Linux 4.19.133
[linux/fpc-iii.git] / drivers / usb / host / fotg210-hcd.c
blob2d5a72c15069e4caee454080045ecae6c8afd8d4
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
35 #include <asm/byteorder.h>
36 #include <asm/irq.h>
37 #include <asm/unaligned.h>
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name[] = "fotg210_hcd";
43 #undef FOTG210_URB_TRACE
44 #define FOTG210_STATS
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT 0
50 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT 1
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54 * ms into the future (partly as a result of an old bug in the scheduling
55 * code). In an attempt to avoid trouble, we will use a minimum scheduling
56 * length of 512 frames instead of 256.
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60 /* Initial IRQ latency: faster than hw default */
61 static int log2_irq_thresh; /* 0 to 6 */
62 module_param(log2_irq_thresh, int, S_IRUGO);
63 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
65 /* initial park setting: slower than hw default */
66 static unsigned park;
67 module_param(park, uint, S_IRUGO);
68 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
70 /* for link power management(LPM) feature */
71 static unsigned int hird;
72 module_param(hird, int, S_IRUGO);
73 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
77 #include "fotg210.h"
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89 * parameters) see EHCI spec, Table 2-4 for each value
91 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
93 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
95 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
96 HCS_N_PORTS(params));
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100 * parameters) see EHCI Spec, Table 2-5 for each value
102 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
104 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
106 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
107 params,
108 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
109 HCC_CANPARK(params) ? " park" : "");
112 static void __maybe_unused
113 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
115 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
116 hc32_to_cpup(fotg210, &qtd->hw_next),
117 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
118 hc32_to_cpup(fotg210, &qtd->hw_token),
119 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
120 if (qtd->hw_buf[1])
121 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
123 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
124 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 static void __maybe_unused
129 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
131 struct fotg210_qh_hw *hw = qh->hw;
133 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
134 hw->hw_next, hw->hw_info1, hw->hw_info2,
135 hw->hw_current);
137 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 static void __maybe_unused
141 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
143 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
144 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
145 itd->urb);
147 fotg210_dbg(fotg210,
148 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
150 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
151 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
158 fotg210_dbg(fotg210,
159 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
160 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
161 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
162 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
168 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
169 itd->index[0], itd->index[1], itd->index[2],
170 itd->index[3], itd->index[4], itd->index[5],
171 itd->index[6], itd->index[7]);
174 static int __maybe_unused
175 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
177 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 label, label[0] ? " " : "", status,
179 (status & STS_ASS) ? " Async" : "",
180 (status & STS_PSS) ? " Periodic" : "",
181 (status & STS_RECL) ? " Recl" : "",
182 (status & STS_HALT) ? " Halt" : "",
183 (status & STS_IAA) ? " IAA" : "",
184 (status & STS_FATAL) ? " FATAL" : "",
185 (status & STS_FLR) ? " FLR" : "",
186 (status & STS_PCD) ? " PCD" : "",
187 (status & STS_ERR) ? " ERR" : "",
188 (status & STS_INT) ? " INT" : "");
191 static int __maybe_unused
192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
195 label, label[0] ? " " : "", enable,
196 (enable & STS_IAA) ? " IAA" : "",
197 (enable & STS_FATAL) ? " FATAL" : "",
198 (enable & STS_FLR) ? " FLR" : "",
199 (enable & STS_PCD) ? " PCD" : "",
200 (enable & STS_ERR) ? " ERR" : "",
201 (enable & STS_INT) ? " INT" : "");
204 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
206 static int dbg_command_buf(char *buf, unsigned len, const char *label,
207 u32 command)
209 return scnprintf(buf, len,
210 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 label, label[0] ? " " : "", command,
212 (command & CMD_PARK) ? " park" : "(park)",
213 CMD_PARK_CNT(command),
214 (command >> 16) & 0x3f,
215 (command & CMD_IAAD) ? " IAAD" : "",
216 (command & CMD_ASE) ? " Async" : "",
217 (command & CMD_PSE) ? " Periodic" : "",
218 fls_strings[(command >> 2) & 0x3],
219 (command & CMD_RESET) ? " Reset" : "",
220 (command & CMD_RUN) ? "RUN" : "HALT");
223 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
224 u32 status)
226 char *sig;
228 /* signaling state */
229 switch (status & (3 << 10)) {
230 case 0 << 10:
231 sig = "se0";
232 break;
233 case 1 << 10:
234 sig = "k";
235 break; /* low speed */
236 case 2 << 10:
237 sig = "j";
238 break;
239 default:
240 sig = "?";
241 break;
244 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 label, label[0] ? " " : "", port, status,
246 status >> 25, /*device address */
247 sig,
248 (status & PORT_RESET) ? " RESET" : "",
249 (status & PORT_SUSPEND) ? " SUSPEND" : "",
250 (status & PORT_RESUME) ? " RESUME" : "",
251 (status & PORT_PEC) ? " PEC" : "",
252 (status & PORT_PE) ? " PE" : "",
253 (status & PORT_CSC) ? " CSC" : "",
254 (status & PORT_CONNECT) ? " CONNECT" : "");
256 return buf;
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) { \
261 char _buf[80]; \
262 dbg_status_buf(_buf, sizeof(_buf), label, status); \
263 fotg210_dbg(fotg210, "%s\n", _buf); \
266 #define dbg_cmd(fotg210, label, command) { \
267 char _buf[80]; \
268 dbg_command_buf(_buf, sizeof(_buf), label, command); \
269 fotg210_dbg(fotg210, "%s\n", _buf); \
272 #define dbg_port(fotg210, label, port, status) { \
273 char _buf[80]; \
274 fotg210_dbg(fotg210, "%s\n", \
275 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode *, struct file *);
280 static int debug_periodic_open(struct inode *, struct file *);
281 static int debug_registers_open(struct inode *, struct file *);
282 static int debug_async_open(struct inode *, struct file *);
284 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
285 static int debug_close(struct inode *, struct file *);
287 static const struct file_operations debug_async_fops = {
288 .owner = THIS_MODULE,
289 .open = debug_async_open,
290 .read = debug_output,
291 .release = debug_close,
292 .llseek = default_llseek,
294 static const struct file_operations debug_periodic_fops = {
295 .owner = THIS_MODULE,
296 .open = debug_periodic_open,
297 .read = debug_output,
298 .release = debug_close,
299 .llseek = default_llseek,
301 static const struct file_operations debug_registers_fops = {
302 .owner = THIS_MODULE,
303 .open = debug_registers_open,
304 .read = debug_output,
305 .release = debug_close,
306 .llseek = default_llseek,
309 static struct dentry *fotg210_debug_root;
311 struct debug_buffer {
312 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
313 struct usb_bus *bus;
314 struct mutex mutex; /* protect filling of buffer */
315 size_t count; /* number of characters filled into buffer */
316 char *output_buf;
317 size_t alloc_size;
320 static inline char speed_char(u32 scratch)
322 switch (scratch & (3 << 12)) {
323 case QH_FULL_SPEED:
324 return 'f';
326 case QH_LOW_SPEED:
327 return 'l';
329 case QH_HIGH_SPEED:
330 return 'h';
332 default:
333 return '?';
337 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
339 __u32 v = hc32_to_cpu(fotg210, token);
341 if (v & QTD_STS_ACTIVE)
342 return '*';
343 if (v & QTD_STS_HALT)
344 return '-';
345 if (!IS_SHORT_READ(v))
346 return ' ';
347 /* tries to advance through hw_alt_next */
348 return '/';
351 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
352 char **nextp, unsigned *sizep)
354 u32 scratch;
355 u32 hw_curr;
356 struct fotg210_qtd *td;
357 unsigned temp;
358 unsigned size = *sizep;
359 char *next = *nextp;
360 char mark;
361 __le32 list_end = FOTG210_LIST_END(fotg210);
362 struct fotg210_qh_hw *hw = qh->hw;
364 if (hw->hw_qtd_next == list_end) /* NEC does this */
365 mark = '@';
366 else
367 mark = token_mark(fotg210, hw->hw_token);
368 if (mark == '/') { /* qh_alt_next controls qh advance? */
369 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
370 fotg210->async->hw->hw_alt_next)
371 mark = '#'; /* blocked */
372 else if (hw->hw_alt_next == list_end)
373 mark = '.'; /* use hw_qtd_next */
374 /* else alt_next points to some other qtd */
376 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
377 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
378 temp = scnprintf(next, size,
379 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 qh, scratch & 0x007f,
381 speed_char(scratch),
382 (scratch >> 8) & 0x000f,
383 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
384 hc32_to_cpup(fotg210, &hw->hw_token), mark,
385 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
386 ? "data1" : "data0",
387 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
388 size -= temp;
389 next += temp;
391 /* hc may be modifying the list as we read it ... */
392 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
393 scratch = hc32_to_cpup(fotg210, &td->hw_token);
394 mark = ' ';
395 if (hw_curr == td->qtd_dma)
396 mark = '*';
397 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
398 mark = '+';
399 else if (QTD_LENGTH(scratch)) {
400 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
401 mark = '#';
402 else if (td->hw_alt_next != list_end)
403 mark = '/';
405 temp = snprintf(next, size,
406 "\n\t%p%c%s len=%d %08x urb %p",
407 td, mark, ({ char *tmp;
408 switch ((scratch>>8)&0x03) {
409 case 0:
410 tmp = "out";
411 break;
412 case 1:
413 tmp = "in";
414 break;
415 case 2:
416 tmp = "setup";
417 break;
418 default:
419 tmp = "?";
420 break;
421 } tmp; }),
422 (scratch >> 16) & 0x7fff,
423 scratch,
424 td->urb);
425 if (size < temp)
426 temp = size;
427 size -= temp;
428 next += temp;
429 if (temp == size)
430 goto done;
433 temp = snprintf(next, size, "\n");
434 if (size < temp)
435 temp = size;
437 size -= temp;
438 next += temp;
440 done:
441 *sizep = size;
442 *nextp = next;
445 static ssize_t fill_async_buffer(struct debug_buffer *buf)
447 struct usb_hcd *hcd;
448 struct fotg210_hcd *fotg210;
449 unsigned long flags;
450 unsigned temp, size;
451 char *next;
452 struct fotg210_qh *qh;
454 hcd = bus_to_hcd(buf->bus);
455 fotg210 = hcd_to_fotg210(hcd);
456 next = buf->output_buf;
457 size = buf->alloc_size;
459 *next = 0;
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
465 spin_lock_irqsave(&fotg210->lock, flags);
466 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467 qh = qh->qh_next.qh)
468 qh_lines(fotg210, qh, &next, &size);
469 if (fotg210->async_unlink && size > 0) {
470 temp = scnprintf(next, size, "\nunlink =\n");
471 size -= temp;
472 next += temp;
474 for (qh = fotg210->async_unlink; size > 0 && qh;
475 qh = qh->unlink_next)
476 qh_lines(fotg210, qh, &next, &size);
478 spin_unlock_irqrestore(&fotg210->lock, flags);
480 return strlen(buf->output_buf);
483 /* count tds, get ep direction */
484 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
487 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488 struct fotg210_qtd *qtd;
489 char *type = "";
490 unsigned temp = 0;
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494 temp++;
495 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496 case 0:
497 type = "out";
498 continue;
499 case 1:
500 type = "in";
501 continue;
505 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch), scratch & 0x007f,
507 (scratch >> 8) & 0x000f, type, qh->usecs,
508 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
514 struct usb_hcd *hcd;
515 struct fotg210_hcd *fotg210;
516 unsigned long flags;
517 union fotg210_shadow p, *seen;
518 unsigned temp, size, seen_count;
519 char *next;
520 unsigned i;
521 __hc32 tag;
523 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524 if (!seen)
525 return 0;
527 seen_count = 0;
529 hcd = bus_to_hcd(buf->bus);
530 fotg210 = hcd_to_fotg210(hcd);
531 next = buf->output_buf;
532 size = buf->alloc_size;
534 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535 size -= temp;
536 next += temp;
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
541 spin_lock_irqsave(&fotg210->lock, flags);
542 for (i = 0; i < fotg210->periodic_size; i++) {
543 p = fotg210->pshadow[i];
544 if (likely(!p.ptr))
545 continue;
547 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
549 temp = scnprintf(next, size, "%4d: ", i);
550 size -= temp;
551 next += temp;
553 do {
554 struct fotg210_qh_hw *hw;
556 switch (hc32_to_cpu(fotg210, tag)) {
557 case Q_TYPE_QH:
558 hw = p.qh->hw;
559 temp = scnprintf(next, size, " qh%d-%04x/%p",
560 p.qh->period,
561 hc32_to_cpup(fotg210,
562 &hw->hw_info2)
563 /* uframe masks */
564 & (QH_CMASK | QH_SMASK),
565 p.qh);
566 size -= temp;
567 next += temp;
568 /* don't repeat what follows this qh */
569 for (temp = 0; temp < seen_count; temp++) {
570 if (seen[temp].ptr != p.ptr)
571 continue;
572 if (p.qh->qh_next.ptr) {
573 temp = scnprintf(next, size,
574 " ...");
575 size -= temp;
576 next += temp;
578 break;
580 /* show more info the first time around */
581 if (temp == seen_count) {
582 temp = output_buf_tds_dir(next,
583 fotg210, hw,
584 p.qh, size);
586 if (seen_count < DBG_SCHED_LIMIT)
587 seen[seen_count++].qh = p.qh;
588 } else
589 temp = 0;
590 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591 p = p.qh->qh_next;
592 break;
593 case Q_TYPE_FSTN:
594 temp = scnprintf(next, size,
595 " fstn-%8x/%p",
596 p.fstn->hw_prev, p.fstn);
597 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598 p = p.fstn->fstn_next;
599 break;
600 case Q_TYPE_ITD:
601 temp = scnprintf(next, size,
602 " itd/%p", p.itd);
603 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604 p = p.itd->itd_next;
605 break;
607 size -= temp;
608 next += temp;
609 } while (p.ptr);
611 temp = scnprintf(next, size, "\n");
612 size -= temp;
613 next += temp;
615 spin_unlock_irqrestore(&fotg210->lock, flags);
616 kfree(seen);
618 return buf->alloc_size - size;
620 #undef DBG_SCHED_LIMIT
622 static const char *rh_state_string(struct fotg210_hcd *fotg210)
624 switch (fotg210->rh_state) {
625 case FOTG210_RH_HALTED:
626 return "halted";
627 case FOTG210_RH_SUSPENDED:
628 return "suspended";
629 case FOTG210_RH_RUNNING:
630 return "running";
631 case FOTG210_RH_STOPPING:
632 return "stopping";
634 return "?";
637 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
639 struct usb_hcd *hcd;
640 struct fotg210_hcd *fotg210;
641 unsigned long flags;
642 unsigned temp, size, i;
643 char *next, scratch[80];
644 static const char fmt[] = "%*s\n";
645 static const char label[] = "";
647 hcd = bus_to_hcd(buf->bus);
648 fotg210 = hcd_to_fotg210(hcd);
649 next = buf->output_buf;
650 size = buf->alloc_size;
652 spin_lock_irqsave(&fotg210->lock, flags);
654 if (!HCD_HW_ACCESSIBLE(hcd)) {
655 size = scnprintf(next, size,
656 "bus %s, device %s\n"
657 "%s\n"
658 "SUSPENDED(no register access)\n",
659 hcd->self.controller->bus->name,
660 dev_name(hcd->self.controller),
661 hcd->product_desc);
662 goto done;
665 /* Capability Registers */
666 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667 &fotg210->caps->hc_capbase));
668 temp = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc,
675 i >> 8, i & 0x0ff, rh_state_string(fotg210));
676 size -= temp;
677 next += temp;
679 /* FIXME interpret both types of params */
680 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682 size -= temp;
683 next += temp;
685 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687 size -= temp;
688 next += temp;
690 /* Operational Registers */
691 temp = dbg_status_buf(scratch, sizeof(scratch), label,
692 fotg210_readl(fotg210, &fotg210->regs->status));
693 temp = scnprintf(next, size, fmt, temp, scratch);
694 size -= temp;
695 next += temp;
697 temp = dbg_command_buf(scratch, sizeof(scratch), label,
698 fotg210_readl(fotg210, &fotg210->regs->command));
699 temp = scnprintf(next, size, fmt, temp, scratch);
700 size -= temp;
701 next += temp;
703 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705 temp = scnprintf(next, size, fmt, temp, scratch);
706 size -= temp;
707 next += temp;
709 temp = scnprintf(next, size, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210));
711 size -= temp;
712 next += temp;
714 if (fotg210->async_unlink) {
715 temp = scnprintf(next, size, "async unlink qh %p\n",
716 fotg210->async_unlink);
717 size -= temp;
718 next += temp;
721 #ifdef FOTG210_STATS
722 temp = scnprintf(next, size,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210->stats.normal, fotg210->stats.error,
725 fotg210->stats.iaa, fotg210->stats.lost_iaa);
726 size -= temp;
727 next += temp;
729 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730 fotg210->stats.complete, fotg210->stats.unlink);
731 size -= temp;
732 next += temp;
733 #endif
735 done:
736 spin_unlock_irqrestore(&fotg210->lock, flags);
738 return buf->alloc_size - size;
741 static struct debug_buffer
742 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
744 struct debug_buffer *buf;
746 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
748 if (buf) {
749 buf->bus = bus;
750 buf->fill_func = fill_func;
751 mutex_init(&buf->mutex);
752 buf->alloc_size = PAGE_SIZE;
755 return buf;
758 static int fill_buffer(struct debug_buffer *buf)
760 int ret = 0;
762 if (!buf->output_buf)
763 buf->output_buf = vmalloc(buf->alloc_size);
765 if (!buf->output_buf) {
766 ret = -ENOMEM;
767 goto out;
770 ret = buf->fill_func(buf);
772 if (ret >= 0) {
773 buf->count = ret;
774 ret = 0;
777 out:
778 return ret;
781 static ssize_t debug_output(struct file *file, char __user *user_buf,
782 size_t len, loff_t *offset)
784 struct debug_buffer *buf = file->private_data;
785 int ret = 0;
787 mutex_lock(&buf->mutex);
788 if (buf->count == 0) {
789 ret = fill_buffer(buf);
790 if (ret != 0) {
791 mutex_unlock(&buf->mutex);
792 goto out;
795 mutex_unlock(&buf->mutex);
797 ret = simple_read_from_buffer(user_buf, len, offset,
798 buf->output_buf, buf->count);
800 out:
801 return ret;
805 static int debug_close(struct inode *inode, struct file *file)
807 struct debug_buffer *buf = file->private_data;
809 if (buf) {
810 vfree(buf->output_buf);
811 kfree(buf);
814 return 0;
816 static int debug_async_open(struct inode *inode, struct file *file)
818 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
820 return file->private_data ? 0 : -ENOMEM;
823 static int debug_periodic_open(struct inode *inode, struct file *file)
825 struct debug_buffer *buf;
827 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828 if (!buf)
829 return -ENOMEM;
831 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832 file->private_data = buf;
833 return 0;
836 static int debug_registers_open(struct inode *inode, struct file *file)
838 file->private_data = alloc_buffer(inode->i_private,
839 fill_registers_buffer);
841 return file->private_data ? 0 : -ENOMEM;
844 static inline void create_debug_files(struct fotg210_hcd *fotg210)
846 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
847 struct dentry *root;
849 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
850 fotg210->debug_dir = root;
852 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
853 debugfs_create_file("periodic", S_IRUGO, root, bus,
854 &debug_periodic_fops);
855 debugfs_create_file("registers", S_IRUGO, root, bus,
856 &debug_registers_fops);
859 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
861 debugfs_remove_recursive(fotg210->debug_dir);
864 /* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
870 * Returns negative errno, or zero on success
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done). There are two failure modes: "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown: shutting down the bridge before the devices using it.
880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881 u32 mask, u32 done, int usec)
883 u32 result;
885 do {
886 result = fotg210_readl(fotg210, ptr);
887 if (result == ~(u32)0) /* card removed */
888 return -ENODEV;
889 result &= mask;
890 if (result == done)
891 return 0;
892 udelay(1);
893 usec--;
894 } while (usec > 0);
895 return -ETIMEDOUT;
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899 * Must be called with interrupts enabled and the lock not held.
901 static int fotg210_halt(struct fotg210_hcd *fotg210)
903 u32 temp;
905 spin_lock_irq(&fotg210->lock);
907 /* disable any irqs left enabled by previous code */
908 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
911 * This routine gets called during probe before fotg210->command
912 * has been initialized, so we can't rely on its value.
914 fotg210->command &= ~CMD_RUN;
915 temp = fotg210_readl(fotg210, &fotg210->regs->command);
916 temp &= ~(CMD_RUN | CMD_IAAD);
917 fotg210_writel(fotg210, temp, &fotg210->regs->command);
919 spin_unlock_irq(&fotg210->lock);
920 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
922 return handshake(fotg210, &fotg210->regs->status,
923 STS_HALT, STS_HALT, 16 * 125);
926 /* Reset a non-running (STS_HALT == 1) controller.
927 * Must be called with interrupts enabled and the lock not held.
929 static int fotg210_reset(struct fotg210_hcd *fotg210)
931 int retval;
932 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
934 /* If the EHCI debug controller is active, special care must be
935 * taken before and after a host controller reset
937 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938 fotg210->debug = NULL;
940 command |= CMD_RESET;
941 dbg_cmd(fotg210, "reset", command);
942 fotg210_writel(fotg210, command, &fotg210->regs->command);
943 fotg210->rh_state = FOTG210_RH_HALTED;
944 fotg210->next_statechange = jiffies;
945 retval = handshake(fotg210, &fotg210->regs->command,
946 CMD_RESET, 0, 250 * 1000);
948 if (retval)
949 return retval;
951 if (fotg210->debug)
952 dbgp_external_startup(fotg210_to_hcd(fotg210));
954 fotg210->port_c_suspend = fotg210->suspended_ports =
955 fotg210->resuming_ports = 0;
956 return retval;
959 /* Idle the controller (turn off the schedules).
960 * Must be called with interrupts enabled and the lock not held.
962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
964 u32 temp;
966 if (fotg210->rh_state != FOTG210_RH_RUNNING)
967 return;
969 /* wait for any schedule enables/disables to take effect */
970 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972 16 * 125);
974 /* then disable anything that's still active */
975 spin_lock_irq(&fotg210->lock);
976 fotg210->command &= ~(CMD_ASE | CMD_PSE);
977 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978 spin_unlock_irq(&fotg210->lock);
980 /* hardware can take 16 microframes to turn off ... */
981 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982 16 * 125);
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989 struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
992 /* Set a bit in the USBCMD register */
993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
995 fotg210->command |= bit;
996 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
998 /* unblock posted write */
999 fotg210_readl(fotg210, &fotg210->regs->command);
1002 /* Clear a bit in the USBCMD register */
1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1005 fotg210->command &= ~bit;
1006 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1008 /* unblock posted write */
1009 fotg210_readl(fotg210, &fotg210->regs->command);
1012 /* EHCI timer support... Now using hrtimers.
1014 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1015 * the timer routine runs, it checks each possible event; events that are
1016 * currently enabled and whose expiration time has passed get handled.
1017 * The set of enabled events is stored as a collection of bitflags in
1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019 * increasing delay values (ranging between 1 ms and 100 ms).
1021 * Rather than implementing a sorted list or tree of all pending events,
1022 * we keep track only of the lowest-numbered pending event, in
1023 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1024 * expiration time is set to the timeout value for this event.
1026 * As a result, events might not get handled right away; the actual delay
1027 * could be anywhere up to twice the requested delay. This doesn't
1028 * matter, because none of the events are especially time-critical. The
1029 * ones that matter most all have a delay of 1 ms, so they will be
1030 * handled after 2 ms at most, which is okay. In addition to this, we
1031 * allow for an expiration range of 1 ms.
1034 /* Delay lengths for the hrtimer event types.
1035 * Keep this list sorted by delay length, in the same order as
1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038 static unsigned event_delays_ns[] = {
1039 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1042 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1043 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1044 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1051 /* Enable a pending hrtimer event */
1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053 bool resched)
1055 ktime_t *timeout = &fotg210->hr_timeouts[event];
1057 if (resched)
1058 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059 fotg210->enabled_hrtimer_events |= (1 << event);
1061 /* Track only the lowest-numbered pending event */
1062 if (event < fotg210->next_hrtimer_event) {
1063 fotg210->next_hrtimer_event = event;
1064 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1073 unsigned actual, want;
1075 /* Don't enable anything if the controller isn't running (e.g., died) */
1076 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077 return;
1079 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1082 if (want != actual) {
1084 /* Poll again later, but give up after about 20 ms */
1085 if (fotg210->ASS_poll_count++ < 20) {
1086 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087 true);
1088 return;
1090 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091 want, actual);
1093 fotg210->ASS_poll_count = 0;
1095 /* The status is up-to-date; restart or stop the schedule as needed */
1096 if (want == 0) { /* Stopped */
1097 if (fotg210->async_count > 0)
1098 fotg210_set_command_bit(fotg210, CMD_ASE);
1100 } else { /* Running */
1101 if (fotg210->async_count == 0) {
1103 /* Turn off the schedule after a while */
1104 fotg210_enable_event(fotg210,
1105 FOTG210_HRTIMER_DISABLE_ASYNC,
1106 true);
1111 /* Turn off the async schedule after a brief delay */
1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1114 fotg210_clear_command_bit(fotg210, CMD_ASE);
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1121 unsigned actual, want;
1123 /* Don't do anything if the controller isn't running (e.g., died) */
1124 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125 return;
1127 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1130 if (want != actual) {
1132 /* Poll again later, but give up after about 20 ms */
1133 if (fotg210->PSS_poll_count++ < 20) {
1134 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135 true);
1136 return;
1138 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139 want, actual);
1141 fotg210->PSS_poll_count = 0;
1143 /* The status is up-to-date; restart or stop the schedule as needed */
1144 if (want == 0) { /* Stopped */
1145 if (fotg210->periodic_count > 0)
1146 fotg210_set_command_bit(fotg210, CMD_PSE);
1148 } else { /* Running */
1149 if (fotg210->periodic_count == 0) {
1151 /* Turn off the schedule after a while */
1152 fotg210_enable_event(fotg210,
1153 FOTG210_HRTIMER_DISABLE_PERIODIC,
1154 true);
1159 /* Turn off the periodic schedule after a brief delay */
1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1162 fotg210_clear_command_bit(fotg210, CMD_PSE);
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1169 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1171 /* Give up after a few milliseconds */
1172 if (fotg210->died_poll_count++ < 5) {
1173 /* Try again later */
1174 fotg210_enable_event(fotg210,
1175 FOTG210_HRTIMER_POLL_DEAD, true);
1176 return;
1178 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181 /* Clean up the mess */
1182 fotg210->rh_state = FOTG210_RH_HALTED;
1183 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184 fotg210_work(fotg210);
1185 end_unlink_async(fotg210);
1187 /* Not in process context, so don't try to reset the controller */
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1194 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197 * Process all the QHs on the intr_unlink list that were added
1198 * before the current unlink cycle began. The list is in
1199 * temporal order, so stop when we reach the first entry in the
1200 * current cycle. But if the root hub isn't running then
1201 * process all the QHs on the list.
1203 fotg210->intr_unlinking = true;
1204 while (fotg210->intr_unlink) {
1205 struct fotg210_qh *qh = fotg210->intr_unlink;
1207 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208 break;
1209 fotg210->intr_unlink = qh->unlink_next;
1210 qh->unlink_next = NULL;
1211 end_unlink_intr(fotg210, qh);
1214 /* Handle remaining entries later */
1215 if (fotg210->intr_unlink) {
1216 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217 true);
1218 ++fotg210->intr_unlink_cycle;
1220 fotg210->intr_unlinking = false;
1224 /* Start another free-iTDs/siTDs cycle */
1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1227 if (!(fotg210->enabled_hrtimer_events &
1228 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229 fotg210->last_itd_to_free = list_entry(
1230 fotg210->cached_itd_list.prev,
1231 struct fotg210_itd, itd_list);
1232 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1236 /* Wait for controller to stop using old iTDs and siTDs */
1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1239 struct fotg210_itd *itd, *n;
1241 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242 fotg210->last_itd_to_free = NULL;
1244 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245 list_del(&itd->itd_list);
1246 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247 if (itd == fotg210->last_itd_to_free)
1248 break;
1251 if (!list_empty(&fotg210->cached_itd_list))
1252 start_free_itds(fotg210);
1256 /* Handle lost (or very late) IAA interrupts */
1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1259 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260 return;
1263 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 * So we need this watchdog, but must protect it against both
1265 * (a) SMP races against real IAA firing and retriggering, and
1266 * (b) clean HC shutdown, when IAA watchdog was pending.
1268 if (fotg210->async_iaa) {
1269 u32 cmd, status;
1271 /* If we get here, IAA is *REALLY* late. It's barely
1272 * conceivable that the system is so busy that CMD_IAAD
1273 * is still legitimately set, so let's be sure it's
1274 * clear before we read STS_IAA. (The HC should clear
1275 * CMD_IAAD when it sets STS_IAA.)
1277 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280 * If IAA is set here it either legitimately triggered
1281 * after the watchdog timer expired (_way_ late, so we'll
1282 * still count it as lost) ... or a silicon erratum:
1283 * - VIA seems to set IAA without triggering the IRQ;
1284 * - IAAD potentially cleared without setting IAA.
1286 status = fotg210_readl(fotg210, &fotg210->regs->status);
1287 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288 COUNT(fotg210->stats.lost_iaa);
1289 fotg210_writel(fotg210, STS_IAA,
1290 &fotg210->regs->status);
1293 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294 status, cmd);
1295 end_unlink_async(fotg210);
1300 /* Enable the I/O watchdog, if appropriate */
1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1303 /* Not needed if the controller isn't running or it's already enabled */
1304 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305 (fotg210->enabled_hrtimer_events &
1306 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307 return;
1310 * Isochronous transfers always need the watchdog.
1311 * For other sorts we use it only if the flag is set.
1313 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314 fotg210->async_count + fotg210->intr_count > 0))
1315 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316 true);
1320 /* Handler functions for the hrtimer event types.
1321 * Keep this array in the same order as the event types indexed by
1322 * enum fotg210_hrtimer_event in fotg210.h.
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1326 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1327 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1328 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1329 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1330 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1339 struct fotg210_hcd *fotg210 =
1340 container_of(t, struct fotg210_hcd, hrtimer);
1341 ktime_t now;
1342 unsigned long events;
1343 unsigned long flags;
1344 unsigned e;
1346 spin_lock_irqsave(&fotg210->lock, flags);
1348 events = fotg210->enabled_hrtimer_events;
1349 fotg210->enabled_hrtimer_events = 0;
1350 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353 * Check each pending event. If its time has expired, handle
1354 * the event; otherwise re-enable it.
1356 now = ktime_get();
1357 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359 event_handlers[e](fotg210);
1360 else
1361 fotg210_enable_event(fotg210, e, false);
1364 spin_unlock_irqrestore(&fotg210->lock, flags);
1365 return HRTIMER_NORESTART;
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372 u32 __iomem *status_reg, int port_status)
1374 if (!(port_status & PORT_CONNECT))
1375 return port_status;
1377 /* if reset finished and it's still not enabled -- handoff */
1378 if (!(port_status & PORT_PE))
1379 /* with integrated TT, there's nobody to hand it to! */
1380 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381 index + 1);
1382 else
1383 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384 index + 1);
1386 return port_status;
1390 /* build "status change" packet (one or two bytes) from HC registers */
1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1394 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395 u32 temp, status;
1396 u32 mask;
1397 int retval = 1;
1398 unsigned long flags;
1400 /* init status to no-changes */
1401 buf[0] = 0;
1403 /* Inform the core about resumes-in-progress by returning
1404 * a non-zero value even if there are no status changes.
1406 status = fotg210->resuming_ports;
1408 mask = PORT_CSC | PORT_PEC;
1409 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411 /* no hub change reports (bit 0) for now (power, ...) */
1413 /* port N changes (bit N)? */
1414 spin_lock_irqsave(&fotg210->lock, flags);
1416 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419 * Return status information even for ports with OWNER set.
1420 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 * high-speed device is switched over to the companion
1422 * controller by the user.
1425 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426 (fotg210->reset_done[0] &&
1427 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428 buf[0] |= 1 << 1;
1429 status = STS_PCD;
1431 /* FIXME autosuspend idle root hubs */
1432 spin_unlock_irqrestore(&fotg210->lock, flags);
1433 return status ? retval : 0;
1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437 struct usb_hub_descriptor *desc)
1439 int ports = HCS_N_PORTS(fotg210->hcs_params);
1440 u16 temp;
1442 desc->bDescriptorType = USB_DT_HUB;
1443 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1444 desc->bHubContrCurrent = 0;
1446 desc->bNbrPorts = ports;
1447 temp = 1 + (ports / 8);
1448 desc->bDescLength = 7 + 2 * temp;
1450 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1454 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1455 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1456 desc->wHubCharacteristics = cpu_to_le16(temp);
1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460 u16 wIndex, char *buf, u16 wLength)
1462 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463 int ports = HCS_N_PORTS(fotg210->hcs_params);
1464 u32 __iomem *status_reg = &fotg210->regs->port_status;
1465 u32 temp, temp1, status;
1466 unsigned long flags;
1467 int retval = 0;
1468 unsigned selector;
1471 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 * (track current state ourselves) ... blink for diagnostics,
1474 * power, "this is the one", etc. EHCI spec supports this.
1477 spin_lock_irqsave(&fotg210->lock, flags);
1478 switch (typeReq) {
1479 case ClearHubFeature:
1480 switch (wValue) {
1481 case C_HUB_LOCAL_POWER:
1482 case C_HUB_OVER_CURRENT:
1483 /* no hub-wide feature/status flags */
1484 break;
1485 default:
1486 goto error;
1488 break;
1489 case ClearPortFeature:
1490 if (!wIndex || wIndex > ports)
1491 goto error;
1492 wIndex--;
1493 temp = fotg210_readl(fotg210, status_reg);
1494 temp &= ~PORT_RWC_BITS;
1497 * Even if OWNER is set, so the port is owned by the
1498 * companion controller, hub_wq needs to be able to clear
1499 * the port-change status bits (especially
1500 * USB_PORT_STAT_C_CONNECTION).
1503 switch (wValue) {
1504 case USB_PORT_FEAT_ENABLE:
1505 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506 break;
1507 case USB_PORT_FEAT_C_ENABLE:
1508 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509 break;
1510 case USB_PORT_FEAT_SUSPEND:
1511 if (temp & PORT_RESET)
1512 goto error;
1513 if (!(temp & PORT_SUSPEND))
1514 break;
1515 if ((temp & PORT_PE) == 0)
1516 goto error;
1518 /* resume signaling for 20 msec */
1519 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520 fotg210->reset_done[wIndex] = jiffies
1521 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522 break;
1523 case USB_PORT_FEAT_C_SUSPEND:
1524 clear_bit(wIndex, &fotg210->port_c_suspend);
1525 break;
1526 case USB_PORT_FEAT_C_CONNECTION:
1527 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528 break;
1529 case USB_PORT_FEAT_C_OVER_CURRENT:
1530 fotg210_writel(fotg210, temp | OTGISR_OVC,
1531 &fotg210->regs->otgisr);
1532 break;
1533 case USB_PORT_FEAT_C_RESET:
1534 /* GetPortStatus clears reset */
1535 break;
1536 default:
1537 goto error;
1539 fotg210_readl(fotg210, &fotg210->regs->command);
1540 break;
1541 case GetHubDescriptor:
1542 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543 buf);
1544 break;
1545 case GetHubStatus:
1546 /* no hub-wide feature/status flags */
1547 memset(buf, 0, 4);
1548 /*cpu_to_le32s ((u32 *) buf); */
1549 break;
1550 case GetPortStatus:
1551 if (!wIndex || wIndex > ports)
1552 goto error;
1553 wIndex--;
1554 status = 0;
1555 temp = fotg210_readl(fotg210, status_reg);
1557 /* wPortChange bits */
1558 if (temp & PORT_CSC)
1559 status |= USB_PORT_STAT_C_CONNECTION << 16;
1560 if (temp & PORT_PEC)
1561 status |= USB_PORT_STAT_C_ENABLE << 16;
1563 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564 if (temp1 & OTGISR_OVC)
1565 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1567 /* whoever resumes must GetPortStatus to complete it!! */
1568 if (temp & PORT_RESUME) {
1570 /* Remote Wakeup received? */
1571 if (!fotg210->reset_done[wIndex]) {
1572 /* resume signaling for 20 msec */
1573 fotg210->reset_done[wIndex] = jiffies
1574 + msecs_to_jiffies(20);
1575 /* check the port again */
1576 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577 fotg210->reset_done[wIndex]);
1580 /* resume completed? */
1581 else if (time_after_eq(jiffies,
1582 fotg210->reset_done[wIndex])) {
1583 clear_bit(wIndex, &fotg210->suspended_ports);
1584 set_bit(wIndex, &fotg210->port_c_suspend);
1585 fotg210->reset_done[wIndex] = 0;
1587 /* stop resume signaling */
1588 temp = fotg210_readl(fotg210, status_reg);
1589 fotg210_writel(fotg210, temp &
1590 ~(PORT_RWC_BITS | PORT_RESUME),
1591 status_reg);
1592 clear_bit(wIndex, &fotg210->resuming_ports);
1593 retval = handshake(fotg210, status_reg,
1594 PORT_RESUME, 0, 2000);/* 2ms */
1595 if (retval != 0) {
1596 fotg210_err(fotg210,
1597 "port %d resume error %d\n",
1598 wIndex + 1, retval);
1599 goto error;
1601 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1605 /* whoever resets must GetPortStatus to complete it!! */
1606 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607 fotg210->reset_done[wIndex])) {
1608 status |= USB_PORT_STAT_C_RESET << 16;
1609 fotg210->reset_done[wIndex] = 0;
1610 clear_bit(wIndex, &fotg210->resuming_ports);
1612 /* force reset to complete */
1613 fotg210_writel(fotg210,
1614 temp & ~(PORT_RWC_BITS | PORT_RESET),
1615 status_reg);
1616 /* REVISIT: some hardware needs 550+ usec to clear
1617 * this bit; seems too long to spin routinely...
1619 retval = handshake(fotg210, status_reg,
1620 PORT_RESET, 0, 1000);
1621 if (retval != 0) {
1622 fotg210_err(fotg210, "port %d reset error %d\n",
1623 wIndex + 1, retval);
1624 goto error;
1627 /* see what we found out */
1628 temp = check_reset_complete(fotg210, wIndex, status_reg,
1629 fotg210_readl(fotg210, status_reg));
1631 /* restart schedule */
1632 fotg210->command |= CMD_RUN;
1633 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1637 fotg210->reset_done[wIndex] = 0;
1638 clear_bit(wIndex, &fotg210->resuming_ports);
1641 /* transfer dedicated ports to the companion hc */
1642 if ((temp & PORT_CONNECT) &&
1643 test_bit(wIndex, &fotg210->companion_ports)) {
1644 temp &= ~PORT_RWC_BITS;
1645 fotg210_writel(fotg210, temp, status_reg);
1646 fotg210_dbg(fotg210, "port %d --> companion\n",
1647 wIndex + 1);
1648 temp = fotg210_readl(fotg210, status_reg);
1652 * Even if OWNER is set, there's no harm letting hub_wq
1653 * see the wPortStatus values (they should all be 0 except
1654 * for PORT_POWER anyway).
1657 if (temp & PORT_CONNECT) {
1658 status |= USB_PORT_STAT_CONNECTION;
1659 status |= fotg210_port_speed(fotg210, temp);
1661 if (temp & PORT_PE)
1662 status |= USB_PORT_STAT_ENABLE;
1664 /* maybe the port was unsuspended without our knowledge */
1665 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1666 status |= USB_PORT_STAT_SUSPEND;
1667 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1668 clear_bit(wIndex, &fotg210->suspended_ports);
1669 clear_bit(wIndex, &fotg210->resuming_ports);
1670 fotg210->reset_done[wIndex] = 0;
1671 if (temp & PORT_PE)
1672 set_bit(wIndex, &fotg210->port_c_suspend);
1675 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1676 if (temp1 & OTGISR_OVC)
1677 status |= USB_PORT_STAT_OVERCURRENT;
1678 if (temp & PORT_RESET)
1679 status |= USB_PORT_STAT_RESET;
1680 if (test_bit(wIndex, &fotg210->port_c_suspend))
1681 status |= USB_PORT_STAT_C_SUSPEND << 16;
1683 if (status & ~0xffff) /* only if wPortChange is interesting */
1684 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1685 put_unaligned_le32(status, buf);
1686 break;
1687 case SetHubFeature:
1688 switch (wValue) {
1689 case C_HUB_LOCAL_POWER:
1690 case C_HUB_OVER_CURRENT:
1691 /* no hub-wide feature/status flags */
1692 break;
1693 default:
1694 goto error;
1696 break;
1697 case SetPortFeature:
1698 selector = wIndex >> 8;
1699 wIndex &= 0xff;
1701 if (!wIndex || wIndex > ports)
1702 goto error;
1703 wIndex--;
1704 temp = fotg210_readl(fotg210, status_reg);
1705 temp &= ~PORT_RWC_BITS;
1706 switch (wValue) {
1707 case USB_PORT_FEAT_SUSPEND:
1708 if ((temp & PORT_PE) == 0
1709 || (temp & PORT_RESET) != 0)
1710 goto error;
1712 /* After above check the port must be connected.
1713 * Set appropriate bit thus could put phy into low power
1714 * mode if we have hostpc feature
1716 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1717 status_reg);
1718 set_bit(wIndex, &fotg210->suspended_ports);
1719 break;
1720 case USB_PORT_FEAT_RESET:
1721 if (temp & PORT_RESUME)
1722 goto error;
1723 /* line status bits may report this as low speed,
1724 * which can be fine if this root hub has a
1725 * transaction translator built in.
1727 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1728 temp |= PORT_RESET;
1729 temp &= ~PORT_PE;
1732 * caller must wait, then call GetPortStatus
1733 * usb 2.0 spec says 50 ms resets on root
1735 fotg210->reset_done[wIndex] = jiffies
1736 + msecs_to_jiffies(50);
1737 fotg210_writel(fotg210, temp, status_reg);
1738 break;
1740 /* For downstream facing ports (these): one hub port is put
1741 * into test mode according to USB2 11.24.2.13, then the hub
1742 * must be reset (which for root hub now means rmmod+modprobe,
1743 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1744 * about the EHCI-specific stuff.
1746 case USB_PORT_FEAT_TEST:
1747 if (!selector || selector > 5)
1748 goto error;
1749 spin_unlock_irqrestore(&fotg210->lock, flags);
1750 fotg210_quiesce(fotg210);
1751 spin_lock_irqsave(&fotg210->lock, flags);
1753 /* Put all enabled ports into suspend */
1754 temp = fotg210_readl(fotg210, status_reg) &
1755 ~PORT_RWC_BITS;
1756 if (temp & PORT_PE)
1757 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1758 status_reg);
1760 spin_unlock_irqrestore(&fotg210->lock, flags);
1761 fotg210_halt(fotg210);
1762 spin_lock_irqsave(&fotg210->lock, flags);
1764 temp = fotg210_readl(fotg210, status_reg);
1765 temp |= selector << 16;
1766 fotg210_writel(fotg210, temp, status_reg);
1767 break;
1769 default:
1770 goto error;
1772 fotg210_readl(fotg210, &fotg210->regs->command);
1773 break;
1775 default:
1776 error:
1777 /* "stall" on error */
1778 retval = -EPIPE;
1780 spin_unlock_irqrestore(&fotg210->lock, flags);
1781 return retval;
1784 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1785 int portnum)
1787 return;
1790 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1791 int portnum)
1793 return 0;
1796 /* There's basically three types of memory:
1797 * - data used only by the HCD ... kmalloc is fine
1798 * - async and periodic schedules, shared by HC and HCD ... these
1799 * need to use dma_pool or dma_alloc_coherent
1800 * - driver buffers, read/written by HC ... single shot DMA mapped
1802 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1803 * No memory seen by this driver is pageable.
1806 /* Allocate the key transfer structures from the previously allocated pool */
1807 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1808 struct fotg210_qtd *qtd, dma_addr_t dma)
1810 memset(qtd, 0, sizeof(*qtd));
1811 qtd->qtd_dma = dma;
1812 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1813 qtd->hw_next = FOTG210_LIST_END(fotg210);
1814 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1815 INIT_LIST_HEAD(&qtd->qtd_list);
1818 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1819 gfp_t flags)
1821 struct fotg210_qtd *qtd;
1822 dma_addr_t dma;
1824 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1825 if (qtd != NULL)
1826 fotg210_qtd_init(fotg210, qtd, dma);
1828 return qtd;
1831 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1832 struct fotg210_qtd *qtd)
1834 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1838 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1840 /* clean qtds first, and know this is not linked */
1841 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1842 fotg210_dbg(fotg210, "unused qh not empty!\n");
1843 BUG();
1845 if (qh->dummy)
1846 fotg210_qtd_free(fotg210, qh->dummy);
1847 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1848 kfree(qh);
1851 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1852 gfp_t flags)
1854 struct fotg210_qh *qh;
1855 dma_addr_t dma;
1857 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1858 if (!qh)
1859 goto done;
1860 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1861 if (!qh->hw)
1862 goto fail;
1863 qh->qh_dma = dma;
1864 INIT_LIST_HEAD(&qh->qtd_list);
1866 /* dummy td enables safe urb queuing */
1867 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1868 if (qh->dummy == NULL) {
1869 fotg210_dbg(fotg210, "no dummy td\n");
1870 goto fail1;
1872 done:
1873 return qh;
1874 fail1:
1875 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1876 fail:
1877 kfree(qh);
1878 return NULL;
1881 /* The queue heads and transfer descriptors are managed from pools tied
1882 * to each of the "per device" structures.
1883 * This is the initialisation and cleanup code.
1886 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1888 if (fotg210->async)
1889 qh_destroy(fotg210, fotg210->async);
1890 fotg210->async = NULL;
1892 if (fotg210->dummy)
1893 qh_destroy(fotg210, fotg210->dummy);
1894 fotg210->dummy = NULL;
1896 /* DMA consistent memory and pools */
1897 dma_pool_destroy(fotg210->qtd_pool);
1898 fotg210->qtd_pool = NULL;
1900 dma_pool_destroy(fotg210->qh_pool);
1901 fotg210->qh_pool = NULL;
1903 dma_pool_destroy(fotg210->itd_pool);
1904 fotg210->itd_pool = NULL;
1906 if (fotg210->periodic)
1907 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1908 fotg210->periodic_size * sizeof(u32),
1909 fotg210->periodic, fotg210->periodic_dma);
1910 fotg210->periodic = NULL;
1912 /* shadow periodic table */
1913 kfree(fotg210->pshadow);
1914 fotg210->pshadow = NULL;
1917 /* remember to add cleanup code (above) if you add anything here */
1918 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1920 int i;
1922 /* QTDs for control/bulk/intr transfers */
1923 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1924 fotg210_to_hcd(fotg210)->self.controller,
1925 sizeof(struct fotg210_qtd),
1926 32 /* byte alignment (for hw parts) */,
1927 4096 /* can't cross 4K */);
1928 if (!fotg210->qtd_pool)
1929 goto fail;
1931 /* QHs for control/bulk/intr transfers */
1932 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1933 fotg210_to_hcd(fotg210)->self.controller,
1934 sizeof(struct fotg210_qh_hw),
1935 32 /* byte alignment (for hw parts) */,
1936 4096 /* can't cross 4K */);
1937 if (!fotg210->qh_pool)
1938 goto fail;
1940 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1941 if (!fotg210->async)
1942 goto fail;
1944 /* ITD for high speed ISO transfers */
1945 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1946 fotg210_to_hcd(fotg210)->self.controller,
1947 sizeof(struct fotg210_itd),
1948 64 /* byte alignment (for hw parts) */,
1949 4096 /* can't cross 4K */);
1950 if (!fotg210->itd_pool)
1951 goto fail;
1953 /* Hardware periodic table */
1954 fotg210->periodic = (__le32 *)
1955 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1956 fotg210->periodic_size * sizeof(__le32),
1957 &fotg210->periodic_dma, 0);
1958 if (fotg210->periodic == NULL)
1959 goto fail;
1961 for (i = 0; i < fotg210->periodic_size; i++)
1962 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1964 /* software shadow of hardware table */
1965 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1966 flags);
1967 if (fotg210->pshadow != NULL)
1968 return 0;
1970 fail:
1971 fotg210_dbg(fotg210, "couldn't init memory\n");
1972 fotg210_mem_cleanup(fotg210);
1973 return -ENOMEM;
1975 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1977 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1978 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1979 * buffers needed for the larger number). We use one QH per endpoint, queue
1980 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1982 * ISO traffic uses "ISO TD" (itd) records, and (along with
1983 * interrupts) needs careful scheduling. Performance improvements can be
1984 * an ongoing challenge. That's in "ehci-sched.c".
1986 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1987 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1988 * (b) special fields in qh entries or (c) split iso entries. TTs will
1989 * buffer low/full speed data so the host collects it at high speed.
1992 /* fill a qtd, returning how much of the buffer we were able to queue up */
1993 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1994 dma_addr_t buf, size_t len, int token, int maxpacket)
1996 int i, count;
1997 u64 addr = buf;
1999 /* one buffer entry per 4K ... first might be short or unaligned */
2000 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2001 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2002 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2003 if (likely(len < count)) /* ... iff needed */
2004 count = len;
2005 else {
2006 buf += 0x1000;
2007 buf &= ~0x0fff;
2009 /* per-qtd limit: from 16K to 20K (best alignment) */
2010 for (i = 1; count < len && i < 5; i++) {
2011 addr = buf;
2012 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2013 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2014 (u32)(addr >> 32));
2015 buf += 0x1000;
2016 if ((count + 0x1000) < len)
2017 count += 0x1000;
2018 else
2019 count = len;
2022 /* short packets may only terminate transfers */
2023 if (count != len)
2024 count -= (count % maxpacket);
2026 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2027 qtd->length = count;
2029 return count;
2032 static inline void qh_update(struct fotg210_hcd *fotg210,
2033 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2035 struct fotg210_qh_hw *hw = qh->hw;
2037 /* writes to an active overlay are unsafe */
2038 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2040 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2041 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2043 /* Except for control endpoints, we make hardware maintain data
2044 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2045 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2046 * ever clear it.
2048 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2049 unsigned is_out, epnum;
2051 is_out = qh->is_out;
2052 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2053 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2054 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2055 usb_settoggle(qh->dev, epnum, is_out, 1);
2059 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2063 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2064 * recovery (including urb dequeue) would need software changes to a QH...
2066 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2068 struct fotg210_qtd *qtd;
2070 if (list_empty(&qh->qtd_list))
2071 qtd = qh->dummy;
2072 else {
2073 qtd = list_entry(qh->qtd_list.next,
2074 struct fotg210_qtd, qtd_list);
2076 * first qtd may already be partially processed.
2077 * If we come here during unlink, the QH overlay region
2078 * might have reference to the just unlinked qtd. The
2079 * qtd is updated in qh_completions(). Update the QH
2080 * overlay here.
2082 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2083 qh->hw->hw_qtd_next = qtd->hw_next;
2084 qtd = NULL;
2088 if (qtd)
2089 qh_update(fotg210, qh, qtd);
2092 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2094 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2095 struct usb_host_endpoint *ep)
2097 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2098 struct fotg210_qh *qh = ep->hcpriv;
2099 unsigned long flags;
2101 spin_lock_irqsave(&fotg210->lock, flags);
2102 qh->clearing_tt = 0;
2103 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2104 && fotg210->rh_state == FOTG210_RH_RUNNING)
2105 qh_link_async(fotg210, qh);
2106 spin_unlock_irqrestore(&fotg210->lock, flags);
2109 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2110 struct fotg210_qh *qh, struct urb *urb, u32 token)
2113 /* If an async split transaction gets an error or is unlinked,
2114 * the TT buffer may be left in an indeterminate state. We
2115 * have to clear the TT buffer.
2117 * Note: this routine is never called for Isochronous transfers.
2119 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2120 struct usb_device *tt = urb->dev->tt->hub;
2122 dev_dbg(&tt->dev,
2123 "clear tt buffer port %d, a%d ep%d t%08x\n",
2124 urb->dev->ttport, urb->dev->devnum,
2125 usb_pipeendpoint(urb->pipe), token);
2127 if (urb->dev->tt->hub !=
2128 fotg210_to_hcd(fotg210)->self.root_hub) {
2129 if (usb_hub_clear_tt_buffer(urb) == 0)
2130 qh->clearing_tt = 1;
2135 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2136 size_t length, u32 token)
2138 int status = -EINPROGRESS;
2140 /* count IN/OUT bytes, not SETUP (even short packets) */
2141 if (likely(QTD_PID(token) != 2))
2142 urb->actual_length += length - QTD_LENGTH(token);
2144 /* don't modify error codes */
2145 if (unlikely(urb->unlinked))
2146 return status;
2148 /* force cleanup after short read; not always an error */
2149 if (unlikely(IS_SHORT_READ(token)))
2150 status = -EREMOTEIO;
2152 /* serious "can't proceed" faults reported by the hardware */
2153 if (token & QTD_STS_HALT) {
2154 if (token & QTD_STS_BABBLE) {
2155 /* FIXME "must" disable babbling device's port too */
2156 status = -EOVERFLOW;
2157 /* CERR nonzero + halt --> stall */
2158 } else if (QTD_CERR(token)) {
2159 status = -EPIPE;
2161 /* In theory, more than one of the following bits can be set
2162 * since they are sticky and the transaction is retried.
2163 * Which to test first is rather arbitrary.
2165 } else if (token & QTD_STS_MMF) {
2166 /* fs/ls interrupt xfer missed the complete-split */
2167 status = -EPROTO;
2168 } else if (token & QTD_STS_DBE) {
2169 status = (QTD_PID(token) == 1) /* IN ? */
2170 ? -ENOSR /* hc couldn't read data */
2171 : -ECOMM; /* hc couldn't write data */
2172 } else if (token & QTD_STS_XACT) {
2173 /* timeout, bad CRC, wrong PID, etc */
2174 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2175 urb->dev->devpath,
2176 usb_pipeendpoint(urb->pipe),
2177 usb_pipein(urb->pipe) ? "in" : "out");
2178 status = -EPROTO;
2179 } else { /* unknown */
2180 status = -EPROTO;
2183 fotg210_dbg(fotg210,
2184 "dev%d ep%d%s qtd token %08x --> status %d\n",
2185 usb_pipedevice(urb->pipe),
2186 usb_pipeendpoint(urb->pipe),
2187 usb_pipein(urb->pipe) ? "in" : "out",
2188 token, status);
2191 return status;
2194 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2195 int status)
2196 __releases(fotg210->lock)
2197 __acquires(fotg210->lock)
2199 if (likely(urb->hcpriv != NULL)) {
2200 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2202 /* S-mask in a QH means it's an interrupt urb */
2203 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2205 /* ... update hc-wide periodic stats (for usbfs) */
2206 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2210 if (unlikely(urb->unlinked)) {
2211 COUNT(fotg210->stats.unlink);
2212 } else {
2213 /* report non-error and short read status as zero */
2214 if (status == -EINPROGRESS || status == -EREMOTEIO)
2215 status = 0;
2216 COUNT(fotg210->stats.complete);
2219 #ifdef FOTG210_URB_TRACE
2220 fotg210_dbg(fotg210,
2221 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2222 __func__, urb->dev->devpath, urb,
2223 usb_pipeendpoint(urb->pipe),
2224 usb_pipein(urb->pipe) ? "in" : "out",
2225 status,
2226 urb->actual_length, urb->transfer_buffer_length);
2227 #endif
2229 /* complete() can reenter this HCD */
2230 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2231 spin_unlock(&fotg210->lock);
2232 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2233 spin_lock(&fotg210->lock);
2236 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2238 /* Process and free completed qtds for a qh, returning URBs to drivers.
2239 * Chases up to qh->hw_current. Returns number of completions called,
2240 * indicating how much "real" work we did.
2242 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2243 struct fotg210_qh *qh)
2245 struct fotg210_qtd *last, *end = qh->dummy;
2246 struct fotg210_qtd *qtd, *tmp;
2247 int last_status;
2248 int stopped;
2249 unsigned count = 0;
2250 u8 state;
2251 struct fotg210_qh_hw *hw = qh->hw;
2253 if (unlikely(list_empty(&qh->qtd_list)))
2254 return count;
2256 /* completions (or tasks on other cpus) must never clobber HALT
2257 * till we've gone through and cleaned everything up, even when
2258 * they add urbs to this qh's queue or mark them for unlinking.
2260 * NOTE: unlinking expects to be done in queue order.
2262 * It's a bug for qh->qh_state to be anything other than
2263 * QH_STATE_IDLE, unless our caller is scan_async() or
2264 * scan_intr().
2266 state = qh->qh_state;
2267 qh->qh_state = QH_STATE_COMPLETING;
2268 stopped = (state == QH_STATE_IDLE);
2270 rescan:
2271 last = NULL;
2272 last_status = -EINPROGRESS;
2273 qh->needs_rescan = 0;
2275 /* remove de-activated QTDs from front of queue.
2276 * after faults (including short reads), cleanup this urb
2277 * then let the queue advance.
2278 * if queue is stopped, handles unlinks.
2280 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2281 struct urb *urb;
2282 u32 token = 0;
2284 urb = qtd->urb;
2286 /* clean up any state from previous QTD ...*/
2287 if (last) {
2288 if (likely(last->urb != urb)) {
2289 fotg210_urb_done(fotg210, last->urb,
2290 last_status);
2291 count++;
2292 last_status = -EINPROGRESS;
2294 fotg210_qtd_free(fotg210, last);
2295 last = NULL;
2298 /* ignore urbs submitted during completions we reported */
2299 if (qtd == end)
2300 break;
2302 /* hardware copies qtd out of qh overlay */
2303 rmb();
2304 token = hc32_to_cpu(fotg210, qtd->hw_token);
2306 /* always clean up qtds the hc de-activated */
2307 retry_xacterr:
2308 if ((token & QTD_STS_ACTIVE) == 0) {
2310 /* Report Data Buffer Error: non-fatal but useful */
2311 if (token & QTD_STS_DBE)
2312 fotg210_dbg(fotg210,
2313 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2314 urb, usb_endpoint_num(&urb->ep->desc),
2315 usb_endpoint_dir_in(&urb->ep->desc)
2316 ? "in" : "out",
2317 urb->transfer_buffer_length, qtd, qh);
2319 /* on STALL, error, and short reads this urb must
2320 * complete and all its qtds must be recycled.
2322 if ((token & QTD_STS_HALT) != 0) {
2324 /* retry transaction errors until we
2325 * reach the software xacterr limit
2327 if ((token & QTD_STS_XACT) &&
2328 QTD_CERR(token) == 0 &&
2329 ++qh->xacterrs < QH_XACTERR_MAX &&
2330 !urb->unlinked) {
2331 fotg210_dbg(fotg210,
2332 "detected XactErr len %zu/%zu retry %d\n",
2333 qtd->length - QTD_LENGTH(token),
2334 qtd->length,
2335 qh->xacterrs);
2337 /* reset the token in the qtd and the
2338 * qh overlay (which still contains
2339 * the qtd) so that we pick up from
2340 * where we left off
2342 token &= ~QTD_STS_HALT;
2343 token |= QTD_STS_ACTIVE |
2344 (FOTG210_TUNE_CERR << 10);
2345 qtd->hw_token = cpu_to_hc32(fotg210,
2346 token);
2347 wmb();
2348 hw->hw_token = cpu_to_hc32(fotg210,
2349 token);
2350 goto retry_xacterr;
2352 stopped = 1;
2354 /* magic dummy for some short reads; qh won't advance.
2355 * that silicon quirk can kick in with this dummy too.
2357 * other short reads won't stop the queue, including
2358 * control transfers (status stage handles that) or
2359 * most other single-qtd reads ... the queue stops if
2360 * URB_SHORT_NOT_OK was set so the driver submitting
2361 * the urbs could clean it up.
2363 } else if (IS_SHORT_READ(token) &&
2364 !(qtd->hw_alt_next &
2365 FOTG210_LIST_END(fotg210))) {
2366 stopped = 1;
2369 /* stop scanning when we reach qtds the hc is using */
2370 } else if (likely(!stopped
2371 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2372 break;
2374 /* scan the whole queue for unlinks whenever it stops */
2375 } else {
2376 stopped = 1;
2378 /* cancel everything if we halt, suspend, etc */
2379 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2380 last_status = -ESHUTDOWN;
2382 /* this qtd is active; skip it unless a previous qtd
2383 * for its urb faulted, or its urb was canceled.
2385 else if (last_status == -EINPROGRESS && !urb->unlinked)
2386 continue;
2388 /* qh unlinked; token in overlay may be most current */
2389 if (state == QH_STATE_IDLE &&
2390 cpu_to_hc32(fotg210, qtd->qtd_dma)
2391 == hw->hw_current) {
2392 token = hc32_to_cpu(fotg210, hw->hw_token);
2394 /* An unlink may leave an incomplete
2395 * async transaction in the TT buffer.
2396 * We have to clear it.
2398 fotg210_clear_tt_buffer(fotg210, qh, urb,
2399 token);
2403 /* unless we already know the urb's status, collect qtd status
2404 * and update count of bytes transferred. in common short read
2405 * cases with only one data qtd (including control transfers),
2406 * queue processing won't halt. but with two or more qtds (for
2407 * example, with a 32 KB transfer), when the first qtd gets a
2408 * short read the second must be removed by hand.
2410 if (last_status == -EINPROGRESS) {
2411 last_status = qtd_copy_status(fotg210, urb,
2412 qtd->length, token);
2413 if (last_status == -EREMOTEIO &&
2414 (qtd->hw_alt_next &
2415 FOTG210_LIST_END(fotg210)))
2416 last_status = -EINPROGRESS;
2418 /* As part of low/full-speed endpoint-halt processing
2419 * we must clear the TT buffer (11.17.5).
2421 if (unlikely(last_status != -EINPROGRESS &&
2422 last_status != -EREMOTEIO)) {
2423 /* The TT's in some hubs malfunction when they
2424 * receive this request following a STALL (they
2425 * stop sending isochronous packets). Since a
2426 * STALL can't leave the TT buffer in a busy
2427 * state (if you believe Figures 11-48 - 11-51
2428 * in the USB 2.0 spec), we won't clear the TT
2429 * buffer in this case. Strictly speaking this
2430 * is a violation of the spec.
2432 if (last_status != -EPIPE)
2433 fotg210_clear_tt_buffer(fotg210, qh,
2434 urb, token);
2438 /* if we're removing something not at the queue head,
2439 * patch the hardware queue pointer.
2441 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2442 last = list_entry(qtd->qtd_list.prev,
2443 struct fotg210_qtd, qtd_list);
2444 last->hw_next = qtd->hw_next;
2447 /* remove qtd; it's recycled after possible urb completion */
2448 list_del(&qtd->qtd_list);
2449 last = qtd;
2451 /* reinit the xacterr counter for the next qtd */
2452 qh->xacterrs = 0;
2455 /* last urb's completion might still need calling */
2456 if (likely(last != NULL)) {
2457 fotg210_urb_done(fotg210, last->urb, last_status);
2458 count++;
2459 fotg210_qtd_free(fotg210, last);
2462 /* Do we need to rescan for URBs dequeued during a giveback? */
2463 if (unlikely(qh->needs_rescan)) {
2464 /* If the QH is already unlinked, do the rescan now. */
2465 if (state == QH_STATE_IDLE)
2466 goto rescan;
2468 /* Otherwise we have to wait until the QH is fully unlinked.
2469 * Our caller will start an unlink if qh->needs_rescan is
2470 * set. But if an unlink has already started, nothing needs
2471 * to be done.
2473 if (state != QH_STATE_LINKED)
2474 qh->needs_rescan = 0;
2477 /* restore original state; caller must unlink or relink */
2478 qh->qh_state = state;
2480 /* be sure the hardware's done with the qh before refreshing
2481 * it after fault cleanup, or recovering from silicon wrongly
2482 * overlaying the dummy qtd (which reduces DMA chatter).
2484 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2485 switch (state) {
2486 case QH_STATE_IDLE:
2487 qh_refresh(fotg210, qh);
2488 break;
2489 case QH_STATE_LINKED:
2490 /* We won't refresh a QH that's linked (after the HC
2491 * stopped the queue). That avoids a race:
2492 * - HC reads first part of QH;
2493 * - CPU updates that first part and the token;
2494 * - HC reads rest of that QH, including token
2495 * Result: HC gets an inconsistent image, and then
2496 * DMAs to/from the wrong memory (corrupting it).
2498 * That should be rare for interrupt transfers,
2499 * except maybe high bandwidth ...
2502 /* Tell the caller to start an unlink */
2503 qh->needs_rescan = 1;
2504 break;
2505 /* otherwise, unlink already started */
2509 return count;
2512 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2513 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2514 /* ... and packet size, for any kind of endpoint descriptor */
2515 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2517 /* reverse of qh_urb_transaction: free a list of TDs.
2518 * used for cleanup after errors, before HC sees an URB's TDs.
2520 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2521 struct list_head *head)
2523 struct fotg210_qtd *qtd, *temp;
2525 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2526 list_del(&qtd->qtd_list);
2527 fotg210_qtd_free(fotg210, qtd);
2531 /* create a list of filled qtds for this URB; won't link into qh.
2533 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2534 struct urb *urb, struct list_head *head, gfp_t flags)
2536 struct fotg210_qtd *qtd, *qtd_prev;
2537 dma_addr_t buf;
2538 int len, this_sg_len, maxpacket;
2539 int is_input;
2540 u32 token;
2541 int i;
2542 struct scatterlist *sg;
2545 * URBs map to sequences of QTDs: one logical transaction
2547 qtd = fotg210_qtd_alloc(fotg210, flags);
2548 if (unlikely(!qtd))
2549 return NULL;
2550 list_add_tail(&qtd->qtd_list, head);
2551 qtd->urb = urb;
2553 token = QTD_STS_ACTIVE;
2554 token |= (FOTG210_TUNE_CERR << 10);
2555 /* for split transactions, SplitXState initialized to zero */
2557 len = urb->transfer_buffer_length;
2558 is_input = usb_pipein(urb->pipe);
2559 if (usb_pipecontrol(urb->pipe)) {
2560 /* SETUP pid */
2561 qtd_fill(fotg210, qtd, urb->setup_dma,
2562 sizeof(struct usb_ctrlrequest),
2563 token | (2 /* "setup" */ << 8), 8);
2565 /* ... and always at least one more pid */
2566 token ^= QTD_TOGGLE;
2567 qtd_prev = qtd;
2568 qtd = fotg210_qtd_alloc(fotg210, flags);
2569 if (unlikely(!qtd))
2570 goto cleanup;
2571 qtd->urb = urb;
2572 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2573 list_add_tail(&qtd->qtd_list, head);
2575 /* for zero length DATA stages, STATUS is always IN */
2576 if (len == 0)
2577 token |= (1 /* "in" */ << 8);
2581 * data transfer stage: buffer setup
2583 i = urb->num_mapped_sgs;
2584 if (len > 0 && i > 0) {
2585 sg = urb->sg;
2586 buf = sg_dma_address(sg);
2588 /* urb->transfer_buffer_length may be smaller than the
2589 * size of the scatterlist (or vice versa)
2591 this_sg_len = min_t(int, sg_dma_len(sg), len);
2592 } else {
2593 sg = NULL;
2594 buf = urb->transfer_dma;
2595 this_sg_len = len;
2598 if (is_input)
2599 token |= (1 /* "in" */ << 8);
2600 /* else it's already initted to "out" pid (0 << 8) */
2602 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605 * buffer gets wrapped in one or more qtds;
2606 * last one may be "short" (including zero len)
2607 * and may serve as a control status ack
2609 for (;;) {
2610 int this_qtd_len;
2612 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2613 maxpacket);
2614 this_sg_len -= this_qtd_len;
2615 len -= this_qtd_len;
2616 buf += this_qtd_len;
2619 * short reads advance to a "magic" dummy instead of the next
2620 * qtd ... that forces the queue to stop, for manual cleanup.
2621 * (this will usually be overridden later.)
2623 if (is_input)
2624 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2626 /* qh makes control packets use qtd toggle; maybe switch it */
2627 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2628 token ^= QTD_TOGGLE;
2630 if (likely(this_sg_len <= 0)) {
2631 if (--i <= 0 || len <= 0)
2632 break;
2633 sg = sg_next(sg);
2634 buf = sg_dma_address(sg);
2635 this_sg_len = min_t(int, sg_dma_len(sg), len);
2638 qtd_prev = qtd;
2639 qtd = fotg210_qtd_alloc(fotg210, flags);
2640 if (unlikely(!qtd))
2641 goto cleanup;
2642 qtd->urb = urb;
2643 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2644 list_add_tail(&qtd->qtd_list, head);
2648 * unless the caller requires manual cleanup after short reads,
2649 * have the alt_next mechanism keep the queue running after the
2650 * last data qtd (the only one, for control and most other cases).
2652 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2653 usb_pipecontrol(urb->pipe)))
2654 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657 * control requests may need a terminating data "status" ack;
2658 * other OUT ones may need a terminating short packet
2659 * (zero length).
2661 if (likely(urb->transfer_buffer_length != 0)) {
2662 int one_more = 0;
2664 if (usb_pipecontrol(urb->pipe)) {
2665 one_more = 1;
2666 token ^= 0x0100; /* "in" <--> "out" */
2667 token |= QTD_TOGGLE; /* force DATA1 */
2668 } else if (usb_pipeout(urb->pipe)
2669 && (urb->transfer_flags & URB_ZERO_PACKET)
2670 && !(urb->transfer_buffer_length % maxpacket)) {
2671 one_more = 1;
2673 if (one_more) {
2674 qtd_prev = qtd;
2675 qtd = fotg210_qtd_alloc(fotg210, flags);
2676 if (unlikely(!qtd))
2677 goto cleanup;
2678 qtd->urb = urb;
2679 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2680 list_add_tail(&qtd->qtd_list, head);
2682 /* never any data in such packets */
2683 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2687 /* by default, enable interrupt on urb completion */
2688 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2689 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2690 return head;
2692 cleanup:
2693 qtd_list_free(fotg210, urb, head);
2694 return NULL;
2697 /* Would be best to create all qh's from config descriptors,
2698 * when each interface/altsetting is established. Unlink
2699 * any previous qh and cancel its urbs first; endpoints are
2700 * implicitly reset then (data toggle too).
2701 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2705 /* Each QH holds a qtd list; a QH is used for everything except iso.
2707 * For interrupt urbs, the scheduler must set the microframe scheduling
2708 * mask(s) each time the QH gets scheduled. For highspeed, that's
2709 * just one microframe in the s-mask. For split interrupt transactions
2710 * there are additional complications: c-mask, maybe FSTNs.
2712 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2713 gfp_t flags)
2715 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2716 u32 info1 = 0, info2 = 0;
2717 int is_input, type;
2718 int maxp = 0;
2719 struct usb_tt *tt = urb->dev->tt;
2720 struct fotg210_qh_hw *hw;
2722 if (!qh)
2723 return qh;
2726 * init endpoint/device data for this QH
2728 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2729 info1 |= usb_pipedevice(urb->pipe) << 0;
2731 is_input = usb_pipein(urb->pipe);
2732 type = usb_pipetype(urb->pipe);
2733 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2735 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2736 * acts like up to 3KB, but is built from smaller packets.
2738 if (max_packet(maxp) > 1024) {
2739 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2740 max_packet(maxp));
2741 goto done;
2744 /* Compute interrupt scheduling parameters just once, and save.
2745 * - allowing for high bandwidth, how many nsec/uframe are used?
2746 * - split transactions need a second CSPLIT uframe; same question
2747 * - splits also need a schedule gap (for full/low speed I/O)
2748 * - qh has a polling interval
2750 * For control/bulk requests, the HC or TT handles these.
2752 if (type == PIPE_INTERRUPT) {
2753 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2754 is_input, 0,
2755 hb_mult(maxp) * max_packet(maxp)));
2756 qh->start = NO_FRAME;
2758 if (urb->dev->speed == USB_SPEED_HIGH) {
2759 qh->c_usecs = 0;
2760 qh->gap_uf = 0;
2762 qh->period = urb->interval >> 3;
2763 if (qh->period == 0 && urb->interval != 1) {
2764 /* NOTE interval 2 or 4 uframes could work.
2765 * But interval 1 scheduling is simpler, and
2766 * includes high bandwidth.
2768 urb->interval = 1;
2769 } else if (qh->period > fotg210->periodic_size) {
2770 qh->period = fotg210->periodic_size;
2771 urb->interval = qh->period << 3;
2773 } else {
2774 int think_time;
2776 /* gap is f(FS/LS transfer times) */
2777 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2778 is_input, 0, maxp) / (125 * 1000);
2780 /* FIXME this just approximates SPLIT/CSPLIT times */
2781 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2782 qh->c_usecs = qh->usecs + HS_USECS(0);
2783 qh->usecs = HS_USECS(1);
2784 } else { /* SPLIT+DATA, gap, CSPLIT */
2785 qh->usecs += HS_USECS(1);
2786 qh->c_usecs = HS_USECS(0);
2789 think_time = tt ? tt->think_time : 0;
2790 qh->tt_usecs = NS_TO_US(think_time +
2791 usb_calc_bus_time(urb->dev->speed,
2792 is_input, 0, max_packet(maxp)));
2793 qh->period = urb->interval;
2794 if (qh->period > fotg210->periodic_size) {
2795 qh->period = fotg210->periodic_size;
2796 urb->interval = qh->period;
2801 /* support for tt scheduling, and access to toggles */
2802 qh->dev = urb->dev;
2804 /* using TT? */
2805 switch (urb->dev->speed) {
2806 case USB_SPEED_LOW:
2807 info1 |= QH_LOW_SPEED;
2808 /* FALL THROUGH */
2810 case USB_SPEED_FULL:
2811 /* EPS 0 means "full" */
2812 if (type != PIPE_INTERRUPT)
2813 info1 |= (FOTG210_TUNE_RL_TT << 28);
2814 if (type == PIPE_CONTROL) {
2815 info1 |= QH_CONTROL_EP; /* for TT */
2816 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2818 info1 |= maxp << 16;
2820 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2822 /* Some Freescale processors have an erratum in which the
2823 * port number in the queue head was 0..N-1 instead of 1..N.
2825 if (fotg210_has_fsl_portno_bug(fotg210))
2826 info2 |= (urb->dev->ttport-1) << 23;
2827 else
2828 info2 |= urb->dev->ttport << 23;
2830 /* set the address of the TT; for TDI's integrated
2831 * root hub tt, leave it zeroed.
2833 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2834 info2 |= tt->hub->devnum << 16;
2836 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2838 break;
2840 case USB_SPEED_HIGH: /* no TT involved */
2841 info1 |= QH_HIGH_SPEED;
2842 if (type == PIPE_CONTROL) {
2843 info1 |= (FOTG210_TUNE_RL_HS << 28);
2844 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2845 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2846 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2847 } else if (type == PIPE_BULK) {
2848 info1 |= (FOTG210_TUNE_RL_HS << 28);
2849 /* The USB spec says that high speed bulk endpoints
2850 * always use 512 byte maxpacket. But some device
2851 * vendors decided to ignore that, and MSFT is happy
2852 * to help them do so. So now people expect to use
2853 * such nonconformant devices with Linux too; sigh.
2855 info1 |= max_packet(maxp) << 16;
2856 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2857 } else { /* PIPE_INTERRUPT */
2858 info1 |= max_packet(maxp) << 16;
2859 info2 |= hb_mult(maxp) << 30;
2861 break;
2862 default:
2863 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2864 urb->dev->speed);
2865 done:
2866 qh_destroy(fotg210, qh);
2867 return NULL;
2870 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2872 /* init as live, toggle clear, advance to dummy */
2873 qh->qh_state = QH_STATE_IDLE;
2874 hw = qh->hw;
2875 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2876 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2877 qh->is_out = !is_input;
2878 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2879 qh_refresh(fotg210, qh);
2880 return qh;
2883 static void enable_async(struct fotg210_hcd *fotg210)
2885 if (fotg210->async_count++)
2886 return;
2888 /* Stop waiting to turn off the async schedule */
2889 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2891 /* Don't start the schedule until ASS is 0 */
2892 fotg210_poll_ASS(fotg210);
2893 turn_on_io_watchdog(fotg210);
2896 static void disable_async(struct fotg210_hcd *fotg210)
2898 if (--fotg210->async_count)
2899 return;
2901 /* The async schedule and async_unlink list are supposed to be empty */
2902 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2904 /* Don't turn off the schedule until ASS is 1 */
2905 fotg210_poll_ASS(fotg210);
2908 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2910 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2912 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2913 struct fotg210_qh *head;
2915 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2916 if (unlikely(qh->clearing_tt))
2917 return;
2919 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2921 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2922 qh_refresh(fotg210, qh);
2924 /* splice right after start */
2925 head = fotg210->async;
2926 qh->qh_next = head->qh_next;
2927 qh->hw->hw_next = head->hw->hw_next;
2928 wmb();
2930 head->qh_next.qh = qh;
2931 head->hw->hw_next = dma;
2933 qh->xacterrs = 0;
2934 qh->qh_state = QH_STATE_LINKED;
2935 /* qtd completions reported later by interrupt */
2937 enable_async(fotg210);
2940 /* For control/bulk/interrupt, return QH with these TDs appended.
2941 * Allocates and initializes the QH if necessary.
2942 * Returns null if it can't allocate a QH it needs to.
2943 * If the QH has TDs (urbs) already, that's great.
2945 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2946 struct urb *urb, struct list_head *qtd_list,
2947 int epnum, void **ptr)
2949 struct fotg210_qh *qh = NULL;
2950 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2952 qh = (struct fotg210_qh *) *ptr;
2953 if (unlikely(qh == NULL)) {
2954 /* can't sleep here, we have fotg210->lock... */
2955 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2956 *ptr = qh;
2958 if (likely(qh != NULL)) {
2959 struct fotg210_qtd *qtd;
2961 if (unlikely(list_empty(qtd_list)))
2962 qtd = NULL;
2963 else
2964 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2965 qtd_list);
2967 /* control qh may need patching ... */
2968 if (unlikely(epnum == 0)) {
2969 /* usb_reset_device() briefly reverts to address 0 */
2970 if (usb_pipedevice(urb->pipe) == 0)
2971 qh->hw->hw_info1 &= ~qh_addr_mask;
2974 /* just one way to queue requests: swap with the dummy qtd.
2975 * only hc or qh_refresh() ever modify the overlay.
2977 if (likely(qtd != NULL)) {
2978 struct fotg210_qtd *dummy;
2979 dma_addr_t dma;
2980 __hc32 token;
2982 /* to avoid racing the HC, use the dummy td instead of
2983 * the first td of our list (becomes new dummy). both
2984 * tds stay deactivated until we're done, when the
2985 * HC is allowed to fetch the old dummy (4.10.2).
2987 token = qtd->hw_token;
2988 qtd->hw_token = HALT_BIT(fotg210);
2990 dummy = qh->dummy;
2992 dma = dummy->qtd_dma;
2993 *dummy = *qtd;
2994 dummy->qtd_dma = dma;
2996 list_del(&qtd->qtd_list);
2997 list_add(&dummy->qtd_list, qtd_list);
2998 list_splice_tail(qtd_list, &qh->qtd_list);
3000 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3001 qh->dummy = qtd;
3003 /* hc must see the new dummy at list end */
3004 dma = qtd->qtd_dma;
3005 qtd = list_entry(qh->qtd_list.prev,
3006 struct fotg210_qtd, qtd_list);
3007 qtd->hw_next = QTD_NEXT(fotg210, dma);
3009 /* let the hc process these next qtds */
3010 wmb();
3011 dummy->hw_token = token;
3013 urb->hcpriv = qh;
3016 return qh;
3019 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3020 struct list_head *qtd_list, gfp_t mem_flags)
3022 int epnum;
3023 unsigned long flags;
3024 struct fotg210_qh *qh = NULL;
3025 int rc;
3027 epnum = urb->ep->desc.bEndpointAddress;
3029 #ifdef FOTG210_URB_TRACE
3031 struct fotg210_qtd *qtd;
3033 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3034 fotg210_dbg(fotg210,
3035 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3036 __func__, urb->dev->devpath, urb,
3037 epnum & 0x0f, (epnum & USB_DIR_IN)
3038 ? "in" : "out",
3039 urb->transfer_buffer_length,
3040 qtd, urb->ep->hcpriv);
3042 #endif
3044 spin_lock_irqsave(&fotg210->lock, flags);
3045 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3046 rc = -ESHUTDOWN;
3047 goto done;
3049 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3050 if (unlikely(rc))
3051 goto done;
3053 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3054 if (unlikely(qh == NULL)) {
3055 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3056 rc = -ENOMEM;
3057 goto done;
3060 /* Control/bulk operations through TTs don't need scheduling,
3061 * the HC and TT handle it when the TT has a buffer ready.
3063 if (likely(qh->qh_state == QH_STATE_IDLE))
3064 qh_link_async(fotg210, qh);
3065 done:
3066 spin_unlock_irqrestore(&fotg210->lock, flags);
3067 if (unlikely(qh == NULL))
3068 qtd_list_free(fotg210, urb, qtd_list);
3069 return rc;
3072 static void single_unlink_async(struct fotg210_hcd *fotg210,
3073 struct fotg210_qh *qh)
3075 struct fotg210_qh *prev;
3077 /* Add to the end of the list of QHs waiting for the next IAAD */
3078 qh->qh_state = QH_STATE_UNLINK;
3079 if (fotg210->async_unlink)
3080 fotg210->async_unlink_last->unlink_next = qh;
3081 else
3082 fotg210->async_unlink = qh;
3083 fotg210->async_unlink_last = qh;
3085 /* Unlink it from the schedule */
3086 prev = fotg210->async;
3087 while (prev->qh_next.qh != qh)
3088 prev = prev->qh_next.qh;
3090 prev->hw->hw_next = qh->hw->hw_next;
3091 prev->qh_next = qh->qh_next;
3092 if (fotg210->qh_scan_next == qh)
3093 fotg210->qh_scan_next = qh->qh_next.qh;
3096 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099 * Do nothing if an IAA cycle is already running or
3100 * if one will be started shortly.
3102 if (fotg210->async_iaa || fotg210->async_unlinking)
3103 return;
3105 /* Do all the waiting QHs at once */
3106 fotg210->async_iaa = fotg210->async_unlink;
3107 fotg210->async_unlink = NULL;
3109 /* If the controller isn't running, we don't have to wait for it */
3110 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3111 if (!nested) /* Avoid recursion */
3112 end_unlink_async(fotg210);
3114 /* Otherwise start a new IAA cycle */
3115 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3116 /* Make sure the unlinks are all visible to the hardware */
3117 wmb();
3119 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3120 &fotg210->regs->command);
3121 fotg210_readl(fotg210, &fotg210->regs->command);
3122 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3123 true);
3127 /* the async qh for the qtds being unlinked are now gone from the HC */
3129 static void end_unlink_async(struct fotg210_hcd *fotg210)
3131 struct fotg210_qh *qh;
3133 /* Process the idle QHs */
3134 restart:
3135 fotg210->async_unlinking = true;
3136 while (fotg210->async_iaa) {
3137 qh = fotg210->async_iaa;
3138 fotg210->async_iaa = qh->unlink_next;
3139 qh->unlink_next = NULL;
3141 qh->qh_state = QH_STATE_IDLE;
3142 qh->qh_next.qh = NULL;
3144 qh_completions(fotg210, qh);
3145 if (!list_empty(&qh->qtd_list) &&
3146 fotg210->rh_state == FOTG210_RH_RUNNING)
3147 qh_link_async(fotg210, qh);
3148 disable_async(fotg210);
3150 fotg210->async_unlinking = false;
3152 /* Start a new IAA cycle if any QHs are waiting for it */
3153 if (fotg210->async_unlink) {
3154 start_iaa_cycle(fotg210, true);
3155 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3156 goto restart;
3160 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3162 struct fotg210_qh *qh, *next;
3163 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3164 bool check_unlinks_later = false;
3166 /* Unlink all the async QHs that have been empty for a timer cycle */
3167 next = fotg210->async->qh_next.qh;
3168 while (next) {
3169 qh = next;
3170 next = qh->qh_next.qh;
3172 if (list_empty(&qh->qtd_list) &&
3173 qh->qh_state == QH_STATE_LINKED) {
3174 if (!stopped && qh->unlink_cycle ==
3175 fotg210->async_unlink_cycle)
3176 check_unlinks_later = true;
3177 else
3178 single_unlink_async(fotg210, qh);
3182 /* Start a new IAA cycle if any QHs are waiting for it */
3183 if (fotg210->async_unlink)
3184 start_iaa_cycle(fotg210, false);
3186 /* QHs that haven't been empty for long enough will be handled later */
3187 if (check_unlinks_later) {
3188 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3189 true);
3190 ++fotg210->async_unlink_cycle;
3194 /* makes sure the async qh will become idle */
3195 /* caller must own fotg210->lock */
3197 static void start_unlink_async(struct fotg210_hcd *fotg210,
3198 struct fotg210_qh *qh)
3201 * If the QH isn't linked then there's nothing we can do
3202 * unless we were called during a giveback, in which case
3203 * qh_completions() has to deal with it.
3205 if (qh->qh_state != QH_STATE_LINKED) {
3206 if (qh->qh_state == QH_STATE_COMPLETING)
3207 qh->needs_rescan = 1;
3208 return;
3211 single_unlink_async(fotg210, qh);
3212 start_iaa_cycle(fotg210, false);
3215 static void scan_async(struct fotg210_hcd *fotg210)
3217 struct fotg210_qh *qh;
3218 bool check_unlinks_later = false;
3220 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3221 while (fotg210->qh_scan_next) {
3222 qh = fotg210->qh_scan_next;
3223 fotg210->qh_scan_next = qh->qh_next.qh;
3224 rescan:
3225 /* clean any finished work for this qh */
3226 if (!list_empty(&qh->qtd_list)) {
3227 int temp;
3230 * Unlinks could happen here; completion reporting
3231 * drops the lock. That's why fotg210->qh_scan_next
3232 * always holds the next qh to scan; if the next qh
3233 * gets unlinked then fotg210->qh_scan_next is adjusted
3234 * in single_unlink_async().
3236 temp = qh_completions(fotg210, qh);
3237 if (qh->needs_rescan) {
3238 start_unlink_async(fotg210, qh);
3239 } else if (list_empty(&qh->qtd_list)
3240 && qh->qh_state == QH_STATE_LINKED) {
3241 qh->unlink_cycle = fotg210->async_unlink_cycle;
3242 check_unlinks_later = true;
3243 } else if (temp != 0)
3244 goto rescan;
3249 * Unlink empty entries, reducing DMA usage as well
3250 * as HCD schedule-scanning costs. Delay for any qh
3251 * we just scanned, there's a not-unusual case that it
3252 * doesn't stay idle for long.
3254 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3255 !(fotg210->enabled_hrtimer_events &
3256 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3257 fotg210_enable_event(fotg210,
3258 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3259 ++fotg210->async_unlink_cycle;
3262 /* EHCI scheduled transaction support: interrupt, iso, split iso
3263 * These are called "periodic" transactions in the EHCI spec.
3265 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3266 * with the "asynchronous" transaction support (control/bulk transfers).
3267 * The only real difference is in how interrupt transfers are scheduled.
3269 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3270 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3271 * pre-calculated schedule data to make appending to the queue be quick.
3273 static int fotg210_get_frame(struct usb_hcd *hcd);
3275 /* periodic_next_shadow - return "next" pointer on shadow list
3276 * @periodic: host pointer to qh/itd
3277 * @tag: hardware tag for type of this record
3279 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3280 union fotg210_shadow *periodic, __hc32 tag)
3282 switch (hc32_to_cpu(fotg210, tag)) {
3283 case Q_TYPE_QH:
3284 return &periodic->qh->qh_next;
3285 case Q_TYPE_FSTN:
3286 return &periodic->fstn->fstn_next;
3287 default:
3288 return &periodic->itd->itd_next;
3292 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3293 union fotg210_shadow *periodic, __hc32 tag)
3295 switch (hc32_to_cpu(fotg210, tag)) {
3296 /* our fotg210_shadow.qh is actually software part */
3297 case Q_TYPE_QH:
3298 return &periodic->qh->hw->hw_next;
3299 /* others are hw parts */
3300 default:
3301 return periodic->hw_next;
3305 /* caller must hold fotg210->lock */
3306 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3307 void *ptr)
3309 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3310 __hc32 *hw_p = &fotg210->periodic[frame];
3311 union fotg210_shadow here = *prev_p;
3313 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3314 while (here.ptr && here.ptr != ptr) {
3315 prev_p = periodic_next_shadow(fotg210, prev_p,
3316 Q_NEXT_TYPE(fotg210, *hw_p));
3317 hw_p = shadow_next_periodic(fotg210, &here,
3318 Q_NEXT_TYPE(fotg210, *hw_p));
3319 here = *prev_p;
3321 /* an interrupt entry (at list end) could have been shared */
3322 if (!here.ptr)
3323 return;
3325 /* update shadow and hardware lists ... the old "next" pointers
3326 * from ptr may still be in use, the caller updates them.
3328 *prev_p = *periodic_next_shadow(fotg210, &here,
3329 Q_NEXT_TYPE(fotg210, *hw_p));
3331 *hw_p = *shadow_next_periodic(fotg210, &here,
3332 Q_NEXT_TYPE(fotg210, *hw_p));
3335 /* how many of the uframe's 125 usecs are allocated? */
3336 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3337 unsigned frame, unsigned uframe)
3339 __hc32 *hw_p = &fotg210->periodic[frame];
3340 union fotg210_shadow *q = &fotg210->pshadow[frame];
3341 unsigned usecs = 0;
3342 struct fotg210_qh_hw *hw;
3344 while (q->ptr) {
3345 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3346 case Q_TYPE_QH:
3347 hw = q->qh->hw;
3348 /* is it in the S-mask? */
3349 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3350 usecs += q->qh->usecs;
3351 /* ... or C-mask? */
3352 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3353 1 << (8 + uframe)))
3354 usecs += q->qh->c_usecs;
3355 hw_p = &hw->hw_next;
3356 q = &q->qh->qh_next;
3357 break;
3358 /* case Q_TYPE_FSTN: */
3359 default:
3360 /* for "save place" FSTNs, count the relevant INTR
3361 * bandwidth from the previous frame
3363 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3364 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3366 hw_p = &q->fstn->hw_next;
3367 q = &q->fstn->fstn_next;
3368 break;
3369 case Q_TYPE_ITD:
3370 if (q->itd->hw_transaction[uframe])
3371 usecs += q->itd->stream->usecs;
3372 hw_p = &q->itd->hw_next;
3373 q = &q->itd->itd_next;
3374 break;
3377 if (usecs > fotg210->uframe_periodic_max)
3378 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3379 frame * 8 + uframe, usecs);
3380 return usecs;
3383 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3385 if (!dev1->tt || !dev2->tt)
3386 return 0;
3387 if (dev1->tt != dev2->tt)
3388 return 0;
3389 if (dev1->tt->multi)
3390 return dev1->ttport == dev2->ttport;
3391 else
3392 return 1;
3395 /* return true iff the device's transaction translator is available
3396 * for a periodic transfer starting at the specified frame, using
3397 * all the uframes in the mask.
3399 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3400 struct usb_device *dev, unsigned frame, u32 uf_mask)
3402 if (period == 0) /* error */
3403 return 0;
3405 /* note bandwidth wastage: split never follows csplit
3406 * (different dev or endpoint) until the next uframe.
3407 * calling convention doesn't make that distinction.
3409 for (; frame < fotg210->periodic_size; frame += period) {
3410 union fotg210_shadow here;
3411 __hc32 type;
3412 struct fotg210_qh_hw *hw;
3414 here = fotg210->pshadow[frame];
3415 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3416 while (here.ptr) {
3417 switch (hc32_to_cpu(fotg210, type)) {
3418 case Q_TYPE_ITD:
3419 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3420 here = here.itd->itd_next;
3421 continue;
3422 case Q_TYPE_QH:
3423 hw = here.qh->hw;
3424 if (same_tt(dev, here.qh->dev)) {
3425 u32 mask;
3427 mask = hc32_to_cpu(fotg210,
3428 hw->hw_info2);
3429 /* "knows" no gap is needed */
3430 mask |= mask >> 8;
3431 if (mask & uf_mask)
3432 break;
3434 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3435 here = here.qh->qh_next;
3436 continue;
3437 /* case Q_TYPE_FSTN: */
3438 default:
3439 fotg210_dbg(fotg210,
3440 "periodic frame %d bogus type %d\n",
3441 frame, type);
3444 /* collision or error */
3445 return 0;
3449 /* no collision */
3450 return 1;
3453 static void enable_periodic(struct fotg210_hcd *fotg210)
3455 if (fotg210->periodic_count++)
3456 return;
3458 /* Stop waiting to turn off the periodic schedule */
3459 fotg210->enabled_hrtimer_events &=
3460 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3462 /* Don't start the schedule until PSS is 0 */
3463 fotg210_poll_PSS(fotg210);
3464 turn_on_io_watchdog(fotg210);
3467 static void disable_periodic(struct fotg210_hcd *fotg210)
3469 if (--fotg210->periodic_count)
3470 return;
3472 /* Don't turn off the schedule until PSS is 1 */
3473 fotg210_poll_PSS(fotg210);
3476 /* periodic schedule slots have iso tds (normal or split) first, then a
3477 * sparse tree for active interrupt transfers.
3479 * this just links in a qh; caller guarantees uframe masks are set right.
3480 * no FSTN support (yet; fotg210 0.96+)
3482 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3484 unsigned i;
3485 unsigned period = qh->period;
3487 dev_dbg(&qh->dev->dev,
3488 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3489 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3490 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3491 qh->c_usecs);
3493 /* high bandwidth, or otherwise every microframe */
3494 if (period == 0)
3495 period = 1;
3497 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3498 union fotg210_shadow *prev = &fotg210->pshadow[i];
3499 __hc32 *hw_p = &fotg210->periodic[i];
3500 union fotg210_shadow here = *prev;
3501 __hc32 type = 0;
3503 /* skip the iso nodes at list head */
3504 while (here.ptr) {
3505 type = Q_NEXT_TYPE(fotg210, *hw_p);
3506 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3507 break;
3508 prev = periodic_next_shadow(fotg210, prev, type);
3509 hw_p = shadow_next_periodic(fotg210, &here, type);
3510 here = *prev;
3513 /* sorting each branch by period (slow-->fast)
3514 * enables sharing interior tree nodes
3516 while (here.ptr && qh != here.qh) {
3517 if (qh->period > here.qh->period)
3518 break;
3519 prev = &here.qh->qh_next;
3520 hw_p = &here.qh->hw->hw_next;
3521 here = *prev;
3523 /* link in this qh, unless some earlier pass did that */
3524 if (qh != here.qh) {
3525 qh->qh_next = here;
3526 if (here.qh)
3527 qh->hw->hw_next = *hw_p;
3528 wmb();
3529 prev->qh = qh;
3530 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533 qh->qh_state = QH_STATE_LINKED;
3534 qh->xacterrs = 0;
3536 /* update per-qh bandwidth for usbfs */
3537 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3538 ? ((qh->usecs + qh->c_usecs) / qh->period)
3539 : (qh->usecs * 8);
3541 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3543 /* maybe enable periodic schedule processing */
3544 ++fotg210->intr_count;
3545 enable_periodic(fotg210);
3548 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3549 struct fotg210_qh *qh)
3551 unsigned i;
3552 unsigned period;
3555 * If qh is for a low/full-speed device, simply unlinking it
3556 * could interfere with an ongoing split transaction. To unlink
3557 * it safely would require setting the QH_INACTIVATE bit and
3558 * waiting at least one frame, as described in EHCI 4.12.2.5.
3560 * We won't bother with any of this. Instead, we assume that the
3561 * only reason for unlinking an interrupt QH while the current URB
3562 * is still active is to dequeue all the URBs (flush the whole
3563 * endpoint queue).
3565 * If rebalancing the periodic schedule is ever implemented, this
3566 * approach will no longer be valid.
3569 /* high bandwidth, or otherwise part of every microframe */
3570 period = qh->period;
3571 if (!period)
3572 period = 1;
3574 for (i = qh->start; i < fotg210->periodic_size; i += period)
3575 periodic_unlink(fotg210, i, qh);
3577 /* update per-qh bandwidth for usbfs */
3578 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3579 ? ((qh->usecs + qh->c_usecs) / qh->period)
3580 : (qh->usecs * 8);
3582 dev_dbg(&qh->dev->dev,
3583 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3584 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3585 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3586 qh->c_usecs);
3588 /* qh->qh_next still "live" to HC */
3589 qh->qh_state = QH_STATE_UNLINK;
3590 qh->qh_next.ptr = NULL;
3592 if (fotg210->qh_scan_next == qh)
3593 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3594 struct fotg210_qh, intr_node);
3595 list_del(&qh->intr_node);
3598 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3599 struct fotg210_qh *qh)
3601 /* If the QH isn't linked then there's nothing we can do
3602 * unless we were called during a giveback, in which case
3603 * qh_completions() has to deal with it.
3605 if (qh->qh_state != QH_STATE_LINKED) {
3606 if (qh->qh_state == QH_STATE_COMPLETING)
3607 qh->needs_rescan = 1;
3608 return;
3611 qh_unlink_periodic(fotg210, qh);
3613 /* Make sure the unlinks are visible before starting the timer */
3614 wmb();
3617 * The EHCI spec doesn't say how long it takes the controller to
3618 * stop accessing an unlinked interrupt QH. The timer delay is
3619 * 9 uframes; presumably that will be long enough.
3621 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3623 /* New entries go at the end of the intr_unlink list */
3624 if (fotg210->intr_unlink)
3625 fotg210->intr_unlink_last->unlink_next = qh;
3626 else
3627 fotg210->intr_unlink = qh;
3628 fotg210->intr_unlink_last = qh;
3630 if (fotg210->intr_unlinking)
3631 ; /* Avoid recursive calls */
3632 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3633 fotg210_handle_intr_unlinks(fotg210);
3634 else if (fotg210->intr_unlink == qh) {
3635 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3636 true);
3637 ++fotg210->intr_unlink_cycle;
3641 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3643 struct fotg210_qh_hw *hw = qh->hw;
3644 int rc;
3646 qh->qh_state = QH_STATE_IDLE;
3647 hw->hw_next = FOTG210_LIST_END(fotg210);
3649 qh_completions(fotg210, qh);
3651 /* reschedule QH iff another request is queued */
3652 if (!list_empty(&qh->qtd_list) &&
3653 fotg210->rh_state == FOTG210_RH_RUNNING) {
3654 rc = qh_schedule(fotg210, qh);
3656 /* An error here likely indicates handshake failure
3657 * or no space left in the schedule. Neither fault
3658 * should happen often ...
3660 * FIXME kill the now-dysfunctional queued urbs
3662 if (rc != 0)
3663 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3664 qh, rc);
3667 /* maybe turn off periodic schedule */
3668 --fotg210->intr_count;
3669 disable_periodic(fotg210);
3672 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3673 unsigned uframe, unsigned period, unsigned usecs)
3675 int claimed;
3677 /* complete split running into next frame?
3678 * given FSTN support, we could sometimes check...
3680 if (uframe >= 8)
3681 return 0;
3683 /* convert "usecs we need" to "max already claimed" */
3684 usecs = fotg210->uframe_periodic_max - usecs;
3686 /* we "know" 2 and 4 uframe intervals were rejected; so
3687 * for period 0, check _every_ microframe in the schedule.
3689 if (unlikely(period == 0)) {
3690 do {
3691 for (uframe = 0; uframe < 7; uframe++) {
3692 claimed = periodic_usecs(fotg210, frame,
3693 uframe);
3694 if (claimed > usecs)
3695 return 0;
3697 } while ((frame += 1) < fotg210->periodic_size);
3699 /* just check the specified uframe, at that period */
3700 } else {
3701 do {
3702 claimed = periodic_usecs(fotg210, frame, uframe);
3703 if (claimed > usecs)
3704 return 0;
3705 } while ((frame += period) < fotg210->periodic_size);
3708 /* success! */
3709 return 1;
3712 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3713 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3715 int retval = -ENOSPC;
3716 u8 mask = 0;
3718 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3719 goto done;
3721 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3722 goto done;
3723 if (!qh->c_usecs) {
3724 retval = 0;
3725 *c_maskp = 0;
3726 goto done;
3729 /* Make sure this tt's buffer is also available for CSPLITs.
3730 * We pessimize a bit; probably the typical full speed case
3731 * doesn't need the second CSPLIT.
3733 * NOTE: both SPLIT and CSPLIT could be checked in just
3734 * one smart pass...
3736 mask = 0x03 << (uframe + qh->gap_uf);
3737 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3739 mask |= 1 << uframe;
3740 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3741 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3742 qh->period, qh->c_usecs))
3743 goto done;
3744 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3745 qh->period, qh->c_usecs))
3746 goto done;
3747 retval = 0;
3749 done:
3750 return retval;
3753 /* "first fit" scheduling policy used the first time through,
3754 * or when the previous schedule slot can't be re-used.
3756 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3758 int status;
3759 unsigned uframe;
3760 __hc32 c_mask;
3761 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3762 struct fotg210_qh_hw *hw = qh->hw;
3764 qh_refresh(fotg210, qh);
3765 hw->hw_next = FOTG210_LIST_END(fotg210);
3766 frame = qh->start;
3768 /* reuse the previous schedule slots, if we can */
3769 if (frame < qh->period) {
3770 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3771 status = check_intr_schedule(fotg210, frame, --uframe,
3772 qh, &c_mask);
3773 } else {
3774 uframe = 0;
3775 c_mask = 0;
3776 status = -ENOSPC;
3779 /* else scan the schedule to find a group of slots such that all
3780 * uframes have enough periodic bandwidth available.
3782 if (status) {
3783 /* "normal" case, uframing flexible except with splits */
3784 if (qh->period) {
3785 int i;
3787 for (i = qh->period; status && i > 0; --i) {
3788 frame = ++fotg210->random_frame % qh->period;
3789 for (uframe = 0; uframe < 8; uframe++) {
3790 status = check_intr_schedule(fotg210,
3791 frame, uframe, qh,
3792 &c_mask);
3793 if (status == 0)
3794 break;
3798 /* qh->period == 0 means every uframe */
3799 } else {
3800 frame = 0;
3801 status = check_intr_schedule(fotg210, 0, 0, qh,
3802 &c_mask);
3804 if (status)
3805 goto done;
3806 qh->start = frame;
3808 /* reset S-frame and (maybe) C-frame masks */
3809 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3810 hw->hw_info2 |= qh->period
3811 ? cpu_to_hc32(fotg210, 1 << uframe)
3812 : cpu_to_hc32(fotg210, QH_SMASK);
3813 hw->hw_info2 |= c_mask;
3814 } else
3815 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3817 /* stuff into the periodic schedule */
3818 qh_link_periodic(fotg210, qh);
3819 done:
3820 return status;
3823 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3824 struct list_head *qtd_list, gfp_t mem_flags)
3826 unsigned epnum;
3827 unsigned long flags;
3828 struct fotg210_qh *qh;
3829 int status;
3830 struct list_head empty;
3832 /* get endpoint and transfer/schedule data */
3833 epnum = urb->ep->desc.bEndpointAddress;
3835 spin_lock_irqsave(&fotg210->lock, flags);
3837 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3838 status = -ESHUTDOWN;
3839 goto done_not_linked;
3841 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3842 if (unlikely(status))
3843 goto done_not_linked;
3845 /* get qh and force any scheduling errors */
3846 INIT_LIST_HEAD(&empty);
3847 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3848 if (qh == NULL) {
3849 status = -ENOMEM;
3850 goto done;
3852 if (qh->qh_state == QH_STATE_IDLE) {
3853 status = qh_schedule(fotg210, qh);
3854 if (status)
3855 goto done;
3858 /* then queue the urb's tds to the qh */
3859 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3860 BUG_ON(qh == NULL);
3862 /* ... update usbfs periodic stats */
3863 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3865 done:
3866 if (unlikely(status))
3867 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3868 done_not_linked:
3869 spin_unlock_irqrestore(&fotg210->lock, flags);
3870 if (status)
3871 qtd_list_free(fotg210, urb, qtd_list);
3873 return status;
3876 static void scan_intr(struct fotg210_hcd *fotg210)
3878 struct fotg210_qh *qh;
3880 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3881 &fotg210->intr_qh_list, intr_node) {
3882 rescan:
3883 /* clean any finished work for this qh */
3884 if (!list_empty(&qh->qtd_list)) {
3885 int temp;
3888 * Unlinks could happen here; completion reporting
3889 * drops the lock. That's why fotg210->qh_scan_next
3890 * always holds the next qh to scan; if the next qh
3891 * gets unlinked then fotg210->qh_scan_next is adjusted
3892 * in qh_unlink_periodic().
3894 temp = qh_completions(fotg210, qh);
3895 if (unlikely(qh->needs_rescan ||
3896 (list_empty(&qh->qtd_list) &&
3897 qh->qh_state == QH_STATE_LINKED)))
3898 start_unlink_intr(fotg210, qh);
3899 else if (temp != 0)
3900 goto rescan;
3905 /* fotg210_iso_stream ops work with both ITD and SITD */
3907 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3909 struct fotg210_iso_stream *stream;
3911 stream = kzalloc(sizeof(*stream), mem_flags);
3912 if (likely(stream != NULL)) {
3913 INIT_LIST_HEAD(&stream->td_list);
3914 INIT_LIST_HEAD(&stream->free_list);
3915 stream->next_uframe = -1;
3917 return stream;
3920 static void iso_stream_init(struct fotg210_hcd *fotg210,
3921 struct fotg210_iso_stream *stream, struct usb_device *dev,
3922 int pipe, unsigned interval)
3924 u32 buf1;
3925 unsigned epnum, maxp;
3926 int is_input;
3927 long bandwidth;
3928 unsigned multi;
3931 * this might be a "high bandwidth" highspeed endpoint,
3932 * as encoded in the ep descriptor's wMaxPacket field
3934 epnum = usb_pipeendpoint(pipe);
3935 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3936 maxp = usb_maxpacket(dev, pipe, !is_input);
3937 if (is_input)
3938 buf1 = (1 << 11);
3939 else
3940 buf1 = 0;
3942 maxp = max_packet(maxp);
3943 multi = hb_mult(maxp);
3944 buf1 |= maxp;
3945 maxp *= multi;
3947 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3948 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3949 stream->buf2 = cpu_to_hc32(fotg210, multi);
3951 /* usbfs wants to report the average usecs per frame tied up
3952 * when transfers on this endpoint are scheduled ...
3954 if (dev->speed == USB_SPEED_FULL) {
3955 interval <<= 3;
3956 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3957 is_input, 1, maxp));
3958 stream->usecs /= 8;
3959 } else {
3960 stream->highspeed = 1;
3961 stream->usecs = HS_USECS_ISO(maxp);
3963 bandwidth = stream->usecs * 8;
3964 bandwidth /= interval;
3966 stream->bandwidth = bandwidth;
3967 stream->udev = dev;
3968 stream->bEndpointAddress = is_input | epnum;
3969 stream->interval = interval;
3970 stream->maxp = maxp;
3973 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3974 struct urb *urb)
3976 unsigned epnum;
3977 struct fotg210_iso_stream *stream;
3978 struct usb_host_endpoint *ep;
3979 unsigned long flags;
3981 epnum = usb_pipeendpoint(urb->pipe);
3982 if (usb_pipein(urb->pipe))
3983 ep = urb->dev->ep_in[epnum];
3984 else
3985 ep = urb->dev->ep_out[epnum];
3987 spin_lock_irqsave(&fotg210->lock, flags);
3988 stream = ep->hcpriv;
3990 if (unlikely(stream == NULL)) {
3991 stream = iso_stream_alloc(GFP_ATOMIC);
3992 if (likely(stream != NULL)) {
3993 ep->hcpriv = stream;
3994 stream->ep = ep;
3995 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3996 urb->interval);
3999 /* if dev->ep[epnum] is a QH, hw is set */
4000 } else if (unlikely(stream->hw != NULL)) {
4001 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4002 urb->dev->devpath, epnum,
4003 usb_pipein(urb->pipe) ? "in" : "out");
4004 stream = NULL;
4007 spin_unlock_irqrestore(&fotg210->lock, flags);
4008 return stream;
4011 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4013 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4014 gfp_t mem_flags)
4016 struct fotg210_iso_sched *iso_sched;
4017 int size = sizeof(*iso_sched);
4019 size += packets * sizeof(struct fotg210_iso_packet);
4020 iso_sched = kzalloc(size, mem_flags);
4021 if (likely(iso_sched != NULL))
4022 INIT_LIST_HEAD(&iso_sched->td_list);
4024 return iso_sched;
4027 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4028 struct fotg210_iso_sched *iso_sched,
4029 struct fotg210_iso_stream *stream, struct urb *urb)
4031 unsigned i;
4032 dma_addr_t dma = urb->transfer_dma;
4034 /* how many uframes are needed for these transfers */
4035 iso_sched->span = urb->number_of_packets * stream->interval;
4037 /* figure out per-uframe itd fields that we'll need later
4038 * when we fit new itds into the schedule.
4040 for (i = 0; i < urb->number_of_packets; i++) {
4041 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4042 unsigned length;
4043 dma_addr_t buf;
4044 u32 trans;
4046 length = urb->iso_frame_desc[i].length;
4047 buf = dma + urb->iso_frame_desc[i].offset;
4049 trans = FOTG210_ISOC_ACTIVE;
4050 trans |= buf & 0x0fff;
4051 if (unlikely(((i + 1) == urb->number_of_packets))
4052 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4053 trans |= FOTG210_ITD_IOC;
4054 trans |= length << 16;
4055 uframe->transaction = cpu_to_hc32(fotg210, trans);
4057 /* might need to cross a buffer page within a uframe */
4058 uframe->bufp = (buf & ~(u64)0x0fff);
4059 buf += length;
4060 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4061 uframe->cross = 1;
4065 static void iso_sched_free(struct fotg210_iso_stream *stream,
4066 struct fotg210_iso_sched *iso_sched)
4068 if (!iso_sched)
4069 return;
4070 /* caller must hold fotg210->lock!*/
4071 list_splice(&iso_sched->td_list, &stream->free_list);
4072 kfree(iso_sched);
4075 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4076 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4078 struct fotg210_itd *itd;
4079 dma_addr_t itd_dma;
4080 int i;
4081 unsigned num_itds;
4082 struct fotg210_iso_sched *sched;
4083 unsigned long flags;
4085 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4086 if (unlikely(sched == NULL))
4087 return -ENOMEM;
4089 itd_sched_init(fotg210, sched, stream, urb);
4091 if (urb->interval < 8)
4092 num_itds = 1 + (sched->span + 7) / 8;
4093 else
4094 num_itds = urb->number_of_packets;
4096 /* allocate/init ITDs */
4097 spin_lock_irqsave(&fotg210->lock, flags);
4098 for (i = 0; i < num_itds; i++) {
4101 * Use iTDs from the free list, but not iTDs that may
4102 * still be in use by the hardware.
4104 if (likely(!list_empty(&stream->free_list))) {
4105 itd = list_first_entry(&stream->free_list,
4106 struct fotg210_itd, itd_list);
4107 if (itd->frame == fotg210->now_frame)
4108 goto alloc_itd;
4109 list_del(&itd->itd_list);
4110 itd_dma = itd->itd_dma;
4111 } else {
4112 alloc_itd:
4113 spin_unlock_irqrestore(&fotg210->lock, flags);
4114 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4115 &itd_dma);
4116 spin_lock_irqsave(&fotg210->lock, flags);
4117 if (!itd) {
4118 iso_sched_free(stream, sched);
4119 spin_unlock_irqrestore(&fotg210->lock, flags);
4120 return -ENOMEM;
4124 itd->itd_dma = itd_dma;
4125 list_add(&itd->itd_list, &sched->td_list);
4127 spin_unlock_irqrestore(&fotg210->lock, flags);
4129 /* temporarily store schedule info in hcpriv */
4130 urb->hcpriv = sched;
4131 urb->error_count = 0;
4132 return 0;
4135 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4136 u8 usecs, u32 period)
4138 uframe %= period;
4139 do {
4140 /* can't commit more than uframe_periodic_max usec */
4141 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4142 > (fotg210->uframe_periodic_max - usecs))
4143 return 0;
4145 /* we know urb->interval is 2^N uframes */
4146 uframe += period;
4147 } while (uframe < mod);
4148 return 1;
4151 /* This scheduler plans almost as far into the future as it has actual
4152 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4153 * "as small as possible" to be cache-friendlier.) That limits the size
4154 * transfers you can stream reliably; avoid more than 64 msec per urb.
4155 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4156 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4157 * and other factors); or more than about 230 msec total (for portability,
4158 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4161 #define SCHEDULE_SLOP 80 /* microframes */
4163 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4164 struct fotg210_iso_stream *stream)
4166 u32 now, next, start, period, span;
4167 int status;
4168 unsigned mod = fotg210->periodic_size << 3;
4169 struct fotg210_iso_sched *sched = urb->hcpriv;
4171 period = urb->interval;
4172 span = sched->span;
4174 if (span > mod - SCHEDULE_SLOP) {
4175 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4176 status = -EFBIG;
4177 goto fail;
4180 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4182 /* Typical case: reuse current schedule, stream is still active.
4183 * Hopefully there are no gaps from the host falling behind
4184 * (irq delays etc), but if there are we'll take the next
4185 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4187 if (likely(!list_empty(&stream->td_list))) {
4188 u32 excess;
4190 /* For high speed devices, allow scheduling within the
4191 * isochronous scheduling threshold. For full speed devices
4192 * and Intel PCI-based controllers, don't (work around for
4193 * Intel ICH9 bug).
4195 if (!stream->highspeed && fotg210->fs_i_thresh)
4196 next = now + fotg210->i_thresh;
4197 else
4198 next = now;
4200 /* Fell behind (by up to twice the slop amount)?
4201 * We decide based on the time of the last currently-scheduled
4202 * slot, not the time of the next available slot.
4204 excess = (stream->next_uframe - period - next) & (mod - 1);
4205 if (excess >= mod - 2 * SCHEDULE_SLOP)
4206 start = next + excess - mod + period *
4207 DIV_ROUND_UP(mod - excess, period);
4208 else
4209 start = next + excess + period;
4210 if (start - now >= mod) {
4211 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4212 urb, start - now - period, period,
4213 mod);
4214 status = -EFBIG;
4215 goto fail;
4219 /* need to schedule; when's the next (u)frame we could start?
4220 * this is bigger than fotg210->i_thresh allows; scheduling itself
4221 * isn't free, the slop should handle reasonably slow cpus. it
4222 * can also help high bandwidth if the dma and irq loads don't
4223 * jump until after the queue is primed.
4225 else {
4226 int done = 0;
4228 start = SCHEDULE_SLOP + (now & ~0x07);
4230 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4232 /* find a uframe slot with enough bandwidth.
4233 * Early uframes are more precious because full-speed
4234 * iso IN transfers can't use late uframes,
4235 * and therefore they should be allocated last.
4237 next = start;
4238 start += period;
4239 do {
4240 start--;
4241 /* check schedule: enough space? */
4242 if (itd_slot_ok(fotg210, mod, start,
4243 stream->usecs, period))
4244 done = 1;
4245 } while (start > next && !done);
4247 /* no room in the schedule */
4248 if (!done) {
4249 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4250 urb, now, now + mod);
4251 status = -ENOSPC;
4252 goto fail;
4256 /* Tried to schedule too far into the future? */
4257 if (unlikely(start - now + span - period >=
4258 mod - 2 * SCHEDULE_SLOP)) {
4259 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4260 urb, start - now, span - period,
4261 mod - 2 * SCHEDULE_SLOP);
4262 status = -EFBIG;
4263 goto fail;
4266 stream->next_uframe = start & (mod - 1);
4268 /* report high speed start in uframes; full speed, in frames */
4269 urb->start_frame = stream->next_uframe;
4270 if (!stream->highspeed)
4271 urb->start_frame >>= 3;
4273 /* Make sure scan_isoc() sees these */
4274 if (fotg210->isoc_count == 0)
4275 fotg210->next_frame = now >> 3;
4276 return 0;
4278 fail:
4279 iso_sched_free(stream, sched);
4280 urb->hcpriv = NULL;
4281 return status;
4284 static inline void itd_init(struct fotg210_hcd *fotg210,
4285 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4287 int i;
4289 /* it's been recently zeroed */
4290 itd->hw_next = FOTG210_LIST_END(fotg210);
4291 itd->hw_bufp[0] = stream->buf0;
4292 itd->hw_bufp[1] = stream->buf1;
4293 itd->hw_bufp[2] = stream->buf2;
4295 for (i = 0; i < 8; i++)
4296 itd->index[i] = -1;
4298 /* All other fields are filled when scheduling */
4301 static inline void itd_patch(struct fotg210_hcd *fotg210,
4302 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4303 unsigned index, u16 uframe)
4305 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4306 unsigned pg = itd->pg;
4308 uframe &= 0x07;
4309 itd->index[uframe] = index;
4311 itd->hw_transaction[uframe] = uf->transaction;
4312 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4313 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4314 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4316 /* iso_frame_desc[].offset must be strictly increasing */
4317 if (unlikely(uf->cross)) {
4318 u64 bufp = uf->bufp + 4096;
4320 itd->pg = ++pg;
4321 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4322 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4326 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4327 struct fotg210_itd *itd)
4329 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4330 __hc32 *hw_p = &fotg210->periodic[frame];
4331 union fotg210_shadow here = *prev;
4332 __hc32 type = 0;
4334 /* skip any iso nodes which might belong to previous microframes */
4335 while (here.ptr) {
4336 type = Q_NEXT_TYPE(fotg210, *hw_p);
4337 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4338 break;
4339 prev = periodic_next_shadow(fotg210, prev, type);
4340 hw_p = shadow_next_periodic(fotg210, &here, type);
4341 here = *prev;
4344 itd->itd_next = here;
4345 itd->hw_next = *hw_p;
4346 prev->itd = itd;
4347 itd->frame = frame;
4348 wmb();
4349 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352 /* fit urb's itds into the selected schedule slot; activate as needed */
4353 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4354 unsigned mod, struct fotg210_iso_stream *stream)
4356 int packet;
4357 unsigned next_uframe, uframe, frame;
4358 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4359 struct fotg210_itd *itd;
4361 next_uframe = stream->next_uframe & (mod - 1);
4363 if (unlikely(list_empty(&stream->td_list))) {
4364 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4365 += stream->bandwidth;
4366 fotg210_dbg(fotg210,
4367 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4368 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4369 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4370 urb->interval,
4371 next_uframe >> 3, next_uframe & 0x7);
4374 /* fill iTDs uframe by uframe */
4375 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4376 if (itd == NULL) {
4377 /* ASSERT: we have all necessary itds */
4379 /* ASSERT: no itds for this endpoint in this uframe */
4381 itd = list_entry(iso_sched->td_list.next,
4382 struct fotg210_itd, itd_list);
4383 list_move_tail(&itd->itd_list, &stream->td_list);
4384 itd->stream = stream;
4385 itd->urb = urb;
4386 itd_init(fotg210, stream, itd);
4389 uframe = next_uframe & 0x07;
4390 frame = next_uframe >> 3;
4392 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4394 next_uframe += stream->interval;
4395 next_uframe &= mod - 1;
4396 packet++;
4398 /* link completed itds into the schedule */
4399 if (((next_uframe >> 3) != frame)
4400 || packet == urb->number_of_packets) {
4401 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4402 itd);
4403 itd = NULL;
4406 stream->next_uframe = next_uframe;
4408 /* don't need that schedule data any more */
4409 iso_sched_free(stream, iso_sched);
4410 urb->hcpriv = NULL;
4412 ++fotg210->isoc_count;
4413 enable_periodic(fotg210);
4416 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4417 FOTG210_ISOC_XACTERR)
4419 /* Process and recycle a completed ITD. Return true iff its urb completed,
4420 * and hence its completion callback probably added things to the hardware
4421 * schedule.
4423 * Note that we carefully avoid recycling this descriptor until after any
4424 * completion callback runs, so that it won't be reused quickly. That is,
4425 * assuming (a) no more than two urbs per frame on this endpoint, and also
4426 * (b) only this endpoint's completions submit URBs. It seems some silicon
4427 * corrupts things if you reuse completed descriptors very quickly...
4429 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4431 struct urb *urb = itd->urb;
4432 struct usb_iso_packet_descriptor *desc;
4433 u32 t;
4434 unsigned uframe;
4435 int urb_index = -1;
4436 struct fotg210_iso_stream *stream = itd->stream;
4437 struct usb_device *dev;
4438 bool retval = false;
4440 /* for each uframe with a packet */
4441 for (uframe = 0; uframe < 8; uframe++) {
4442 if (likely(itd->index[uframe] == -1))
4443 continue;
4444 urb_index = itd->index[uframe];
4445 desc = &urb->iso_frame_desc[urb_index];
4447 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4448 itd->hw_transaction[uframe] = 0;
4450 /* report transfer status */
4451 if (unlikely(t & ISO_ERRS)) {
4452 urb->error_count++;
4453 if (t & FOTG210_ISOC_BUF_ERR)
4454 desc->status = usb_pipein(urb->pipe)
4455 ? -ENOSR /* hc couldn't read */
4456 : -ECOMM; /* hc couldn't write */
4457 else if (t & FOTG210_ISOC_BABBLE)
4458 desc->status = -EOVERFLOW;
4459 else /* (t & FOTG210_ISOC_XACTERR) */
4460 desc->status = -EPROTO;
4462 /* HC need not update length with this error */
4463 if (!(t & FOTG210_ISOC_BABBLE)) {
4464 desc->actual_length =
4465 fotg210_itdlen(urb, desc, t);
4466 urb->actual_length += desc->actual_length;
4468 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4469 desc->status = 0;
4470 desc->actual_length = fotg210_itdlen(urb, desc, t);
4471 urb->actual_length += desc->actual_length;
4472 } else {
4473 /* URB was too late */
4474 desc->status = -EXDEV;
4478 /* handle completion now? */
4479 if (likely((urb_index + 1) != urb->number_of_packets))
4480 goto done;
4482 /* ASSERT: it's really the last itd for this urb
4483 * list_for_each_entry (itd, &stream->td_list, itd_list)
4484 * BUG_ON (itd->urb == urb);
4487 /* give urb back to the driver; completion often (re)submits */
4488 dev = urb->dev;
4489 fotg210_urb_done(fotg210, urb, 0);
4490 retval = true;
4491 urb = NULL;
4493 --fotg210->isoc_count;
4494 disable_periodic(fotg210);
4496 if (unlikely(list_is_singular(&stream->td_list))) {
4497 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4498 -= stream->bandwidth;
4499 fotg210_dbg(fotg210,
4500 "deschedule devp %s ep%d%s-iso\n",
4501 dev->devpath, stream->bEndpointAddress & 0x0f,
4502 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505 done:
4506 itd->urb = NULL;
4508 /* Add to the end of the free list for later reuse */
4509 list_move_tail(&itd->itd_list, &stream->free_list);
4511 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4512 if (list_empty(&stream->td_list)) {
4513 list_splice_tail_init(&stream->free_list,
4514 &fotg210->cached_itd_list);
4515 start_free_itds(fotg210);
4518 return retval;
4521 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4522 gfp_t mem_flags)
4524 int status = -EINVAL;
4525 unsigned long flags;
4526 struct fotg210_iso_stream *stream;
4528 /* Get iso_stream head */
4529 stream = iso_stream_find(fotg210, urb);
4530 if (unlikely(stream == NULL)) {
4531 fotg210_dbg(fotg210, "can't get iso stream\n");
4532 return -ENOMEM;
4534 if (unlikely(urb->interval != stream->interval &&
4535 fotg210_port_speed(fotg210, 0) ==
4536 USB_PORT_STAT_HIGH_SPEED)) {
4537 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4538 stream->interval, urb->interval);
4539 goto done;
4542 #ifdef FOTG210_URB_TRACE
4543 fotg210_dbg(fotg210,
4544 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4545 __func__, urb->dev->devpath, urb,
4546 usb_pipeendpoint(urb->pipe),
4547 usb_pipein(urb->pipe) ? "in" : "out",
4548 urb->transfer_buffer_length,
4549 urb->number_of_packets, urb->interval,
4550 stream);
4551 #endif
4553 /* allocate ITDs w/o locking anything */
4554 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4555 if (unlikely(status < 0)) {
4556 fotg210_dbg(fotg210, "can't init itds\n");
4557 goto done;
4560 /* schedule ... need to lock */
4561 spin_lock_irqsave(&fotg210->lock, flags);
4562 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4563 status = -ESHUTDOWN;
4564 goto done_not_linked;
4566 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4567 if (unlikely(status))
4568 goto done_not_linked;
4569 status = iso_stream_schedule(fotg210, urb, stream);
4570 if (likely(status == 0))
4571 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4572 else
4573 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4574 done_not_linked:
4575 spin_unlock_irqrestore(&fotg210->lock, flags);
4576 done:
4577 return status;
4580 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4581 unsigned now_frame, bool live)
4583 unsigned uf;
4584 bool modified;
4585 union fotg210_shadow q, *q_p;
4586 __hc32 type, *hw_p;
4588 /* scan each element in frame's queue for completions */
4589 q_p = &fotg210->pshadow[frame];
4590 hw_p = &fotg210->periodic[frame];
4591 q.ptr = q_p->ptr;
4592 type = Q_NEXT_TYPE(fotg210, *hw_p);
4593 modified = false;
4595 while (q.ptr) {
4596 switch (hc32_to_cpu(fotg210, type)) {
4597 case Q_TYPE_ITD:
4598 /* If this ITD is still active, leave it for
4599 * later processing ... check the next entry.
4600 * No need to check for activity unless the
4601 * frame is current.
4603 if (frame == now_frame && live) {
4604 rmb();
4605 for (uf = 0; uf < 8; uf++) {
4606 if (q.itd->hw_transaction[uf] &
4607 ITD_ACTIVE(fotg210))
4608 break;
4610 if (uf < 8) {
4611 q_p = &q.itd->itd_next;
4612 hw_p = &q.itd->hw_next;
4613 type = Q_NEXT_TYPE(fotg210,
4614 q.itd->hw_next);
4615 q = *q_p;
4616 break;
4620 /* Take finished ITDs out of the schedule
4621 * and process them: recycle, maybe report
4622 * URB completion. HC won't cache the
4623 * pointer for much longer, if at all.
4625 *q_p = q.itd->itd_next;
4626 *hw_p = q.itd->hw_next;
4627 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4628 wmb();
4629 modified = itd_complete(fotg210, q.itd);
4630 q = *q_p;
4631 break;
4632 default:
4633 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4634 type, frame, q.ptr);
4635 /* FALL THROUGH */
4636 case Q_TYPE_QH:
4637 case Q_TYPE_FSTN:
4638 /* End of the iTDs and siTDs */
4639 q.ptr = NULL;
4640 break;
4643 /* assume completion callbacks modify the queue */
4644 if (unlikely(modified && fotg210->isoc_count > 0))
4645 return -EINVAL;
4647 return 0;
4650 static void scan_isoc(struct fotg210_hcd *fotg210)
4652 unsigned uf, now_frame, frame, ret;
4653 unsigned fmask = fotg210->periodic_size - 1;
4654 bool live;
4657 * When running, scan from last scan point up to "now"
4658 * else clean up by scanning everything that's left.
4659 * Touches as few pages as possible: cache-friendly.
4661 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4662 uf = fotg210_read_frame_index(fotg210);
4663 now_frame = (uf >> 3) & fmask;
4664 live = true;
4665 } else {
4666 now_frame = (fotg210->next_frame - 1) & fmask;
4667 live = false;
4669 fotg210->now_frame = now_frame;
4671 frame = fotg210->next_frame;
4672 for (;;) {
4673 ret = 1;
4674 while (ret != 0)
4675 ret = scan_frame_queue(fotg210, frame,
4676 now_frame, live);
4678 /* Stop when we have reached the current frame */
4679 if (frame == now_frame)
4680 break;
4681 frame = (frame + 1) & fmask;
4683 fotg210->next_frame = now_frame;
4686 /* Display / Set uframe_periodic_max
4688 static ssize_t uframe_periodic_max_show(struct device *dev,
4689 struct device_attribute *attr, char *buf)
4691 struct fotg210_hcd *fotg210;
4692 int n;
4694 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4695 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4696 return n;
4700 static ssize_t uframe_periodic_max_store(struct device *dev,
4701 struct device_attribute *attr, const char *buf, size_t count)
4703 struct fotg210_hcd *fotg210;
4704 unsigned uframe_periodic_max;
4705 unsigned frame, uframe;
4706 unsigned short allocated_max;
4707 unsigned long flags;
4708 ssize_t ret;
4710 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4711 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4712 return -EINVAL;
4714 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4715 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4716 uframe_periodic_max);
4717 return -EINVAL;
4720 ret = -EINVAL;
4723 * lock, so that our checking does not race with possible periodic
4724 * bandwidth allocation through submitting new urbs.
4726 spin_lock_irqsave(&fotg210->lock, flags);
4729 * for request to decrease max periodic bandwidth, we have to check
4730 * every microframe in the schedule to see whether the decrease is
4731 * possible.
4733 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4734 allocated_max = 0;
4736 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4737 for (uframe = 0; uframe < 7; ++uframe)
4738 allocated_max = max(allocated_max,
4739 periodic_usecs(fotg210, frame,
4740 uframe));
4742 if (allocated_max > uframe_periodic_max) {
4743 fotg210_info(fotg210,
4744 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4745 allocated_max, uframe_periodic_max);
4746 goto out_unlock;
4750 /* increasing is always ok */
4752 fotg210_info(fotg210,
4753 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4754 100 * uframe_periodic_max/125, uframe_periodic_max);
4756 if (uframe_periodic_max != 100)
4757 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4759 fotg210->uframe_periodic_max = uframe_periodic_max;
4760 ret = count;
4762 out_unlock:
4763 spin_unlock_irqrestore(&fotg210->lock, flags);
4764 return ret;
4767 static DEVICE_ATTR_RW(uframe_periodic_max);
4769 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4771 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4773 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4778 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4780 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4782 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4783 * The firmware seems to think that powering off is a wakeup event!
4784 * This routine turns off remote wakeup and everything else, on all ports.
4786 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4788 u32 __iomem *status_reg = &fotg210->regs->port_status;
4790 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4794 * Must be called with interrupts enabled and the lock not held.
4796 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4798 fotg210_halt(fotg210);
4800 spin_lock_irq(&fotg210->lock);
4801 fotg210->rh_state = FOTG210_RH_HALTED;
4802 fotg210_turn_off_all_ports(fotg210);
4803 spin_unlock_irq(&fotg210->lock);
4806 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4807 * This forcibly disables dma and IRQs, helping kexec and other cases
4808 * where the next system software may expect clean state.
4810 static void fotg210_shutdown(struct usb_hcd *hcd)
4812 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4814 spin_lock_irq(&fotg210->lock);
4815 fotg210->shutdown = true;
4816 fotg210->rh_state = FOTG210_RH_STOPPING;
4817 fotg210->enabled_hrtimer_events = 0;
4818 spin_unlock_irq(&fotg210->lock);
4820 fotg210_silence_controller(fotg210);
4822 hrtimer_cancel(&fotg210->hrtimer);
4825 /* fotg210_work is called from some interrupts, timers, and so on.
4826 * it calls driver completion functions, after dropping fotg210->lock.
4828 static void fotg210_work(struct fotg210_hcd *fotg210)
4830 /* another CPU may drop fotg210->lock during a schedule scan while
4831 * it reports urb completions. this flag guards against bogus
4832 * attempts at re-entrant schedule scanning.
4834 if (fotg210->scanning) {
4835 fotg210->need_rescan = true;
4836 return;
4838 fotg210->scanning = true;
4840 rescan:
4841 fotg210->need_rescan = false;
4842 if (fotg210->async_count)
4843 scan_async(fotg210);
4844 if (fotg210->intr_count > 0)
4845 scan_intr(fotg210);
4846 if (fotg210->isoc_count > 0)
4847 scan_isoc(fotg210);
4848 if (fotg210->need_rescan)
4849 goto rescan;
4850 fotg210->scanning = false;
4852 /* the IO watchdog guards against hardware or driver bugs that
4853 * misplace IRQs, and should let us run completely without IRQs.
4854 * such lossage has been observed on both VT6202 and VT8235.
4856 turn_on_io_watchdog(fotg210);
4859 /* Called when the fotg210_hcd module is removed.
4861 static void fotg210_stop(struct usb_hcd *hcd)
4863 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4865 fotg210_dbg(fotg210, "stop\n");
4867 /* no more interrupts ... */
4869 spin_lock_irq(&fotg210->lock);
4870 fotg210->enabled_hrtimer_events = 0;
4871 spin_unlock_irq(&fotg210->lock);
4873 fotg210_quiesce(fotg210);
4874 fotg210_silence_controller(fotg210);
4875 fotg210_reset(fotg210);
4877 hrtimer_cancel(&fotg210->hrtimer);
4878 remove_sysfs_files(fotg210);
4879 remove_debug_files(fotg210);
4881 /* root hub is shut down separately (first, when possible) */
4882 spin_lock_irq(&fotg210->lock);
4883 end_free_itds(fotg210);
4884 spin_unlock_irq(&fotg210->lock);
4885 fotg210_mem_cleanup(fotg210);
4887 #ifdef FOTG210_STATS
4888 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4889 fotg210->stats.normal, fotg210->stats.error,
4890 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4891 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4892 fotg210->stats.complete, fotg210->stats.unlink);
4893 #endif
4895 dbg_status(fotg210, "fotg210_stop completed",
4896 fotg210_readl(fotg210, &fotg210->regs->status));
4899 /* one-time init, only for memory state */
4900 static int hcd_fotg210_init(struct usb_hcd *hcd)
4902 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4903 u32 temp;
4904 int retval;
4905 u32 hcc_params;
4906 struct fotg210_qh_hw *hw;
4908 spin_lock_init(&fotg210->lock);
4911 * keep io watchdog by default, those good HCDs could turn off it later
4913 fotg210->need_io_watchdog = 1;
4915 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4916 fotg210->hrtimer.function = fotg210_hrtimer_func;
4917 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4919 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922 * by default set standard 80% (== 100 usec/uframe) max periodic
4923 * bandwidth as required by USB 2.0
4925 fotg210->uframe_periodic_max = 100;
4928 * hw default: 1K periodic list heads, one per frame.
4929 * periodic_size can shrink by USBCMD update if hcc_params allows.
4931 fotg210->periodic_size = DEFAULT_I_TDPS;
4932 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4933 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4935 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4936 /* periodic schedule size can be smaller than default */
4937 switch (FOTG210_TUNE_FLS) {
4938 case 0:
4939 fotg210->periodic_size = 1024;
4940 break;
4941 case 1:
4942 fotg210->periodic_size = 512;
4943 break;
4944 case 2:
4945 fotg210->periodic_size = 256;
4946 break;
4947 default:
4948 BUG();
4951 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4952 if (retval < 0)
4953 return retval;
4955 /* controllers may cache some of the periodic schedule ... */
4956 fotg210->i_thresh = 2;
4959 * dedicate a qh for the async ring head, since we couldn't unlink
4960 * a 'real' qh without stopping the async schedule [4.8]. use it
4961 * as the 'reclamation list head' too.
4962 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4963 * from automatically advancing to the next td after short reads.
4965 fotg210->async->qh_next.qh = NULL;
4966 hw = fotg210->async->hw;
4967 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4968 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4969 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4970 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4971 fotg210->async->qh_state = QH_STATE_LINKED;
4972 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4974 /* clear interrupt enables, set irq latency */
4975 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4976 log2_irq_thresh = 0;
4977 temp = 1 << (16 + log2_irq_thresh);
4978 if (HCC_CANPARK(hcc_params)) {
4979 /* HW default park == 3, on hardware that supports it (like
4980 * NVidia and ALI silicon), maximizes throughput on the async
4981 * schedule by avoiding QH fetches between transfers.
4983 * With fast usb storage devices and NForce2, "park" seems to
4984 * make problems: throughput reduction (!), data errors...
4986 if (park) {
4987 park = min_t(unsigned, park, 3);
4988 temp |= CMD_PARK;
4989 temp |= park << 8;
4991 fotg210_dbg(fotg210, "park %d\n", park);
4993 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4994 /* periodic schedule size can be smaller than default */
4995 temp &= ~(3 << 2);
4996 temp |= (FOTG210_TUNE_FLS << 2);
4998 fotg210->command = temp;
5000 /* Accept arbitrarily long scatter-gather lists */
5001 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5002 hcd->self.sg_tablesize = ~0;
5003 return 0;
5006 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5007 static int fotg210_run(struct usb_hcd *hcd)
5009 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5010 u32 temp;
5011 u32 hcc_params;
5013 hcd->uses_new_polling = 1;
5015 /* EHCI spec section 4.1 */
5017 fotg210_writel(fotg210, fotg210->periodic_dma,
5018 &fotg210->regs->frame_list);
5019 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5020 &fotg210->regs->async_next);
5023 * hcc_params controls whether fotg210->regs->segment must (!!!)
5024 * be used; it constrains QH/ITD/SITD and QTD locations.
5025 * dma_pool consistent memory always uses segment zero.
5026 * streaming mappings for I/O buffers, like pci_map_single(),
5027 * can return segments above 4GB, if the device allows.
5029 * NOTE: the dma mask is visible through dev->dma_mask, so
5030 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5031 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5032 * host side drivers though.
5034 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037 * Philips, Intel, and maybe others need CMD_RUN before the
5038 * root hub will detect new devices (why?); NEC doesn't
5040 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5041 fotg210->command |= CMD_RUN;
5042 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5043 dbg_cmd(fotg210, "init", fotg210->command);
5046 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5047 * are explicitly handed to companion controller(s), so no TT is
5048 * involved with the root hub. (Except where one is integrated,
5049 * and there's no companion controller unless maybe for USB OTG.)
5051 * Turning on the CF flag will transfer ownership of all ports
5052 * from the companions to the EHCI controller. If any of the
5053 * companions are in the middle of a port reset at the time, it
5054 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5055 * guarantees that no resets are in progress. After we set CF,
5056 * a short delay lets the hardware catch up; new resets shouldn't
5057 * be started before the port switching actions could complete.
5059 down_write(&ehci_cf_port_reset_rwsem);
5060 fotg210->rh_state = FOTG210_RH_RUNNING;
5061 /* unblock posted writes */
5062 fotg210_readl(fotg210, &fotg210->regs->command);
5063 usleep_range(5000, 10000);
5064 up_write(&ehci_cf_port_reset_rwsem);
5065 fotg210->last_periodic_enable = ktime_get_real();
5067 temp = HC_VERSION(fotg210,
5068 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5069 fotg210_info(fotg210,
5070 "USB %x.%x started, EHCI %x.%02x\n",
5071 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5072 temp >> 8, temp & 0xff);
5074 fotg210_writel(fotg210, INTR_MASK,
5075 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5077 /* GRR this is run-once init(), being done every time the HC starts.
5078 * So long as they're part of class devices, we can't do it init()
5079 * since the class device isn't created that early.
5081 create_debug_files(fotg210);
5082 create_sysfs_files(fotg210);
5084 return 0;
5087 static int fotg210_setup(struct usb_hcd *hcd)
5089 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5090 int retval;
5092 fotg210->regs = (void __iomem *)fotg210->caps +
5093 HC_LENGTH(fotg210,
5094 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5095 dbg_hcs_params(fotg210, "reset");
5096 dbg_hcc_params(fotg210, "reset");
5098 /* cache this readonly data; minimize chip reads */
5099 fotg210->hcs_params = fotg210_readl(fotg210,
5100 &fotg210->caps->hcs_params);
5102 fotg210->sbrn = HCD_USB2;
5104 /* data structure init */
5105 retval = hcd_fotg210_init(hcd);
5106 if (retval)
5107 return retval;
5109 retval = fotg210_halt(fotg210);
5110 if (retval)
5111 return retval;
5113 fotg210_reset(fotg210);
5115 return 0;
5118 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5120 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5121 u32 status, masked_status, pcd_status = 0, cmd;
5122 int bh;
5124 spin_lock(&fotg210->lock);
5126 status = fotg210_readl(fotg210, &fotg210->regs->status);
5128 /* e.g. cardbus physical eject */
5129 if (status == ~(u32) 0) {
5130 fotg210_dbg(fotg210, "device removed\n");
5131 goto dead;
5135 * We don't use STS_FLR, but some controllers don't like it to
5136 * remain on, so mask it out along with the other status bits.
5138 masked_status = status & (INTR_MASK | STS_FLR);
5140 /* Shared IRQ? */
5141 if (!masked_status ||
5142 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5143 spin_unlock(&fotg210->lock);
5144 return IRQ_NONE;
5147 /* clear (just) interrupts */
5148 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5149 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5150 bh = 0;
5152 /* unrequested/ignored: Frame List Rollover */
5153 dbg_status(fotg210, "irq", status);
5155 /* INT, ERR, and IAA interrupt rates can be throttled */
5157 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5158 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5159 if (likely((status & STS_ERR) == 0))
5160 COUNT(fotg210->stats.normal);
5161 else
5162 COUNT(fotg210->stats.error);
5163 bh = 1;
5166 /* complete the unlinking of some qh [4.15.2.3] */
5167 if (status & STS_IAA) {
5169 /* Turn off the IAA watchdog */
5170 fotg210->enabled_hrtimer_events &=
5171 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5174 * Mild optimization: Allow another IAAD to reset the
5175 * hrtimer, if one occurs before the next expiration.
5176 * In theory we could always cancel the hrtimer, but
5177 * tests show that about half the time it will be reset
5178 * for some other event anyway.
5180 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5181 ++fotg210->next_hrtimer_event;
5183 /* guard against (alleged) silicon errata */
5184 if (cmd & CMD_IAAD)
5185 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5186 if (fotg210->async_iaa) {
5187 COUNT(fotg210->stats.iaa);
5188 end_unlink_async(fotg210);
5189 } else
5190 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5193 /* remote wakeup [4.3.1] */
5194 if (status & STS_PCD) {
5195 int pstatus;
5196 u32 __iomem *status_reg = &fotg210->regs->port_status;
5198 /* kick root hub later */
5199 pcd_status = status;
5201 /* resume root hub? */
5202 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5203 usb_hcd_resume_root_hub(hcd);
5205 pstatus = fotg210_readl(fotg210, status_reg);
5207 if (test_bit(0, &fotg210->suspended_ports) &&
5208 ((pstatus & PORT_RESUME) ||
5209 !(pstatus & PORT_SUSPEND)) &&
5210 (pstatus & PORT_PE) &&
5211 fotg210->reset_done[0] == 0) {
5213 /* start 20 msec resume signaling from this port,
5214 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5215 * stop that signaling. Use 5 ms extra for safety,
5216 * like usb_port_resume() does.
5218 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5219 set_bit(0, &fotg210->resuming_ports);
5220 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5221 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5225 /* PCI errors [4.15.2.4] */
5226 if (unlikely((status & STS_FATAL) != 0)) {
5227 fotg210_err(fotg210, "fatal error\n");
5228 dbg_cmd(fotg210, "fatal", cmd);
5229 dbg_status(fotg210, "fatal", status);
5230 dead:
5231 usb_hc_died(hcd);
5233 /* Don't let the controller do anything more */
5234 fotg210->shutdown = true;
5235 fotg210->rh_state = FOTG210_RH_STOPPING;
5236 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5237 fotg210_writel(fotg210, fotg210->command,
5238 &fotg210->regs->command);
5239 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5240 fotg210_handle_controller_death(fotg210);
5242 /* Handle completions when the controller stops */
5243 bh = 0;
5246 if (bh)
5247 fotg210_work(fotg210);
5248 spin_unlock(&fotg210->lock);
5249 if (pcd_status)
5250 usb_hcd_poll_rh_status(hcd);
5251 return IRQ_HANDLED;
5254 /* non-error returns are a promise to giveback() the urb later
5255 * we drop ownership so next owner (or urb unlink) can get it
5257 * urb + dev is in hcd.self.controller.urb_list
5258 * we're queueing TDs onto software and hardware lists
5260 * hcd-specific init for hcpriv hasn't been done yet
5262 * NOTE: control, bulk, and interrupt share the same code to append TDs
5263 * to a (possibly active) QH, and the same QH scanning code.
5265 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5266 gfp_t mem_flags)
5268 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5269 struct list_head qtd_list;
5271 INIT_LIST_HEAD(&qtd_list);
5273 switch (usb_pipetype(urb->pipe)) {
5274 case PIPE_CONTROL:
5275 /* qh_completions() code doesn't handle all the fault cases
5276 * in multi-TD control transfers. Even 1KB is rare anyway.
5278 if (urb->transfer_buffer_length > (16 * 1024))
5279 return -EMSGSIZE;
5280 /* FALLTHROUGH */
5281 /* case PIPE_BULK: */
5282 default:
5283 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5284 return -ENOMEM;
5285 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5287 case PIPE_INTERRUPT:
5288 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5289 return -ENOMEM;
5290 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5292 case PIPE_ISOCHRONOUS:
5293 return itd_submit(fotg210, urb, mem_flags);
5297 /* remove from hardware lists
5298 * completions normally happen asynchronously
5301 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5303 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5304 struct fotg210_qh *qh;
5305 unsigned long flags;
5306 int rc;
5308 spin_lock_irqsave(&fotg210->lock, flags);
5309 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5310 if (rc)
5311 goto done;
5313 switch (usb_pipetype(urb->pipe)) {
5314 /* case PIPE_CONTROL: */
5315 /* case PIPE_BULK:*/
5316 default:
5317 qh = (struct fotg210_qh *) urb->hcpriv;
5318 if (!qh)
5319 break;
5320 switch (qh->qh_state) {
5321 case QH_STATE_LINKED:
5322 case QH_STATE_COMPLETING:
5323 start_unlink_async(fotg210, qh);
5324 break;
5325 case QH_STATE_UNLINK:
5326 case QH_STATE_UNLINK_WAIT:
5327 /* already started */
5328 break;
5329 case QH_STATE_IDLE:
5330 /* QH might be waiting for a Clear-TT-Buffer */
5331 qh_completions(fotg210, qh);
5332 break;
5334 break;
5336 case PIPE_INTERRUPT:
5337 qh = (struct fotg210_qh *) urb->hcpriv;
5338 if (!qh)
5339 break;
5340 switch (qh->qh_state) {
5341 case QH_STATE_LINKED:
5342 case QH_STATE_COMPLETING:
5343 start_unlink_intr(fotg210, qh);
5344 break;
5345 case QH_STATE_IDLE:
5346 qh_completions(fotg210, qh);
5347 break;
5348 default:
5349 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5350 qh, qh->qh_state);
5351 goto done;
5353 break;
5355 case PIPE_ISOCHRONOUS:
5356 /* itd... */
5358 /* wait till next completion, do it then. */
5359 /* completion irqs can wait up to 1024 msec, */
5360 break;
5362 done:
5363 spin_unlock_irqrestore(&fotg210->lock, flags);
5364 return rc;
5367 /* bulk qh holds the data toggle */
5369 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5370 struct usb_host_endpoint *ep)
5372 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5373 unsigned long flags;
5374 struct fotg210_qh *qh, *tmp;
5376 /* ASSERT: any requests/urbs are being unlinked */
5377 /* ASSERT: nobody can be submitting urbs for this any more */
5379 rescan:
5380 spin_lock_irqsave(&fotg210->lock, flags);
5381 qh = ep->hcpriv;
5382 if (!qh)
5383 goto done;
5385 /* endpoints can be iso streams. for now, we don't
5386 * accelerate iso completions ... so spin a while.
5388 if (qh->hw == NULL) {
5389 struct fotg210_iso_stream *stream = ep->hcpriv;
5391 if (!list_empty(&stream->td_list))
5392 goto idle_timeout;
5394 /* BUG_ON(!list_empty(&stream->free_list)); */
5395 kfree(stream);
5396 goto done;
5399 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5400 qh->qh_state = QH_STATE_IDLE;
5401 switch (qh->qh_state) {
5402 case QH_STATE_LINKED:
5403 case QH_STATE_COMPLETING:
5404 for (tmp = fotg210->async->qh_next.qh;
5405 tmp && tmp != qh;
5406 tmp = tmp->qh_next.qh)
5407 continue;
5408 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5409 * may already be unlinked.
5411 if (tmp)
5412 start_unlink_async(fotg210, qh);
5413 /* FALL THROUGH */
5414 case QH_STATE_UNLINK: /* wait for hw to finish? */
5415 case QH_STATE_UNLINK_WAIT:
5416 idle_timeout:
5417 spin_unlock_irqrestore(&fotg210->lock, flags);
5418 schedule_timeout_uninterruptible(1);
5419 goto rescan;
5420 case QH_STATE_IDLE: /* fully unlinked */
5421 if (qh->clearing_tt)
5422 goto idle_timeout;
5423 if (list_empty(&qh->qtd_list)) {
5424 qh_destroy(fotg210, qh);
5425 break;
5427 /* fall through */
5428 default:
5429 /* caller was supposed to have unlinked any requests;
5430 * that's not our job. just leak this memory.
5432 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5433 qh, ep->desc.bEndpointAddress, qh->qh_state,
5434 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5435 break;
5437 done:
5438 ep->hcpriv = NULL;
5439 spin_unlock_irqrestore(&fotg210->lock, flags);
5442 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5443 struct usb_host_endpoint *ep)
5445 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5446 struct fotg210_qh *qh;
5447 int eptype = usb_endpoint_type(&ep->desc);
5448 int epnum = usb_endpoint_num(&ep->desc);
5449 int is_out = usb_endpoint_dir_out(&ep->desc);
5450 unsigned long flags;
5452 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5453 return;
5455 spin_lock_irqsave(&fotg210->lock, flags);
5456 qh = ep->hcpriv;
5458 /* For Bulk and Interrupt endpoints we maintain the toggle state
5459 * in the hardware; the toggle bits in udev aren't used at all.
5460 * When an endpoint is reset by usb_clear_halt() we must reset
5461 * the toggle bit in the QH.
5463 if (qh) {
5464 usb_settoggle(qh->dev, epnum, is_out, 0);
5465 if (!list_empty(&qh->qtd_list)) {
5466 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5467 } else if (qh->qh_state == QH_STATE_LINKED ||
5468 qh->qh_state == QH_STATE_COMPLETING) {
5470 /* The toggle value in the QH can't be updated
5471 * while the QH is active. Unlink it now;
5472 * re-linking will call qh_refresh().
5474 if (eptype == USB_ENDPOINT_XFER_BULK)
5475 start_unlink_async(fotg210, qh);
5476 else
5477 start_unlink_intr(fotg210, qh);
5480 spin_unlock_irqrestore(&fotg210->lock, flags);
5483 static int fotg210_get_frame(struct usb_hcd *hcd)
5485 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5487 return (fotg210_read_frame_index(fotg210) >> 3) %
5488 fotg210->periodic_size;
5491 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5492 * because its registers (and irq) are shared between host/gadget/otg
5493 * functions and in order to facilitate role switching we cannot
5494 * give the fotg210 driver exclusive access to those.
5496 MODULE_DESCRIPTION(DRIVER_DESC);
5497 MODULE_AUTHOR(DRIVER_AUTHOR);
5498 MODULE_LICENSE("GPL");
5500 static const struct hc_driver fotg210_fotg210_hc_driver = {
5501 .description = hcd_name,
5502 .product_desc = "Faraday USB2.0 Host Controller",
5503 .hcd_priv_size = sizeof(struct fotg210_hcd),
5506 * generic hardware linkage
5508 .irq = fotg210_irq,
5509 .flags = HCD_MEMORY | HCD_USB2,
5512 * basic lifecycle operations
5514 .reset = hcd_fotg210_init,
5515 .start = fotg210_run,
5516 .stop = fotg210_stop,
5517 .shutdown = fotg210_shutdown,
5520 * managing i/o requests and associated device resources
5522 .urb_enqueue = fotg210_urb_enqueue,
5523 .urb_dequeue = fotg210_urb_dequeue,
5524 .endpoint_disable = fotg210_endpoint_disable,
5525 .endpoint_reset = fotg210_endpoint_reset,
5528 * scheduling support
5530 .get_frame_number = fotg210_get_frame,
5533 * root hub support
5535 .hub_status_data = fotg210_hub_status_data,
5536 .hub_control = fotg210_hub_control,
5537 .bus_suspend = fotg210_bus_suspend,
5538 .bus_resume = fotg210_bus_resume,
5540 .relinquish_port = fotg210_relinquish_port,
5541 .port_handed_over = fotg210_port_handed_over,
5543 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5546 static void fotg210_init(struct fotg210_hcd *fotg210)
5548 u32 value;
5550 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5551 &fotg210->regs->gmir);
5553 value = ioread32(&fotg210->regs->otgcsr);
5554 value &= ~OTGCSR_A_BUS_DROP;
5555 value |= OTGCSR_A_BUS_REQ;
5556 iowrite32(value, &fotg210->regs->otgcsr);
5560 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5562 * Allocates basic resources for this USB host controller, and
5563 * then invokes the start() method for the HCD associated with it
5564 * through the hotplug entry's driver_data.
5566 static int fotg210_hcd_probe(struct platform_device *pdev)
5568 struct device *dev = &pdev->dev;
5569 struct usb_hcd *hcd;
5570 struct resource *res;
5571 int irq;
5572 int retval = -ENODEV;
5573 struct fotg210_hcd *fotg210;
5575 if (usb_disabled())
5576 return -ENODEV;
5578 pdev->dev.power.power_state = PMSG_ON;
5580 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5581 if (!res) {
5582 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5583 dev_name(dev));
5584 return -ENODEV;
5587 irq = res->start;
5589 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5590 dev_name(dev));
5591 if (!hcd) {
5592 dev_err(dev, "failed to create hcd with err %d\n", retval);
5593 retval = -ENOMEM;
5594 goto fail_create_hcd;
5597 hcd->has_tt = 1;
5599 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5600 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5601 if (IS_ERR(hcd->regs)) {
5602 retval = PTR_ERR(hcd->regs);
5603 goto failed;
5606 hcd->rsrc_start = res->start;
5607 hcd->rsrc_len = resource_size(res);
5609 fotg210 = hcd_to_fotg210(hcd);
5611 fotg210->caps = hcd->regs;
5613 retval = fotg210_setup(hcd);
5614 if (retval)
5615 goto failed;
5617 fotg210_init(fotg210);
5619 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5620 if (retval) {
5621 dev_err(dev, "failed to add hcd with err %d\n", retval);
5622 goto failed;
5624 device_wakeup_enable(hcd->self.controller);
5626 return retval;
5628 failed:
5629 usb_put_hcd(hcd);
5630 fail_create_hcd:
5631 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5632 return retval;
5636 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5637 * @dev: USB Host Controller being removed
5640 static int fotg210_hcd_remove(struct platform_device *pdev)
5642 struct device *dev = &pdev->dev;
5643 struct usb_hcd *hcd = dev_get_drvdata(dev);
5645 if (!hcd)
5646 return 0;
5648 usb_remove_hcd(hcd);
5649 usb_put_hcd(hcd);
5651 return 0;
5654 static struct platform_driver fotg210_hcd_driver = {
5655 .driver = {
5656 .name = "fotg210-hcd",
5658 .probe = fotg210_hcd_probe,
5659 .remove = fotg210_hcd_remove,
5662 static int __init fotg210_hcd_init(void)
5664 int retval = 0;
5666 if (usb_disabled())
5667 return -ENODEV;
5669 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5670 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5671 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5672 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5673 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5675 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5676 hcd_name, sizeof(struct fotg210_qh),
5677 sizeof(struct fotg210_qtd),
5678 sizeof(struct fotg210_itd));
5680 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5682 retval = platform_driver_register(&fotg210_hcd_driver);
5683 if (retval < 0)
5684 goto clean;
5685 return retval;
5687 clean:
5688 debugfs_remove(fotg210_debug_root);
5689 fotg210_debug_root = NULL;
5691 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5692 return retval;
5694 module_init(fotg210_hcd_init);
5696 static void __exit fotg210_hcd_cleanup(void)
5698 platform_driver_unregister(&fotg210_hcd_driver);
5699 debugfs_remove(fotg210_debug_root);
5700 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5702 module_exit(fotg210_hcd_cleanup);