1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * This file contains the core HCD code, and implements the Linux hc_driver
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
59 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
);
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
71 * @hsotg: Programming view of the DWC_otg controller
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg
*hsotg
)
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(hsotg
, 0xffffffff, GOTGINT
);
80 /* Clear any pending interrupts */
81 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
83 /* Enable the interrupts in the GINTMSK */
84 intmsk
= GINTSTS_MODEMIS
| GINTSTS_OTGINT
;
86 if (!hsotg
->params
.host_dma
)
87 intmsk
|= GINTSTS_RXFLVL
;
88 if (!hsotg
->params
.external_id_pin_ctl
)
89 intmsk
|= GINTSTS_CONIDSTSCHNG
;
91 intmsk
|= GINTSTS_WKUPINT
| GINTSTS_USBSUSP
|
94 if (dwc2_is_device_mode(hsotg
) && hsotg
->params
.lpm
)
95 intmsk
|= GINTSTS_LPMTRANRCVD
;
97 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
101 * Initializes the FSLSPClkSel field of the HCFG register depending on the
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg
*hsotg
)
108 if ((hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_ULPI
&&
109 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
&&
110 hsotg
->params
.ulpi_fs_ls
) ||
111 hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
) {
113 val
= HCFG_FSLSPCLKSEL_48_MHZ
;
115 /* High speed PHY running at full speed or high speed */
116 val
= HCFG_FSLSPCLKSEL_30_60_MHZ
;
119 dev_dbg(hsotg
->dev
, "Initializing HCFG.FSLSPClkSel to %08x\n", val
);
120 hcfg
= dwc2_readl(hsotg
, HCFG
);
121 hcfg
&= ~HCFG_FSLSPCLKSEL_MASK
;
122 hcfg
|= val
<< HCFG_FSLSPCLKSEL_SHIFT
;
123 dwc2_writel(hsotg
, hcfg
, HCFG
);
126 static int dwc2_fs_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
128 u32 usbcfg
, ggpio
, i2cctl
;
132 * core_init() is now called on every switch so only call the
133 * following for the first time through
136 dev_dbg(hsotg
->dev
, "FS PHY selected\n");
138 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
139 if (!(usbcfg
& GUSBCFG_PHYSEL
)) {
140 usbcfg
|= GUSBCFG_PHYSEL
;
141 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
143 /* Reset after a PHY select */
144 retval
= dwc2_core_reset(hsotg
, false);
148 "%s: Reset failed, aborting", __func__
);
153 if (hsotg
->params
.activate_stm_fs_transceiver
) {
154 ggpio
= dwc2_readl(hsotg
, GGPIO
);
155 if (!(ggpio
& GGPIO_STM32_OTG_GCCFG_PWRDWN
)) {
156 dev_dbg(hsotg
->dev
, "Activating transceiver\n");
158 * STM32F4x9 uses the GGPIO register as general
159 * core configuration register.
161 ggpio
|= GGPIO_STM32_OTG_GCCFG_PWRDWN
;
162 dwc2_writel(hsotg
, ggpio
, GGPIO
);
168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 * do this on HNP Dev/Host mode switches (done in dev_init and
172 if (dwc2_is_host_mode(hsotg
))
173 dwc2_init_fs_ls_pclk_sel(hsotg
);
175 if (hsotg
->params
.i2c_enable
) {
176 dev_dbg(hsotg
->dev
, "FS PHY enabling I2C\n");
178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
180 usbcfg
|= GUSBCFG_OTG_UTMI_FS_SEL
;
181 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
183 /* Program GI2CCTL.I2CEn */
184 i2cctl
= dwc2_readl(hsotg
, GI2CCTL
);
185 i2cctl
&= ~GI2CCTL_I2CDEVADDR_MASK
;
186 i2cctl
|= 1 << GI2CCTL_I2CDEVADDR_SHIFT
;
187 i2cctl
&= ~GI2CCTL_I2CEN
;
188 dwc2_writel(hsotg
, i2cctl
, GI2CCTL
);
189 i2cctl
|= GI2CCTL_I2CEN
;
190 dwc2_writel(hsotg
, i2cctl
, GI2CCTL
);
196 static int dwc2_hs_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
198 u32 usbcfg
, usbcfg_old
;
204 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
208 * HS PHY parameters. These parameters are preserved during soft reset
209 * so only program the first time. Do a soft reset immediately after
212 switch (hsotg
->params
.phy_type
) {
213 case DWC2_PHY_TYPE_PARAM_ULPI
:
215 dev_dbg(hsotg
->dev
, "HS ULPI PHY selected\n");
216 usbcfg
|= GUSBCFG_ULPI_UTMI_SEL
;
217 usbcfg
&= ~(GUSBCFG_PHYIF16
| GUSBCFG_DDRSEL
);
218 if (hsotg
->params
.phy_ulpi_ddr
)
219 usbcfg
|= GUSBCFG_DDRSEL
;
221 /* Set external VBUS indicator as needed. */
222 if (hsotg
->params
.oc_disable
)
223 usbcfg
|= (GUSBCFG_ULPI_INT_VBUS_IND
|
224 GUSBCFG_INDICATORPASSTHROUGH
);
226 case DWC2_PHY_TYPE_PARAM_UTMI
:
227 /* UTMI+ interface */
228 dev_dbg(hsotg
->dev
, "HS UTMI+ PHY selected\n");
229 usbcfg
&= ~(GUSBCFG_ULPI_UTMI_SEL
| GUSBCFG_PHYIF16
);
230 if (hsotg
->params
.phy_utmi_width
== 16)
231 usbcfg
|= GUSBCFG_PHYIF16
;
234 dev_err(hsotg
->dev
, "FS PHY selected at HS!\n");
238 if (usbcfg
!= usbcfg_old
) {
239 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
241 /* Reset after setting the PHY parameters */
242 retval
= dwc2_core_reset(hsotg
, false);
245 "%s: Reset failed, aborting", __func__
);
253 static int dwc2_phy_init(struct dwc2_hsotg
*hsotg
, bool select_phy
)
258 if ((hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
259 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
) &&
260 hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
) {
261 /* If FS/LS mode with FS/LS PHY */
262 retval
= dwc2_fs_phy_init(hsotg
, select_phy
);
267 retval
= dwc2_hs_phy_init(hsotg
, select_phy
);
272 if (hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_ULPI
&&
273 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
&&
274 hsotg
->params
.ulpi_fs_ls
) {
275 dev_dbg(hsotg
->dev
, "Setting ULPI FSLS\n");
276 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
277 usbcfg
|= GUSBCFG_ULPI_FS_LS
;
278 usbcfg
|= GUSBCFG_ULPI_CLK_SUSP_M
;
279 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
281 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
282 usbcfg
&= ~GUSBCFG_ULPI_FS_LS
;
283 usbcfg
&= ~GUSBCFG_ULPI_CLK_SUSP_M
;
284 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg
*hsotg
)
292 u32 ahbcfg
= dwc2_readl(hsotg
, GAHBCFG
);
294 switch (hsotg
->hw_params
.arch
) {
295 case GHWCFG2_EXT_DMA_ARCH
:
296 dev_err(hsotg
->dev
, "External DMA Mode not supported\n");
299 case GHWCFG2_INT_DMA_ARCH
:
300 dev_dbg(hsotg
->dev
, "Internal DMA Mode\n");
301 if (hsotg
->params
.ahbcfg
!= -1) {
302 ahbcfg
&= GAHBCFG_CTRL_MASK
;
303 ahbcfg
|= hsotg
->params
.ahbcfg
&
308 case GHWCFG2_SLAVE_ONLY_ARCH
:
310 dev_dbg(hsotg
->dev
, "Slave Only Mode\n");
314 if (hsotg
->params
.host_dma
)
315 ahbcfg
|= GAHBCFG_DMA_EN
;
317 hsotg
->params
.dma_desc_enable
= false;
319 dwc2_writel(hsotg
, ahbcfg
, GAHBCFG
);
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg
*hsotg
)
328 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
329 usbcfg
&= ~(GUSBCFG_HNPCAP
| GUSBCFG_SRPCAP
);
331 switch (hsotg
->hw_params
.op_mode
) {
332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE
:
333 if (hsotg
->params
.otg_cap
==
334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE
)
335 usbcfg
|= GUSBCFG_HNPCAP
;
336 if (hsotg
->params
.otg_cap
!=
337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
338 usbcfg
|= GUSBCFG_SRPCAP
;
341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE
:
342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
:
343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST
:
344 if (hsotg
->params
.otg_cap
!=
345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE
)
346 usbcfg
|= GUSBCFG_SRPCAP
;
349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE
:
350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
:
351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST
:
356 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg
*hsotg
)
363 hsotg
->vbus_supply
= devm_regulator_get_optional(hsotg
->dev
, "vbus");
364 if (IS_ERR(hsotg
->vbus_supply
)) {
365 ret
= PTR_ERR(hsotg
->vbus_supply
);
366 hsotg
->vbus_supply
= NULL
;
367 return ret
== -ENODEV
? 0 : ret
;
370 return regulator_enable(hsotg
->vbus_supply
);
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg
*hsotg
)
375 if (hsotg
->vbus_supply
)
376 return regulator_disable(hsotg
->vbus_supply
);
382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
384 * @hsotg: Programming view of DWC_otg controller
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg
*hsotg
)
390 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
392 /* Disable all interrupts */
393 dwc2_writel(hsotg
, 0, GINTMSK
);
394 dwc2_writel(hsotg
, 0, HAINTMSK
);
396 /* Enable the common interrupts */
397 dwc2_enable_common_interrupts(hsotg
);
399 /* Enable host mode interrupts without disturbing common interrupts */
400 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
401 intmsk
|= GINTSTS_DISCONNINT
| GINTSTS_PRTINT
| GINTSTS_HCHINT
;
402 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
408 * @hsotg: Programming view of DWC_otg controller
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg
*hsotg
)
412 u32 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
414 /* Disable host mode interrupts without disturbing common interrupts */
415 intmsk
&= ~(GINTSTS_SOF
| GINTSTS_PRTINT
| GINTSTS_HCHINT
|
416 GINTSTS_PTXFEMP
| GINTSTS_NPTXFEMP
| GINTSTS_DISCONNINT
);
417 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422 * For system that have a total fifo depth that is smaller than the default
425 * @hsotg: Programming view of DWC_otg controller
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg
*hsotg
)
429 struct dwc2_core_params
*params
= &hsotg
->params
;
430 struct dwc2_hw_params
*hw
= &hsotg
->hw_params
;
431 u32 rxfsiz
, nptxfsiz
, ptxfsiz
, total_fifo_size
;
433 total_fifo_size
= hw
->total_fifo_size
;
434 rxfsiz
= params
->host_rx_fifo_size
;
435 nptxfsiz
= params
->host_nperio_tx_fifo_size
;
436 ptxfsiz
= params
->host_perio_tx_fifo_size
;
439 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 * allocation with support for high bandwidth endpoints. Synopsys
441 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 * non-periodic as 512.
444 if (total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)) {
446 * For Buffer DMA mode/Scatter Gather DMA mode
447 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 * with n = number of host channel.
449 * 2 * ((1024/4) + 2) = 516
451 rxfsiz
= 516 + hw
->host_channels
;
454 * min non-periodic tx fifo depth
455 * 2 * (largest non-periodic USB packet used / 4)
461 * min periodic tx fifo depth
462 * (largest packet size*MC)/4
467 params
->host_rx_fifo_size
= rxfsiz
;
468 params
->host_nperio_tx_fifo_size
= nptxfsiz
;
469 params
->host_perio_tx_fifo_size
= ptxfsiz
;
473 * If the summation of RX, NPTX and PTX fifo sizes is still
474 * bigger than the total_fifo_size, then we have a problem.
476 * We won't be able to allocate as many endpoints. Right now,
477 * we're just printing an error message, but ideally this FIFO
478 * allocation algorithm would be improved in the future.
480 * FIXME improve this FIFO allocation algorithm.
482 if (unlikely(total_fifo_size
< (rxfsiz
+ nptxfsiz
+ ptxfsiz
)))
483 dev_err(hsotg
->dev
, "invalid fifo sizes\n");
486 static void dwc2_config_fifos(struct dwc2_hsotg
*hsotg
)
488 struct dwc2_core_params
*params
= &hsotg
->params
;
489 u32 nptxfsiz
, hptxfsiz
, dfifocfg
, grxfsiz
;
491 if (!params
->enable_dynamic_fifo
)
494 dwc2_calculate_dynamic_fifo(hsotg
);
497 grxfsiz
= dwc2_readl(hsotg
, GRXFSIZ
);
498 dev_dbg(hsotg
->dev
, "initial grxfsiz=%08x\n", grxfsiz
);
499 grxfsiz
&= ~GRXFSIZ_DEPTH_MASK
;
500 grxfsiz
|= params
->host_rx_fifo_size
<<
501 GRXFSIZ_DEPTH_SHIFT
& GRXFSIZ_DEPTH_MASK
;
502 dwc2_writel(hsotg
, grxfsiz
, GRXFSIZ
);
503 dev_dbg(hsotg
->dev
, "new grxfsiz=%08x\n",
504 dwc2_readl(hsotg
, GRXFSIZ
));
506 /* Non-periodic Tx FIFO */
507 dev_dbg(hsotg
->dev
, "initial gnptxfsiz=%08x\n",
508 dwc2_readl(hsotg
, GNPTXFSIZ
));
509 nptxfsiz
= params
->host_nperio_tx_fifo_size
<<
510 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
511 nptxfsiz
|= params
->host_rx_fifo_size
<<
512 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
513 dwc2_writel(hsotg
, nptxfsiz
, GNPTXFSIZ
);
514 dev_dbg(hsotg
->dev
, "new gnptxfsiz=%08x\n",
515 dwc2_readl(hsotg
, GNPTXFSIZ
));
517 /* Periodic Tx FIFO */
518 dev_dbg(hsotg
->dev
, "initial hptxfsiz=%08x\n",
519 dwc2_readl(hsotg
, HPTXFSIZ
));
520 hptxfsiz
= params
->host_perio_tx_fifo_size
<<
521 FIFOSIZE_DEPTH_SHIFT
& FIFOSIZE_DEPTH_MASK
;
522 hptxfsiz
|= (params
->host_rx_fifo_size
+
523 params
->host_nperio_tx_fifo_size
) <<
524 FIFOSIZE_STARTADDR_SHIFT
& FIFOSIZE_STARTADDR_MASK
;
525 dwc2_writel(hsotg
, hptxfsiz
, HPTXFSIZ
);
526 dev_dbg(hsotg
->dev
, "new hptxfsiz=%08x\n",
527 dwc2_readl(hsotg
, HPTXFSIZ
));
529 if (hsotg
->params
.en_multiple_tx_fifo
&&
530 hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_2_91a
) {
532 * This feature was implemented in 2.91a version
533 * Global DFIFOCFG calculation for Host mode -
534 * include RxFIFO, NPTXFIFO and HPTXFIFO
536 dfifocfg
= dwc2_readl(hsotg
, GDFIFOCFG
);
537 dfifocfg
&= ~GDFIFOCFG_EPINFOBASE_MASK
;
538 dfifocfg
|= (params
->host_rx_fifo_size
+
539 params
->host_nperio_tx_fifo_size
+
540 params
->host_perio_tx_fifo_size
) <<
541 GDFIFOCFG_EPINFOBASE_SHIFT
&
542 GDFIFOCFG_EPINFOBASE_MASK
;
543 dwc2_writel(hsotg
, dfifocfg
, GDFIFOCFG
);
548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549 * the HFIR register according to PHY type and speed
551 * @hsotg: Programming view of DWC_otg controller
553 * NOTE: The caller can modify the value of the HFIR register only after the
554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
557 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
)
561 int clock
= 60; /* default value */
563 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
564 hprt0
= dwc2_readl(hsotg
, HPRT0
);
566 if (!(usbcfg
& GUSBCFG_PHYSEL
) && (usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) &&
567 !(usbcfg
& GUSBCFG_PHYIF16
))
569 if ((usbcfg
& GUSBCFG_PHYSEL
) && hsotg
->hw_params
.fs_phy_type
==
570 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI
)
572 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
573 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
575 if (!(usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
576 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && !(usbcfg
& GUSBCFG_PHYIF16
))
578 if ((usbcfg
& GUSBCFG_PHY_LP_CLK_SEL
) && !(usbcfg
& GUSBCFG_PHYSEL
) &&
579 !(usbcfg
& GUSBCFG_ULPI_UTMI_SEL
) && (usbcfg
& GUSBCFG_PHYIF16
))
581 if ((usbcfg
& GUSBCFG_PHYSEL
) && !(usbcfg
& GUSBCFG_PHYIF16
) &&
582 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_SHARED_UTMI
)
584 if ((usbcfg
& GUSBCFG_PHYSEL
) &&
585 hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
)
588 if ((hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
== HPRT0_SPD_HIGH_SPEED
)
589 /* High speed case */
590 return 125 * clock
- 1;
593 return 1000 * clock
- 1;
597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
600 * @hsotg: Programming view of DWC_otg controller
601 * @dest: Destination buffer for the packet
602 * @bytes: Number of bytes to copy to the destination
604 void dwc2_read_packet(struct dwc2_hsotg
*hsotg
, u8
*dest
, u16 bytes
)
606 u32
*data_buf
= (u32
*)dest
;
607 int word_count
= (bytes
+ 3) / 4;
611 * Todo: Account for the case where dest is not dword aligned. This
612 * requires reading data from the FIFO into a u32 temp buffer, then
613 * moving it into the data buffer.
616 dev_vdbg(hsotg
->dev
, "%s(%p,%p,%d)\n", __func__
, hsotg
, dest
, bytes
);
618 for (i
= 0; i
< word_count
; i
++, data_buf
++)
619 *data_buf
= dwc2_readl(hsotg
, HCFIFO(0));
623 * dwc2_dump_channel_info() - Prints the state of a host channel
625 * @hsotg: Programming view of DWC_otg controller
626 * @chan: Pointer to the channel to dump
628 * Must be called with interrupt disabled and spinlock held
630 * NOTE: This function will be removed once the peripheral controller code
631 * is integrated and the driver is stable
633 static void dwc2_dump_channel_info(struct dwc2_hsotg
*hsotg
,
634 struct dwc2_host_chan
*chan
)
637 int num_channels
= hsotg
->params
.host_channels
;
648 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
649 hcsplt
= dwc2_readl(hsotg
, HCSPLT(chan
->hc_num
));
650 hctsiz
= dwc2_readl(hsotg
, HCTSIZ(chan
->hc_num
));
651 hc_dma
= dwc2_readl(hsotg
, HCDMA(chan
->hc_num
));
653 dev_dbg(hsotg
->dev
, " Assigned to channel %p:\n", chan
);
654 dev_dbg(hsotg
->dev
, " hcchar 0x%08x, hcsplt 0x%08x\n",
656 dev_dbg(hsotg
->dev
, " hctsiz 0x%08x, hc_dma 0x%08x\n",
658 dev_dbg(hsotg
->dev
, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
659 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
660 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
661 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
662 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n", chan
->data_pid_start
);
663 dev_dbg(hsotg
->dev
, " xfer_started: %d\n", chan
->xfer_started
);
664 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
665 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
666 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
667 (unsigned long)chan
->xfer_dma
);
668 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
669 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
670 dev_dbg(hsotg
->dev
, " NP inactive sched:\n");
671 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_inactive
,
673 dev_dbg(hsotg
->dev
, " %p\n", qh
);
674 dev_dbg(hsotg
->dev
, " NP waiting sched:\n");
675 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_waiting
,
677 dev_dbg(hsotg
->dev
, " %p\n", qh
);
678 dev_dbg(hsotg
->dev
, " NP active sched:\n");
679 list_for_each_entry(qh
, &hsotg
->non_periodic_sched_active
,
681 dev_dbg(hsotg
->dev
, " %p\n", qh
);
682 dev_dbg(hsotg
->dev
, " Channels:\n");
683 for (i
= 0; i
< num_channels
; i
++) {
684 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
686 dev_dbg(hsotg
->dev
, " %2d: %p\n", i
, chan
);
688 #endif /* VERBOSE_DEBUG */
691 static int _dwc2_hcd_start(struct usb_hcd
*hcd
);
693 static void dwc2_host_start(struct dwc2_hsotg
*hsotg
)
695 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
697 hcd
->self
.is_b_host
= dwc2_hcd_is_b_host(hsotg
);
698 _dwc2_hcd_start(hcd
);
701 static void dwc2_host_disconnect(struct dwc2_hsotg
*hsotg
)
703 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
705 hcd
->self
.is_b_host
= 0;
708 static void dwc2_host_hub_info(struct dwc2_hsotg
*hsotg
, void *context
,
709 int *hub_addr
, int *hub_port
)
711 struct urb
*urb
= context
;
714 *hub_addr
= urb
->dev
->tt
->hub
->devnum
;
717 *hub_port
= urb
->dev
->ttport
;
721 * =========================================================================
722 * Low Level Host Channel Access Functions
723 * =========================================================================
726 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg
*hsotg
,
727 struct dwc2_host_chan
*chan
)
729 u32 hcintmsk
= HCINTMSK_CHHLTD
;
731 switch (chan
->ep_type
) {
732 case USB_ENDPOINT_XFER_CONTROL
:
733 case USB_ENDPOINT_XFER_BULK
:
734 dev_vdbg(hsotg
->dev
, "control/bulk\n");
735 hcintmsk
|= HCINTMSK_XFERCOMPL
;
736 hcintmsk
|= HCINTMSK_STALL
;
737 hcintmsk
|= HCINTMSK_XACTERR
;
738 hcintmsk
|= HCINTMSK_DATATGLERR
;
739 if (chan
->ep_is_in
) {
740 hcintmsk
|= HCINTMSK_BBLERR
;
742 hcintmsk
|= HCINTMSK_NAK
;
743 hcintmsk
|= HCINTMSK_NYET
;
745 hcintmsk
|= HCINTMSK_ACK
;
748 if (chan
->do_split
) {
749 hcintmsk
|= HCINTMSK_NAK
;
750 if (chan
->complete_split
)
751 hcintmsk
|= HCINTMSK_NYET
;
753 hcintmsk
|= HCINTMSK_ACK
;
756 if (chan
->error_state
)
757 hcintmsk
|= HCINTMSK_ACK
;
760 case USB_ENDPOINT_XFER_INT
:
762 dev_vdbg(hsotg
->dev
, "intr\n");
763 hcintmsk
|= HCINTMSK_XFERCOMPL
;
764 hcintmsk
|= HCINTMSK_NAK
;
765 hcintmsk
|= HCINTMSK_STALL
;
766 hcintmsk
|= HCINTMSK_XACTERR
;
767 hcintmsk
|= HCINTMSK_DATATGLERR
;
768 hcintmsk
|= HCINTMSK_FRMOVRUN
;
771 hcintmsk
|= HCINTMSK_BBLERR
;
772 if (chan
->error_state
)
773 hcintmsk
|= HCINTMSK_ACK
;
774 if (chan
->do_split
) {
775 if (chan
->complete_split
)
776 hcintmsk
|= HCINTMSK_NYET
;
778 hcintmsk
|= HCINTMSK_ACK
;
782 case USB_ENDPOINT_XFER_ISOC
:
784 dev_vdbg(hsotg
->dev
, "isoc\n");
785 hcintmsk
|= HCINTMSK_XFERCOMPL
;
786 hcintmsk
|= HCINTMSK_FRMOVRUN
;
787 hcintmsk
|= HCINTMSK_ACK
;
789 if (chan
->ep_is_in
) {
790 hcintmsk
|= HCINTMSK_XACTERR
;
791 hcintmsk
|= HCINTMSK_BBLERR
;
795 dev_err(hsotg
->dev
, "## Unknown EP type ##\n");
799 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
801 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
804 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg
*hsotg
,
805 struct dwc2_host_chan
*chan
)
807 u32 hcintmsk
= HCINTMSK_CHHLTD
;
810 * For Descriptor DMA mode core halts the channel on AHB error.
811 * Interrupt is not required.
813 if (!hsotg
->params
.dma_desc_enable
) {
815 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
816 hcintmsk
|= HCINTMSK_AHBERR
;
819 dev_vdbg(hsotg
->dev
, "desc DMA enabled\n");
820 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
821 hcintmsk
|= HCINTMSK_XFERCOMPL
;
824 if (chan
->error_state
&& !chan
->do_split
&&
825 chan
->ep_type
!= USB_ENDPOINT_XFER_ISOC
) {
827 dev_vdbg(hsotg
->dev
, "setting ACK\n");
828 hcintmsk
|= HCINTMSK_ACK
;
829 if (chan
->ep_is_in
) {
830 hcintmsk
|= HCINTMSK_DATATGLERR
;
831 if (chan
->ep_type
!= USB_ENDPOINT_XFER_INT
)
832 hcintmsk
|= HCINTMSK_NAK
;
836 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
838 dev_vdbg(hsotg
->dev
, "set HCINTMSK to %08x\n", hcintmsk
);
841 static void dwc2_hc_enable_ints(struct dwc2_hsotg
*hsotg
,
842 struct dwc2_host_chan
*chan
)
846 if (hsotg
->params
.host_dma
) {
848 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
849 dwc2_hc_enable_dma_ints(hsotg
, chan
);
852 dev_vdbg(hsotg
->dev
, "DMA disabled\n");
853 dwc2_hc_enable_slave_ints(hsotg
, chan
);
856 /* Enable the top level host channel interrupt */
857 intmsk
= dwc2_readl(hsotg
, HAINTMSK
);
858 intmsk
|= 1 << chan
->hc_num
;
859 dwc2_writel(hsotg
, intmsk
, HAINTMSK
);
861 dev_vdbg(hsotg
->dev
, "set HAINTMSK to %08x\n", intmsk
);
863 /* Make sure host channel interrupts are enabled */
864 intmsk
= dwc2_readl(hsotg
, GINTMSK
);
865 intmsk
|= GINTSTS_HCHINT
;
866 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
868 dev_vdbg(hsotg
->dev
, "set GINTMSK to %08x\n", intmsk
);
872 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
873 * a specific endpoint
875 * @hsotg: Programming view of DWC_otg controller
876 * @chan: Information needed to initialize the host channel
878 * The HCCHARn register is set up with the characteristics specified in chan.
879 * Host channel interrupts that may need to be serviced while this transfer is
880 * in progress are enabled.
882 static void dwc2_hc_init(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
884 u8 hc_num
= chan
->hc_num
;
890 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
892 /* Clear old interrupt conditions for this host channel */
893 hcintmsk
= 0xffffffff;
894 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
895 dwc2_writel(hsotg
, hcintmsk
, HCINT(hc_num
));
897 /* Enable channel interrupts required for this transfer */
898 dwc2_hc_enable_ints(hsotg
, chan
);
901 * Program the HCCHARn register with the endpoint characteristics for
902 * the current transfer
904 hcchar
= chan
->dev_addr
<< HCCHAR_DEVADDR_SHIFT
& HCCHAR_DEVADDR_MASK
;
905 hcchar
|= chan
->ep_num
<< HCCHAR_EPNUM_SHIFT
& HCCHAR_EPNUM_MASK
;
907 hcchar
|= HCCHAR_EPDIR
;
908 if (chan
->speed
== USB_SPEED_LOW
)
909 hcchar
|= HCCHAR_LSPDDEV
;
910 hcchar
|= chan
->ep_type
<< HCCHAR_EPTYPE_SHIFT
& HCCHAR_EPTYPE_MASK
;
911 hcchar
|= chan
->max_packet
<< HCCHAR_MPS_SHIFT
& HCCHAR_MPS_MASK
;
912 dwc2_writel(hsotg
, hcchar
, HCCHAR(hc_num
));
914 dev_vdbg(hsotg
->dev
, "set HCCHAR(%d) to %08x\n",
917 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n",
919 dev_vdbg(hsotg
->dev
, " Dev Addr: %d\n",
921 dev_vdbg(hsotg
->dev
, " Ep Num: %d\n",
923 dev_vdbg(hsotg
->dev
, " Is In: %d\n",
925 dev_vdbg(hsotg
->dev
, " Is Low Speed: %d\n",
926 chan
->speed
== USB_SPEED_LOW
);
927 dev_vdbg(hsotg
->dev
, " Ep Type: %d\n",
929 dev_vdbg(hsotg
->dev
, " Max Pkt: %d\n",
933 /* Program the HCSPLT register for SPLITs */
934 if (chan
->do_split
) {
937 "Programming HC %d with split --> %s\n",
939 chan
->complete_split
? "CSPLIT" : "SSPLIT");
940 if (chan
->complete_split
)
941 hcsplt
|= HCSPLT_COMPSPLT
;
942 hcsplt
|= chan
->xact_pos
<< HCSPLT_XACTPOS_SHIFT
&
944 hcsplt
|= chan
->hub_addr
<< HCSPLT_HUBADDR_SHIFT
&
946 hcsplt
|= chan
->hub_port
<< HCSPLT_PRTADDR_SHIFT
&
949 dev_vdbg(hsotg
->dev
, " comp split %d\n",
950 chan
->complete_split
);
951 dev_vdbg(hsotg
->dev
, " xact pos %d\n",
953 dev_vdbg(hsotg
->dev
, " hub addr %d\n",
955 dev_vdbg(hsotg
->dev
, " hub port %d\n",
957 dev_vdbg(hsotg
->dev
, " is_in %d\n",
959 dev_vdbg(hsotg
->dev
, " Max Pkt %d\n",
961 dev_vdbg(hsotg
->dev
, " xferlen %d\n",
966 dwc2_writel(hsotg
, hcsplt
, HCSPLT(hc_num
));
970 * dwc2_hc_halt() - Attempts to halt a host channel
972 * @hsotg: Controller register interface
973 * @chan: Host channel to halt
974 * @halt_status: Reason for halting the channel
976 * This function should only be called in Slave mode or to abort a transfer in
977 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
978 * controller halts the channel when the transfer is complete or a condition
979 * occurs that requires application intervention.
981 * In slave mode, checks for a free request queue entry, then sets the Channel
982 * Enable and Channel Disable bits of the Host Channel Characteristics
983 * register of the specified channel to intiate the halt. If there is no free
984 * request queue entry, sets only the Channel Disable bit of the HCCHARn
985 * register to flush requests for this channel. In the latter case, sets a
986 * flag to indicate that the host channel needs to be halted when a request
987 * queue slot is open.
989 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
990 * HCCHARn register. The controller ensures there is space in the request
991 * queue before submitting the halt request.
993 * Some time may elapse before the core flushes any posted requests for this
994 * host channel and halts. The Channel Halted interrupt handler completes the
995 * deactivation of the host channel.
997 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
998 enum dwc2_halt_status halt_status
)
1000 u32 nptxsts
, hptxsts
, hcchar
;
1003 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1006 * In buffer DMA or external DMA mode channel can't be halted
1007 * for non-split periodic channels. At the end of the next
1008 * uframe/frame (in the worst case), the core generates a channel
1009 * halted and disables the channel automatically.
1011 if ((hsotg
->params
.g_dma
&& !hsotg
->params
.g_dma_desc
) ||
1012 hsotg
->hw_params
.arch
== GHWCFG2_EXT_DMA_ARCH
) {
1013 if (!chan
->do_split
&&
1014 (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
||
1015 chan
->ep_type
== USB_ENDPOINT_XFER_INT
)) {
1016 dev_err(hsotg
->dev
, "%s() Channel can't be halted\n",
1022 if (halt_status
== DWC2_HC_XFER_NO_HALT_STATUS
)
1023 dev_err(hsotg
->dev
, "!!! halt_status = %d !!!\n", halt_status
);
1025 if (halt_status
== DWC2_HC_XFER_URB_DEQUEUE
||
1026 halt_status
== DWC2_HC_XFER_AHB_ERR
) {
1028 * Disable all channel interrupts except Ch Halted. The QTD
1029 * and QH state associated with this transfer has been cleared
1030 * (in the case of URB_DEQUEUE), so the channel needs to be
1031 * shut down carefully to prevent crashes.
1033 u32 hcintmsk
= HCINTMSK_CHHLTD
;
1035 dev_vdbg(hsotg
->dev
, "dequeue/error\n");
1036 dwc2_writel(hsotg
, hcintmsk
, HCINTMSK(chan
->hc_num
));
1039 * Make sure no other interrupts besides halt are currently
1040 * pending. Handling another interrupt could cause a crash due
1041 * to the QTD and QH state.
1043 dwc2_writel(hsotg
, ~hcintmsk
, HCINT(chan
->hc_num
));
1046 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1047 * even if the channel was already halted for some other
1050 chan
->halt_status
= halt_status
;
1052 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1053 if (!(hcchar
& HCCHAR_CHENA
)) {
1055 * The channel is either already halted or it hasn't
1056 * started yet. In DMA mode, the transfer may halt if
1057 * it finishes normally or a condition occurs that
1058 * requires driver intervention. Don't want to halt
1059 * the channel again. In either Slave or DMA mode,
1060 * it's possible that the transfer has been assigned
1061 * to a channel, but not started yet when an URB is
1062 * dequeued. Don't want to halt a channel that hasn't
1068 if (chan
->halt_pending
) {
1070 * A halt has already been issued for this channel. This might
1071 * happen when a transfer is aborted by a higher level in
1074 dev_vdbg(hsotg
->dev
,
1075 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1076 __func__
, chan
->hc_num
);
1080 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1082 /* No need to set the bit in DDMA for disabling the channel */
1083 /* TODO check it everywhere channel is disabled */
1084 if (!hsotg
->params
.dma_desc_enable
) {
1086 dev_vdbg(hsotg
->dev
, "desc DMA disabled\n");
1087 hcchar
|= HCCHAR_CHENA
;
1090 dev_dbg(hsotg
->dev
, "desc DMA enabled\n");
1092 hcchar
|= HCCHAR_CHDIS
;
1094 if (!hsotg
->params
.host_dma
) {
1096 dev_vdbg(hsotg
->dev
, "DMA not enabled\n");
1097 hcchar
|= HCCHAR_CHENA
;
1099 /* Check for space in the request queue to issue the halt */
1100 if (chan
->ep_type
== USB_ENDPOINT_XFER_CONTROL
||
1101 chan
->ep_type
== USB_ENDPOINT_XFER_BULK
) {
1102 dev_vdbg(hsotg
->dev
, "control/bulk\n");
1103 nptxsts
= dwc2_readl(hsotg
, GNPTXSTS
);
1104 if ((nptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0) {
1105 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
1106 hcchar
&= ~HCCHAR_CHENA
;
1110 dev_vdbg(hsotg
->dev
, "isoc/intr\n");
1111 hptxsts
= dwc2_readl(hsotg
, HPTXSTS
);
1112 if ((hptxsts
& TXSTS_QSPCAVAIL_MASK
) == 0 ||
1113 hsotg
->queuing_high_bandwidth
) {
1115 dev_vdbg(hsotg
->dev
, "Disabling channel\n");
1116 hcchar
&= ~HCCHAR_CHENA
;
1121 dev_vdbg(hsotg
->dev
, "DMA enabled\n");
1124 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1125 chan
->halt_status
= halt_status
;
1127 if (hcchar
& HCCHAR_CHENA
) {
1129 dev_vdbg(hsotg
->dev
, "Channel enabled\n");
1130 chan
->halt_pending
= 1;
1131 chan
->halt_on_queue
= 0;
1134 dev_vdbg(hsotg
->dev
, "Channel disabled\n");
1135 chan
->halt_on_queue
= 1;
1139 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1141 dev_vdbg(hsotg
->dev
, " hcchar: 0x%08x\n",
1143 dev_vdbg(hsotg
->dev
, " halt_pending: %d\n",
1144 chan
->halt_pending
);
1145 dev_vdbg(hsotg
->dev
, " halt_on_queue: %d\n",
1146 chan
->halt_on_queue
);
1147 dev_vdbg(hsotg
->dev
, " halt_status: %d\n",
1153 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155 * @hsotg: Programming view of DWC_otg controller
1156 * @chan: Identifies the host channel to clean up
1158 * This function is normally called after a transfer is done and the host
1159 * channel is being released
1161 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
)
1165 chan
->xfer_started
= 0;
1167 list_del_init(&chan
->split_order_list_entry
);
1170 * Clear channel interrupt enables and any unhandled channel interrupt
1173 dwc2_writel(hsotg
, 0, HCINTMSK(chan
->hc_num
));
1174 hcintmsk
= 0xffffffff;
1175 hcintmsk
&= ~HCINTMSK_RESERVED14_31
;
1176 dwc2_writel(hsotg
, hcintmsk
, HCINT(chan
->hc_num
));
1180 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1181 * which frame a periodic transfer should occur
1183 * @hsotg: Programming view of DWC_otg controller
1184 * @chan: Identifies the host channel to set up and its properties
1185 * @hcchar: Current value of the HCCHAR register for the specified host channel
1187 * This function has no effect on non-periodic transfers
1189 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg
*hsotg
,
1190 struct dwc2_host_chan
*chan
, u32
*hcchar
)
1192 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1193 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1203 * Try to figure out if we're an even or odd frame. If we set
1204 * even and the current frame number is even the the transfer
1205 * will happen immediately. Similar if both are odd. If one is
1206 * even and the other is odd then the transfer will happen when
1207 * the frame number ticks.
1209 * There's a bit of a balancing act to get this right.
1210 * Sometimes we may want to send data in the current frame (AK
1211 * right away). We might want to do this if the frame number
1212 * _just_ ticked, but we might also want to do this in order
1213 * to continue a split transaction that happened late in a
1214 * microframe (so we didn't know to queue the next transfer
1215 * until the frame number had ticked). The problem is that we
1216 * need a lot of knowledge to know if there's actually still
1217 * time to send things or if it would be better to wait until
1220 * We can look at how much time is left in the current frame
1221 * and make a guess about whether we'll have time to transfer.
1225 /* Get speed host is running at */
1226 host_speed
= (chan
->speed
!= USB_SPEED_HIGH
&&
1227 !chan
->do_split
) ? chan
->speed
: USB_SPEED_HIGH
;
1229 /* See how many bytes are in the periodic FIFO right now */
1230 fifo_space
= (dwc2_readl(hsotg
, HPTXSTS
) &
1231 TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
;
1232 bytes_in_fifo
= sizeof(u32
) *
1233 (hsotg
->params
.host_perio_tx_fifo_size
-
1237 * Roughly estimate bus time for everything in the periodic
1238 * queue + our new transfer. This is "rough" because we're
1239 * using a function that makes takes into account IN/OUT
1240 * and INT/ISO and we're just slamming in one value for all
1241 * transfers. This should be an over-estimate and that should
1242 * be OK, but we can probably tighten it.
1244 xfer_ns
= usb_calc_bus_time(host_speed
, false, false,
1245 chan
->xfer_len
+ bytes_in_fifo
);
1246 xfer_us
= NS_TO_US(xfer_ns
);
1248 /* See what frame number we'll be at by the time we finish */
1249 frame_number
= dwc2_hcd_get_future_frame_number(hsotg
, xfer_us
);
1251 /* This is when we were scheduled to be on the wire */
1252 wire_frame
= dwc2_frame_num_inc(chan
->qh
->next_active_frame
, 1);
1255 * If we'd finish _after_ the frame we're scheduled in then
1256 * it's hopeless. Just schedule right away and hope for the
1257 * best. Note that it _might_ be wise to call back into the
1258 * scheduler to pick a better frame, but this is better than
1261 if (dwc2_frame_num_gt(frame_number
, wire_frame
)) {
1262 dwc2_sch_vdbg(hsotg
,
1263 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1264 chan
->qh
, wire_frame
, frame_number
,
1265 dwc2_frame_num_dec(frame_number
,
1267 wire_frame
= frame_number
;
1270 * We picked a different frame number; communicate this
1271 * back to the scheduler so it doesn't try to schedule
1272 * another in the same frame.
1274 * Remember that next_active_frame is 1 before the wire
1277 chan
->qh
->next_active_frame
=
1278 dwc2_frame_num_dec(frame_number
, 1);
1282 *hcchar
|= HCCHAR_ODDFRM
;
1284 *hcchar
&= ~HCCHAR_ODDFRM
;
1288 static void dwc2_set_pid_isoc(struct dwc2_host_chan
*chan
)
1290 /* Set up the initial PID for the transfer */
1291 if (chan
->speed
== USB_SPEED_HIGH
) {
1292 if (chan
->ep_is_in
) {
1293 if (chan
->multi_count
== 1)
1294 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1295 else if (chan
->multi_count
== 2)
1296 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
1298 chan
->data_pid_start
= DWC2_HC_PID_DATA2
;
1300 if (chan
->multi_count
== 1)
1301 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1303 chan
->data_pid_start
= DWC2_HC_PID_MDATA
;
1306 chan
->data_pid_start
= DWC2_HC_PID_DATA0
;
1311 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1314 * @hsotg: Programming view of DWC_otg controller
1315 * @chan: Information needed to initialize the host channel
1317 * This function should only be called in Slave mode. For a channel associated
1318 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1319 * associated with a periodic EP, the periodic Tx FIFO is written.
1321 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1322 * the number of bytes written to the Tx FIFO.
1324 static void dwc2_hc_write_packet(struct dwc2_hsotg
*hsotg
,
1325 struct dwc2_host_chan
*chan
)
1328 u32 remaining_count
;
1331 u32 __iomem
*data_fifo
;
1332 u32
*data_buf
= (u32
*)chan
->xfer_buf
;
1335 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1337 data_fifo
= (u32 __iomem
*)(hsotg
->regs
+ HCFIFO(chan
->hc_num
));
1339 remaining_count
= chan
->xfer_len
- chan
->xfer_count
;
1340 if (remaining_count
> chan
->max_packet
)
1341 byte_count
= chan
->max_packet
;
1343 byte_count
= remaining_count
;
1345 dword_count
= (byte_count
+ 3) / 4;
1347 if (((unsigned long)data_buf
& 0x3) == 0) {
1348 /* xfer_buf is DWORD aligned */
1349 for (i
= 0; i
< dword_count
; i
++, data_buf
++)
1350 dwc2_writel(hsotg
, *data_buf
, HCFIFO(chan
->hc_num
));
1352 /* xfer_buf is not DWORD aligned */
1353 for (i
= 0; i
< dword_count
; i
++, data_buf
++) {
1354 u32 data
= data_buf
[0] | data_buf
[1] << 8 |
1355 data_buf
[2] << 16 | data_buf
[3] << 24;
1356 dwc2_writel(hsotg
, data
, HCFIFO(chan
->hc_num
));
1360 chan
->xfer_count
+= byte_count
;
1361 chan
->xfer_buf
+= byte_count
;
1365 * dwc2_hc_do_ping() - Starts a PING transfer
1367 * @hsotg: Programming view of DWC_otg controller
1368 * @chan: Information needed to initialize the host channel
1370 * This function should only be called in Slave mode. The Do Ping bit is set in
1371 * the HCTSIZ register, then the channel is enabled.
1373 static void dwc2_hc_do_ping(struct dwc2_hsotg
*hsotg
,
1374 struct dwc2_host_chan
*chan
)
1380 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1383 hctsiz
= TSIZ_DOPNG
;
1384 hctsiz
|= 1 << TSIZ_PKTCNT_SHIFT
;
1385 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1387 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1388 hcchar
|= HCCHAR_CHENA
;
1389 hcchar
&= ~HCCHAR_CHDIS
;
1390 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1394 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1395 * channel and starts the transfer
1397 * @hsotg: Programming view of DWC_otg controller
1398 * @chan: Information needed to initialize the host channel. The xfer_len value
1399 * may be reduced to accommodate the max widths of the XferSize and
1400 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1401 * changed to reflect the final xfer_len value.
1403 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1404 * the caller must ensure that there is sufficient space in the request queue
1407 * For an OUT transfer in Slave mode, it loads a data packet into the
1408 * appropriate FIFO. If necessary, additional data packets are loaded in the
1411 * For an IN transfer in Slave mode, a data packet is requested. The data
1412 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1413 * additional data packets are requested in the Host ISR.
1415 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1416 * register along with a packet count of 1 and the channel is enabled. This
1417 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1418 * simply set to 0 since no data transfer occurs in this case.
1420 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1421 * all the information required to perform the subsequent data transfer. In
1422 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1423 * controller performs the entire PING protocol, then starts the data
1426 static void dwc2_hc_start_transfer(struct dwc2_hsotg
*hsotg
,
1427 struct dwc2_host_chan
*chan
)
1429 u32 max_hc_xfer_size
= hsotg
->params
.max_transfer_size
;
1430 u16 max_hc_pkt_count
= hsotg
->params
.max_packet_count
;
1437 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1439 if (chan
->do_ping
) {
1440 if (!hsotg
->params
.host_dma
) {
1442 dev_vdbg(hsotg
->dev
, "ping, no DMA\n");
1443 dwc2_hc_do_ping(hsotg
, chan
);
1444 chan
->xfer_started
= 1;
1449 dev_vdbg(hsotg
->dev
, "ping, DMA\n");
1451 hctsiz
|= TSIZ_DOPNG
;
1454 if (chan
->do_split
) {
1456 dev_vdbg(hsotg
->dev
, "split\n");
1459 if (chan
->complete_split
&& !chan
->ep_is_in
)
1461 * For CSPLIT OUT Transfer, set the size to 0 so the
1462 * core doesn't expect any data written to the FIFO
1465 else if (chan
->ep_is_in
|| chan
->xfer_len
> chan
->max_packet
)
1466 chan
->xfer_len
= chan
->max_packet
;
1467 else if (!chan
->ep_is_in
&& chan
->xfer_len
> 188)
1468 chan
->xfer_len
= 188;
1470 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1473 /* For split set ec_mc for immediate retries */
1474 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1475 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1481 dev_vdbg(hsotg
->dev
, "no split\n");
1483 * Ensure that the transfer length and packet count will fit
1484 * in the widths allocated for them in the HCTSIZn register
1486 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1487 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1489 * Make sure the transfer size is no larger than one
1490 * (micro)frame's worth of data. (A check was done
1491 * when the periodic transfer was accepted to ensure
1492 * that a (micro)frame's worth of data can be
1493 * programmed into a channel.)
1495 u32 max_periodic_len
=
1496 chan
->multi_count
* chan
->max_packet
;
1498 if (chan
->xfer_len
> max_periodic_len
)
1499 chan
->xfer_len
= max_periodic_len
;
1500 } else if (chan
->xfer_len
> max_hc_xfer_size
) {
1502 * Make sure that xfer_len is a multiple of max packet
1506 max_hc_xfer_size
- chan
->max_packet
+ 1;
1509 if (chan
->xfer_len
> 0) {
1510 num_packets
= (chan
->xfer_len
+ chan
->max_packet
- 1) /
1512 if (num_packets
> max_hc_pkt_count
) {
1513 num_packets
= max_hc_pkt_count
;
1514 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1517 /* Need 1 packet for transfer length of 0 */
1523 * Always program an integral # of max packets for IN
1526 chan
->xfer_len
= num_packets
* chan
->max_packet
;
1528 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1529 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1531 * Make sure that the multi_count field matches the
1532 * actual transfer length
1534 chan
->multi_count
= num_packets
;
1536 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1537 dwc2_set_pid_isoc(chan
);
1539 hctsiz
|= chan
->xfer_len
<< TSIZ_XFERSIZE_SHIFT
&
1542 /* The ec_mc gets the multi_count for non-split */
1543 ec_mc
= chan
->multi_count
;
1546 chan
->start_pkt_count
= num_packets
;
1547 hctsiz
|= num_packets
<< TSIZ_PKTCNT_SHIFT
& TSIZ_PKTCNT_MASK
;
1548 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1549 TSIZ_SC_MC_PID_MASK
;
1550 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1552 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCTSIZ(%d)\n",
1553 hctsiz
, chan
->hc_num
);
1555 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1557 dev_vdbg(hsotg
->dev
, " Xfer Size: %d\n",
1558 (hctsiz
& TSIZ_XFERSIZE_MASK
) >>
1559 TSIZ_XFERSIZE_SHIFT
);
1560 dev_vdbg(hsotg
->dev
, " Num Pkts: %d\n",
1561 (hctsiz
& TSIZ_PKTCNT_MASK
) >>
1563 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1564 (hctsiz
& TSIZ_SC_MC_PID_MASK
) >>
1565 TSIZ_SC_MC_PID_SHIFT
);
1568 if (hsotg
->params
.host_dma
) {
1569 dma_addr_t dma_addr
;
1571 if (chan
->align_buf
) {
1573 dev_vdbg(hsotg
->dev
, "align_buf\n");
1574 dma_addr
= chan
->align_buf
;
1576 dma_addr
= chan
->xfer_dma
;
1578 dwc2_writel(hsotg
, (u32
)dma_addr
, HCDMA(chan
->hc_num
));
1581 dev_vdbg(hsotg
->dev
, "Wrote %08lx to HCDMA(%d)\n",
1582 (unsigned long)dma_addr
, chan
->hc_num
);
1585 /* Start the split */
1586 if (chan
->do_split
) {
1587 u32 hcsplt
= dwc2_readl(hsotg
, HCSPLT(chan
->hc_num
));
1589 hcsplt
|= HCSPLT_SPLTENA
;
1590 dwc2_writel(hsotg
, hcsplt
, HCSPLT(chan
->hc_num
));
1593 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1594 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1595 hcchar
|= (ec_mc
<< HCCHAR_MULTICNT_SHIFT
) & HCCHAR_MULTICNT_MASK
;
1596 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1598 if (hcchar
& HCCHAR_CHDIS
)
1599 dev_warn(hsotg
->dev
,
1600 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1601 __func__
, chan
->hc_num
, hcchar
);
1603 /* Set host channel enable after all other setup is complete */
1604 hcchar
|= HCCHAR_CHENA
;
1605 hcchar
&= ~HCCHAR_CHDIS
;
1608 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1609 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1610 HCCHAR_MULTICNT_SHIFT
);
1612 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1614 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1617 chan
->xfer_started
= 1;
1620 if (!hsotg
->params
.host_dma
&&
1621 !chan
->ep_is_in
&& chan
->xfer_len
> 0)
1622 /* Load OUT packet into the appropriate Tx FIFO */
1623 dwc2_hc_write_packet(hsotg
, chan
);
1627 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1628 * host channel and starts the transfer in Descriptor DMA mode
1630 * @hsotg: Programming view of DWC_otg controller
1631 * @chan: Information needed to initialize the host channel
1633 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1634 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1635 * with micro-frame bitmap.
1637 * Initializes HCDMA register with descriptor list address and CTD value then
1638 * starts the transfer via enabling the channel.
1640 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
1641 struct dwc2_host_chan
*chan
)
1647 hctsiz
|= TSIZ_DOPNG
;
1649 if (chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
1650 dwc2_set_pid_isoc(chan
);
1652 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1653 hctsiz
|= chan
->data_pid_start
<< TSIZ_SC_MC_PID_SHIFT
&
1654 TSIZ_SC_MC_PID_MASK
;
1656 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1657 hctsiz
|= (chan
->ntd
- 1) << TSIZ_NTD_SHIFT
& TSIZ_NTD_MASK
;
1659 /* Non-zero only for high-speed interrupt endpoints */
1660 hctsiz
|= chan
->schinfo
<< TSIZ_SCHINFO_SHIFT
& TSIZ_SCHINFO_MASK
;
1663 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1665 dev_vdbg(hsotg
->dev
, " Start PID: %d\n",
1666 chan
->data_pid_start
);
1667 dev_vdbg(hsotg
->dev
, " NTD: %d\n", chan
->ntd
- 1);
1670 dwc2_writel(hsotg
, hctsiz
, HCTSIZ(chan
->hc_num
));
1672 dma_sync_single_for_device(hsotg
->dev
, chan
->desc_list_addr
,
1673 chan
->desc_list_sz
, DMA_TO_DEVICE
);
1675 dwc2_writel(hsotg
, chan
->desc_list_addr
, HCDMA(chan
->hc_num
));
1678 dev_vdbg(hsotg
->dev
, "Wrote %pad to HCDMA(%d)\n",
1679 &chan
->desc_list_addr
, chan
->hc_num
);
1681 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1682 hcchar
&= ~HCCHAR_MULTICNT_MASK
;
1683 hcchar
|= chan
->multi_count
<< HCCHAR_MULTICNT_SHIFT
&
1684 HCCHAR_MULTICNT_MASK
;
1686 if (hcchar
& HCCHAR_CHDIS
)
1687 dev_warn(hsotg
->dev
,
1688 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1689 __func__
, chan
->hc_num
, hcchar
);
1691 /* Set host channel enable after all other setup is complete */
1692 hcchar
|= HCCHAR_CHENA
;
1693 hcchar
&= ~HCCHAR_CHDIS
;
1696 dev_vdbg(hsotg
->dev
, " Multi Cnt: %d\n",
1697 (hcchar
& HCCHAR_MULTICNT_MASK
) >>
1698 HCCHAR_MULTICNT_SHIFT
);
1700 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1702 dev_vdbg(hsotg
->dev
, "Wrote %08x to HCCHAR(%d)\n", hcchar
,
1705 chan
->xfer_started
= 1;
1710 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1711 * a previous call to dwc2_hc_start_transfer()
1713 * @hsotg: Programming view of DWC_otg controller
1714 * @chan: Information needed to initialize the host channel
1716 * The caller must ensure there is sufficient space in the request queue and Tx
1717 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1718 * the controller acts autonomously to complete transfers programmed to a host
1721 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1722 * if there is any data remaining to be queued. For an IN transfer, another
1723 * data packet is always requested. For the SETUP phase of a control transfer,
1724 * this function does nothing.
1726 * Return: 1 if a new request is queued, 0 if no more requests are required
1729 static int dwc2_hc_continue_transfer(struct dwc2_hsotg
*hsotg
,
1730 struct dwc2_host_chan
*chan
)
1733 dev_vdbg(hsotg
->dev
, "%s: Channel %d\n", __func__
,
1737 /* SPLITs always queue just once per channel */
1740 if (chan
->data_pid_start
== DWC2_HC_PID_SETUP
)
1741 /* SETUPs are queued only once since they can't be NAK'd */
1744 if (chan
->ep_is_in
) {
1746 * Always queue another request for other IN transfers. If
1747 * back-to-back INs are issued and NAKs are received for both,
1748 * the driver may still be processing the first NAK when the
1749 * second NAK is received. When the interrupt handler clears
1750 * the NAK interrupt for the first NAK, the second NAK will
1751 * not be seen. So we can't depend on the NAK interrupt
1752 * handler to requeue a NAK'd request. Instead, IN requests
1753 * are issued each time this function is called. When the
1754 * transfer completes, the extra requests for the channel will
1757 u32 hcchar
= dwc2_readl(hsotg
, HCCHAR(chan
->hc_num
));
1759 dwc2_hc_set_even_odd_frame(hsotg
, chan
, &hcchar
);
1760 hcchar
|= HCCHAR_CHENA
;
1761 hcchar
&= ~HCCHAR_CHDIS
;
1763 dev_vdbg(hsotg
->dev
, " IN xfer: hcchar = 0x%08x\n",
1765 dwc2_writel(hsotg
, hcchar
, HCCHAR(chan
->hc_num
));
1772 if (chan
->xfer_count
< chan
->xfer_len
) {
1773 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
1774 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
1775 u32 hcchar
= dwc2_readl(hsotg
,
1776 HCCHAR(chan
->hc_num
));
1778 dwc2_hc_set_even_odd_frame(hsotg
, chan
,
1782 /* Load OUT packet into the appropriate Tx FIFO */
1783 dwc2_hc_write_packet(hsotg
, chan
);
1792 * =========================================================================
1794 * =========================================================================
1798 * Processes all the URBs in a single list of QHs. Completes them with
1799 * -ETIMEDOUT and frees the QTD.
1801 * Must be called with interrupt disabled and spinlock held
1803 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg
*hsotg
,
1804 struct list_head
*qh_list
)
1806 struct dwc2_qh
*qh
, *qh_tmp
;
1807 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1809 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1810 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1812 dwc2_host_complete(hsotg
, qtd
, -ECONNRESET
);
1813 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1818 static void dwc2_qh_list_free(struct dwc2_hsotg
*hsotg
,
1819 struct list_head
*qh_list
)
1821 struct dwc2_qtd
*qtd
, *qtd_tmp
;
1822 struct dwc2_qh
*qh
, *qh_tmp
;
1823 unsigned long flags
;
1826 /* The list hasn't been initialized yet */
1829 spin_lock_irqsave(&hsotg
->lock
, flags
);
1831 /* Ensure there are no QTDs or URBs left */
1832 dwc2_kill_urbs_in_qh_list(hsotg
, qh_list
);
1834 list_for_each_entry_safe(qh
, qh_tmp
, qh_list
, qh_list_entry
) {
1835 dwc2_hcd_qh_unlink(hsotg
, qh
);
1837 /* Free each QTD in the QH's QTD list */
1838 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
,
1840 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
1842 if (qh
->channel
&& qh
->channel
->qh
== qh
)
1843 qh
->channel
->qh
= NULL
;
1845 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1846 dwc2_hcd_qh_free(hsotg
, qh
);
1847 spin_lock_irqsave(&hsotg
->lock
, flags
);
1850 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1854 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1855 * and periodic schedules. The QTD associated with each URB is removed from
1856 * the schedule and freed. This function may be called when a disconnect is
1857 * detected or when the HCD is being stopped.
1859 * Must be called with interrupt disabled and spinlock held
1861 static void dwc2_kill_all_urbs(struct dwc2_hsotg
*hsotg
)
1863 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_inactive
);
1864 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_waiting
);
1865 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->non_periodic_sched_active
);
1866 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_inactive
);
1867 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_ready
);
1868 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_assigned
);
1869 dwc2_kill_urbs_in_qh_list(hsotg
, &hsotg
->periodic_sched_queued
);
1873 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1875 * @hsotg: Pointer to struct dwc2_hsotg
1877 void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
)
1881 if (hsotg
->op_state
== OTG_STATE_B_HOST
) {
1883 * Reset the port. During a HNP mode switch the reset
1884 * needs to occur within 1ms and have a duration of at
1887 hprt0
= dwc2_read_hprt0(hsotg
);
1889 dwc2_writel(hsotg
, hprt0
, HPRT0
);
1892 queue_delayed_work(hsotg
->wq_otg
, &hsotg
->start_work
,
1893 msecs_to_jiffies(50));
1896 /* Must be called with interrupt disabled and spinlock held */
1897 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg
*hsotg
)
1899 int num_channels
= hsotg
->params
.host_channels
;
1900 struct dwc2_host_chan
*channel
;
1904 if (!hsotg
->params
.host_dma
) {
1905 /* Flush out any channel requests in slave mode */
1906 for (i
= 0; i
< num_channels
; i
++) {
1907 channel
= hsotg
->hc_ptr_array
[i
];
1908 if (!list_empty(&channel
->hc_list_entry
))
1910 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
1911 if (hcchar
& HCCHAR_CHENA
) {
1912 hcchar
&= ~(HCCHAR_CHENA
| HCCHAR_EPDIR
);
1913 hcchar
|= HCCHAR_CHDIS
;
1914 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
1919 for (i
= 0; i
< num_channels
; i
++) {
1920 channel
= hsotg
->hc_ptr_array
[i
];
1921 if (!list_empty(&channel
->hc_list_entry
))
1923 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
1924 if (hcchar
& HCCHAR_CHENA
) {
1925 /* Halt the channel */
1926 hcchar
|= HCCHAR_CHDIS
;
1927 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
1930 dwc2_hc_cleanup(hsotg
, channel
);
1931 list_add_tail(&channel
->hc_list_entry
, &hsotg
->free_hc_list
);
1933 * Added for Descriptor DMA to prevent channel double cleanup in
1934 * release_channel_ddma(), which is called from ep_disable when
1935 * device disconnects
1939 /* All channels have been freed, mark them available */
1940 if (hsotg
->params
.uframe_sched
) {
1941 hsotg
->available_host_channels
=
1942 hsotg
->params
.host_channels
;
1944 hsotg
->non_periodic_channels
= 0;
1945 hsotg
->periodic_channels
= 0;
1950 * dwc2_hcd_connect() - Handles connect of the HCD
1952 * @hsotg: Pointer to struct dwc2_hsotg
1954 * Must be called with interrupt disabled and spinlock held
1956 void dwc2_hcd_connect(struct dwc2_hsotg
*hsotg
)
1958 if (hsotg
->lx_state
!= DWC2_L0
)
1959 usb_hcd_resume_root_hub(hsotg
->priv
);
1961 hsotg
->flags
.b
.port_connect_status_change
= 1;
1962 hsotg
->flags
.b
.port_connect_status
= 1;
1966 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1968 * @hsotg: Pointer to struct dwc2_hsotg
1969 * @force: If true, we won't try to reconnect even if we see device connected.
1971 * Must be called with interrupt disabled and spinlock held
1973 void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
, bool force
)
1978 /* Set status flags for the hub driver */
1979 hsotg
->flags
.b
.port_connect_status_change
= 1;
1980 hsotg
->flags
.b
.port_connect_status
= 0;
1983 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1984 * interrupt mask and status bits and disabling subsequent host
1985 * channel interrupts.
1987 intr
= dwc2_readl(hsotg
, GINTMSK
);
1988 intr
&= ~(GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
);
1989 dwc2_writel(hsotg
, intr
, GINTMSK
);
1990 intr
= GINTSTS_NPTXFEMP
| GINTSTS_PTXFEMP
| GINTSTS_HCHINT
;
1991 dwc2_writel(hsotg
, intr
, GINTSTS
);
1994 * Turn off the vbus power only if the core has transitioned to device
1995 * mode. If still in host mode, need to keep power on to detect a
1998 if (dwc2_is_device_mode(hsotg
)) {
1999 if (hsotg
->op_state
!= OTG_STATE_A_SUSPEND
) {
2000 dev_dbg(hsotg
->dev
, "Disconnect: PortPower off\n");
2001 dwc2_writel(hsotg
, 0, HPRT0
);
2004 dwc2_disable_host_interrupts(hsotg
);
2007 /* Respond with an error status to all URBs in the schedule */
2008 dwc2_kill_all_urbs(hsotg
);
2010 if (dwc2_is_host_mode(hsotg
))
2011 /* Clean up any host channels that were in use */
2012 dwc2_hcd_cleanup_channels(hsotg
);
2014 dwc2_host_disconnect(hsotg
);
2017 * Add an extra check here to see if we're actually connected but
2018 * we don't have a detection interrupt pending. This can happen if:
2019 * 1. hardware sees connect
2020 * 2. hardware sees disconnect
2021 * 3. hardware sees connect
2022 * 4. dwc2_port_intr() - clears connect interrupt
2023 * 5. dwc2_handle_common_intr() - calls here
2025 * Without the extra check here we will end calling disconnect
2026 * and won't get any future interrupts to handle the connect.
2029 hprt0
= dwc2_readl(hsotg
, HPRT0
);
2030 if (!(hprt0
& HPRT0_CONNDET
) && (hprt0
& HPRT0_CONNSTS
))
2031 dwc2_hcd_connect(hsotg
);
2036 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2038 * @hsotg: Pointer to struct dwc2_hsotg
2040 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg
*hsotg
)
2042 if (hsotg
->bus_suspended
) {
2043 hsotg
->flags
.b
.port_suspend_change
= 1;
2044 usb_hcd_resume_root_hub(hsotg
->priv
);
2047 if (hsotg
->lx_state
== DWC2_L1
)
2048 hsotg
->flags
.b
.port_l1_change
= 1;
2052 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2054 * @hsotg: Pointer to struct dwc2_hsotg
2056 * Must be called with interrupt disabled and spinlock held
2058 void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
)
2060 dev_dbg(hsotg
->dev
, "DWC OTG HCD STOP\n");
2063 * The root hub should be disconnected before this function is called.
2064 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2065 * and the QH lists (via ..._hcd_endpoint_disable).
2068 /* Turn off all host-specific interrupts */
2069 dwc2_disable_host_interrupts(hsotg
);
2071 /* Turn off the vbus power */
2072 dev_dbg(hsotg
->dev
, "PortPower off\n");
2073 dwc2_writel(hsotg
, 0, HPRT0
);
2076 /* Caller must hold driver lock */
2077 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg
*hsotg
,
2078 struct dwc2_hcd_urb
*urb
, struct dwc2_qh
*qh
,
2079 struct dwc2_qtd
*qtd
)
2085 if (!hsotg
->flags
.b
.port_connect_status
) {
2086 /* No longer connected */
2087 dev_err(hsotg
->dev
, "Not connected\n");
2091 dev_speed
= dwc2_host_get_speed(hsotg
, urb
->priv
);
2093 /* Some configurations cannot support LS traffic on a FS root port */
2094 if ((dev_speed
== USB_SPEED_LOW
) &&
2095 (hsotg
->hw_params
.fs_phy_type
== GHWCFG2_FS_PHY_TYPE_DEDICATED
) &&
2096 (hsotg
->hw_params
.hs_phy_type
== GHWCFG2_HS_PHY_TYPE_UTMI
)) {
2097 u32 hprt0
= dwc2_readl(hsotg
, HPRT0
);
2098 u32 prtspd
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
2100 if (prtspd
== HPRT0_SPD_FULL_SPEED
)
2107 dwc2_hcd_qtd_init(qtd
, urb
);
2108 retval
= dwc2_hcd_qtd_add(hsotg
, qtd
, qh
);
2111 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2116 intr_mask
= dwc2_readl(hsotg
, GINTMSK
);
2117 if (!(intr_mask
& GINTSTS_SOF
)) {
2118 enum dwc2_transaction_type tr_type
;
2120 if (qtd
->qh
->ep_type
== USB_ENDPOINT_XFER_BULK
&&
2121 !(qtd
->urb
->flags
& URB_GIVEBACK_ASAP
))
2123 * Do not schedule SG transactions until qtd has
2124 * URB_GIVEBACK_ASAP set
2128 tr_type
= dwc2_hcd_select_transactions(hsotg
);
2129 if (tr_type
!= DWC2_TRANSACTION_NONE
)
2130 dwc2_hcd_queue_transactions(hsotg
, tr_type
);
2136 /* Must be called with interrupt disabled and spinlock held */
2137 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg
*hsotg
,
2138 struct dwc2_hcd_urb
*urb
)
2141 struct dwc2_qtd
*urb_qtd
;
2145 dev_dbg(hsotg
->dev
, "## Urb QTD is NULL ##\n");
2151 dev_dbg(hsotg
->dev
, "## Urb QTD QH is NULL ##\n");
2157 if (urb_qtd
->in_process
&& qh
->channel
) {
2158 dwc2_dump_channel_info(hsotg
, qh
->channel
);
2160 /* The QTD is in process (it has been assigned to a channel) */
2161 if (hsotg
->flags
.b
.port_connect_status
)
2163 * If still connected (i.e. in host mode), halt the
2164 * channel so it can be used for other transfers. If
2165 * no longer connected, the host registers can't be
2166 * written to halt the channel since the core is in
2169 dwc2_hc_halt(hsotg
, qh
->channel
,
2170 DWC2_HC_XFER_URB_DEQUEUE
);
2174 * Free the QTD and clean up the associated QH. Leave the QH in the
2175 * schedule if it has any remaining QTDs.
2177 if (!hsotg
->params
.dma_desc_enable
) {
2178 u8 in_process
= urb_qtd
->in_process
;
2180 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
2182 dwc2_hcd_qh_deactivate(hsotg
, qh
, 0);
2184 } else if (list_empty(&qh
->qtd_list
)) {
2185 dwc2_hcd_qh_unlink(hsotg
, qh
);
2188 dwc2_hcd_qtd_unlink_and_free(hsotg
, urb_qtd
, qh
);
2194 /* Must NOT be called with interrupt disabled or spinlock held */
2195 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg
*hsotg
,
2196 struct usb_host_endpoint
*ep
, int retry
)
2198 struct dwc2_qtd
*qtd
, *qtd_tmp
;
2200 unsigned long flags
;
2203 spin_lock_irqsave(&hsotg
->lock
, flags
);
2211 while (!list_empty(&qh
->qtd_list
) && retry
--) {
2214 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2219 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2221 spin_lock_irqsave(&hsotg
->lock
, flags
);
2229 dwc2_hcd_qh_unlink(hsotg
, qh
);
2231 /* Free each QTD in the QH's QTD list */
2232 list_for_each_entry_safe(qtd
, qtd_tmp
, &qh
->qtd_list
, qtd_list_entry
)
2233 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd
, qh
);
2237 if (qh
->channel
&& qh
->channel
->qh
== qh
)
2238 qh
->channel
->qh
= NULL
;
2240 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2242 dwc2_hcd_qh_free(hsotg
, qh
);
2248 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2253 /* Must be called with interrupt disabled and spinlock held */
2254 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg
*hsotg
,
2255 struct usb_host_endpoint
*ep
)
2257 struct dwc2_qh
*qh
= ep
->hcpriv
;
2262 qh
->data_toggle
= DWC2_HC_PID_DATA0
;
2268 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2269 * prepares the core for device mode or host mode operation
2271 * @hsotg: Programming view of the DWC_otg controller
2272 * @initial_setup: If true then this is the first init for this instance.
2274 int dwc2_core_init(struct dwc2_hsotg
*hsotg
, bool initial_setup
)
2279 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2281 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
2283 /* Set ULPI External VBUS bit if needed */
2284 usbcfg
&= ~GUSBCFG_ULPI_EXT_VBUS_DRV
;
2285 if (hsotg
->params
.phy_ulpi_ext_vbus
)
2286 usbcfg
|= GUSBCFG_ULPI_EXT_VBUS_DRV
;
2288 /* Set external TS Dline pulsing bit if needed */
2289 usbcfg
&= ~GUSBCFG_TERMSELDLPULSE
;
2290 if (hsotg
->params
.ts_dline
)
2291 usbcfg
|= GUSBCFG_TERMSELDLPULSE
;
2293 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
2296 * Reset the Controller
2298 * We only need to reset the controller if this is a re-init.
2299 * For the first init we know for sure that earlier code reset us (it
2300 * needed to in order to properly detect various parameters).
2302 if (!initial_setup
) {
2303 retval
= dwc2_core_reset(hsotg
, false);
2305 dev_err(hsotg
->dev
, "%s(): Reset failed, aborting\n",
2312 * This needs to happen in FS mode before any other programming occurs
2314 retval
= dwc2_phy_init(hsotg
, initial_setup
);
2318 /* Program the GAHBCFG Register */
2319 retval
= dwc2_gahbcfg_init(hsotg
);
2323 /* Program the GUSBCFG register */
2324 dwc2_gusbcfg_init(hsotg
);
2326 /* Program the GOTGCTL register */
2327 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2328 otgctl
&= ~GOTGCTL_OTGVER
;
2329 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2331 /* Clear the SRP success bit for FS-I2c */
2332 hsotg
->srp_success
= 0;
2334 /* Enable common interrupts */
2335 dwc2_enable_common_interrupts(hsotg
);
2338 * Do device or host initialization based on mode during PCD and
2339 * HCD initialization
2341 if (dwc2_is_host_mode(hsotg
)) {
2342 dev_dbg(hsotg
->dev
, "Host Mode\n");
2343 hsotg
->op_state
= OTG_STATE_A_HOST
;
2345 dev_dbg(hsotg
->dev
, "Device Mode\n");
2346 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
2353 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2356 * @hsotg: Programming view of DWC_otg controller
2358 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2359 * request queues. Host channels are reset to ensure that they are ready for
2360 * performing transfers.
2362 static void dwc2_core_host_init(struct dwc2_hsotg
*hsotg
)
2364 u32 hcfg
, hfir
, otgctl
, usbcfg
;
2366 dev_dbg(hsotg
->dev
, "%s(%p)\n", __func__
, hsotg
);
2368 /* Set HS/FS Timeout Calibration to 7 (max available value).
2369 * The number of PHY clocks that the application programs in
2370 * this field is added to the high/full speed interpacket timeout
2371 * duration in the core to account for any additional delays
2372 * introduced by the PHY. This can be required, because the delay
2373 * introduced by the PHY in generating the linestate condition
2374 * can vary from one PHY to another.
2376 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
2377 usbcfg
|= GUSBCFG_TOUTCAL(7);
2378 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
2380 /* Restart the Phy Clock */
2381 dwc2_writel(hsotg
, 0, PCGCTL
);
2383 /* Initialize Host Configuration Register */
2384 dwc2_init_fs_ls_pclk_sel(hsotg
);
2385 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
2386 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
) {
2387 hcfg
= dwc2_readl(hsotg
, HCFG
);
2388 hcfg
|= HCFG_FSLSSUPP
;
2389 dwc2_writel(hsotg
, hcfg
, HCFG
);
2393 * This bit allows dynamic reloading of the HFIR register during
2394 * runtime. This bit needs to be programmed during initial configuration
2395 * and its value must not be changed during runtime.
2397 if (hsotg
->params
.reload_ctl
) {
2398 hfir
= dwc2_readl(hsotg
, HFIR
);
2399 hfir
|= HFIR_RLDCTRL
;
2400 dwc2_writel(hsotg
, hfir
, HFIR
);
2403 if (hsotg
->params
.dma_desc_enable
) {
2404 u32 op_mode
= hsotg
->hw_params
.op_mode
;
2406 if (hsotg
->hw_params
.snpsid
< DWC2_CORE_REV_2_90a
||
2407 !hsotg
->hw_params
.dma_desc_enable
||
2408 op_mode
== GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE
||
2409 op_mode
== GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE
||
2410 op_mode
== GHWCFG2_OP_MODE_UNDEFINED
) {
2412 "Hardware does not support descriptor DMA mode -\n");
2414 "falling back to buffer DMA mode.\n");
2415 hsotg
->params
.dma_desc_enable
= false;
2417 hcfg
= dwc2_readl(hsotg
, HCFG
);
2418 hcfg
|= HCFG_DESCDMA
;
2419 dwc2_writel(hsotg
, hcfg
, HCFG
);
2423 /* Configure data FIFO sizes */
2424 dwc2_config_fifos(hsotg
);
2426 /* TODO - check this */
2427 /* Clear Host Set HNP Enable in the OTG Control Register */
2428 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2429 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2430 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2432 /* Make sure the FIFOs are flushed */
2433 dwc2_flush_tx_fifo(hsotg
, 0x10 /* all TX FIFOs */);
2434 dwc2_flush_rx_fifo(hsotg
);
2436 /* Clear Host Set HNP Enable in the OTG Control Register */
2437 otgctl
= dwc2_readl(hsotg
, GOTGCTL
);
2438 otgctl
&= ~GOTGCTL_HSTSETHNPEN
;
2439 dwc2_writel(hsotg
, otgctl
, GOTGCTL
);
2441 if (!hsotg
->params
.dma_desc_enable
) {
2442 int num_channels
, i
;
2445 /* Flush out any leftover queued requests */
2446 num_channels
= hsotg
->params
.host_channels
;
2447 for (i
= 0; i
< num_channels
; i
++) {
2448 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
2449 hcchar
&= ~HCCHAR_CHENA
;
2450 hcchar
|= HCCHAR_CHDIS
;
2451 hcchar
&= ~HCCHAR_EPDIR
;
2452 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
2455 /* Halt all channels to put them into a known state */
2456 for (i
= 0; i
< num_channels
; i
++) {
2457 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
2458 hcchar
|= HCCHAR_CHENA
| HCCHAR_CHDIS
;
2459 hcchar
&= ~HCCHAR_EPDIR
;
2460 dwc2_writel(hsotg
, hcchar
, HCCHAR(i
));
2461 dev_dbg(hsotg
->dev
, "%s: Halt channel %d\n",
2464 if (dwc2_hsotg_wait_bit_clear(hsotg
, HCCHAR(i
),
2465 HCCHAR_CHENA
, 1000)) {
2466 dev_warn(hsotg
->dev
, "Unable to clear enable on channel %d\n",
2472 /* Enable ACG feature in host mode, if supported */
2473 dwc2_enable_acg(hsotg
);
2475 /* Turn on the vbus power */
2476 dev_dbg(hsotg
->dev
, "Init: Port Power? op_state=%d\n", hsotg
->op_state
);
2477 if (hsotg
->op_state
== OTG_STATE_A_HOST
) {
2478 u32 hprt0
= dwc2_read_hprt0(hsotg
);
2480 dev_dbg(hsotg
->dev
, "Init: Power Port (%d)\n",
2481 !!(hprt0
& HPRT0_PWR
));
2482 if (!(hprt0
& HPRT0_PWR
)) {
2484 dwc2_writel(hsotg
, hprt0
, HPRT0
);
2488 dwc2_enable_host_interrupts(hsotg
);
2492 * Initializes dynamic portions of the DWC_otg HCD state
2494 * Must be called with interrupt disabled and spinlock held
2496 static void dwc2_hcd_reinit(struct dwc2_hsotg
*hsotg
)
2498 struct dwc2_host_chan
*chan
, *chan_tmp
;
2502 hsotg
->flags
.d32
= 0;
2503 hsotg
->non_periodic_qh_ptr
= &hsotg
->non_periodic_sched_active
;
2505 if (hsotg
->params
.uframe_sched
) {
2506 hsotg
->available_host_channels
=
2507 hsotg
->params
.host_channels
;
2509 hsotg
->non_periodic_channels
= 0;
2510 hsotg
->periodic_channels
= 0;
2514 * Put all channels in the free channel list and clean up channel
2517 list_for_each_entry_safe(chan
, chan_tmp
, &hsotg
->free_hc_list
,
2519 list_del_init(&chan
->hc_list_entry
);
2521 num_channels
= hsotg
->params
.host_channels
;
2522 for (i
= 0; i
< num_channels
; i
++) {
2523 chan
= hsotg
->hc_ptr_array
[i
];
2524 list_add_tail(&chan
->hc_list_entry
, &hsotg
->free_hc_list
);
2525 dwc2_hc_cleanup(hsotg
, chan
);
2528 /* Initialize the DWC core for host mode operation */
2529 dwc2_core_host_init(hsotg
);
2532 static void dwc2_hc_init_split(struct dwc2_hsotg
*hsotg
,
2533 struct dwc2_host_chan
*chan
,
2534 struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
)
2536 int hub_addr
, hub_port
;
2539 chan
->xact_pos
= qtd
->isoc_split_pos
;
2540 chan
->complete_split
= qtd
->complete_split
;
2541 dwc2_host_hub_info(hsotg
, urb
->priv
, &hub_addr
, &hub_port
);
2542 chan
->hub_addr
= (u8
)hub_addr
;
2543 chan
->hub_port
= (u8
)hub_port
;
2546 static void dwc2_hc_init_xfer(struct dwc2_hsotg
*hsotg
,
2547 struct dwc2_host_chan
*chan
,
2548 struct dwc2_qtd
*qtd
)
2550 struct dwc2_hcd_urb
*urb
= qtd
->urb
;
2551 struct dwc2_hcd_iso_packet_desc
*frame_desc
;
2553 switch (dwc2_hcd_get_pipe_type(&urb
->pipe_info
)) {
2554 case USB_ENDPOINT_XFER_CONTROL
:
2555 chan
->ep_type
= USB_ENDPOINT_XFER_CONTROL
;
2557 switch (qtd
->control_phase
) {
2558 case DWC2_CONTROL_SETUP
:
2559 dev_vdbg(hsotg
->dev
, " Control setup transaction\n");
2562 chan
->data_pid_start
= DWC2_HC_PID_SETUP
;
2563 if (hsotg
->params
.host_dma
)
2564 chan
->xfer_dma
= urb
->setup_dma
;
2566 chan
->xfer_buf
= urb
->setup_packet
;
2570 case DWC2_CONTROL_DATA
:
2571 dev_vdbg(hsotg
->dev
, " Control data transaction\n");
2572 chan
->data_pid_start
= qtd
->data_toggle
;
2575 case DWC2_CONTROL_STATUS
:
2577 * Direction is opposite of data direction or IN if no
2580 dev_vdbg(hsotg
->dev
, " Control status transaction\n");
2581 if (urb
->length
== 0)
2585 dwc2_hcd_is_pipe_out(&urb
->pipe_info
);
2588 chan
->data_pid_start
= DWC2_HC_PID_DATA1
;
2590 if (hsotg
->params
.host_dma
)
2591 chan
->xfer_dma
= hsotg
->status_buf_dma
;
2593 chan
->xfer_buf
= hsotg
->status_buf
;
2598 case USB_ENDPOINT_XFER_BULK
:
2599 chan
->ep_type
= USB_ENDPOINT_XFER_BULK
;
2602 case USB_ENDPOINT_XFER_INT
:
2603 chan
->ep_type
= USB_ENDPOINT_XFER_INT
;
2606 case USB_ENDPOINT_XFER_ISOC
:
2607 chan
->ep_type
= USB_ENDPOINT_XFER_ISOC
;
2608 if (hsotg
->params
.dma_desc_enable
)
2611 frame_desc
= &urb
->iso_descs
[qtd
->isoc_frame_index
];
2612 frame_desc
->status
= 0;
2614 if (hsotg
->params
.host_dma
) {
2615 chan
->xfer_dma
= urb
->dma
;
2616 chan
->xfer_dma
+= frame_desc
->offset
+
2617 qtd
->isoc_split_offset
;
2619 chan
->xfer_buf
= urb
->buf
;
2620 chan
->xfer_buf
+= frame_desc
->offset
+
2621 qtd
->isoc_split_offset
;
2624 chan
->xfer_len
= frame_desc
->length
- qtd
->isoc_split_offset
;
2626 if (chan
->xact_pos
== DWC2_HCSPLT_XACTPOS_ALL
) {
2627 if (chan
->xfer_len
<= 188)
2628 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_ALL
;
2630 chan
->xact_pos
= DWC2_HCSPLT_XACTPOS_BEGIN
;
2636 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg
*hsotg
,
2638 struct dwc2_host_chan
*chan
)
2640 if (!hsotg
->unaligned_cache
||
2641 chan
->max_packet
> DWC2_KMEM_UNALIGNED_BUF_SIZE
)
2644 if (!qh
->dw_align_buf
) {
2645 qh
->dw_align_buf
= kmem_cache_alloc(hsotg
->unaligned_cache
,
2646 GFP_ATOMIC
| GFP_DMA
);
2647 if (!qh
->dw_align_buf
)
2651 qh
->dw_align_buf_dma
= dma_map_single(hsotg
->dev
, qh
->dw_align_buf
,
2652 DWC2_KMEM_UNALIGNED_BUF_SIZE
,
2655 if (dma_mapping_error(hsotg
->dev
, qh
->dw_align_buf_dma
)) {
2656 dev_err(hsotg
->dev
, "can't map align_buf\n");
2657 chan
->align_buf
= 0;
2661 chan
->align_buf
= qh
->dw_align_buf_dma
;
2665 #define DWC2_USB_DMA_ALIGN 4
2667 static void dwc2_free_dma_aligned_buffer(struct urb
*urb
)
2669 void *stored_xfer_buffer
;
2672 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
2675 /* Restore urb->transfer_buffer from the end of the allocated area */
2676 memcpy(&stored_xfer_buffer
,
2677 PTR_ALIGN(urb
->transfer_buffer
+ urb
->transfer_buffer_length
,
2678 dma_get_cache_alignment()),
2679 sizeof(urb
->transfer_buffer
));
2681 if (usb_urb_dir_in(urb
)) {
2682 if (usb_pipeisoc(urb
->pipe
))
2683 length
= urb
->transfer_buffer_length
;
2685 length
= urb
->actual_length
;
2687 memcpy(stored_xfer_buffer
, urb
->transfer_buffer
, length
);
2689 kfree(urb
->transfer_buffer
);
2690 urb
->transfer_buffer
= stored_xfer_buffer
;
2692 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
2695 static int dwc2_alloc_dma_aligned_buffer(struct urb
*urb
, gfp_t mem_flags
)
2698 size_t kmalloc_size
;
2700 if (urb
->num_sgs
|| urb
->sg
||
2701 urb
->transfer_buffer_length
== 0 ||
2702 !((uintptr_t)urb
->transfer_buffer
& (DWC2_USB_DMA_ALIGN
- 1)))
2706 * Allocate a buffer with enough padding for original transfer_buffer
2707 * pointer. This allocation is guaranteed to be aligned properly for
2710 kmalloc_size
= urb
->transfer_buffer_length
+
2711 (dma_get_cache_alignment() - 1) +
2712 sizeof(urb
->transfer_buffer
);
2714 kmalloc_ptr
= kmalloc(kmalloc_size
, mem_flags
);
2719 * Position value of original urb->transfer_buffer pointer to the end
2720 * of allocation for later referencing
2722 memcpy(PTR_ALIGN(kmalloc_ptr
+ urb
->transfer_buffer_length
,
2723 dma_get_cache_alignment()),
2724 &urb
->transfer_buffer
, sizeof(urb
->transfer_buffer
));
2726 if (usb_urb_dir_out(urb
))
2727 memcpy(kmalloc_ptr
, urb
->transfer_buffer
,
2728 urb
->transfer_buffer_length
);
2729 urb
->transfer_buffer
= kmalloc_ptr
;
2731 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
2736 static int dwc2_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
2741 /* We assume setup_dma is always aligned; warn if not */
2742 WARN_ON_ONCE(urb
->setup_dma
&&
2743 (urb
->setup_dma
& (DWC2_USB_DMA_ALIGN
- 1)));
2745 ret
= dwc2_alloc_dma_aligned_buffer(urb
, mem_flags
);
2749 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
2751 dwc2_free_dma_aligned_buffer(urb
);
2756 static void dwc2_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
2758 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
2759 dwc2_free_dma_aligned_buffer(urb
);
2763 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2764 * channel and initializes the host channel to perform the transactions. The
2765 * host channel is removed from the free list.
2767 * @hsotg: The HCD state structure
2768 * @qh: Transactions from the first QTD for this QH are selected and assigned
2769 * to a free host channel
2771 static int dwc2_assign_and_init_hc(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
2773 struct dwc2_host_chan
*chan
;
2774 struct dwc2_hcd_urb
*urb
;
2775 struct dwc2_qtd
*qtd
;
2778 dev_vdbg(hsotg
->dev
, "%s(%p,%p)\n", __func__
, hsotg
, qh
);
2780 if (list_empty(&qh
->qtd_list
)) {
2781 dev_dbg(hsotg
->dev
, "No QTDs in QH list\n");
2785 if (list_empty(&hsotg
->free_hc_list
)) {
2786 dev_dbg(hsotg
->dev
, "No free channel to assign\n");
2790 chan
= list_first_entry(&hsotg
->free_hc_list
, struct dwc2_host_chan
,
2793 /* Remove host channel from free list */
2794 list_del_init(&chan
->hc_list_entry
);
2796 qtd
= list_first_entry(&qh
->qtd_list
, struct dwc2_qtd
, qtd_list_entry
);
2799 qtd
->in_process
= 1;
2802 * Use usb_pipedevice to determine device address. This address is
2803 * 0 before the SET_ADDRESS command and the correct address afterward.
2805 chan
->dev_addr
= dwc2_hcd_get_dev_addr(&urb
->pipe_info
);
2806 chan
->ep_num
= dwc2_hcd_get_ep_num(&urb
->pipe_info
);
2807 chan
->speed
= qh
->dev_speed
;
2808 chan
->max_packet
= qh
->maxp
;
2810 chan
->xfer_started
= 0;
2811 chan
->halt_status
= DWC2_HC_XFER_NO_HALT_STATUS
;
2812 chan
->error_state
= (qtd
->error_count
> 0);
2813 chan
->halt_on_queue
= 0;
2814 chan
->halt_pending
= 0;
2818 * The following values may be modified in the transfer type section
2819 * below. The xfer_len value may be reduced when the transfer is
2820 * started to accommodate the max widths of the XferSize and PktCnt
2821 * fields in the HCTSIZn register.
2824 chan
->ep_is_in
= (dwc2_hcd_is_pipe_in(&urb
->pipe_info
) != 0);
2828 chan
->do_ping
= qh
->ping_state
;
2830 chan
->data_pid_start
= qh
->data_toggle
;
2831 chan
->multi_count
= 1;
2833 if (urb
->actual_length
> urb
->length
&&
2834 !dwc2_hcd_is_pipe_in(&urb
->pipe_info
))
2835 urb
->actual_length
= urb
->length
;
2837 if (hsotg
->params
.host_dma
)
2838 chan
->xfer_dma
= urb
->dma
+ urb
->actual_length
;
2840 chan
->xfer_buf
= (u8
*)urb
->buf
+ urb
->actual_length
;
2842 chan
->xfer_len
= urb
->length
- urb
->actual_length
;
2843 chan
->xfer_count
= 0;
2845 /* Set the split attributes if required */
2847 dwc2_hc_init_split(hsotg
, chan
, qtd
, urb
);
2851 /* Set the transfer attributes */
2852 dwc2_hc_init_xfer(hsotg
, chan
, qtd
);
2854 /* For non-dword aligned buffers */
2855 if (hsotg
->params
.host_dma
&& qh
->do_split
&&
2856 chan
->ep_is_in
&& (chan
->xfer_dma
& 0x3)) {
2857 dev_vdbg(hsotg
->dev
, "Non-aligned buffer\n");
2858 if (dwc2_alloc_split_dma_aligned_buf(hsotg
, qh
, chan
)) {
2860 "Failed to allocate memory to handle non-aligned buffer\n");
2861 /* Add channel back to free list */
2862 chan
->align_buf
= 0;
2863 chan
->multi_count
= 0;
2864 list_add_tail(&chan
->hc_list_entry
,
2865 &hsotg
->free_hc_list
);
2866 qtd
->in_process
= 0;
2872 * We assume that DMA is always aligned in non-split
2873 * case or split out case. Warn if not.
2875 WARN_ON_ONCE(hsotg
->params
.host_dma
&&
2876 (chan
->xfer_dma
& 0x3));
2877 chan
->align_buf
= 0;
2880 if (chan
->ep_type
== USB_ENDPOINT_XFER_INT
||
2881 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
)
2883 * This value may be modified when the transfer is started
2884 * to reflect the actual transfer length
2886 chan
->multi_count
= qh
->maxp_mult
;
2888 if (hsotg
->params
.dma_desc_enable
) {
2889 chan
->desc_list_addr
= qh
->desc_list_dma
;
2890 chan
->desc_list_sz
= qh
->desc_list_sz
;
2893 dwc2_hc_init(hsotg
, chan
);
2900 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2901 * schedule and assigns them to available host channels. Called from the HCD
2902 * interrupt handler functions.
2904 * @hsotg: The HCD state structure
2906 * Return: The types of new transactions that were assigned to host channels
2908 enum dwc2_transaction_type
dwc2_hcd_select_transactions(
2909 struct dwc2_hsotg
*hsotg
)
2911 enum dwc2_transaction_type ret_val
= DWC2_TRANSACTION_NONE
;
2912 struct list_head
*qh_ptr
;
2916 #ifdef DWC2_DEBUG_SOF
2917 dev_vdbg(hsotg
->dev
, " Select Transactions\n");
2920 /* Process entries in the periodic ready list */
2921 qh_ptr
= hsotg
->periodic_sched_ready
.next
;
2922 while (qh_ptr
!= &hsotg
->periodic_sched_ready
) {
2923 if (list_empty(&hsotg
->free_hc_list
))
2925 if (hsotg
->params
.uframe_sched
) {
2926 if (hsotg
->available_host_channels
<= 1)
2928 hsotg
->available_host_channels
--;
2930 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2931 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2935 * Move the QH from the periodic ready schedule to the
2936 * periodic assigned schedule
2938 qh_ptr
= qh_ptr
->next
;
2939 list_move_tail(&qh
->qh_list_entry
,
2940 &hsotg
->periodic_sched_assigned
);
2941 ret_val
= DWC2_TRANSACTION_PERIODIC
;
2945 * Process entries in the inactive portion of the non-periodic
2946 * schedule. Some free host channels may not be used if they are
2947 * reserved for periodic transfers.
2949 num_channels
= hsotg
->params
.host_channels
;
2950 qh_ptr
= hsotg
->non_periodic_sched_inactive
.next
;
2951 while (qh_ptr
!= &hsotg
->non_periodic_sched_inactive
) {
2952 if (!hsotg
->params
.uframe_sched
&&
2953 hsotg
->non_periodic_channels
>= num_channels
-
2954 hsotg
->periodic_channels
)
2956 if (list_empty(&hsotg
->free_hc_list
))
2958 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
2959 if (hsotg
->params
.uframe_sched
) {
2960 if (hsotg
->available_host_channels
< 1)
2962 hsotg
->available_host_channels
--;
2965 if (dwc2_assign_and_init_hc(hsotg
, qh
))
2969 * Move the QH from the non-periodic inactive schedule to the
2970 * non-periodic active schedule
2972 qh_ptr
= qh_ptr
->next
;
2973 list_move_tail(&qh
->qh_list_entry
,
2974 &hsotg
->non_periodic_sched_active
);
2976 if (ret_val
== DWC2_TRANSACTION_NONE
)
2977 ret_val
= DWC2_TRANSACTION_NON_PERIODIC
;
2979 ret_val
= DWC2_TRANSACTION_ALL
;
2981 if (!hsotg
->params
.uframe_sched
)
2982 hsotg
->non_periodic_channels
++;
2989 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2990 * a host channel associated with either a periodic or non-periodic transfer
2992 * @hsotg: The HCD state structure
2993 * @chan: Host channel descriptor associated with either a periodic or
2994 * non-periodic transfer
2995 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2996 * for periodic transfers or the non-periodic Tx FIFO
2997 * for non-periodic transfers
2999 * Return: 1 if a request is queued and more requests may be needed to
3000 * complete the transfer, 0 if no more requests are required for this
3001 * transfer, -1 if there is insufficient space in the Tx FIFO
3003 * This function assumes that there is space available in the appropriate
3004 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
3005 * it checks whether space is available in the appropriate Tx FIFO.
3007 * Must be called with interrupt disabled and spinlock held
3009 static int dwc2_queue_transaction(struct dwc2_hsotg
*hsotg
,
3010 struct dwc2_host_chan
*chan
,
3011 u16 fifo_dwords_avail
)
3016 /* Put ourselves on the list to keep order straight */
3017 list_move_tail(&chan
->split_order_list_entry
,
3018 &hsotg
->split_order
);
3020 if (hsotg
->params
.host_dma
) {
3021 if (hsotg
->params
.dma_desc_enable
) {
3022 if (!chan
->xfer_started
||
3023 chan
->ep_type
== USB_ENDPOINT_XFER_ISOC
) {
3024 dwc2_hcd_start_xfer_ddma(hsotg
, chan
->qh
);
3025 chan
->qh
->ping_state
= 0;
3027 } else if (!chan
->xfer_started
) {
3028 dwc2_hc_start_transfer(hsotg
, chan
);
3029 chan
->qh
->ping_state
= 0;
3031 } else if (chan
->halt_pending
) {
3032 /* Don't queue a request if the channel has been halted */
3033 } else if (chan
->halt_on_queue
) {
3034 dwc2_hc_halt(hsotg
, chan
, chan
->halt_status
);
3035 } else if (chan
->do_ping
) {
3036 if (!chan
->xfer_started
)
3037 dwc2_hc_start_transfer(hsotg
, chan
);
3038 } else if (!chan
->ep_is_in
||
3039 chan
->data_pid_start
== DWC2_HC_PID_SETUP
) {
3040 if ((fifo_dwords_avail
* 4) >= chan
->max_packet
) {
3041 if (!chan
->xfer_started
) {
3042 dwc2_hc_start_transfer(hsotg
, chan
);
3045 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
3051 if (!chan
->xfer_started
) {
3052 dwc2_hc_start_transfer(hsotg
, chan
);
3055 retval
= dwc2_hc_continue_transfer(hsotg
, chan
);
3063 * Processes periodic channels for the next frame and queues transactions for
3064 * these channels to the DWC_otg controller. After queueing transactions, the
3065 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3066 * to queue as Periodic Tx FIFO or request queue space becomes available.
3067 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3069 * Must be called with interrupt disabled and spinlock held
3071 static void dwc2_process_periodic_channels(struct dwc2_hsotg
*hsotg
)
3073 struct list_head
*qh_ptr
;
3079 bool no_queue_space
= false;
3080 bool no_fifo_space
= false;
3083 /* If empty list then just adjust interrupt enables */
3084 if (list_empty(&hsotg
->periodic_sched_assigned
))
3088 dev_vdbg(hsotg
->dev
, "Queue periodic transactions\n");
3090 tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
3091 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3092 TXSTS_QSPCAVAIL_SHIFT
;
3093 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3094 TXSTS_FSPCAVAIL_SHIFT
;
3097 dev_vdbg(hsotg
->dev
, " P Tx Req Queue Space Avail (before queue): %d\n",
3099 dev_vdbg(hsotg
->dev
, " P Tx FIFO Space Avail (before queue): %d\n",
3103 qh_ptr
= hsotg
->periodic_sched_assigned
.next
;
3104 while (qh_ptr
!= &hsotg
->periodic_sched_assigned
) {
3105 tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
3106 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3107 TXSTS_QSPCAVAIL_SHIFT
;
3108 if (qspcavail
== 0) {
3109 no_queue_space
= true;
3113 qh
= list_entry(qh_ptr
, struct dwc2_qh
, qh_list_entry
);
3115 qh_ptr
= qh_ptr
->next
;
3119 /* Make sure EP's TT buffer is clean before queueing qtds */
3120 if (qh
->tt_buffer_dirty
) {
3121 qh_ptr
= qh_ptr
->next
;
3126 * Set a flag if we're queuing high-bandwidth in slave mode.
3127 * The flag prevents any halts to get into the request queue in
3128 * the middle of multiple high-bandwidth packets getting queued.
3130 if (!hsotg
->params
.host_dma
&&
3131 qh
->channel
->multi_count
> 1)
3132 hsotg
->queuing_high_bandwidth
= 1;
3134 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3135 TXSTS_FSPCAVAIL_SHIFT
;
3136 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
3138 no_fifo_space
= true;
3143 * In Slave mode, stay on the current transfer until there is
3144 * nothing more to do or the high-bandwidth request count is
3145 * reached. In DMA mode, only need to queue one request. The
3146 * controller automatically handles multiple packets for
3147 * high-bandwidth transfers.
3149 if (hsotg
->params
.host_dma
|| status
== 0 ||
3150 qh
->channel
->requests
== qh
->channel
->multi_count
) {
3151 qh_ptr
= qh_ptr
->next
;
3153 * Move the QH from the periodic assigned schedule to
3154 * the periodic queued schedule
3156 list_move_tail(&qh
->qh_list_entry
,
3157 &hsotg
->periodic_sched_queued
);
3159 /* done queuing high bandwidth */
3160 hsotg
->queuing_high_bandwidth
= 0;
3165 if (no_queue_space
|| no_fifo_space
||
3166 (!hsotg
->params
.host_dma
&&
3167 !list_empty(&hsotg
->periodic_sched_assigned
))) {
3169 * May need to queue more transactions as the request
3170 * queue or Tx FIFO empties. Enable the periodic Tx
3171 * FIFO empty interrupt. (Always use the half-empty
3172 * level to ensure that new requests are loaded as
3173 * soon as possible.)
3175 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3176 if (!(gintmsk
& GINTSTS_PTXFEMP
)) {
3177 gintmsk
|= GINTSTS_PTXFEMP
;
3178 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3182 * Disable the Tx FIFO empty interrupt since there are
3183 * no more transactions that need to be queued right
3184 * now. This function is called from interrupt
3185 * handlers to queue more transactions as transfer
3188 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3189 if (gintmsk
& GINTSTS_PTXFEMP
) {
3190 gintmsk
&= ~GINTSTS_PTXFEMP
;
3191 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3197 * Processes active non-periodic channels and queues transactions for these
3198 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3199 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3200 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3201 * FIFO Empty interrupt is disabled.
3203 * Must be called with interrupt disabled and spinlock held
3205 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg
*hsotg
)
3207 struct list_head
*orig_qh_ptr
;
3214 int no_queue_space
= 0;
3215 int no_fifo_space
= 0;
3218 dev_vdbg(hsotg
->dev
, "Queue non-periodic transactions\n");
3220 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3221 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3222 TXSTS_QSPCAVAIL_SHIFT
;
3223 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3224 TXSTS_FSPCAVAIL_SHIFT
;
3225 dev_vdbg(hsotg
->dev
, " NP Tx Req Queue Space Avail (before queue): %d\n",
3227 dev_vdbg(hsotg
->dev
, " NP Tx FIFO Space Avail (before queue): %d\n",
3231 * Keep track of the starting point. Skip over the start-of-list
3234 if (hsotg
->non_periodic_qh_ptr
== &hsotg
->non_periodic_sched_active
)
3235 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3236 orig_qh_ptr
= hsotg
->non_periodic_qh_ptr
;
3239 * Process once through the active list or until no more space is
3240 * available in the request queue or the Tx FIFO
3243 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3244 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3245 TXSTS_QSPCAVAIL_SHIFT
;
3246 if (!hsotg
->params
.host_dma
&& qspcavail
== 0) {
3251 qh
= list_entry(hsotg
->non_periodic_qh_ptr
, struct dwc2_qh
,
3256 /* Make sure EP's TT buffer is clean before queueing qtds */
3257 if (qh
->tt_buffer_dirty
)
3260 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3261 TXSTS_FSPCAVAIL_SHIFT
;
3262 status
= dwc2_queue_transaction(hsotg
, qh
->channel
, fspcavail
);
3266 } else if (status
< 0) {
3271 /* Advance to next QH, skipping start-of-list entry */
3272 hsotg
->non_periodic_qh_ptr
= hsotg
->non_periodic_qh_ptr
->next
;
3273 if (hsotg
->non_periodic_qh_ptr
==
3274 &hsotg
->non_periodic_sched_active
)
3275 hsotg
->non_periodic_qh_ptr
=
3276 hsotg
->non_periodic_qh_ptr
->next
;
3277 } while (hsotg
->non_periodic_qh_ptr
!= orig_qh_ptr
);
3279 if (!hsotg
->params
.host_dma
) {
3280 tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
3281 qspcavail
= (tx_status
& TXSTS_QSPCAVAIL_MASK
) >>
3282 TXSTS_QSPCAVAIL_SHIFT
;
3283 fspcavail
= (tx_status
& TXSTS_FSPCAVAIL_MASK
) >>
3284 TXSTS_FSPCAVAIL_SHIFT
;
3285 dev_vdbg(hsotg
->dev
,
3286 " NP Tx Req Queue Space Avail (after queue): %d\n",
3288 dev_vdbg(hsotg
->dev
,
3289 " NP Tx FIFO Space Avail (after queue): %d\n",
3292 if (more_to_do
|| no_queue_space
|| no_fifo_space
) {
3294 * May need to queue more transactions as the request
3295 * queue or Tx FIFO empties. Enable the non-periodic
3296 * Tx FIFO empty interrupt. (Always use the half-empty
3297 * level to ensure that new requests are loaded as
3298 * soon as possible.)
3300 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3301 gintmsk
|= GINTSTS_NPTXFEMP
;
3302 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3305 * Disable the Tx FIFO empty interrupt since there are
3306 * no more transactions that need to be queued right
3307 * now. This function is called from interrupt
3308 * handlers to queue more transactions as transfer
3311 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3312 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3313 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3319 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3320 * and queues transactions for these channels to the DWC_otg controller. Called
3321 * from the HCD interrupt handler functions.
3323 * @hsotg: The HCD state structure
3324 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3327 * Must be called with interrupt disabled and spinlock held
3329 void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
3330 enum dwc2_transaction_type tr_type
)
3332 #ifdef DWC2_DEBUG_SOF
3333 dev_vdbg(hsotg
->dev
, "Queue Transactions\n");
3335 /* Process host channels associated with periodic transfers */
3336 if (tr_type
== DWC2_TRANSACTION_PERIODIC
||
3337 tr_type
== DWC2_TRANSACTION_ALL
)
3338 dwc2_process_periodic_channels(hsotg
);
3340 /* Process host channels associated with non-periodic transfers */
3341 if (tr_type
== DWC2_TRANSACTION_NON_PERIODIC
||
3342 tr_type
== DWC2_TRANSACTION_ALL
) {
3343 if (!list_empty(&hsotg
->non_periodic_sched_active
)) {
3344 dwc2_process_non_periodic_channels(hsotg
);
3347 * Ensure NP Tx FIFO empty interrupt is disabled when
3348 * there are no non-periodic transfers to process
3350 u32 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3352 gintmsk
&= ~GINTSTS_NPTXFEMP
;
3353 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3358 static void dwc2_conn_id_status_change(struct work_struct
*work
)
3360 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
3364 unsigned long flags
;
3366 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3368 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3369 dev_dbg(hsotg
->dev
, "gotgctl=%0x\n", gotgctl
);
3370 dev_dbg(hsotg
->dev
, "gotgctl.b.conidsts=%d\n",
3371 !!(gotgctl
& GOTGCTL_CONID_B
));
3373 /* B-Device connector (Device Mode) */
3374 if (gotgctl
& GOTGCTL_CONID_B
) {
3375 dwc2_vbus_supply_exit(hsotg
);
3376 /* Wait for switch to device mode */
3377 dev_dbg(hsotg
->dev
, "connId B\n");
3378 if (hsotg
->bus_suspended
) {
3379 dev_info(hsotg
->dev
,
3380 "Do port resume before switching to device mode\n");
3381 dwc2_port_resume(hsotg
);
3383 while (!dwc2_is_device_mode(hsotg
)) {
3384 dev_info(hsotg
->dev
,
3385 "Waiting for Peripheral Mode, Mode=%s\n",
3386 dwc2_is_host_mode(hsotg
) ? "Host" :
3390 * Sometimes the initial GOTGCTRL read is wrong, so
3391 * check it again and jump to host mode if that was
3394 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3395 if (!(gotgctl
& GOTGCTL_CONID_B
))
3402 "Connection id status change timed out\n");
3403 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
3404 dwc2_core_init(hsotg
, false);
3405 dwc2_enable_global_interrupts(hsotg
);
3406 spin_lock_irqsave(&hsotg
->lock
, flags
);
3407 dwc2_hsotg_core_init_disconnected(hsotg
, false);
3408 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3409 /* Enable ACG feature in device mode,if supported */
3410 dwc2_enable_acg(hsotg
);
3411 dwc2_hsotg_core_connect(hsotg
);
3414 /* A-Device connector (Host Mode) */
3415 dev_dbg(hsotg
->dev
, "connId A\n");
3416 while (!dwc2_is_host_mode(hsotg
)) {
3417 dev_info(hsotg
->dev
, "Waiting for Host Mode, Mode=%s\n",
3418 dwc2_is_host_mode(hsotg
) ?
3419 "Host" : "Peripheral");
3426 "Connection id status change timed out\n");
3428 spin_lock_irqsave(&hsotg
->lock
, flags
);
3429 dwc2_hsotg_disconnect(hsotg
);
3430 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3432 hsotg
->op_state
= OTG_STATE_A_HOST
;
3433 /* Initialize the Core for Host mode */
3434 dwc2_core_init(hsotg
, false);
3435 dwc2_enable_global_interrupts(hsotg
);
3436 dwc2_hcd_start(hsotg
);
3440 static void dwc2_wakeup_detected(struct timer_list
*t
)
3442 struct dwc2_hsotg
*hsotg
= from_timer(hsotg
, t
, wkp_timer
);
3445 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3448 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3449 * so that OPT tests pass with all PHYs.)
3451 hprt0
= dwc2_read_hprt0(hsotg
);
3452 dev_dbg(hsotg
->dev
, "Resume: HPRT0=%0x\n", hprt0
);
3453 hprt0
&= ~HPRT0_RES
;
3454 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3455 dev_dbg(hsotg
->dev
, "Clear Resume: HPRT0=%0x\n",
3456 dwc2_readl(hsotg
, HPRT0
));
3458 dwc2_hcd_rem_wakeup(hsotg
);
3459 hsotg
->bus_suspended
= false;
3461 /* Change to L0 state */
3462 hsotg
->lx_state
= DWC2_L0
;
3465 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg
*hsotg
)
3467 struct usb_hcd
*hcd
= dwc2_hsotg_to_hcd(hsotg
);
3469 return hcd
->self
.b_hnp_enable
;
3472 /* Must NOT be called with interrupt disabled or spinlock held */
3473 static void dwc2_port_suspend(struct dwc2_hsotg
*hsotg
, u16 windex
)
3475 unsigned long flags
;
3480 dev_dbg(hsotg
->dev
, "%s()\n", __func__
);
3482 spin_lock_irqsave(&hsotg
->lock
, flags
);
3484 if (windex
== hsotg
->otg_port
&& dwc2_host_is_b_hnp_enabled(hsotg
)) {
3485 gotgctl
= dwc2_readl(hsotg
, GOTGCTL
);
3486 gotgctl
|= GOTGCTL_HSTSETHNPEN
;
3487 dwc2_writel(hsotg
, gotgctl
, GOTGCTL
);
3488 hsotg
->op_state
= OTG_STATE_A_SUSPEND
;
3491 hprt0
= dwc2_read_hprt0(hsotg
);
3492 hprt0
|= HPRT0_SUSP
;
3493 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3495 hsotg
->bus_suspended
= true;
3498 * If power_down is supported, Phy clock will be suspended
3499 * after registers are backuped.
3501 if (!hsotg
->params
.power_down
) {
3502 /* Suspend the Phy Clock */
3503 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3504 pcgctl
|= PCGCTL_STOPPCLK
;
3505 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3509 /* For HNP the bus must be suspended for at least 200ms */
3510 if (dwc2_host_is_b_hnp_enabled(hsotg
)) {
3511 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3512 pcgctl
&= ~PCGCTL_STOPPCLK
;
3513 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3515 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3519 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3523 /* Must NOT be called with interrupt disabled or spinlock held */
3524 static void dwc2_port_resume(struct dwc2_hsotg
*hsotg
)
3526 unsigned long flags
;
3530 spin_lock_irqsave(&hsotg
->lock
, flags
);
3533 * If power_down is supported, Phy clock is already resumed
3534 * after registers restore.
3536 if (!hsotg
->params
.power_down
) {
3537 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3538 pcgctl
&= ~PCGCTL_STOPPCLK
;
3539 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3540 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3542 spin_lock_irqsave(&hsotg
->lock
, flags
);
3545 hprt0
= dwc2_read_hprt0(hsotg
);
3547 hprt0
&= ~HPRT0_SUSP
;
3548 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3549 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3551 msleep(USB_RESUME_TIMEOUT
);
3553 spin_lock_irqsave(&hsotg
->lock
, flags
);
3554 hprt0
= dwc2_read_hprt0(hsotg
);
3555 hprt0
&= ~(HPRT0_RES
| HPRT0_SUSP
);
3556 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3557 hsotg
->bus_suspended
= false;
3558 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3561 /* Handles hub class-specific requests */
3562 static int dwc2_hcd_hub_control(struct dwc2_hsotg
*hsotg
, u16 typereq
,
3563 u16 wvalue
, u16 windex
, char *buf
, u16 wlength
)
3565 struct usb_hub_descriptor
*hub_desc
;
3574 case ClearHubFeature
:
3575 dev_dbg(hsotg
->dev
, "ClearHubFeature %1xh\n", wvalue
);
3578 case C_HUB_LOCAL_POWER
:
3579 case C_HUB_OVER_CURRENT
:
3580 /* Nothing required here */
3586 "ClearHubFeature request %1xh unknown\n",
3591 case ClearPortFeature
:
3592 if (wvalue
!= USB_PORT_FEAT_L1
)
3593 if (!windex
|| windex
> 1)
3596 case USB_PORT_FEAT_ENABLE
:
3598 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3599 hprt0
= dwc2_read_hprt0(hsotg
);
3601 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3604 case USB_PORT_FEAT_SUSPEND
:
3606 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3608 if (hsotg
->bus_suspended
) {
3609 if (hsotg
->hibernated
)
3610 dwc2_exit_hibernation(hsotg
, 0, 0, 1);
3612 dwc2_port_resume(hsotg
);
3616 case USB_PORT_FEAT_POWER
:
3618 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3619 hprt0
= dwc2_read_hprt0(hsotg
);
3620 pwr
= hprt0
& HPRT0_PWR
;
3621 hprt0
&= ~HPRT0_PWR
;
3622 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3624 dwc2_vbus_supply_exit(hsotg
);
3627 case USB_PORT_FEAT_INDICATOR
:
3629 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3630 /* Port indicator not supported */
3633 case USB_PORT_FEAT_C_CONNECTION
:
3635 * Clears driver's internal Connect Status Change flag
3638 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3639 hsotg
->flags
.b
.port_connect_status_change
= 0;
3642 case USB_PORT_FEAT_C_RESET
:
3643 /* Clears driver's internal Port Reset Change flag */
3645 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3646 hsotg
->flags
.b
.port_reset_change
= 0;
3649 case USB_PORT_FEAT_C_ENABLE
:
3651 * Clears the driver's internal Port Enable/Disable
3655 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3656 hsotg
->flags
.b
.port_enable_change
= 0;
3659 case USB_PORT_FEAT_C_SUSPEND
:
3661 * Clears the driver's internal Port Suspend Change
3662 * flag, which is set when resume signaling on the host
3666 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3667 hsotg
->flags
.b
.port_suspend_change
= 0;
3670 case USB_PORT_FEAT_C_PORT_L1
:
3672 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3673 hsotg
->flags
.b
.port_l1_change
= 0;
3676 case USB_PORT_FEAT_C_OVER_CURRENT
:
3678 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3679 hsotg
->flags
.b
.port_over_current_change
= 0;
3685 "ClearPortFeature request %1xh unknown or unsupported\n",
3690 case GetHubDescriptor
:
3691 dev_dbg(hsotg
->dev
, "GetHubDescriptor\n");
3692 hub_desc
= (struct usb_hub_descriptor
*)buf
;
3693 hub_desc
->bDescLength
= 9;
3694 hub_desc
->bDescriptorType
= USB_DT_HUB
;
3695 hub_desc
->bNbrPorts
= 1;
3696 hub_desc
->wHubCharacteristics
=
3697 cpu_to_le16(HUB_CHAR_COMMON_LPSM
|
3698 HUB_CHAR_INDV_PORT_OCPM
);
3699 hub_desc
->bPwrOn2PwrGood
= 1;
3700 hub_desc
->bHubContrCurrent
= 0;
3701 hub_desc
->u
.hs
.DeviceRemovable
[0] = 0;
3702 hub_desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3706 dev_dbg(hsotg
->dev
, "GetHubStatus\n");
3711 dev_vdbg(hsotg
->dev
,
3712 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex
,
3714 if (!windex
|| windex
> 1)
3718 if (hsotg
->flags
.b
.port_connect_status_change
)
3719 port_status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3720 if (hsotg
->flags
.b
.port_enable_change
)
3721 port_status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3722 if (hsotg
->flags
.b
.port_suspend_change
)
3723 port_status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3724 if (hsotg
->flags
.b
.port_l1_change
)
3725 port_status
|= USB_PORT_STAT_C_L1
<< 16;
3726 if (hsotg
->flags
.b
.port_reset_change
)
3727 port_status
|= USB_PORT_STAT_C_RESET
<< 16;
3728 if (hsotg
->flags
.b
.port_over_current_change
) {
3729 dev_warn(hsotg
->dev
, "Overcurrent change detected\n");
3730 port_status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3733 if (!hsotg
->flags
.b
.port_connect_status
) {
3735 * The port is disconnected, which means the core is
3736 * either in device mode or it soon will be. Just
3737 * return 0's for the remainder of the port status
3738 * since the port register can't be read if the core
3739 * is in device mode.
3741 *(__le32
*)buf
= cpu_to_le32(port_status
);
3745 hprt0
= dwc2_readl(hsotg
, HPRT0
);
3746 dev_vdbg(hsotg
->dev
, " HPRT0: 0x%08x\n", hprt0
);
3748 if (hprt0
& HPRT0_CONNSTS
)
3749 port_status
|= USB_PORT_STAT_CONNECTION
;
3750 if (hprt0
& HPRT0_ENA
)
3751 port_status
|= USB_PORT_STAT_ENABLE
;
3752 if (hprt0
& HPRT0_SUSP
)
3753 port_status
|= USB_PORT_STAT_SUSPEND
;
3754 if (hprt0
& HPRT0_OVRCURRACT
)
3755 port_status
|= USB_PORT_STAT_OVERCURRENT
;
3756 if (hprt0
& HPRT0_RST
)
3757 port_status
|= USB_PORT_STAT_RESET
;
3758 if (hprt0
& HPRT0_PWR
)
3759 port_status
|= USB_PORT_STAT_POWER
;
3761 speed
= (hprt0
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
3762 if (speed
== HPRT0_SPD_HIGH_SPEED
)
3763 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3764 else if (speed
== HPRT0_SPD_LOW_SPEED
)
3765 port_status
|= USB_PORT_STAT_LOW_SPEED
;
3767 if (hprt0
& HPRT0_TSTCTL_MASK
)
3768 port_status
|= USB_PORT_STAT_TEST
;
3769 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3771 if (hsotg
->params
.dma_desc_fs_enable
) {
3773 * Enable descriptor DMA only if a full speed
3774 * device is connected.
3776 if (hsotg
->new_connection
&&
3778 (USB_PORT_STAT_CONNECTION
|
3779 USB_PORT_STAT_HIGH_SPEED
|
3780 USB_PORT_STAT_LOW_SPEED
)) ==
3781 USB_PORT_STAT_CONNECTION
)) {
3784 dev_info(hsotg
->dev
, "Enabling descriptor DMA mode\n");
3785 hsotg
->params
.dma_desc_enable
= true;
3786 hcfg
= dwc2_readl(hsotg
, HCFG
);
3787 hcfg
|= HCFG_DESCDMA
;
3788 dwc2_writel(hsotg
, hcfg
, HCFG
);
3789 hsotg
->new_connection
= false;
3793 dev_vdbg(hsotg
->dev
, "port_status=%08x\n", port_status
);
3794 *(__le32
*)buf
= cpu_to_le32(port_status
);
3798 dev_dbg(hsotg
->dev
, "SetHubFeature\n");
3799 /* No HUB features supported */
3802 case SetPortFeature
:
3803 dev_dbg(hsotg
->dev
, "SetPortFeature\n");
3804 if (wvalue
!= USB_PORT_FEAT_TEST
&& (!windex
|| windex
> 1))
3807 if (!hsotg
->flags
.b
.port_connect_status
) {
3809 * The port is disconnected, which means the core is
3810 * either in device mode or it soon will be. Just
3811 * return without doing anything since the port
3812 * register can't be written if the core is in device
3819 case USB_PORT_FEAT_SUSPEND
:
3821 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3822 if (windex
!= hsotg
->otg_port
)
3824 if (hsotg
->params
.power_down
== 2)
3825 dwc2_enter_hibernation(hsotg
, 1);
3827 dwc2_port_suspend(hsotg
, windex
);
3830 case USB_PORT_FEAT_POWER
:
3832 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3833 hprt0
= dwc2_read_hprt0(hsotg
);
3834 pwr
= hprt0
& HPRT0_PWR
;
3836 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3838 dwc2_vbus_supply_init(hsotg
);
3841 case USB_PORT_FEAT_RESET
:
3842 if (hsotg
->params
.power_down
== 2 &&
3844 dwc2_exit_hibernation(hsotg
, 0, 1, 1);
3845 hprt0
= dwc2_read_hprt0(hsotg
);
3847 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3848 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
3849 pcgctl
&= ~(PCGCTL_ENBL_SLEEP_GATING
| PCGCTL_STOPPCLK
);
3850 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
3851 /* ??? Original driver does this */
3852 dwc2_writel(hsotg
, 0, PCGCTL
);
3854 hprt0
= dwc2_read_hprt0(hsotg
);
3855 pwr
= hprt0
& HPRT0_PWR
;
3856 /* Clear suspend bit if resetting from suspend state */
3857 hprt0
&= ~HPRT0_SUSP
;
3860 * When B-Host the Port reset bit is set in the Start
3861 * HCD Callback function, so that the reset is started
3862 * within 1ms of the HNP success interrupt
3864 if (!dwc2_hcd_is_b_host(hsotg
)) {
3865 hprt0
|= HPRT0_PWR
| HPRT0_RST
;
3867 "In host mode, hprt0=%08x\n", hprt0
);
3868 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3870 dwc2_vbus_supply_init(hsotg
);
3873 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3875 hprt0
&= ~HPRT0_RST
;
3876 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3877 hsotg
->lx_state
= DWC2_L0
; /* Now back to On state */
3880 case USB_PORT_FEAT_INDICATOR
:
3882 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3886 case USB_PORT_FEAT_TEST
:
3887 hprt0
= dwc2_read_hprt0(hsotg
);
3889 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3890 hprt0
&= ~HPRT0_TSTCTL_MASK
;
3891 hprt0
|= (windex
>> 8) << HPRT0_TSTCTL_SHIFT
;
3892 dwc2_writel(hsotg
, hprt0
, HPRT0
);
3898 "SetPortFeature %1xh unknown or unsupported\n",
3908 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3909 typereq
, windex
, wvalue
);
3916 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg
*hsotg
, int port
)
3923 retval
= (hsotg
->flags
.b
.port_connect_status_change
||
3924 hsotg
->flags
.b
.port_reset_change
||
3925 hsotg
->flags
.b
.port_enable_change
||
3926 hsotg
->flags
.b
.port_suspend_change
||
3927 hsotg
->flags
.b
.port_over_current_change
);
3931 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3932 dev_dbg(hsotg
->dev
, " port_connect_status_change: %d\n",
3933 hsotg
->flags
.b
.port_connect_status_change
);
3934 dev_dbg(hsotg
->dev
, " port_reset_change: %d\n",
3935 hsotg
->flags
.b
.port_reset_change
);
3936 dev_dbg(hsotg
->dev
, " port_enable_change: %d\n",
3937 hsotg
->flags
.b
.port_enable_change
);
3938 dev_dbg(hsotg
->dev
, " port_suspend_change: %d\n",
3939 hsotg
->flags
.b
.port_suspend_change
);
3940 dev_dbg(hsotg
->dev
, " port_over_current_change: %d\n",
3941 hsotg
->flags
.b
.port_over_current_change
);
3947 int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
)
3949 u32 hfnum
= dwc2_readl(hsotg
, HFNUM
);
3951 #ifdef DWC2_DEBUG_SOF
3952 dev_vdbg(hsotg
->dev
, "DWC OTG HCD GET FRAME NUMBER %d\n",
3953 (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
);
3955 return (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3958 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg
*hsotg
, int us
)
3960 u32 hprt
= dwc2_readl(hsotg
, HPRT0
);
3961 u32 hfir
= dwc2_readl(hsotg
, HFIR
);
3962 u32 hfnum
= dwc2_readl(hsotg
, HFNUM
);
3963 unsigned int us_per_frame
;
3964 unsigned int frame_number
;
3965 unsigned int remaining
;
3966 unsigned int interval
;
3967 unsigned int phy_clks
;
3969 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3970 us_per_frame
= (hprt
& HPRT0_SPD_MASK
) ? 1000 : 125;
3972 /* Extract fields */
3973 frame_number
= (hfnum
& HFNUM_FRNUM_MASK
) >> HFNUM_FRNUM_SHIFT
;
3974 remaining
= (hfnum
& HFNUM_FRREM_MASK
) >> HFNUM_FRREM_SHIFT
;
3975 interval
= (hfir
& HFIR_FRINT_MASK
) >> HFIR_FRINT_SHIFT
;
3978 * Number of phy clocks since the last tick of the frame number after
3981 phy_clks
= (interval
- remaining
) +
3982 DIV_ROUND_UP(interval
* us
, us_per_frame
);
3984 return dwc2_frame_num_inc(frame_number
, phy_clks
/ interval
);
3987 int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
)
3989 return hsotg
->op_state
== OTG_STATE_B_HOST
;
3992 static struct dwc2_hcd_urb
*dwc2_hcd_urb_alloc(struct dwc2_hsotg
*hsotg
,
3996 struct dwc2_hcd_urb
*urb
;
3997 u32 size
= sizeof(*urb
) + iso_desc_count
*
3998 sizeof(struct dwc2_hcd_iso_packet_desc
);
4000 urb
= kzalloc(size
, mem_flags
);
4002 urb
->packet_count
= iso_desc_count
;
4006 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg
*hsotg
,
4007 struct dwc2_hcd_urb
*urb
, u8 dev_addr
,
4008 u8 ep_num
, u8 ep_type
, u8 ep_dir
,
4009 u16 maxp
, u16 maxp_mult
)
4012 ep_type
== USB_ENDPOINT_XFER_BULK
||
4013 ep_type
== USB_ENDPOINT_XFER_CONTROL
)
4014 dev_vdbg(hsotg
->dev
,
4015 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
4016 dev_addr
, ep_num
, ep_dir
, ep_type
, maxp
, maxp_mult
);
4017 urb
->pipe_info
.dev_addr
= dev_addr
;
4018 urb
->pipe_info
.ep_num
= ep_num
;
4019 urb
->pipe_info
.pipe_type
= ep_type
;
4020 urb
->pipe_info
.pipe_dir
= ep_dir
;
4021 urb
->pipe_info
.maxp
= maxp
;
4022 urb
->pipe_info
.maxp_mult
= maxp_mult
;
4026 * NOTE: This function will be removed once the peripheral controller code
4027 * is integrated and the driver is stable
4029 void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
)
4032 struct dwc2_host_chan
*chan
;
4033 struct dwc2_hcd_urb
*urb
;
4034 struct dwc2_qtd
*qtd
;
4040 num_channels
= hsotg
->params
.host_channels
;
4041 dev_dbg(hsotg
->dev
, "\n");
4043 "************************************************************\n");
4044 dev_dbg(hsotg
->dev
, "HCD State:\n");
4045 dev_dbg(hsotg
->dev
, " Num channels: %d\n", num_channels
);
4047 for (i
= 0; i
< num_channels
; i
++) {
4048 chan
= hsotg
->hc_ptr_array
[i
];
4049 dev_dbg(hsotg
->dev
, " Channel %d:\n", i
);
4051 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4052 chan
->dev_addr
, chan
->ep_num
, chan
->ep_is_in
);
4053 dev_dbg(hsotg
->dev
, " speed: %d\n", chan
->speed
);
4054 dev_dbg(hsotg
->dev
, " ep_type: %d\n", chan
->ep_type
);
4055 dev_dbg(hsotg
->dev
, " max_packet: %d\n", chan
->max_packet
);
4056 dev_dbg(hsotg
->dev
, " data_pid_start: %d\n",
4057 chan
->data_pid_start
);
4058 dev_dbg(hsotg
->dev
, " multi_count: %d\n", chan
->multi_count
);
4059 dev_dbg(hsotg
->dev
, " xfer_started: %d\n",
4060 chan
->xfer_started
);
4061 dev_dbg(hsotg
->dev
, " xfer_buf: %p\n", chan
->xfer_buf
);
4062 dev_dbg(hsotg
->dev
, " xfer_dma: %08lx\n",
4063 (unsigned long)chan
->xfer_dma
);
4064 dev_dbg(hsotg
->dev
, " xfer_len: %d\n", chan
->xfer_len
);
4065 dev_dbg(hsotg
->dev
, " xfer_count: %d\n", chan
->xfer_count
);
4066 dev_dbg(hsotg
->dev
, " halt_on_queue: %d\n",
4067 chan
->halt_on_queue
);
4068 dev_dbg(hsotg
->dev
, " halt_pending: %d\n",
4069 chan
->halt_pending
);
4070 dev_dbg(hsotg
->dev
, " halt_status: %d\n", chan
->halt_status
);
4071 dev_dbg(hsotg
->dev
, " do_split: %d\n", chan
->do_split
);
4072 dev_dbg(hsotg
->dev
, " complete_split: %d\n",
4073 chan
->complete_split
);
4074 dev_dbg(hsotg
->dev
, " hub_addr: %d\n", chan
->hub_addr
);
4075 dev_dbg(hsotg
->dev
, " hub_port: %d\n", chan
->hub_port
);
4076 dev_dbg(hsotg
->dev
, " xact_pos: %d\n", chan
->xact_pos
);
4077 dev_dbg(hsotg
->dev
, " requests: %d\n", chan
->requests
);
4078 dev_dbg(hsotg
->dev
, " qh: %p\n", chan
->qh
);
4080 if (chan
->xfer_started
) {
4081 u32 hfnum
, hcchar
, hctsiz
, hcint
, hcintmsk
;
4083 hfnum
= dwc2_readl(hsotg
, HFNUM
);
4084 hcchar
= dwc2_readl(hsotg
, HCCHAR(i
));
4085 hctsiz
= dwc2_readl(hsotg
, HCTSIZ(i
));
4086 hcint
= dwc2_readl(hsotg
, HCINT(i
));
4087 hcintmsk
= dwc2_readl(hsotg
, HCINTMSK(i
));
4088 dev_dbg(hsotg
->dev
, " hfnum: 0x%08x\n", hfnum
);
4089 dev_dbg(hsotg
->dev
, " hcchar: 0x%08x\n", hcchar
);
4090 dev_dbg(hsotg
->dev
, " hctsiz: 0x%08x\n", hctsiz
);
4091 dev_dbg(hsotg
->dev
, " hcint: 0x%08x\n", hcint
);
4092 dev_dbg(hsotg
->dev
, " hcintmsk: 0x%08x\n", hcintmsk
);
4095 if (!(chan
->xfer_started
&& chan
->qh
))
4098 list_for_each_entry(qtd
, &chan
->qh
->qtd_list
, qtd_list_entry
) {
4099 if (!qtd
->in_process
)
4102 dev_dbg(hsotg
->dev
, " URB Info:\n");
4103 dev_dbg(hsotg
->dev
, " qtd: %p, urb: %p\n",
4107 " Dev: %d, EP: %d %s\n",
4108 dwc2_hcd_get_dev_addr(&urb
->pipe_info
),
4109 dwc2_hcd_get_ep_num(&urb
->pipe_info
),
4110 dwc2_hcd_is_pipe_in(&urb
->pipe_info
) ?
4113 " Max packet size: %d (%d mult)\n",
4114 dwc2_hcd_get_maxp(&urb
->pipe_info
),
4115 dwc2_hcd_get_maxp_mult(&urb
->pipe_info
));
4117 " transfer_buffer: %p\n",
4120 " transfer_dma: %08lx\n",
4121 (unsigned long)urb
->dma
);
4123 " transfer_buffer_length: %d\n",
4125 dev_dbg(hsotg
->dev
, " actual_length: %d\n",
4126 urb
->actual_length
);
4131 dev_dbg(hsotg
->dev
, " non_periodic_channels: %d\n",
4132 hsotg
->non_periodic_channels
);
4133 dev_dbg(hsotg
->dev
, " periodic_channels: %d\n",
4134 hsotg
->periodic_channels
);
4135 dev_dbg(hsotg
->dev
, " periodic_usecs: %d\n", hsotg
->periodic_usecs
);
4136 np_tx_status
= dwc2_readl(hsotg
, GNPTXSTS
);
4137 dev_dbg(hsotg
->dev
, " NP Tx Req Queue Space Avail: %d\n",
4138 (np_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
4139 dev_dbg(hsotg
->dev
, " NP Tx FIFO Space Avail: %d\n",
4140 (np_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
4141 p_tx_status
= dwc2_readl(hsotg
, HPTXSTS
);
4142 dev_dbg(hsotg
->dev
, " P Tx Req Queue Space Avail: %d\n",
4143 (p_tx_status
& TXSTS_QSPCAVAIL_MASK
) >> TXSTS_QSPCAVAIL_SHIFT
);
4144 dev_dbg(hsotg
->dev
, " P Tx FIFO Space Avail: %d\n",
4145 (p_tx_status
& TXSTS_FSPCAVAIL_MASK
) >> TXSTS_FSPCAVAIL_SHIFT
);
4146 dwc2_dump_global_registers(hsotg
);
4147 dwc2_dump_host_registers(hsotg
);
4149 "************************************************************\n");
4150 dev_dbg(hsotg
->dev
, "\n");
4154 struct wrapper_priv_data
{
4155 struct dwc2_hsotg
*hsotg
;
4158 /* Gets the dwc2_hsotg from a usb_hcd */
4159 static struct dwc2_hsotg
*dwc2_hcd_to_hsotg(struct usb_hcd
*hcd
)
4161 struct wrapper_priv_data
*p
;
4163 p
= (struct wrapper_priv_data
*)&hcd
->hcd_priv
;
4168 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4170 * This will get the dwc2_tt structure (and ttport) associated with the given
4171 * context (which is really just a struct urb pointer).
4173 * The first time this is called for a given TT we allocate memory for our
4174 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4175 * then the refcount for the structure will go to 0 and we'll free it.
4177 * @hsotg: The HCD state structure for the DWC OTG controller.
4178 * @context: The priv pointer from a struct dwc2_hcd_urb.
4179 * @mem_flags: Flags for allocating memory.
4180 * @ttport: We'll return this device's port number here. That's used to
4181 * reference into the bitmap if we're on a multi_tt hub.
4183 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4184 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4187 struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
, void *context
,
4188 gfp_t mem_flags
, int *ttport
)
4190 struct urb
*urb
= context
;
4191 struct dwc2_tt
*dwc_tt
= NULL
;
4194 *ttport
= urb
->dev
->ttport
;
4196 dwc_tt
= urb
->dev
->tt
->hcpriv
;
4201 * For single_tt we need one schedule. For multi_tt
4202 * we need one per port.
4204 bitmap_size
= DWC2_ELEMENTS_PER_LS_BITMAP
*
4205 sizeof(dwc_tt
->periodic_bitmaps
[0]);
4206 if (urb
->dev
->tt
->multi
)
4207 bitmap_size
*= urb
->dev
->tt
->hub
->maxchild
;
4209 dwc_tt
= kzalloc(sizeof(*dwc_tt
) + bitmap_size
,
4214 dwc_tt
->usb_tt
= urb
->dev
->tt
;
4215 dwc_tt
->usb_tt
->hcpriv
= dwc_tt
;
4225 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4227 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4228 * of the structure are done.
4230 * It's OK to call this with NULL.
4232 * @hsotg: The HCD state structure for the DWC OTG controller.
4233 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4235 void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
, struct dwc2_tt
*dwc_tt
)
4237 /* Model kfree and make put of NULL a no-op */
4241 WARN_ON(dwc_tt
->refcount
< 1);
4244 if (!dwc_tt
->refcount
) {
4245 dwc_tt
->usb_tt
->hcpriv
= NULL
;
4250 int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
)
4252 struct urb
*urb
= context
;
4254 return urb
->dev
->speed
;
4257 static void dwc2_allocate_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4260 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4263 bus
->bandwidth_allocated
+= bw
/ urb
->interval
;
4264 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4265 bus
->bandwidth_isoc_reqs
++;
4267 bus
->bandwidth_int_reqs
++;
4270 static void dwc2_free_bus_bandwidth(struct usb_hcd
*hcd
, u16 bw
,
4273 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4276 bus
->bandwidth_allocated
-= bw
/ urb
->interval
;
4277 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
4278 bus
->bandwidth_isoc_reqs
--;
4280 bus
->bandwidth_int_reqs
--;
4284 * Sets the final status of an URB and returns it to the upper layer. Any
4285 * required cleanup of the URB is performed.
4287 * Must be called with interrupt disabled and spinlock held
4289 void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
4296 dev_dbg(hsotg
->dev
, "## %s: qtd is NULL ##\n", __func__
);
4301 dev_dbg(hsotg
->dev
, "## %s: qtd->urb is NULL ##\n", __func__
);
4305 urb
= qtd
->urb
->priv
;
4307 dev_dbg(hsotg
->dev
, "## %s: urb->priv is NULL ##\n", __func__
);
4311 urb
->actual_length
= dwc2_hcd_urb_get_actual_length(qtd
->urb
);
4314 dev_vdbg(hsotg
->dev
,
4315 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4316 __func__
, urb
, usb_pipedevice(urb
->pipe
),
4317 usb_pipeendpoint(urb
->pipe
),
4318 usb_pipein(urb
->pipe
) ? "IN" : "OUT", status
,
4319 urb
->actual_length
);
4321 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4322 urb
->error_count
= dwc2_hcd_urb_get_error_count(qtd
->urb
);
4323 for (i
= 0; i
< urb
->number_of_packets
; ++i
) {
4324 urb
->iso_frame_desc
[i
].actual_length
=
4325 dwc2_hcd_urb_get_iso_desc_actual_length(
4327 urb
->iso_frame_desc
[i
].status
=
4328 dwc2_hcd_urb_get_iso_desc_status(qtd
->urb
, i
);
4332 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
&& dbg_perio()) {
4333 for (i
= 0; i
< urb
->number_of_packets
; i
++)
4334 dev_vdbg(hsotg
->dev
, " ISO Desc %d status %d\n",
4335 i
, urb
->iso_frame_desc
[i
].status
);
4338 urb
->status
= status
;
4340 if ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
4341 urb
->actual_length
< urb
->transfer_buffer_length
)
4342 urb
->status
= -EREMOTEIO
;
4345 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4346 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4347 struct usb_host_endpoint
*ep
= urb
->ep
;
4350 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg
),
4351 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4355 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg
), urb
);
4360 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg
), urb
, status
);
4364 * Work queue function for starting the HCD when A-Cable is connected
4366 static void dwc2_hcd_start_func(struct work_struct
*work
)
4368 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4371 dev_dbg(hsotg
->dev
, "%s() %p\n", __func__
, hsotg
);
4372 dwc2_host_start(hsotg
);
4376 * Reset work queue function
4378 static void dwc2_hcd_reset_func(struct work_struct
*work
)
4380 struct dwc2_hsotg
*hsotg
= container_of(work
, struct dwc2_hsotg
,
4382 unsigned long flags
;
4385 dev_dbg(hsotg
->dev
, "USB RESET function called\n");
4387 spin_lock_irqsave(&hsotg
->lock
, flags
);
4389 hprt0
= dwc2_read_hprt0(hsotg
);
4390 hprt0
&= ~HPRT0_RST
;
4391 dwc2_writel(hsotg
, hprt0
, HPRT0
);
4392 hsotg
->flags
.b
.port_reset_change
= 1;
4394 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4398 * =========================================================================
4399 * Linux HC Driver Functions
4400 * =========================================================================
4404 * Initializes the DWC_otg controller and its root hub and prepares it for host
4405 * mode operation. Activates the root port. Returns 0 on success and a negative
4406 * error code on failure.
4408 static int _dwc2_hcd_start(struct usb_hcd
*hcd
)
4410 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4411 struct usb_bus
*bus
= hcd_to_bus(hcd
);
4412 unsigned long flags
;
4416 dev_dbg(hsotg
->dev
, "DWC OTG HCD START\n");
4418 spin_lock_irqsave(&hsotg
->lock
, flags
);
4419 hsotg
->lx_state
= DWC2_L0
;
4420 hcd
->state
= HC_STATE_RUNNING
;
4421 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4423 if (dwc2_is_device_mode(hsotg
)) {
4424 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4425 return 0; /* why 0 ?? */
4428 dwc2_hcd_reinit(hsotg
);
4430 hprt0
= dwc2_read_hprt0(hsotg
);
4431 /* Has vbus power been turned on in dwc2_core_host_init ? */
4432 if (hprt0
& HPRT0_PWR
) {
4433 /* Enable external vbus supply before resuming root hub */
4434 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4435 ret
= dwc2_vbus_supply_init(hsotg
);
4438 spin_lock_irqsave(&hsotg
->lock
, flags
);
4441 /* Initialize and connect root hub if one is not already attached */
4442 if (bus
->root_hub
) {
4443 dev_dbg(hsotg
->dev
, "DWC OTG HCD Has Root Hub\n");
4444 /* Inform the HUB driver to resume */
4445 usb_hcd_resume_root_hub(hcd
);
4448 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4454 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4457 static void _dwc2_hcd_stop(struct usb_hcd
*hcd
)
4459 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4460 unsigned long flags
;
4463 /* Turn off all host-specific interrupts */
4464 dwc2_disable_host_interrupts(hsotg
);
4466 /* Wait for interrupt processing to finish */
4467 synchronize_irq(hcd
->irq
);
4469 spin_lock_irqsave(&hsotg
->lock
, flags
);
4470 hprt0
= dwc2_read_hprt0(hsotg
);
4471 /* Ensure hcd is disconnected */
4472 dwc2_hcd_disconnect(hsotg
, true);
4473 dwc2_hcd_stop(hsotg
);
4474 hsotg
->lx_state
= DWC2_L3
;
4475 hcd
->state
= HC_STATE_HALT
;
4476 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4477 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4479 /* keep balanced supply init/exit by checking HPRT0_PWR */
4480 if (hprt0
& HPRT0_PWR
)
4481 dwc2_vbus_supply_exit(hsotg
);
4483 usleep_range(1000, 3000);
4486 static int _dwc2_hcd_suspend(struct usb_hcd
*hcd
)
4488 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4489 unsigned long flags
;
4493 spin_lock_irqsave(&hsotg
->lock
, flags
);
4495 if (dwc2_is_device_mode(hsotg
))
4498 if (hsotg
->lx_state
!= DWC2_L0
)
4501 if (!HCD_HW_ACCESSIBLE(hcd
))
4504 if (hsotg
->op_state
== OTG_STATE_B_PERIPHERAL
)
4507 if (hsotg
->params
.power_down
!= DWC2_POWER_DOWN_PARAM_PARTIAL
)
4508 goto skip_power_saving
;
4511 * Drive USB suspend and disable port Power
4512 * if usb bus is not suspended.
4514 if (!hsotg
->bus_suspended
) {
4515 hprt0
= dwc2_read_hprt0(hsotg
);
4516 hprt0
|= HPRT0_SUSP
;
4517 hprt0
&= ~HPRT0_PWR
;
4518 dwc2_writel(hsotg
, hprt0
, HPRT0
);
4519 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4520 dwc2_vbus_supply_exit(hsotg
);
4521 spin_lock_irqsave(&hsotg
->lock
, flags
);
4524 /* Enter partial_power_down */
4525 ret
= dwc2_enter_partial_power_down(hsotg
);
4527 if (ret
!= -ENOTSUPP
)
4529 "enter partial_power_down failed\n");
4530 goto skip_power_saving
;
4533 /* Ask phy to be suspended */
4534 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4535 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4536 usb_phy_set_suspend(hsotg
->uphy
, true);
4537 spin_lock_irqsave(&hsotg
->lock
, flags
);
4540 /* After entering partial_power_down, hardware is no more accessible */
4541 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4544 hsotg
->lx_state
= DWC2_L2
;
4546 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4551 static int _dwc2_hcd_resume(struct usb_hcd
*hcd
)
4553 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4554 unsigned long flags
;
4557 spin_lock_irqsave(&hsotg
->lock
, flags
);
4559 if (dwc2_is_device_mode(hsotg
))
4562 if (hsotg
->lx_state
!= DWC2_L2
)
4565 if (hsotg
->params
.power_down
!= DWC2_POWER_DOWN_PARAM_PARTIAL
) {
4566 hsotg
->lx_state
= DWC2_L0
;
4571 * Set HW accessible bit before powering on the controller
4572 * since an interrupt may rise.
4574 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
4577 * Enable power if not already done.
4578 * This must not be spinlocked since duration
4579 * of this call is unknown.
4581 if (!IS_ERR_OR_NULL(hsotg
->uphy
)) {
4582 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4583 usb_phy_set_suspend(hsotg
->uphy
, false);
4584 spin_lock_irqsave(&hsotg
->lock
, flags
);
4587 /* Exit partial_power_down */
4588 ret
= dwc2_exit_partial_power_down(hsotg
, true);
4589 if (ret
&& (ret
!= -ENOTSUPP
))
4590 dev_err(hsotg
->dev
, "exit partial_power_down failed\n");
4592 hsotg
->lx_state
= DWC2_L0
;
4594 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4596 if (hsotg
->bus_suspended
) {
4597 spin_lock_irqsave(&hsotg
->lock
, flags
);
4598 hsotg
->flags
.b
.port_suspend_change
= 1;
4599 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4600 dwc2_port_resume(hsotg
);
4602 dwc2_vbus_supply_init(hsotg
);
4604 /* Wait for controller to correctly update D+/D- level */
4605 usleep_range(3000, 5000);
4608 * Clear Port Enable and Port Status changes.
4609 * Enable Port Power.
4611 dwc2_writel(hsotg
, HPRT0_PWR
| HPRT0_CONNDET
|
4612 HPRT0_ENACHG
, HPRT0
);
4613 /* Wait for controller to detect Port Connect */
4614 usleep_range(5000, 7000);
4619 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4624 /* Returns the current frame number */
4625 static int _dwc2_hcd_get_frame_number(struct usb_hcd
*hcd
)
4627 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4629 return dwc2_hcd_get_frame_number(hsotg
);
4632 static void dwc2_dump_urb_info(struct usb_hcd
*hcd
, struct urb
*urb
,
4635 #ifdef VERBOSE_DEBUG
4636 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4637 char *pipetype
= NULL
;
4640 dev_vdbg(hsotg
->dev
, "%s, urb %p\n", fn_name
, urb
);
4641 dev_vdbg(hsotg
->dev
, " Device address: %d\n",
4642 usb_pipedevice(urb
->pipe
));
4643 dev_vdbg(hsotg
->dev
, " Endpoint: %d, %s\n",
4644 usb_pipeendpoint(urb
->pipe
),
4645 usb_pipein(urb
->pipe
) ? "IN" : "OUT");
4647 switch (usb_pipetype(urb
->pipe
)) {
4649 pipetype
= "CONTROL";
4654 case PIPE_INTERRUPT
:
4655 pipetype
= "INTERRUPT";
4657 case PIPE_ISOCHRONOUS
:
4658 pipetype
= "ISOCHRONOUS";
4662 dev_vdbg(hsotg
->dev
, " Endpoint type: %s %s (%s)\n", pipetype
,
4663 usb_urb_dir_in(urb
) ? "IN" : "OUT", usb_pipein(urb
->pipe
) ?
4666 switch (urb
->dev
->speed
) {
4667 case USB_SPEED_HIGH
:
4670 case USB_SPEED_FULL
:
4681 dev_vdbg(hsotg
->dev
, " Speed: %s\n", speed
);
4682 dev_vdbg(hsotg
->dev
, " Max packet size: %d (%d mult)\n",
4683 usb_endpoint_maxp(&urb
->ep
->desc
),
4684 usb_endpoint_maxp_mult(&urb
->ep
->desc
));
4686 dev_vdbg(hsotg
->dev
, " Data buffer length: %d\n",
4687 urb
->transfer_buffer_length
);
4688 dev_vdbg(hsotg
->dev
, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4689 urb
->transfer_buffer
, (unsigned long)urb
->transfer_dma
);
4690 dev_vdbg(hsotg
->dev
, " Setup buffer: %p, Setup DMA: %08lx\n",
4691 urb
->setup_packet
, (unsigned long)urb
->setup_dma
);
4692 dev_vdbg(hsotg
->dev
, " Interval: %d\n", urb
->interval
);
4694 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
4697 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4698 dev_vdbg(hsotg
->dev
, " ISO Desc %d:\n", i
);
4699 dev_vdbg(hsotg
->dev
, " offset: %d, length %d\n",
4700 urb
->iso_frame_desc
[i
].offset
,
4701 urb
->iso_frame_desc
[i
].length
);
4708 * Starts processing a USB transfer request specified by a USB Request Block
4709 * (URB). mem_flags indicates the type of memory allocation to use while
4710 * processing this URB.
4712 static int _dwc2_hcd_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
4715 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4716 struct usb_host_endpoint
*ep
= urb
->ep
;
4717 struct dwc2_hcd_urb
*dwc2_urb
;
4720 int alloc_bandwidth
= 0;
4724 unsigned long flags
;
4726 bool qh_allocated
= false;
4727 struct dwc2_qtd
*qtd
;
4730 dev_vdbg(hsotg
->dev
, "DWC OTG HCD URB Enqueue\n");
4731 dwc2_dump_urb_info(hcd
, urb
, "urb_enqueue");
4737 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
||
4738 usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
4739 spin_lock_irqsave(&hsotg
->lock
, flags
);
4740 if (!dwc2_hcd_is_bandwidth_allocated(hsotg
, ep
))
4741 alloc_bandwidth
= 1;
4742 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4745 switch (usb_pipetype(urb
->pipe
)) {
4747 ep_type
= USB_ENDPOINT_XFER_CONTROL
;
4749 case PIPE_ISOCHRONOUS
:
4750 ep_type
= USB_ENDPOINT_XFER_ISOC
;
4753 ep_type
= USB_ENDPOINT_XFER_BULK
;
4755 case PIPE_INTERRUPT
:
4756 ep_type
= USB_ENDPOINT_XFER_INT
;
4760 dwc2_urb
= dwc2_hcd_urb_alloc(hsotg
, urb
->number_of_packets
,
4765 dwc2_hcd_urb_set_pipeinfo(hsotg
, dwc2_urb
, usb_pipedevice(urb
->pipe
),
4766 usb_pipeendpoint(urb
->pipe
), ep_type
,
4767 usb_pipein(urb
->pipe
),
4768 usb_endpoint_maxp(&ep
->desc
),
4769 usb_endpoint_maxp_mult(&ep
->desc
));
4771 buf
= urb
->transfer_buffer
;
4773 if (hcd
->self
.uses_dma
) {
4774 if (!buf
&& (urb
->transfer_dma
& 3)) {
4776 "%s: unaligned transfer with no transfer_buffer",
4783 if (!(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4784 tflags
|= URB_GIVEBACK_ASAP
;
4785 if (urb
->transfer_flags
& URB_ZERO_PACKET
)
4786 tflags
|= URB_SEND_ZERO_PACKET
;
4788 dwc2_urb
->priv
= urb
;
4789 dwc2_urb
->buf
= buf
;
4790 dwc2_urb
->dma
= urb
->transfer_dma
;
4791 dwc2_urb
->length
= urb
->transfer_buffer_length
;
4792 dwc2_urb
->setup_packet
= urb
->setup_packet
;
4793 dwc2_urb
->setup_dma
= urb
->setup_dma
;
4794 dwc2_urb
->flags
= tflags
;
4795 dwc2_urb
->interval
= urb
->interval
;
4796 dwc2_urb
->status
= -EINPROGRESS
;
4798 for (i
= 0; i
< urb
->number_of_packets
; ++i
)
4799 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb
, i
,
4800 urb
->iso_frame_desc
[i
].offset
,
4801 urb
->iso_frame_desc
[i
].length
);
4803 urb
->hcpriv
= dwc2_urb
;
4804 qh
= (struct dwc2_qh
*)ep
->hcpriv
;
4805 /* Create QH for the endpoint if it doesn't exist */
4807 qh
= dwc2_hcd_qh_create(hsotg
, dwc2_urb
, mem_flags
);
4813 qh_allocated
= true;
4816 qtd
= kzalloc(sizeof(*qtd
), mem_flags
);
4822 spin_lock_irqsave(&hsotg
->lock
, flags
);
4823 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
4827 retval
= dwc2_hcd_urb_enqueue(hsotg
, dwc2_urb
, qh
, qtd
);
4831 if (alloc_bandwidth
) {
4832 dwc2_allocate_bus_bandwidth(hcd
,
4833 dwc2_hcd_get_ep_bandwidth(hsotg
, ep
),
4837 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4842 dwc2_urb
->priv
= NULL
;
4843 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4844 if (qh_allocated
&& qh
->channel
&& qh
->channel
->qh
== qh
)
4845 qh
->channel
->qh
= NULL
;
4847 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4853 struct dwc2_qtd
*qtd2
, *qtd2_tmp
;
4856 dwc2_hcd_qh_unlink(hsotg
, qh
);
4857 /* Free each QTD in the QH's QTD list */
4858 list_for_each_entry_safe(qtd2
, qtd2_tmp
, &qh
->qtd_list
,
4860 dwc2_hcd_qtd_unlink_and_free(hsotg
, qtd2
, qh
);
4861 dwc2_hcd_qh_free(hsotg
, qh
);
4870 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4872 static int _dwc2_hcd_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
,
4875 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4877 unsigned long flags
;
4879 dev_dbg(hsotg
->dev
, "DWC OTG HCD URB Dequeue\n");
4880 dwc2_dump_urb_info(hcd
, urb
, "urb_dequeue");
4882 spin_lock_irqsave(&hsotg
->lock
, flags
);
4884 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
4889 dev_dbg(hsotg
->dev
, "## urb->hcpriv is NULL ##\n");
4893 rc
= dwc2_hcd_urb_dequeue(hsotg
, urb
->hcpriv
);
4895 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
4900 /* Higher layer software sets URB status */
4901 spin_unlock(&hsotg
->lock
);
4902 usb_hcd_giveback_urb(hcd
, urb
, status
);
4903 spin_lock(&hsotg
->lock
);
4905 dev_dbg(hsotg
->dev
, "Called usb_hcd_giveback_urb()\n");
4906 dev_dbg(hsotg
->dev
, " urb->status = %d\n", urb
->status
);
4908 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4914 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4915 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4916 * must already be dequeued.
4918 static void _dwc2_hcd_endpoint_disable(struct usb_hcd
*hcd
,
4919 struct usb_host_endpoint
*ep
)
4921 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4924 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4925 ep
->desc
.bEndpointAddress
, ep
->hcpriv
);
4926 dwc2_hcd_endpoint_disable(hsotg
, ep
, 250);
4930 * Resets endpoint specific parameter values, in current version used to reset
4931 * the data toggle (as a WA). This function can be called from usb_clear_halt
4934 static void _dwc2_hcd_endpoint_reset(struct usb_hcd
*hcd
,
4935 struct usb_host_endpoint
*ep
)
4937 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4938 unsigned long flags
;
4941 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4942 ep
->desc
.bEndpointAddress
);
4944 spin_lock_irqsave(&hsotg
->lock
, flags
);
4945 dwc2_hcd_endpoint_reset(hsotg
, ep
);
4946 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4950 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4951 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4954 * This function is called by the USB core when an interrupt occurs
4956 static irqreturn_t
_dwc2_hcd_irq(struct usb_hcd
*hcd
)
4958 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4960 return dwc2_handle_hcd_intr(hsotg
);
4964 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4965 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4966 * is the status change indicator for the single root port. Returns 1 if either
4967 * change indicator is 1, otherwise returns 0.
4969 static int _dwc2_hcd_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
4971 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4973 buf
[0] = dwc2_hcd_is_status_changed(hsotg
, 1) << 1;
4977 /* Handles hub class-specific requests */
4978 static int _dwc2_hcd_hub_control(struct usb_hcd
*hcd
, u16 typereq
, u16 wvalue
,
4979 u16 windex
, char *buf
, u16 wlength
)
4981 int retval
= dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd
), typereq
,
4982 wvalue
, windex
, buf
, wlength
);
4986 /* Handles hub TT buffer clear completions */
4987 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
4988 struct usb_host_endpoint
*ep
)
4990 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
4992 unsigned long flags
;
4998 spin_lock_irqsave(&hsotg
->lock
, flags
);
4999 qh
->tt_buffer_dirty
= 0;
5001 if (hsotg
->flags
.b
.port_connect_status
)
5002 dwc2_hcd_queue_transactions(hsotg
, DWC2_TRANSACTION_ALL
);
5004 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5008 * HPRT0_SPD_HIGH_SPEED: high speed
5009 * HPRT0_SPD_FULL_SPEED: full speed
5011 static void dwc2_change_bus_speed(struct usb_hcd
*hcd
, int speed
)
5013 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5015 if (hsotg
->params
.speed
== speed
)
5018 hsotg
->params
.speed
= speed
;
5019 queue_work(hsotg
->wq_otg
, &hsotg
->wf_otg
);
5022 static void dwc2_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
5024 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5026 if (!hsotg
->params
.change_speed_quirk
)
5030 * On removal, set speed to default high-speed.
5032 if (udev
->parent
&& udev
->parent
->speed
> USB_SPEED_UNKNOWN
&&
5033 udev
->parent
->speed
< USB_SPEED_HIGH
) {
5034 dev_info(hsotg
->dev
, "Set speed to default high-speed\n");
5035 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
5039 static int dwc2_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
5041 struct dwc2_hsotg
*hsotg
= dwc2_hcd_to_hsotg(hcd
);
5043 if (!hsotg
->params
.change_speed_quirk
)
5046 if (udev
->speed
== USB_SPEED_HIGH
) {
5047 dev_info(hsotg
->dev
, "Set speed to high-speed\n");
5048 dwc2_change_bus_speed(hcd
, HPRT0_SPD_HIGH_SPEED
);
5049 } else if ((udev
->speed
== USB_SPEED_FULL
||
5050 udev
->speed
== USB_SPEED_LOW
)) {
5052 * Change speed setting to full-speed if there's
5053 * a full-speed or low-speed device plugged in.
5055 dev_info(hsotg
->dev
, "Set speed to full-speed\n");
5056 dwc2_change_bus_speed(hcd
, HPRT0_SPD_FULL_SPEED
);
5062 static struct hc_driver dwc2_hc_driver
= {
5063 .description
= "dwc2_hsotg",
5064 .product_desc
= "DWC OTG Controller",
5065 .hcd_priv_size
= sizeof(struct wrapper_priv_data
),
5067 .irq
= _dwc2_hcd_irq
,
5068 .flags
= HCD_MEMORY
| HCD_USB2
| HCD_BH
,
5070 .start
= _dwc2_hcd_start
,
5071 .stop
= _dwc2_hcd_stop
,
5072 .urb_enqueue
= _dwc2_hcd_urb_enqueue
,
5073 .urb_dequeue
= _dwc2_hcd_urb_dequeue
,
5074 .endpoint_disable
= _dwc2_hcd_endpoint_disable
,
5075 .endpoint_reset
= _dwc2_hcd_endpoint_reset
,
5076 .get_frame_number
= _dwc2_hcd_get_frame_number
,
5078 .hub_status_data
= _dwc2_hcd_hub_status_data
,
5079 .hub_control
= _dwc2_hcd_hub_control
,
5080 .clear_tt_buffer_complete
= _dwc2_hcd_clear_tt_buffer_complete
,
5082 .bus_suspend
= _dwc2_hcd_suspend
,
5083 .bus_resume
= _dwc2_hcd_resume
,
5085 .map_urb_for_dma
= dwc2_map_urb_for_dma
,
5086 .unmap_urb_for_dma
= dwc2_unmap_urb_for_dma
,
5090 * Frees secondary storage associated with the dwc2_hsotg structure contained
5091 * in the struct usb_hcd field
5093 static void dwc2_hcd_free(struct dwc2_hsotg
*hsotg
)
5099 dev_dbg(hsotg
->dev
, "DWC OTG HCD FREE\n");
5101 /* Free memory for QH/QTD lists */
5102 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_inactive
);
5103 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_waiting
);
5104 dwc2_qh_list_free(hsotg
, &hsotg
->non_periodic_sched_active
);
5105 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_inactive
);
5106 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_ready
);
5107 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_assigned
);
5108 dwc2_qh_list_free(hsotg
, &hsotg
->periodic_sched_queued
);
5110 /* Free memory for the host channels */
5111 for (i
= 0; i
< MAX_EPS_CHANNELS
; i
++) {
5112 struct dwc2_host_chan
*chan
= hsotg
->hc_ptr_array
[i
];
5115 dev_dbg(hsotg
->dev
, "HCD Free channel #%i, chan=%p\n",
5117 hsotg
->hc_ptr_array
[i
] = NULL
;
5122 if (hsotg
->params
.host_dma
) {
5123 if (hsotg
->status_buf
) {
5124 dma_free_coherent(hsotg
->dev
, DWC2_HCD_STATUS_BUF_SIZE
,
5126 hsotg
->status_buf_dma
);
5127 hsotg
->status_buf
= NULL
;
5130 kfree(hsotg
->status_buf
);
5131 hsotg
->status_buf
= NULL
;
5134 ahbcfg
= dwc2_readl(hsotg
, GAHBCFG
);
5136 /* Disable all interrupts */
5137 ahbcfg
&= ~GAHBCFG_GLBL_INTR_EN
;
5138 dwc2_writel(hsotg
, ahbcfg
, GAHBCFG
);
5139 dwc2_writel(hsotg
, 0, GINTMSK
);
5141 if (hsotg
->hw_params
.snpsid
>= DWC2_CORE_REV_3_00a
) {
5142 dctl
= dwc2_readl(hsotg
, DCTL
);
5143 dctl
|= DCTL_SFTDISCON
;
5144 dwc2_writel(hsotg
, dctl
, DCTL
);
5147 if (hsotg
->wq_otg
) {
5148 if (!cancel_work_sync(&hsotg
->wf_otg
))
5149 flush_workqueue(hsotg
->wq_otg
);
5150 destroy_workqueue(hsotg
->wq_otg
);
5153 del_timer(&hsotg
->wkp_timer
);
5156 static void dwc2_hcd_release(struct dwc2_hsotg
*hsotg
)
5158 /* Turn off all host-specific interrupts */
5159 dwc2_disable_host_interrupts(hsotg
);
5161 dwc2_hcd_free(hsotg
);
5165 * Initializes the HCD. This function allocates memory for and initializes the
5166 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5167 * USB bus with the core and calls the hc_driver->start() function. It returns
5168 * a negative error on failure.
5170 int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
)
5172 struct platform_device
*pdev
= to_platform_device(hsotg
->dev
);
5173 struct resource
*res
;
5174 struct usb_hcd
*hcd
;
5175 struct dwc2_host_chan
*channel
;
5177 int i
, num_channels
;
5183 dev_dbg(hsotg
->dev
, "DWC OTG HCD INIT\n");
5187 hcfg
= dwc2_readl(hsotg
, HCFG
);
5188 dev_dbg(hsotg
->dev
, "hcfg=%08x\n", hcfg
);
5190 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5191 hsotg
->frame_num_array
= kcalloc(FRAME_NUM_ARRAY_SIZE
,
5192 sizeof(*hsotg
->frame_num_array
),
5194 if (!hsotg
->frame_num_array
)
5196 hsotg
->last_frame_num_array
=
5197 kcalloc(FRAME_NUM_ARRAY_SIZE
,
5198 sizeof(*hsotg
->last_frame_num_array
), GFP_KERNEL
);
5199 if (!hsotg
->last_frame_num_array
)
5202 hsotg
->last_frame_num
= HFNUM_MAX_FRNUM
;
5204 /* Check if the bus driver or platform code has setup a dma_mask */
5205 if (hsotg
->params
.host_dma
&&
5206 !hsotg
->dev
->dma_mask
) {
5207 dev_warn(hsotg
->dev
,
5208 "dma_mask not set, disabling DMA\n");
5209 hsotg
->params
.host_dma
= false;
5210 hsotg
->params
.dma_desc_enable
= false;
5213 /* Set device flags indicating whether the HCD supports DMA */
5214 if (hsotg
->params
.host_dma
) {
5215 if (dma_set_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5216 dev_warn(hsotg
->dev
, "can't set DMA mask\n");
5217 if (dma_set_coherent_mask(hsotg
->dev
, DMA_BIT_MASK(32)) < 0)
5218 dev_warn(hsotg
->dev
, "can't set coherent DMA mask\n");
5221 if (hsotg
->params
.change_speed_quirk
) {
5222 dwc2_hc_driver
.free_dev
= dwc2_free_dev
;
5223 dwc2_hc_driver
.reset_device
= dwc2_reset_device
;
5226 hcd
= usb_create_hcd(&dwc2_hc_driver
, hsotg
->dev
, dev_name(hsotg
->dev
));
5230 if (!hsotg
->params
.host_dma
)
5231 hcd
->self
.uses_dma
= 0;
5235 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5236 hcd
->rsrc_start
= res
->start
;
5237 hcd
->rsrc_len
= resource_size(res
);
5239 ((struct wrapper_priv_data
*)&hcd
->hcd_priv
)->hsotg
= hsotg
;
5243 * Disable the global interrupt until all the interrupt handlers are
5246 dwc2_disable_global_interrupts(hsotg
);
5248 /* Initialize the DWC_otg core, and select the Phy type */
5249 retval
= dwc2_core_init(hsotg
, true);
5253 /* Create new workqueue and init work */
5255 hsotg
->wq_otg
= alloc_ordered_workqueue("dwc2", 0);
5256 if (!hsotg
->wq_otg
) {
5257 dev_err(hsotg
->dev
, "Failed to create workqueue\n");
5260 INIT_WORK(&hsotg
->wf_otg
, dwc2_conn_id_status_change
);
5262 timer_setup(&hsotg
->wkp_timer
, dwc2_wakeup_detected
, 0);
5264 /* Initialize the non-periodic schedule */
5265 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_inactive
);
5266 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_waiting
);
5267 INIT_LIST_HEAD(&hsotg
->non_periodic_sched_active
);
5269 /* Initialize the periodic schedule */
5270 INIT_LIST_HEAD(&hsotg
->periodic_sched_inactive
);
5271 INIT_LIST_HEAD(&hsotg
->periodic_sched_ready
);
5272 INIT_LIST_HEAD(&hsotg
->periodic_sched_assigned
);
5273 INIT_LIST_HEAD(&hsotg
->periodic_sched_queued
);
5275 INIT_LIST_HEAD(&hsotg
->split_order
);
5278 * Create a host channel descriptor for each host channel implemented
5279 * in the controller. Initialize the channel descriptor array.
5281 INIT_LIST_HEAD(&hsotg
->free_hc_list
);
5282 num_channels
= hsotg
->params
.host_channels
;
5283 memset(&hsotg
->hc_ptr_array
[0], 0, sizeof(hsotg
->hc_ptr_array
));
5285 for (i
= 0; i
< num_channels
; i
++) {
5286 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
5289 channel
->hc_num
= i
;
5290 INIT_LIST_HEAD(&channel
->split_order_list_entry
);
5291 hsotg
->hc_ptr_array
[i
] = channel
;
5294 /* Initialize hsotg start work */
5295 INIT_DELAYED_WORK(&hsotg
->start_work
, dwc2_hcd_start_func
);
5297 /* Initialize port reset work */
5298 INIT_DELAYED_WORK(&hsotg
->reset_work
, dwc2_hcd_reset_func
);
5301 * Allocate space for storing data on status transactions. Normally no
5302 * data is sent, but this space acts as a bit bucket. This must be
5303 * done after usb_add_hcd since that function allocates the DMA buffer
5306 if (hsotg
->params
.host_dma
)
5307 hsotg
->status_buf
= dma_alloc_coherent(hsotg
->dev
,
5308 DWC2_HCD_STATUS_BUF_SIZE
,
5309 &hsotg
->status_buf_dma
, GFP_KERNEL
);
5311 hsotg
->status_buf
= kzalloc(DWC2_HCD_STATUS_BUF_SIZE
,
5314 if (!hsotg
->status_buf
)
5318 * Create kmem caches to handle descriptor buffers in descriptor
5320 * Alignment must be set to 512 bytes.
5322 if (hsotg
->params
.dma_desc_enable
||
5323 hsotg
->params
.dma_desc_fs_enable
) {
5324 hsotg
->desc_gen_cache
= kmem_cache_create("dwc2-gen-desc",
5325 sizeof(struct dwc2_dma_desc
) *
5326 MAX_DMA_DESC_NUM_GENERIC
, 512, SLAB_CACHE_DMA
,
5328 if (!hsotg
->desc_gen_cache
) {
5330 "unable to create dwc2 generic desc cache\n");
5333 * Disable descriptor dma mode since it will not be
5336 hsotg
->params
.dma_desc_enable
= false;
5337 hsotg
->params
.dma_desc_fs_enable
= false;
5340 hsotg
->desc_hsisoc_cache
= kmem_cache_create("dwc2-hsisoc-desc",
5341 sizeof(struct dwc2_dma_desc
) *
5342 MAX_DMA_DESC_NUM_HS_ISOC
, 512, 0, NULL
);
5343 if (!hsotg
->desc_hsisoc_cache
) {
5345 "unable to create dwc2 hs isoc desc cache\n");
5347 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5350 * Disable descriptor dma mode since it will not be
5353 hsotg
->params
.dma_desc_enable
= false;
5354 hsotg
->params
.dma_desc_fs_enable
= false;
5358 if (hsotg
->params
.host_dma
) {
5360 * Create kmem caches to handle non-aligned buffer
5361 * in Buffer DMA mode.
5363 hsotg
->unaligned_cache
= kmem_cache_create("dwc2-unaligned-dma",
5364 DWC2_KMEM_UNALIGNED_BUF_SIZE
, 4,
5365 SLAB_CACHE_DMA
, NULL
);
5366 if (!hsotg
->unaligned_cache
)
5368 "unable to create dwc2 unaligned cache\n");
5371 hsotg
->otg_port
= 1;
5372 hsotg
->frame_list
= NULL
;
5373 hsotg
->frame_list_dma
= 0;
5374 hsotg
->periodic_qh_count
= 0;
5376 /* Initiate lx_state to L3 disconnected state */
5377 hsotg
->lx_state
= DWC2_L3
;
5379 hcd
->self
.otg_port
= hsotg
->otg_port
;
5381 /* Don't support SG list at this point */
5382 hcd
->self
.sg_tablesize
= 0;
5384 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5385 otg_set_host(hsotg
->uphy
->otg
, &hcd
->self
);
5388 * Finish generic HCD initialization and start the HCD. This function
5389 * allocates the DMA buffer pool, registers the USB bus, requests the
5390 * IRQ line, and calls hcd_start method.
5392 retval
= usb_add_hcd(hcd
, hsotg
->irq
, IRQF_SHARED
);
5396 device_wakeup_enable(hcd
->self
.controller
);
5398 dwc2_hcd_dump_state(hsotg
);
5400 dwc2_enable_global_interrupts(hsotg
);
5405 kmem_cache_destroy(hsotg
->unaligned_cache
);
5406 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5407 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5409 dwc2_hcd_release(hsotg
);
5414 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5415 kfree(hsotg
->last_frame_num_array
);
5416 kfree(hsotg
->frame_num_array
);
5419 dev_err(hsotg
->dev
, "%s() FAILED, returning %d\n", __func__
, retval
);
5425 * Frees memory and resources associated with the HCD and deregisters the bus.
5427 void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
)
5429 struct usb_hcd
*hcd
;
5431 dev_dbg(hsotg
->dev
, "DWC OTG HCD REMOVE\n");
5433 hcd
= dwc2_hsotg_to_hcd(hsotg
);
5434 dev_dbg(hsotg
->dev
, "hsotg->hcd = %p\n", hcd
);
5437 dev_dbg(hsotg
->dev
, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5442 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
5443 otg_set_host(hsotg
->uphy
->otg
, NULL
);
5445 usb_remove_hcd(hcd
);
5448 kmem_cache_destroy(hsotg
->unaligned_cache
);
5449 kmem_cache_destroy(hsotg
->desc_hsisoc_cache
);
5450 kmem_cache_destroy(hsotg
->desc_gen_cache
);
5452 dwc2_hcd_release(hsotg
);
5455 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5456 kfree(hsotg
->last_frame_num_array
);
5457 kfree(hsotg
->frame_num_array
);
5462 * dwc2_backup_host_registers() - Backup controller host registers.
5463 * When suspending usb bus, registers needs to be backuped
5464 * if controller power is disabled once suspended.
5466 * @hsotg: Programming view of the DWC_otg controller
5468 int dwc2_backup_host_registers(struct dwc2_hsotg
*hsotg
)
5470 struct dwc2_hregs_backup
*hr
;
5473 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5475 /* Backup Host regs */
5476 hr
= &hsotg
->hr_backup
;
5477 hr
->hcfg
= dwc2_readl(hsotg
, HCFG
);
5478 hr
->haintmsk
= dwc2_readl(hsotg
, HAINTMSK
);
5479 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5480 hr
->hcintmsk
[i
] = dwc2_readl(hsotg
, HCINTMSK(i
));
5482 hr
->hprt0
= dwc2_read_hprt0(hsotg
);
5483 hr
->hfir
= dwc2_readl(hsotg
, HFIR
);
5484 hr
->hptxfsiz
= dwc2_readl(hsotg
, HPTXFSIZ
);
5491 * dwc2_restore_host_registers() - Restore controller host registers.
5492 * When resuming usb bus, device registers needs to be restored
5493 * if controller power were disabled.
5495 * @hsotg: Programming view of the DWC_otg controller
5497 int dwc2_restore_host_registers(struct dwc2_hsotg
*hsotg
)
5499 struct dwc2_hregs_backup
*hr
;
5502 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5504 /* Restore host regs */
5505 hr
= &hsotg
->hr_backup
;
5507 dev_err(hsotg
->dev
, "%s: no host registers to restore\n",
5513 dwc2_writel(hsotg
, hr
->hcfg
, HCFG
);
5514 dwc2_writel(hsotg
, hr
->haintmsk
, HAINTMSK
);
5516 for (i
= 0; i
< hsotg
->params
.host_channels
; ++i
)
5517 dwc2_writel(hsotg
, hr
->hcintmsk
[i
], HCINTMSK(i
));
5519 dwc2_writel(hsotg
, hr
->hprt0
, HPRT0
);
5520 dwc2_writel(hsotg
, hr
->hfir
, HFIR
);
5521 dwc2_writel(hsotg
, hr
->hptxfsiz
, HPTXFSIZ
);
5522 hsotg
->frame_number
= 0;
5528 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5530 * @hsotg: Programming view of the DWC_otg controller
5532 int dwc2_host_enter_hibernation(struct dwc2_hsotg
*hsotg
)
5534 unsigned long flags
;
5541 dev_dbg(hsotg
->dev
, "Preparing host for hibernation\n");
5542 ret
= dwc2_backup_global_registers(hsotg
);
5544 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5548 ret
= dwc2_backup_host_registers(hsotg
);
5550 dev_err(hsotg
->dev
, "%s: failed to backup host registers\n",
5555 /* Enter USB Suspend Mode */
5556 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5557 hprt0
|= HPRT0_SUSP
;
5558 hprt0
&= ~HPRT0_ENA
;
5559 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5561 /* Wait for the HPRT0.PrtSusp register field to be set */
5562 if (dwc2_hsotg_wait_bit_set(hsotg
, HPRT0
, HPRT0_SUSP
, 3000))
5563 dev_warn(hsotg
->dev
, "Suspend wasn't generated\n");
5566 * We need to disable interrupts to prevent servicing of any IRQ
5567 * during going to hibernation
5569 spin_lock_irqsave(&hsotg
->lock
, flags
);
5570 hsotg
->lx_state
= DWC2_L2
;
5572 gusbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
5573 if (gusbcfg
& GUSBCFG_ULPI_UTMI_SEL
) {
5574 /* ULPI interface */
5575 /* Suspend the Phy Clock */
5576 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5577 pcgcctl
|= PCGCTL_STOPPCLK
;
5578 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5581 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5582 gpwrdn
|= GPWRDN_PMUACTV
;
5583 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5586 /* UTMI+ Interface */
5587 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5588 gpwrdn
|= GPWRDN_PMUACTV
;
5589 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5592 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5593 pcgcctl
|= PCGCTL_STOPPCLK
;
5594 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5598 /* Enable interrupts from wake up logic */
5599 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5600 gpwrdn
|= GPWRDN_PMUINTSEL
;
5601 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5604 /* Unmask host mode interrupts in GPWRDN */
5605 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5606 gpwrdn
|= GPWRDN_DISCONN_DET_MSK
;
5607 gpwrdn
|= GPWRDN_LNSTSCHG_MSK
;
5608 gpwrdn
|= GPWRDN_STS_CHGINT_MSK
;
5609 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5612 /* Enable Power Down Clamp */
5613 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5614 gpwrdn
|= GPWRDN_PWRDNCLMP
;
5615 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5618 /* Switch off VDD */
5619 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5620 gpwrdn
|= GPWRDN_PWRDNSWTCH
;
5621 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5623 hsotg
->hibernated
= 1;
5624 hsotg
->bus_suspended
= 1;
5625 dev_dbg(hsotg
->dev
, "Host hibernation completed\n");
5626 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5631 * dwc2_host_exit_hibernation()
5633 * @hsotg: Programming view of the DWC_otg controller
5634 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5635 * @param reset: indicates whether resume is initiated by Reset.
5637 * Return: non-zero if failed to enter to hibernation.
5639 * This function is for exiting from Host mode hibernation by
5640 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5642 int dwc2_host_exit_hibernation(struct dwc2_hsotg
*hsotg
, int rem_wakeup
,
5648 struct dwc2_gregs_backup
*gr
;
5649 struct dwc2_hregs_backup
*hr
;
5651 gr
= &hsotg
->gr_backup
;
5652 hr
= &hsotg
->hr_backup
;
5655 "%s: called with rem_wakeup = %d reset = %d\n",
5656 __func__
, rem_wakeup
, reset
);
5658 dwc2_hib_restore_common(hsotg
, rem_wakeup
, 1);
5659 hsotg
->hibernated
= 0;
5662 * This step is not described in functional spec but if not wait for
5663 * this delay, mismatch interrupts occurred because just after restore
5664 * core is in Device mode(gintsts.curmode == 0)
5668 /* Clear all pending interupts */
5669 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5671 /* De-assert Restore */
5672 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5673 gpwrdn
&= ~GPWRDN_RESTORE
;
5674 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5677 /* Restore GUSBCFG, HCFG */
5678 dwc2_writel(hsotg
, gr
->gusbcfg
, GUSBCFG
);
5679 dwc2_writel(hsotg
, hr
->hcfg
, HCFG
);
5681 /* De-assert Wakeup Logic */
5682 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5683 gpwrdn
&= ~GPWRDN_PMUACTV
;
5684 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5689 hprt0
&= ~HPRT0_ENA
;
5690 hprt0
&= ~HPRT0_SUSP
;
5691 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5695 hprt0
&= ~HPRT0_ENA
;
5696 hprt0
&= ~HPRT0_SUSP
;
5700 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5702 /* Wait for Resume time and then program HPRT again */
5704 hprt0
&= ~HPRT0_RST
;
5705 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5708 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5710 /* Wait for Resume time and then program HPRT again */
5712 hprt0
&= ~HPRT0_RES
;
5713 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5715 /* Clear all interrupt status */
5716 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5717 hprt0
|= HPRT0_CONNDET
;
5718 hprt0
|= HPRT0_ENACHG
;
5719 hprt0
&= ~HPRT0_ENA
;
5720 dwc2_writel(hsotg
, hprt0
, HPRT0
);
5722 hprt0
= dwc2_readl(hsotg
, HPRT0
);
5724 /* Clear all pending interupts */
5725 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5727 /* Restore global registers */
5728 ret
= dwc2_restore_global_registers(hsotg
);
5730 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5735 /* Restore host registers */
5736 ret
= dwc2_restore_host_registers(hsotg
);
5738 dev_err(hsotg
->dev
, "%s: failed to restore host registers\n",
5743 dwc2_hcd_rem_wakeup(hsotg
);
5745 hsotg
->hibernated
= 0;
5746 hsotg
->bus_suspended
= 0;
5747 hsotg
->lx_state
= DWC2_L0
;
5748 dev_dbg(hsotg
->dev
, "Host hibernation restore complete\n");