc2_readl(hsotg
, GINTSTS
) & GINTSTS_CURMODE_HOST
) == 0;
1329 * Dump core registers and SPRAM
1331 void dwc2_dump_dev_registers(struct dwc2_hsotg
*hsotg
);
1332 void dwc2_dump_host_registers(struct dwc2_hsotg
*hsotg
);
1333 void dwc2_dump_global_registers(struct dwc2_hsotg
*hsotg
);
1335 /* Gadget defines */
1336 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1337 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1338 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
);
1339 int dwc2_hsotg_suspend(struct dwc2_hsotg
*dwc2
);
1340 int dwc2_hsotg_resume(struct dwc2_hsotg
*dwc2
);
1341 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
);
1342 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*dwc2
,
1344 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
);
1345 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*dwc2
);
1346 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
);
1347 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1348 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
);
1349 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
, int remote_wakeup
);
1350 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg
*hsotg
);
1351 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg
*hsotg
,
1352 int rem_wakeup
, int reset
);
1353 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
);
1354 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
);
1355 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
);
1356 void dwc2_gadget_init_lpm(struct dwc2_hsotg
*hsotg
);
1358 static inline int dwc2_hsotg_remove(struct dwc2_hsotg
*dwc2
)
1360 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg
*dwc2
)
1362 static inline int dwc2_hsotg_resume(struct dwc2_hsotg
*dwc2
)
1364 static inline int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
)
1366 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*dwc2
,
1368 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
) {}
1369 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg
*dwc2
) {}
1370 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
,
1373 #define dwc2_is_device_connected(hsotg) (0)
1374 static inline int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
1376 static inline int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
,
1379 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg
*hsotg
)
1381 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg
*hsotg
,
1382 int rem_wakeup
, int reset
)
1384 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
1386 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
1388 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
1390 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg
*hsotg
) {}
1393 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1394 int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
);
1395 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg
*hsotg
, int us
);
1396 void dwc2_hcd_connect(struct dwc2_hsotg
*hsotg
);
1397 void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
, bool force
);
1398 void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
);
1399 int dwc2_core_init(struct dwc2_hsotg
*hsotg
, bool initial_setup
);
1400 int dwc2_backup_host_registers(struct dwc2_hsotg
*hsotg
);
1401 int dwc2_restore_host_registers(struct dwc2_hsotg
*hsotg
);
1402 int dwc2_host_enter_hibernation(struct dwc2_hsotg
*hsotg
);
1403 int dwc2_host_exit_hibernation(struct dwc2_hsotg
*hsotg
,
1404 int rem_wakeup
, int reset
);
1406 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
)
1408 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg
*hsotg
,
1411 static inline void dwc2_hcd_connect(struct dwc2_hsotg
*hsotg
) {}
1412 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
, bool force
) {}
1413 static inline void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
) {}
1414 static inline void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
) {}
1415 static inline int dwc2_core_init(struct dwc2_hsotg
*hsotg
, bool initial_setup
)
1417 static inline int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
)
1419 static inline int dwc2_backup_host_registers(struct dwc2_hsotg
*hsotg
)
1421 static inline int dwc2_restore_host_registers(struct dwc2_hsotg
*hsotg
)
1423 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg
*hsotg
)
1425 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg
*hsotg
,
1426 int rem_wakeup
, int reset
)
1431 #endif /* __DWC2_CORE_H__ */