Linux 4.19.133
[linux/fpc-iii.git] / drivers / video / fbdev / pxafb.c
blobd59c8a59f58270214eb859e0c27c65cae81f1f48
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <linux/regulator/consumer.h>
60 #include <video/of_display_timing.h>
61 #include <video/videomode.h>
63 #include <mach/hardware.h>
64 #include <asm/io.h>
65 #include <asm/irq.h>
66 #include <asm/div64.h>
67 #include <mach/bitfield.h>
68 #include <linux/platform_data/video-pxafb.h>
71 * Complain if VAR is out of range.
73 #define DEBUG_VAR 1
75 #include "pxafb.h"
77 /* Bits which should not be set in machine configuration structures */
78 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
82 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
83 LCCR3_PCD | LCCR3_BPP(0xf))
85 static int pxafb_activate_var(struct fb_var_screeninfo *var,
86 struct pxafb_info *);
87 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
88 static void setup_base_frame(struct pxafb_info *fbi,
89 struct fb_var_screeninfo *var, int branch);
90 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
91 unsigned long offset, size_t size);
93 static unsigned long video_mem_size = 0;
95 static inline unsigned long
96 lcd_readl(struct pxafb_info *fbi, unsigned int off)
98 return __raw_readl(fbi->mmio_base + off);
101 static inline void
102 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
104 __raw_writel(val, fbi->mmio_base + off);
107 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
109 unsigned long flags;
111 local_irq_save(flags);
113 * We need to handle two requests being made at the same time.
114 * There are two important cases:
115 * 1. When we are changing VT (C_REENABLE) while unblanking
116 * (C_ENABLE) We must perform the unblanking, which will
117 * do our REENABLE for us.
118 * 2. When we are blanking, but immediately unblank before
119 * we have blanked. We do the "REENABLE" thing here as
120 * well, just to be sure.
122 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
123 state = (u_int) -1;
124 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
125 state = C_REENABLE;
127 if (state != (u_int)-1) {
128 fbi->task_state = state;
129 schedule_work(&fbi->task);
131 local_irq_restore(flags);
134 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
136 chan &= 0xffff;
137 chan >>= 16 - bf->length;
138 return chan << bf->offset;
141 static int
142 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
143 u_int trans, struct fb_info *info)
145 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
146 u_int val;
148 if (regno >= fbi->palette_size)
149 return 1;
151 if (fbi->fb.var.grayscale) {
152 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
153 return 0;
156 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
157 case LCCR4_PAL_FOR_0:
158 val = ((red >> 0) & 0xf800);
159 val |= ((green >> 5) & 0x07e0);
160 val |= ((blue >> 11) & 0x001f);
161 fbi->palette_cpu[regno] = val;
162 break;
163 case LCCR4_PAL_FOR_1:
164 val = ((red << 8) & 0x00f80000);
165 val |= ((green >> 0) & 0x0000fc00);
166 val |= ((blue >> 8) & 0x000000f8);
167 ((u32 *)(fbi->palette_cpu))[regno] = val;
168 break;
169 case LCCR4_PAL_FOR_2:
170 val = ((red << 8) & 0x00fc0000);
171 val |= ((green >> 0) & 0x0000fc00);
172 val |= ((blue >> 8) & 0x000000fc);
173 ((u32 *)(fbi->palette_cpu))[regno] = val;
174 break;
175 case LCCR4_PAL_FOR_3:
176 val = ((red << 8) & 0x00ff0000);
177 val |= ((green >> 0) & 0x0000ff00);
178 val |= ((blue >> 8) & 0x000000ff);
179 ((u32 *)(fbi->palette_cpu))[regno] = val;
180 break;
183 return 0;
186 static int
187 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
188 u_int trans, struct fb_info *info)
190 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
191 unsigned int val;
192 int ret = 1;
195 * If inverse mode was selected, invert all the colours
196 * rather than the register number. The register number
197 * is what you poke into the framebuffer to produce the
198 * colour you requested.
200 if (fbi->cmap_inverse) {
201 red = 0xffff - red;
202 green = 0xffff - green;
203 blue = 0xffff - blue;
207 * If greyscale is true, then we convert the RGB value
208 * to greyscale no matter what visual we are using.
210 if (fbi->fb.var.grayscale)
211 red = green = blue = (19595 * red + 38470 * green +
212 7471 * blue) >> 16;
214 switch (fbi->fb.fix.visual) {
215 case FB_VISUAL_TRUECOLOR:
217 * 16-bit True Colour. We encode the RGB value
218 * according to the RGB bitfield information.
220 if (regno < 16) {
221 u32 *pal = fbi->fb.pseudo_palette;
223 val = chan_to_field(red, &fbi->fb.var.red);
224 val |= chan_to_field(green, &fbi->fb.var.green);
225 val |= chan_to_field(blue, &fbi->fb.var.blue);
227 pal[regno] = val;
228 ret = 0;
230 break;
232 case FB_VISUAL_STATIC_PSEUDOCOLOR:
233 case FB_VISUAL_PSEUDOCOLOR:
234 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
235 break;
238 return ret;
241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
242 static inline int var_to_depth(struct fb_var_screeninfo *var)
244 return var->red.length + var->green.length +
245 var->blue.length + var->transp.length;
248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
249 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
251 int bpp = -EINVAL;
253 switch (var->bits_per_pixel) {
254 case 1: bpp = 0; break;
255 case 2: bpp = 1; break;
256 case 4: bpp = 2; break;
257 case 8: bpp = 3; break;
258 case 16: bpp = 4; break;
259 case 24:
260 switch (var_to_depth(var)) {
261 case 18: bpp = 6; break; /* 18-bits/pixel packed */
262 case 19: bpp = 8; break; /* 19-bits/pixel packed */
263 case 24: bpp = 9; break;
265 break;
266 case 32:
267 switch (var_to_depth(var)) {
268 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
269 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
270 case 25: bpp = 10; break;
272 break;
274 return bpp;
278 * pxafb_var_to_lccr3():
279 * Convert a bits per pixel value to the correct bit pattern for LCCR3
281 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282 * implication of the acutal use of transparency bit, which we handle it
283 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
286 * Transparency for palette pixel formats is not supported at the moment.
288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
290 int bpp = pxafb_var_to_bpp(var);
291 uint32_t lccr3;
293 if (bpp < 0)
294 return 0;
296 lccr3 = LCCR3_BPP(bpp);
298 switch (var_to_depth(var)) {
299 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
300 case 18: lccr3 |= LCCR3_PDFOR_3; break;
301 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
302 break;
303 case 19:
304 case 25: lccr3 |= LCCR3_PDFOR_0; break;
306 return lccr3;
309 #define SET_PIXFMT(v, r, g, b, t) \
310 ({ \
311 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
312 (v)->transp.length = (t) ? (t) : 0; \
313 (v)->blue.length = (b); (v)->blue.offset = 0; \
314 (v)->green.length = (g); (v)->green.offset = (b); \
315 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
318 /* set the RGBT bitfields of fb_var_screeninf according to
319 * var->bits_per_pixel and given depth
321 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
323 if (depth == 0)
324 depth = var->bits_per_pixel;
326 if (var->bits_per_pixel < 16) {
327 /* indexed pixel formats */
328 var->red.offset = 0; var->red.length = 8;
329 var->green.offset = 0; var->green.length = 8;
330 var->blue.offset = 0; var->blue.length = 8;
331 var->transp.offset = 0; var->transp.length = 8;
334 switch (depth) {
335 case 16: var->transp.length ?
336 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
337 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
338 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
339 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
340 case 24: var->transp.length ?
341 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
342 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
343 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
347 #ifdef CONFIG_CPU_FREQ
349 * pxafb_display_dma_period()
350 * Calculate the minimum period (in picoseconds) between two DMA
351 * requests for the LCD controller. If we hit this, it means we're
352 * doing nothing but LCD DMA.
354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
357 * Period = pixclock * bits_per_byte * bytes_per_transfer
358 * / memory_bits_per_pixel;
360 return var->pixclock * 8 * 16 / var->bits_per_pixel;
362 #endif
365 * Select the smallest mode that allows the desired resolution to be
366 * displayed. If desired parameters can be rounded up.
368 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
369 struct fb_var_screeninfo *var)
371 struct pxafb_mode_info *mode = NULL;
372 struct pxafb_mode_info *modelist = mach->modes;
373 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
374 unsigned int i;
376 for (i = 0; i < mach->num_modes; i++) {
377 if (modelist[i].xres >= var->xres &&
378 modelist[i].yres >= var->yres &&
379 modelist[i].xres < best_x &&
380 modelist[i].yres < best_y &&
381 modelist[i].bpp >= var->bits_per_pixel) {
382 best_x = modelist[i].xres;
383 best_y = modelist[i].yres;
384 mode = &modelist[i];
388 return mode;
391 static void pxafb_setmode(struct fb_var_screeninfo *var,
392 struct pxafb_mode_info *mode)
394 var->xres = mode->xres;
395 var->yres = mode->yres;
396 var->bits_per_pixel = mode->bpp;
397 var->pixclock = mode->pixclock;
398 var->hsync_len = mode->hsync_len;
399 var->left_margin = mode->left_margin;
400 var->right_margin = mode->right_margin;
401 var->vsync_len = mode->vsync_len;
402 var->upper_margin = mode->upper_margin;
403 var->lower_margin = mode->lower_margin;
404 var->sync = mode->sync;
405 var->grayscale = mode->cmap_greyscale;
406 var->transp.length = mode->transparency;
408 /* set the initial RGBA bitfields */
409 pxafb_set_pixfmt(var, mode->depth);
412 static int pxafb_adjust_timing(struct pxafb_info *fbi,
413 struct fb_var_screeninfo *var)
415 int line_length;
417 var->xres = max_t(int, var->xres, MIN_XRES);
418 var->yres = max_t(int, var->yres, MIN_YRES);
420 if (!(fbi->lccr0 & LCCR0_LCDT)) {
421 clamp_val(var->hsync_len, 1, 64);
422 clamp_val(var->vsync_len, 1, 64);
423 clamp_val(var->left_margin, 1, 255);
424 clamp_val(var->right_margin, 1, 255);
425 clamp_val(var->upper_margin, 1, 255);
426 clamp_val(var->lower_margin, 1, 255);
429 /* make sure each line is aligned on word boundary */
430 line_length = var->xres * var->bits_per_pixel / 8;
431 line_length = ALIGN(line_length, 4);
432 var->xres = line_length * 8 / var->bits_per_pixel;
434 /* we don't support xpan, force xres_virtual to be equal to xres */
435 var->xres_virtual = var->xres;
437 if (var->accel_flags & FB_ACCELF_TEXT)
438 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
439 else
440 var->yres_virtual = max(var->yres_virtual, var->yres);
442 /* check for limits */
443 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
444 return -EINVAL;
446 if (var->yres > var->yres_virtual)
447 return -EINVAL;
449 return 0;
453 * pxafb_check_var():
454 * Get the video params out of 'var'. If a value doesn't fit, round it up,
455 * if it's too big, return -EINVAL.
457 * Round up in the following order: bits_per_pixel, xres,
458 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459 * bitfields, horizontal timing, vertical timing.
461 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
463 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
464 struct pxafb_mach_info *inf = fbi->inf;
465 int err;
467 if (inf->fixed_modes) {
468 struct pxafb_mode_info *mode;
470 mode = pxafb_getmode(inf, var);
471 if (!mode)
472 return -EINVAL;
473 pxafb_setmode(var, mode);
476 /* do a test conversion to BPP fields to check the color formats */
477 err = pxafb_var_to_bpp(var);
478 if (err < 0)
479 return err;
481 pxafb_set_pixfmt(var, var_to_depth(var));
483 err = pxafb_adjust_timing(fbi, var);
484 if (err)
485 return err;
487 #ifdef CONFIG_CPU_FREQ
488 pr_debug("pxafb: dma period = %d ps\n",
489 pxafb_display_dma_period(var));
490 #endif
492 return 0;
496 * pxafb_set_par():
497 * Set the user defined part of the display for the specified console
499 static int pxafb_set_par(struct fb_info *info)
501 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
502 struct fb_var_screeninfo *var = &info->var;
504 if (var->bits_per_pixel >= 16)
505 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
506 else if (!fbi->cmap_static)
507 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
508 else {
510 * Some people have weird ideas about wanting static
511 * pseudocolor maps. I suspect their user space
512 * applications are broken.
514 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
517 fbi->fb.fix.line_length = var->xres_virtual *
518 var->bits_per_pixel / 8;
519 if (var->bits_per_pixel >= 16)
520 fbi->palette_size = 0;
521 else
522 fbi->palette_size = var->bits_per_pixel == 1 ?
523 4 : 1 << var->bits_per_pixel;
525 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
527 if (fbi->fb.var.bits_per_pixel >= 16)
528 fb_dealloc_cmap(&fbi->fb.cmap);
529 else
530 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
532 pxafb_activate_var(var, fbi);
534 return 0;
537 static int pxafb_pan_display(struct fb_var_screeninfo *var,
538 struct fb_info *info)
540 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
541 struct fb_var_screeninfo newvar;
542 int dma = DMA_MAX + DMA_BASE;
544 if (fbi->state != C_ENABLE)
545 return 0;
547 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548 * was passed in and copy the rest from the old screeninfo.
550 memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
551 newvar.xoffset = var->xoffset;
552 newvar.yoffset = var->yoffset;
553 newvar.vmode &= ~FB_VMODE_YWRAP;
554 newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
556 setup_base_frame(fbi, &newvar, 1);
558 if (fbi->lccr0 & LCCR0_SDS)
559 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
561 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
562 return 0;
566 * pxafb_blank():
567 * Blank the display by setting all palette values to zero. Note, the
568 * 16 bpp mode does not really use the palette, so this will not
569 * blank the display in all modes.
571 static int pxafb_blank(int blank, struct fb_info *info)
573 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
574 int i;
576 switch (blank) {
577 case FB_BLANK_POWERDOWN:
578 case FB_BLANK_VSYNC_SUSPEND:
579 case FB_BLANK_HSYNC_SUSPEND:
580 case FB_BLANK_NORMAL:
581 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
582 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
583 for (i = 0; i < fbi->palette_size; i++)
584 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
586 pxafb_schedule_work(fbi, C_DISABLE);
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 break;
590 case FB_BLANK_UNBLANK:
591 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
593 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
594 fb_set_cmap(&fbi->fb.cmap, info);
595 pxafb_schedule_work(fbi, C_ENABLE);
597 return 0;
600 static struct fb_ops pxafb_ops = {
601 .owner = THIS_MODULE,
602 .fb_check_var = pxafb_check_var,
603 .fb_set_par = pxafb_set_par,
604 .fb_pan_display = pxafb_pan_display,
605 .fb_setcolreg = pxafb_setcolreg,
606 .fb_fillrect = cfb_fillrect,
607 .fb_copyarea = cfb_copyarea,
608 .fb_imageblit = cfb_imageblit,
609 .fb_blank = pxafb_blank,
612 #ifdef CONFIG_FB_PXA_OVERLAY
613 static void overlay1fb_setup(struct pxafb_layer *ofb)
615 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
616 unsigned long start = ofb->video_mem_phys;
617 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
620 /* Depending on the enable status of overlay1/2, the DMA should be
621 * updated from FDADRx (when disabled) or FBRx (when enabled).
623 static void overlay1fb_enable(struct pxafb_layer *ofb)
625 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
626 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
628 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
629 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
630 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
633 static void overlay1fb_disable(struct pxafb_layer *ofb)
635 uint32_t lccr5;
637 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
638 return;
640 lccr5 = lcd_readl(ofb->fbi, LCCR5);
642 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
644 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
645 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
646 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
648 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
649 pr_warn("%s: timeout disabling overlay1\n", __func__);
651 lcd_writel(ofb->fbi, LCCR5, lccr5);
654 static void overlay2fb_setup(struct pxafb_layer *ofb)
656 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
657 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
659 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
660 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
661 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
662 } else {
663 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
664 switch (pfor) {
665 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
666 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
667 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
669 start[1] = start[0] + size;
670 start[2] = start[1] + size / div;
671 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
672 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
673 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
677 static void overlay2fb_enable(struct pxafb_layer *ofb)
679 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
680 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
681 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
682 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
683 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
685 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
686 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
687 else {
688 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
689 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
690 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
692 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
693 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
696 static void overlay2fb_disable(struct pxafb_layer *ofb)
698 uint32_t lccr5;
700 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
701 return;
703 lccr5 = lcd_readl(ofb->fbi, LCCR5);
705 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
707 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
708 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
709 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
710 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
711 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
713 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
714 pr_warn("%s: timeout disabling overlay2\n", __func__);
717 static struct pxafb_layer_ops ofb_ops[] = {
718 [0] = {
719 .enable = overlay1fb_enable,
720 .disable = overlay1fb_disable,
721 .setup = overlay1fb_setup,
723 [1] = {
724 .enable = overlay2fb_enable,
725 .disable = overlay2fb_disable,
726 .setup = overlay2fb_setup,
730 static int overlayfb_open(struct fb_info *info, int user)
732 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
734 /* no support for framebuffer console on overlay */
735 if (user == 0)
736 return -ENODEV;
738 if (ofb->usage++ == 0) {
739 /* unblank the base framebuffer */
740 console_lock();
741 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
742 console_unlock();
745 return 0;
748 static int overlayfb_release(struct fb_info *info, int user)
750 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
752 if (ofb->usage == 1) {
753 ofb->ops->disable(ofb);
754 ofb->fb.var.height = -1;
755 ofb->fb.var.width = -1;
756 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
757 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
759 ofb->usage--;
761 return 0;
764 static int overlayfb_check_var(struct fb_var_screeninfo *var,
765 struct fb_info *info)
767 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
768 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
769 int xpos, ypos, pfor, bpp;
771 xpos = NONSTD_TO_XPOS(var->nonstd);
772 ypos = NONSTD_TO_YPOS(var->nonstd);
773 pfor = NONSTD_TO_PFOR(var->nonstd);
775 bpp = pxafb_var_to_bpp(var);
776 if (bpp < 0)
777 return -EINVAL;
779 /* no support for YUV format on overlay1 */
780 if (ofb->id == OVERLAY1 && pfor != 0)
781 return -EINVAL;
783 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
784 switch (pfor) {
785 case OVERLAY_FORMAT_RGB:
786 bpp = pxafb_var_to_bpp(var);
787 if (bpp < 0)
788 return -EINVAL;
790 pxafb_set_pixfmt(var, var_to_depth(var));
791 break;
792 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
793 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
794 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
795 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
796 default:
797 return -EINVAL;
800 /* each line must start at a 32-bit word boundary */
801 if ((xpos * bpp) % 32)
802 return -EINVAL;
804 /* xres must align on 32-bit word boundary */
805 var->xres = roundup(var->xres * bpp, 32) / bpp;
807 if ((xpos + var->xres > base_var->xres) ||
808 (ypos + var->yres > base_var->yres))
809 return -EINVAL;
811 var->xres_virtual = var->xres;
812 var->yres_virtual = max(var->yres, var->yres_virtual);
813 return 0;
816 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
818 struct fb_var_screeninfo *var = &ofb->fb.var;
819 int pfor = NONSTD_TO_PFOR(var->nonstd);
820 int size, bpp = 0;
822 switch (pfor) {
823 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
824 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
825 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
826 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
827 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
830 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
832 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
834 if (ofb->video_mem) {
835 if (ofb->video_mem_size >= size)
836 return 0;
838 return -EINVAL;
841 static int overlayfb_set_par(struct fb_info *info)
843 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
844 struct fb_var_screeninfo *var = &info->var;
845 int xpos, ypos, pfor, bpp, ret;
847 ret = overlayfb_check_video_memory(ofb);
848 if (ret)
849 return ret;
851 bpp = pxafb_var_to_bpp(var);
852 xpos = NONSTD_TO_XPOS(var->nonstd);
853 ypos = NONSTD_TO_YPOS(var->nonstd);
854 pfor = NONSTD_TO_PFOR(var->nonstd);
856 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
857 OVLxC1_BPP(bpp);
858 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
860 if (ofb->id == OVERLAY2)
861 ofb->control[1] |= OVL2C2_PFOR(pfor);
863 ofb->ops->setup(ofb);
864 ofb->ops->enable(ofb);
865 return 0;
868 static struct fb_ops overlay_fb_ops = {
869 .owner = THIS_MODULE,
870 .fb_open = overlayfb_open,
871 .fb_release = overlayfb_release,
872 .fb_check_var = overlayfb_check_var,
873 .fb_set_par = overlayfb_set_par,
876 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
877 int id)
879 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
881 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
882 ofb->fb.fix.xpanstep = 0;
883 ofb->fb.fix.ypanstep = 1;
885 ofb->fb.var.activate = FB_ACTIVATE_NOW;
886 ofb->fb.var.height = -1;
887 ofb->fb.var.width = -1;
888 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
890 ofb->fb.fbops = &overlay_fb_ops;
891 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
892 ofb->fb.node = -1;
893 ofb->fb.pseudo_palette = NULL;
895 ofb->id = id;
896 ofb->ops = &ofb_ops[id];
897 ofb->usage = 0;
898 ofb->fbi = fbi;
899 init_completion(&ofb->branch_done);
902 static inline int pxafb_overlay_supported(void)
904 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
905 return 1;
907 return 0;
910 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
911 struct pxafb_layer *ofb)
913 /* We assume that user will use at most video_mem_size for overlay fb,
914 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
916 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
917 GFP_KERNEL | __GFP_ZERO);
918 if (ofb->video_mem == NULL)
919 return -ENOMEM;
921 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
922 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
924 mutex_lock(&ofb->fb.mm_lock);
925 ofb->fb.fix.smem_start = ofb->video_mem_phys;
926 ofb->fb.fix.smem_len = pxafb->video_mem_size;
927 mutex_unlock(&ofb->fb.mm_lock);
929 ofb->fb.screen_base = ofb->video_mem;
931 return 0;
934 static void pxafb_overlay_init(struct pxafb_info *fbi)
936 int i, ret;
938 if (!pxafb_overlay_supported())
939 return;
941 for (i = 0; i < 2; i++) {
942 struct pxafb_layer *ofb = &fbi->overlay[i];
943 init_pxafb_overlay(fbi, ofb, i);
944 ret = register_framebuffer(&ofb->fb);
945 if (ret) {
946 dev_err(fbi->dev, "failed to register overlay %d\n", i);
947 continue;
949 ret = pxafb_overlay_map_video_memory(fbi, ofb);
950 if (ret) {
951 dev_err(fbi->dev,
952 "failed to map video memory for overlay %d\n",
954 unregister_framebuffer(&ofb->fb);
955 continue;
957 ofb->registered = 1;
960 /* mask all IU/BS/EOF/SOF interrupts */
961 lcd_writel(fbi, LCCR5, ~0);
963 pr_info("PXA Overlay driver loaded successfully!\n");
966 static void pxafb_overlay_exit(struct pxafb_info *fbi)
968 int i;
970 if (!pxafb_overlay_supported())
971 return;
973 for (i = 0; i < 2; i++) {
974 struct pxafb_layer *ofb = &fbi->overlay[i];
975 if (ofb->registered) {
976 if (ofb->video_mem)
977 free_pages_exact(ofb->video_mem,
978 ofb->video_mem_size);
979 unregister_framebuffer(&ofb->fb);
983 #else
984 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
985 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
986 #endif /* CONFIG_FB_PXA_OVERLAY */
989 * Calculate the PCD value from the clock rate (in picoseconds).
990 * We take account of the PPCR clock setting.
991 * From PXA Developer's Manual:
993 * PixelClock = LCLK
994 * -------------
995 * 2 ( PCD + 1 )
997 * PCD = LCLK
998 * ------------- - 1
999 * 2(PixelClock)
1001 * Where:
1002 * LCLK = LCD/Memory Clock
1003 * PCD = LCCR3[7:0]
1005 * PixelClock here is in Hz while the pixclock argument given is the
1006 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1008 * The function get_lclk_frequency_10khz returns LCLK in units of
1009 * 10khz. Calling the result of this function lclk gives us the
1010 * following
1012 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1013 * -------------------------------------- - 1
1016 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1018 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1019 unsigned int pixclock)
1021 unsigned long long pcd;
1023 /* FIXME: Need to take into account Double Pixel Clock mode
1024 * (DPC) bit? or perhaps set it based on the various clock
1025 * speeds */
1026 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1027 pcd *= pixclock;
1028 do_div(pcd, 100000000 * 2);
1029 /* no need for this, since we should subtract 1 anyway. they cancel */
1030 /* pcd += 1; */ /* make up for integer math truncations */
1031 return (unsigned int)pcd;
1035 * Some touchscreens need hsync information from the video driver to
1036 * function correctly. We export it here. Note that 'hsync_time' and
1037 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1038 * of the hsync period in seconds.
1040 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1042 unsigned long htime;
1044 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1045 fbi->hsync_time = 0;
1046 return;
1049 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1051 fbi->hsync_time = htime;
1054 unsigned long pxafb_get_hsync_time(struct device *dev)
1056 struct pxafb_info *fbi = dev_get_drvdata(dev);
1058 /* If display is blanked/suspended, hsync isn't active */
1059 if (!fbi || (fbi->state != C_ENABLE))
1060 return 0;
1062 return fbi->hsync_time;
1064 EXPORT_SYMBOL(pxafb_get_hsync_time);
1066 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1067 unsigned long start, size_t size)
1069 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1070 unsigned int dma_desc_off, pal_desc_off;
1072 if (dma < 0 || dma >= DMA_MAX * 2)
1073 return -EINVAL;
1075 dma_desc = &fbi->dma_buff->dma_desc[dma];
1076 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1078 dma_desc->fsadr = start;
1079 dma_desc->fidr = 0;
1080 dma_desc->ldcmd = size;
1082 if (pal < 0 || pal >= PAL_MAX * 2) {
1083 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1084 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1085 } else {
1086 pal_desc = &fbi->dma_buff->pal_desc[pal];
1087 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1089 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1090 pal_desc->fidr = 0;
1092 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1093 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1094 else
1095 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1097 pal_desc->ldcmd |= LDCMD_PAL;
1099 /* flip back and forth between palette and frame buffer */
1100 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1101 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1102 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1105 return 0;
1108 static void setup_base_frame(struct pxafb_info *fbi,
1109 struct fb_var_screeninfo *var,
1110 int branch)
1112 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1113 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1114 unsigned long offset;
1116 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1117 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1119 nbytes = fix->line_length * var->yres;
1120 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1122 if (fbi->lccr0 & LCCR0_SDS) {
1123 nbytes = nbytes / 2;
1124 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1127 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1130 #ifdef CONFIG_FB_PXA_SMARTPANEL
1131 static int setup_smart_dma(struct pxafb_info *fbi)
1133 struct pxafb_dma_descriptor *dma_desc;
1134 unsigned long dma_desc_off, cmd_buff_off;
1136 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1137 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1138 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1140 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1141 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1142 dma_desc->fidr = 0;
1143 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1145 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1146 return 0;
1149 int pxafb_smart_flush(struct fb_info *info)
1151 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1152 uint32_t prsr;
1153 int ret = 0;
1155 /* disable controller until all registers are set up */
1156 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1158 /* 1. make it an even number of commands to align on 32-bit boundary
1159 * 2. add the interrupt command to the end of the chain so we can
1160 * keep track of the end of the transfer
1163 while (fbi->n_smart_cmds & 1)
1164 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1166 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1167 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1168 setup_smart_dma(fbi);
1170 /* continue to execute next command */
1171 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1172 lcd_writel(fbi, PRSR, prsr);
1174 /* stop the processor in case it executed "wait for sync" cmd */
1175 lcd_writel(fbi, CMDCR, 0x0001);
1177 /* don't send interrupts for fifo underruns on channel 6 */
1178 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1180 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1181 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1182 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1183 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1184 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1185 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1187 /* begin sending */
1188 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1190 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1191 pr_warn("%s: timeout waiting for command done\n", __func__);
1192 ret = -ETIMEDOUT;
1195 /* quick disable */
1196 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1197 lcd_writel(fbi, PRSR, prsr);
1198 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1199 lcd_writel(fbi, FDADR6, 0);
1200 fbi->n_smart_cmds = 0;
1201 return ret;
1204 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1206 int i;
1207 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1209 for (i = 0; i < n_cmds; i++, cmds++) {
1210 /* if it is a software delay, flush and delay */
1211 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1212 pxafb_smart_flush(info);
1213 mdelay(*cmds & 0xff);
1214 continue;
1217 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1218 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1219 pxafb_smart_flush(info);
1221 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1224 return 0;
1227 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1229 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1230 return (t == 0) ? 1 : t;
1233 static void setup_smart_timing(struct pxafb_info *fbi,
1234 struct fb_var_screeninfo *var)
1236 struct pxafb_mach_info *inf = fbi->inf;
1237 struct pxafb_mode_info *mode = &inf->modes[0];
1238 unsigned long lclk = clk_get_rate(fbi->clk);
1239 unsigned t1, t2, t3, t4;
1241 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1242 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1243 t3 = mode->op_hold_time;
1244 t4 = mode->cmd_inh_time;
1246 fbi->reg_lccr1 =
1247 LCCR1_DisWdth(var->xres) |
1248 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1249 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1250 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1252 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1253 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1254 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1255 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1257 /* FIXME: make this configurable */
1258 fbi->reg_cmdcr = 1;
1261 static int pxafb_smart_thread(void *arg)
1263 struct pxafb_info *fbi = arg;
1264 struct pxafb_mach_info *inf = fbi->inf;
1266 if (!inf->smart_update) {
1267 pr_err("%s: not properly initialized, thread terminated\n",
1268 __func__);
1269 return -EINVAL;
1272 pr_debug("%s(): task starting\n", __func__);
1274 set_freezable();
1275 while (!kthread_should_stop()) {
1277 if (try_to_freeze())
1278 continue;
1280 mutex_lock(&fbi->ctrlr_lock);
1282 if (fbi->state == C_ENABLE) {
1283 inf->smart_update(&fbi->fb);
1284 complete(&fbi->refresh_done);
1287 mutex_unlock(&fbi->ctrlr_lock);
1289 set_current_state(TASK_INTERRUPTIBLE);
1290 schedule_timeout(msecs_to_jiffies(30));
1293 pr_debug("%s(): task ending\n", __func__);
1294 return 0;
1297 static int pxafb_smart_init(struct pxafb_info *fbi)
1299 if (!(fbi->lccr0 & LCCR0_LCDT))
1300 return 0;
1302 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1303 fbi->n_smart_cmds = 0;
1305 init_completion(&fbi->command_done);
1306 init_completion(&fbi->refresh_done);
1308 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1309 "lcd_refresh");
1310 if (IS_ERR(fbi->smart_thread)) {
1311 pr_err("%s: unable to create kernel thread\n", __func__);
1312 return PTR_ERR(fbi->smart_thread);
1315 return 0;
1317 #else
1318 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1319 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1321 static void setup_parallel_timing(struct pxafb_info *fbi,
1322 struct fb_var_screeninfo *var)
1324 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1326 fbi->reg_lccr1 =
1327 LCCR1_DisWdth(var->xres) +
1328 LCCR1_HorSnchWdth(var->hsync_len) +
1329 LCCR1_BegLnDel(var->left_margin) +
1330 LCCR1_EndLnDel(var->right_margin);
1333 * If we have a dual scan LCD, we need to halve
1334 * the YRES parameter.
1336 lines_per_panel = var->yres;
1337 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1338 lines_per_panel /= 2;
1340 fbi->reg_lccr2 =
1341 LCCR2_DisHght(lines_per_panel) +
1342 LCCR2_VrtSnchWdth(var->vsync_len) +
1343 LCCR2_BegFrmDel(var->upper_margin) +
1344 LCCR2_EndFrmDel(var->lower_margin);
1346 fbi->reg_lccr3 = fbi->lccr3 |
1347 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1348 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1349 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1350 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1352 if (pcd) {
1353 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1354 set_hsync_time(fbi, pcd);
1359 * pxafb_activate_var():
1360 * Configures LCD Controller based on entries in var parameter.
1361 * Settings are only written to the controller if changes were made.
1363 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1364 struct pxafb_info *fbi)
1366 u_long flags;
1368 /* Update shadow copy atomically */
1369 local_irq_save(flags);
1371 #ifdef CONFIG_FB_PXA_SMARTPANEL
1372 if (fbi->lccr0 & LCCR0_LCDT)
1373 setup_smart_timing(fbi, var);
1374 else
1375 #endif
1376 setup_parallel_timing(fbi, var);
1378 setup_base_frame(fbi, var, 0);
1380 fbi->reg_lccr0 = fbi->lccr0 |
1381 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1382 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1384 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1386 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1387 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1388 local_irq_restore(flags);
1391 * Only update the registers if the controller is enabled
1392 * and something has changed.
1394 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1395 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1396 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1397 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1398 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1399 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1400 ((fbi->lccr0 & LCCR0_SDS) &&
1401 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1402 pxafb_schedule_work(fbi, C_REENABLE);
1404 return 0;
1408 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1409 * Do not call them directly; set_ctrlr_state does the correct serialisation
1410 * to ensure that things happen in the right way 100% of time time.
1411 * -- rmk
1413 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1415 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1417 if (fbi->backlight_power)
1418 fbi->backlight_power(on);
1421 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1423 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1425 if (fbi->lcd_power)
1426 fbi->lcd_power(on, &fbi->fb.var);
1428 if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) {
1429 int ret;
1431 if (on)
1432 ret = regulator_enable(fbi->lcd_supply);
1433 else
1434 ret = regulator_disable(fbi->lcd_supply);
1436 if (ret < 0)
1437 pr_warn("Unable to %s LCD supply regulator: %d\n",
1438 on ? "enable" : "disable", ret);
1439 else
1440 fbi->lcd_supply_enabled = on;
1444 static void pxafb_enable_controller(struct pxafb_info *fbi)
1446 pr_debug("pxafb: Enabling LCD controller\n");
1447 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1448 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1449 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1450 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1451 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1452 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1454 /* enable LCD controller clock */
1455 if (clk_prepare_enable(fbi->clk)) {
1456 pr_err("%s: Failed to prepare clock\n", __func__);
1457 return;
1460 if (fbi->lccr0 & LCCR0_LCDT)
1461 return;
1463 /* Sequence from 11.7.10 */
1464 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1465 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1466 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1467 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1468 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1470 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1471 if (fbi->lccr0 & LCCR0_SDS)
1472 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1473 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1476 static void pxafb_disable_controller(struct pxafb_info *fbi)
1478 uint32_t lccr0;
1480 #ifdef CONFIG_FB_PXA_SMARTPANEL
1481 if (fbi->lccr0 & LCCR0_LCDT) {
1482 wait_for_completion_timeout(&fbi->refresh_done,
1483 msecs_to_jiffies(200));
1484 return;
1486 #endif
1488 /* Clear LCD Status Register */
1489 lcd_writel(fbi, LCSR, 0xffffffff);
1491 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1492 lcd_writel(fbi, LCCR0, lccr0);
1493 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1495 wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1497 /* disable LCD controller clock */
1498 clk_disable_unprepare(fbi->clk);
1502 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1504 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1506 struct pxafb_info *fbi = dev_id;
1507 unsigned int lccr0, lcsr;
1509 lcsr = lcd_readl(fbi, LCSR);
1510 if (lcsr & LCSR_LDD) {
1511 lccr0 = lcd_readl(fbi, LCCR0);
1512 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1513 complete(&fbi->disable_done);
1516 #ifdef CONFIG_FB_PXA_SMARTPANEL
1517 if (lcsr & LCSR_CMD_INT)
1518 complete(&fbi->command_done);
1519 #endif
1520 lcd_writel(fbi, LCSR, lcsr);
1522 #ifdef CONFIG_FB_PXA_OVERLAY
1524 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1525 if (lcsr1 & LCSR1_BS(1))
1526 complete(&fbi->overlay[0].branch_done);
1528 if (lcsr1 & LCSR1_BS(2))
1529 complete(&fbi->overlay[1].branch_done);
1531 lcd_writel(fbi, LCSR1, lcsr1);
1533 #endif
1534 return IRQ_HANDLED;
1538 * This function must be called from task context only, since it will
1539 * sleep when disabling the LCD controller, or if we get two contending
1540 * processes trying to alter state.
1542 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1544 u_int old_state;
1546 mutex_lock(&fbi->ctrlr_lock);
1548 old_state = fbi->state;
1551 * Hack around fbcon initialisation.
1553 if (old_state == C_STARTUP && state == C_REENABLE)
1554 state = C_ENABLE;
1556 switch (state) {
1557 case C_DISABLE_CLKCHANGE:
1559 * Disable controller for clock change. If the
1560 * controller is already disabled, then do nothing.
1562 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1563 fbi->state = state;
1564 /* TODO __pxafb_lcd_power(fbi, 0); */
1565 pxafb_disable_controller(fbi);
1567 break;
1569 case C_DISABLE_PM:
1570 case C_DISABLE:
1572 * Disable controller
1574 if (old_state != C_DISABLE) {
1575 fbi->state = state;
1576 __pxafb_backlight_power(fbi, 0);
1577 __pxafb_lcd_power(fbi, 0);
1578 if (old_state != C_DISABLE_CLKCHANGE)
1579 pxafb_disable_controller(fbi);
1581 break;
1583 case C_ENABLE_CLKCHANGE:
1585 * Enable the controller after clock change. Only
1586 * do this if we were disabled for the clock change.
1588 if (old_state == C_DISABLE_CLKCHANGE) {
1589 fbi->state = C_ENABLE;
1590 pxafb_enable_controller(fbi);
1591 /* TODO __pxafb_lcd_power(fbi, 1); */
1593 break;
1595 case C_REENABLE:
1597 * Re-enable the controller only if it was already
1598 * enabled. This is so we reprogram the control
1599 * registers.
1601 if (old_state == C_ENABLE) {
1602 __pxafb_lcd_power(fbi, 0);
1603 pxafb_disable_controller(fbi);
1604 pxafb_enable_controller(fbi);
1605 __pxafb_lcd_power(fbi, 1);
1607 break;
1609 case C_ENABLE_PM:
1611 * Re-enable the controller after PM. This is not
1612 * perfect - think about the case where we were doing
1613 * a clock change, and we suspended half-way through.
1615 if (old_state != C_DISABLE_PM)
1616 break;
1617 /* fall through */
1619 case C_ENABLE:
1621 * Power up the LCD screen, enable controller, and
1622 * turn on the backlight.
1624 if (old_state != C_ENABLE) {
1625 fbi->state = C_ENABLE;
1626 pxafb_enable_controller(fbi);
1627 __pxafb_lcd_power(fbi, 1);
1628 __pxafb_backlight_power(fbi, 1);
1630 break;
1632 mutex_unlock(&fbi->ctrlr_lock);
1636 * Our LCD controller task (which is called when we blank or unblank)
1637 * via keventd.
1639 static void pxafb_task(struct work_struct *work)
1641 struct pxafb_info *fbi =
1642 container_of(work, struct pxafb_info, task);
1643 u_int state = xchg(&fbi->task_state, -1);
1645 set_ctrlr_state(fbi, state);
1648 #ifdef CONFIG_CPU_FREQ
1650 * CPU clock speed change handler. We need to adjust the LCD timing
1651 * parameters when the CPU clock is adjusted by the power management
1652 * subsystem.
1654 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1656 static int
1657 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1659 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1660 /* TODO struct cpufreq_freqs *f = data; */
1661 u_int pcd;
1663 switch (val) {
1664 case CPUFREQ_PRECHANGE:
1665 #ifdef CONFIG_FB_PXA_OVERLAY
1666 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1667 #endif
1668 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1669 break;
1671 case CPUFREQ_POSTCHANGE:
1672 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1673 set_hsync_time(fbi, pcd);
1674 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1675 LCCR3_PixClkDiv(pcd);
1676 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1677 break;
1679 return 0;
1682 static int
1683 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1685 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1686 struct fb_var_screeninfo *var = &fbi->fb.var;
1687 struct cpufreq_policy *policy = data;
1689 switch (val) {
1690 case CPUFREQ_ADJUST:
1691 pr_debug("min dma period: %d ps, "
1692 "new clock %d kHz\n", pxafb_display_dma_period(var),
1693 policy->max);
1694 /* TODO: fill in min/max values */
1695 break;
1697 return 0;
1699 #endif
1701 #ifdef CONFIG_PM
1703 * Power management hooks. Note that we won't be called from IRQ context,
1704 * unlike the blank functions above, so we may sleep.
1706 static int pxafb_suspend(struct device *dev)
1708 struct pxafb_info *fbi = dev_get_drvdata(dev);
1710 set_ctrlr_state(fbi, C_DISABLE_PM);
1711 return 0;
1714 static int pxafb_resume(struct device *dev)
1716 struct pxafb_info *fbi = dev_get_drvdata(dev);
1718 set_ctrlr_state(fbi, C_ENABLE_PM);
1719 return 0;
1722 static const struct dev_pm_ops pxafb_pm_ops = {
1723 .suspend = pxafb_suspend,
1724 .resume = pxafb_resume,
1726 #endif
1728 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1730 int size = PAGE_ALIGN(fbi->video_mem_size);
1732 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1733 if (fbi->video_mem == NULL)
1734 return -ENOMEM;
1736 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1737 fbi->video_mem_size = size;
1739 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1740 fbi->fb.fix.smem_len = fbi->video_mem_size;
1741 fbi->fb.screen_base = fbi->video_mem;
1743 return fbi->video_mem ? 0 : -ENOMEM;
1746 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1747 struct pxafb_mach_info *inf)
1749 unsigned int lcd_conn = inf->lcd_conn;
1750 struct pxafb_mode_info *m;
1751 int i;
1753 fbi->cmap_inverse = inf->cmap_inverse;
1754 fbi->cmap_static = inf->cmap_static;
1755 fbi->lccr4 = inf->lccr4;
1757 switch (lcd_conn & LCD_TYPE_MASK) {
1758 case LCD_TYPE_MONO_STN:
1759 fbi->lccr0 = LCCR0_CMS;
1760 break;
1761 case LCD_TYPE_MONO_DSTN:
1762 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1763 break;
1764 case LCD_TYPE_COLOR_STN:
1765 fbi->lccr0 = 0;
1766 break;
1767 case LCD_TYPE_COLOR_DSTN:
1768 fbi->lccr0 = LCCR0_SDS;
1769 break;
1770 case LCD_TYPE_COLOR_TFT:
1771 fbi->lccr0 = LCCR0_PAS;
1772 break;
1773 case LCD_TYPE_SMART_PANEL:
1774 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1775 break;
1776 default:
1777 /* fall back to backward compatibility way */
1778 fbi->lccr0 = inf->lccr0;
1779 fbi->lccr3 = inf->lccr3;
1780 goto decode_mode;
1783 if (lcd_conn == LCD_MONO_STN_8BPP)
1784 fbi->lccr0 |= LCCR0_DPD;
1786 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1788 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1789 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1790 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1792 decode_mode:
1793 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1795 /* decide video memory size as follows:
1796 * 1. default to mode of maximum resolution
1797 * 2. allow platform to override
1798 * 3. allow module parameter to override
1800 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1801 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1802 m->xres * m->yres * m->bpp / 8);
1804 if (inf->video_mem_size > fbi->video_mem_size)
1805 fbi->video_mem_size = inf->video_mem_size;
1807 if (video_mem_size > fbi->video_mem_size)
1808 fbi->video_mem_size = video_mem_size;
1811 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
1812 struct pxafb_mach_info *inf)
1814 struct pxafb_info *fbi;
1815 void *addr;
1817 /* Alloc the pxafb_info and pseudo_palette in one step */
1818 fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16,
1819 GFP_KERNEL);
1820 if (!fbi)
1821 return ERR_PTR(-ENOMEM);
1823 fbi->dev = dev;
1824 fbi->inf = inf;
1826 fbi->clk = devm_clk_get(dev, NULL);
1827 if (IS_ERR(fbi->clk))
1828 return ERR_CAST(fbi->clk);
1830 strcpy(fbi->fb.fix.id, PXA_NAME);
1832 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1833 fbi->fb.fix.type_aux = 0;
1834 fbi->fb.fix.xpanstep = 0;
1835 fbi->fb.fix.ypanstep = 1;
1836 fbi->fb.fix.ywrapstep = 0;
1837 fbi->fb.fix.accel = FB_ACCEL_NONE;
1839 fbi->fb.var.nonstd = 0;
1840 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1841 fbi->fb.var.height = -1;
1842 fbi->fb.var.width = -1;
1843 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1844 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1846 fbi->fb.fbops = &pxafb_ops;
1847 fbi->fb.flags = FBINFO_DEFAULT;
1848 fbi->fb.node = -1;
1850 addr = fbi;
1851 addr = addr + sizeof(struct pxafb_info);
1852 fbi->fb.pseudo_palette = addr;
1854 fbi->state = C_STARTUP;
1855 fbi->task_state = (u_char)-1;
1857 pxafb_decode_mach_info(fbi, inf);
1859 #ifdef CONFIG_FB_PXA_OVERLAY
1860 /* place overlay(s) on top of base */
1861 if (pxafb_overlay_supported())
1862 fbi->lccr0 |= LCCR0_OUC;
1863 #endif
1865 init_waitqueue_head(&fbi->ctrlr_wait);
1866 INIT_WORK(&fbi->task, pxafb_task);
1867 mutex_init(&fbi->ctrlr_lock);
1868 init_completion(&fbi->disable_done);
1870 return fbi;
1873 #ifdef CONFIG_FB_PXA_PARAMETERS
1874 static int parse_opt_mode(struct device *dev, const char *this_opt,
1875 struct pxafb_mach_info *inf)
1877 const char *name = this_opt+5;
1878 unsigned int namelen = strlen(name);
1879 int res_specified = 0, bpp_specified = 0;
1880 unsigned int xres = 0, yres = 0, bpp = 0;
1881 int yres_specified = 0;
1882 int i;
1883 for (i = namelen-1; i >= 0; i--) {
1884 switch (name[i]) {
1885 case '-':
1886 namelen = i;
1887 if (!bpp_specified && !yres_specified) {
1888 bpp = simple_strtoul(&name[i+1], NULL, 0);
1889 bpp_specified = 1;
1890 } else
1891 goto done;
1892 break;
1893 case 'x':
1894 if (!yres_specified) {
1895 yres = simple_strtoul(&name[i+1], NULL, 0);
1896 yres_specified = 1;
1897 } else
1898 goto done;
1899 break;
1900 case '0' ... '9':
1901 break;
1902 default:
1903 goto done;
1906 if (i < 0 && yres_specified) {
1907 xres = simple_strtoul(name, NULL, 0);
1908 res_specified = 1;
1910 done:
1911 if (res_specified) {
1912 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1913 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1915 if (bpp_specified)
1916 switch (bpp) {
1917 case 1:
1918 case 2:
1919 case 4:
1920 case 8:
1921 case 16:
1922 inf->modes[0].bpp = bpp;
1923 dev_info(dev, "overriding bit depth: %d\n", bpp);
1924 break;
1925 default:
1926 dev_err(dev, "Depth %d is not valid\n", bpp);
1927 return -EINVAL;
1929 return 0;
1932 static int parse_opt(struct device *dev, char *this_opt,
1933 struct pxafb_mach_info *inf)
1935 struct pxafb_mode_info *mode = &inf->modes[0];
1936 char s[64];
1938 s[0] = '\0';
1940 if (!strncmp(this_opt, "vmem:", 5)) {
1941 video_mem_size = memparse(this_opt + 5, NULL);
1942 } else if (!strncmp(this_opt, "mode:", 5)) {
1943 return parse_opt_mode(dev, this_opt, inf);
1944 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1945 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1946 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1947 } else if (!strncmp(this_opt, "left:", 5)) {
1948 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1949 sprintf(s, "left: %u\n", mode->left_margin);
1950 } else if (!strncmp(this_opt, "right:", 6)) {
1951 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1952 sprintf(s, "right: %u\n", mode->right_margin);
1953 } else if (!strncmp(this_opt, "upper:", 6)) {
1954 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1955 sprintf(s, "upper: %u\n", mode->upper_margin);
1956 } else if (!strncmp(this_opt, "lower:", 6)) {
1957 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1958 sprintf(s, "lower: %u\n", mode->lower_margin);
1959 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1960 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1961 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1962 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1963 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1964 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1965 } else if (!strncmp(this_opt, "hsync:", 6)) {
1966 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1967 sprintf(s, "hsync: Active Low\n");
1968 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1969 } else {
1970 sprintf(s, "hsync: Active High\n");
1971 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1973 } else if (!strncmp(this_opt, "vsync:", 6)) {
1974 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1975 sprintf(s, "vsync: Active Low\n");
1976 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1977 } else {
1978 sprintf(s, "vsync: Active High\n");
1979 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1981 } else if (!strncmp(this_opt, "dpc:", 4)) {
1982 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1983 sprintf(s, "double pixel clock: false\n");
1984 inf->lccr3 &= ~LCCR3_DPC;
1985 } else {
1986 sprintf(s, "double pixel clock: true\n");
1987 inf->lccr3 |= LCCR3_DPC;
1989 } else if (!strncmp(this_opt, "outputen:", 9)) {
1990 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1991 sprintf(s, "output enable: active low\n");
1992 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1993 } else {
1994 sprintf(s, "output enable: active high\n");
1995 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1997 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1998 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1999 sprintf(s, "pixel clock polarity: falling edge\n");
2000 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
2001 } else {
2002 sprintf(s, "pixel clock polarity: rising edge\n");
2003 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
2005 } else if (!strncmp(this_opt, "color", 5)) {
2006 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
2007 } else if (!strncmp(this_opt, "mono", 4)) {
2008 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
2009 } else if (!strncmp(this_opt, "active", 6)) {
2010 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
2011 } else if (!strncmp(this_opt, "passive", 7)) {
2012 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
2013 } else if (!strncmp(this_opt, "single", 6)) {
2014 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
2015 } else if (!strncmp(this_opt, "dual", 4)) {
2016 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
2017 } else if (!strncmp(this_opt, "4pix", 4)) {
2018 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2019 } else if (!strncmp(this_opt, "8pix", 4)) {
2020 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2021 } else {
2022 dev_err(dev, "unknown option: %s\n", this_opt);
2023 return -EINVAL;
2026 if (s[0] != '\0')
2027 dev_info(dev, "override %s", s);
2029 return 0;
2032 static int pxafb_parse_options(struct device *dev, char *options,
2033 struct pxafb_mach_info *inf)
2035 char *this_opt;
2036 int ret;
2038 if (!options || !*options)
2039 return 0;
2041 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2043 /* could be made table driven or similar?... */
2044 while ((this_opt = strsep(&options, ",")) != NULL) {
2045 ret = parse_opt(dev, this_opt, inf);
2046 if (ret)
2047 return ret;
2049 return 0;
2052 static char g_options[256] = "";
2054 #ifndef MODULE
2055 static int __init pxafb_setup_options(void)
2057 char *options = NULL;
2059 if (fb_get_options("pxafb", &options))
2060 return -ENODEV;
2062 if (options)
2063 strlcpy(g_options, options, sizeof(g_options));
2065 return 0;
2067 #else
2068 #define pxafb_setup_options() (0)
2070 module_param_string(options, g_options, sizeof(g_options), 0);
2071 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2072 #endif
2074 #else
2075 #define pxafb_parse_options(...) (0)
2076 #define pxafb_setup_options() (0)
2077 #endif
2079 #ifdef DEBUG_VAR
2080 /* Check for various illegal bit-combinations. Currently only
2081 * a warning is given. */
2082 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2084 if (inf->lcd_conn)
2085 return;
2087 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2088 dev_warn(dev, "machine LCCR0 setting contains "
2089 "illegal bits: %08x\n",
2090 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2091 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2092 dev_warn(dev, "machine LCCR3 setting contains "
2093 "illegal bits: %08x\n",
2094 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2095 if (inf->lccr0 & LCCR0_DPD &&
2096 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2097 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2098 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2099 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2100 "only valid in passive mono"
2101 " single panel mode\n");
2102 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2103 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2104 dev_warn(dev, "Dual panel only valid in passive mode\n");
2105 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2106 (inf->modes->upper_margin || inf->modes->lower_margin))
2107 dev_warn(dev, "Upper and lower margins must be 0 in "
2108 "passive mode\n");
2110 #else
2111 #define pxafb_check_options(...) do {} while (0)
2112 #endif
2114 #if defined(CONFIG_OF)
2115 static const char * const lcd_types[] = {
2116 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2117 "color-tft", "smart-panel", NULL
2120 static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
2121 struct pxafb_mach_info *info, u32 bus_width)
2123 struct display_timings *timings;
2124 struct videomode vm;
2125 int i, ret = -EINVAL;
2126 const char *s;
2128 ret = of_property_read_string(disp, "lcd-type", &s);
2129 if (ret)
2130 s = "color-tft";
2132 i = match_string(lcd_types, -1, s);
2133 if (i < 0) {
2134 dev_err(dev, "lcd-type %s is unknown\n", s);
2135 return i;
2137 info->lcd_conn |= LCD_CONN_TYPE(i);
2138 info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
2140 timings = of_get_display_timings(disp);
2141 if (!timings)
2142 return -EINVAL;
2144 ret = -ENOMEM;
2145 info->modes = devm_kcalloc(dev, timings->num_timings,
2146 sizeof(info->modes[0]),
2147 GFP_KERNEL);
2148 if (!info->modes)
2149 goto out;
2150 info->num_modes = timings->num_timings;
2152 for (i = 0; i < timings->num_timings; i++) {
2153 ret = videomode_from_timings(timings, &vm, i);
2154 if (ret) {
2155 dev_err(dev, "videomode_from_timings %d failed: %d\n",
2156 i, ret);
2157 goto out;
2159 if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
2160 info->lcd_conn |= LCD_PCLK_EDGE_RISE;
2161 if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
2162 info->lcd_conn |= LCD_PCLK_EDGE_FALL;
2163 if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
2164 info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
2165 if (vm.flags & DISPLAY_FLAGS_DE_LOW)
2166 info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
2167 if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
2168 info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
2169 if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
2170 info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
2172 info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
2173 info->modes[i].xres = vm.hactive;
2174 info->modes[i].yres = vm.vactive;
2175 info->modes[i].hsync_len = vm.hsync_len;
2176 info->modes[i].left_margin = vm.hback_porch;
2177 info->modes[i].right_margin = vm.hfront_porch;
2178 info->modes[i].vsync_len = vm.vsync_len;
2179 info->modes[i].upper_margin = vm.vback_porch;
2180 info->modes[i].lower_margin = vm.vfront_porch;
2182 ret = 0;
2184 out:
2185 display_timings_release(timings);
2186 return ret;
2189 static int of_get_pxafb_mode_info(struct device *dev,
2190 struct pxafb_mach_info *info)
2192 struct device_node *display, *np;
2193 u32 bus_width;
2194 int ret, i;
2196 np = of_graph_get_next_endpoint(dev->of_node, NULL);
2197 if (!np) {
2198 dev_err(dev, "could not find endpoint\n");
2199 return -EINVAL;
2201 ret = of_property_read_u32(np, "bus-width", &bus_width);
2202 if (ret) {
2203 dev_err(dev, "no bus-width specified: %d\n", ret);
2204 of_node_put(np);
2205 return ret;
2208 display = of_graph_get_remote_port_parent(np);
2209 of_node_put(np);
2210 if (!display) {
2211 dev_err(dev, "no display defined\n");
2212 return -EINVAL;
2215 ret = of_get_pxafb_display(dev, display, info, bus_width);
2216 of_node_put(display);
2217 if (ret)
2218 return ret;
2220 for (i = 0; i < info->num_modes; i++)
2221 info->modes[i].bpp = bus_width;
2223 return 0;
2226 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2228 int ret;
2229 struct pxafb_mach_info *info;
2231 if (!dev->of_node)
2232 return NULL;
2233 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2234 if (!info)
2235 return ERR_PTR(-ENOMEM);
2236 ret = of_get_pxafb_mode_info(dev, info);
2237 if (ret)
2238 return ERR_PTR(ret);
2241 * On purpose, neither lccrX registers nor video memory size can be
2242 * specified through device-tree, they are considered more a debug hack
2243 * available through command line.
2245 return info;
2247 #else
2248 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2250 return NULL;
2252 #endif
2254 static int pxafb_probe(struct platform_device *dev)
2256 struct pxafb_info *fbi;
2257 struct pxafb_mach_info *inf, *pdata;
2258 struct resource *r;
2259 int i, irq, ret;
2261 dev_dbg(&dev->dev, "pxafb_probe\n");
2263 ret = -ENOMEM;
2264 pdata = dev_get_platdata(&dev->dev);
2265 inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
2266 if (!inf)
2267 goto failed;
2269 if (pdata) {
2270 *inf = *pdata;
2271 inf->modes =
2272 devm_kmalloc_array(&dev->dev, pdata->num_modes,
2273 sizeof(inf->modes[0]), GFP_KERNEL);
2274 if (!inf->modes)
2275 goto failed;
2276 for (i = 0; i < inf->num_modes; i++)
2277 inf->modes[i] = pdata->modes[i];
2280 if (!pdata)
2281 inf = of_pxafb_of_mach_info(&dev->dev);
2282 if (IS_ERR_OR_NULL(inf))
2283 goto failed;
2285 ret = pxafb_parse_options(&dev->dev, g_options, inf);
2286 if (ret < 0)
2287 goto failed;
2289 pxafb_check_options(&dev->dev, inf);
2291 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2292 inf->modes->xres,
2293 inf->modes->yres,
2294 inf->modes->bpp);
2295 if (inf->modes->xres == 0 ||
2296 inf->modes->yres == 0 ||
2297 inf->modes->bpp == 0) {
2298 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2299 ret = -EINVAL;
2300 goto failed;
2303 fbi = pxafb_init_fbinfo(&dev->dev, inf);
2304 if (IS_ERR(fbi)) {
2305 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2306 ret = PTR_ERR(fbi);
2307 goto failed;
2310 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2311 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2313 fbi->backlight_power = inf->pxafb_backlight_power;
2314 fbi->lcd_power = inf->pxafb_lcd_power;
2316 fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd");
2317 if (IS_ERR(fbi->lcd_supply)) {
2318 if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER)
2319 return -EPROBE_DEFER;
2321 fbi->lcd_supply = NULL;
2324 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2325 if (r == NULL) {
2326 dev_err(&dev->dev, "no I/O memory resource defined\n");
2327 ret = -ENODEV;
2328 goto failed;
2331 fbi->mmio_base = devm_ioremap_resource(&dev->dev, r);
2332 if (IS_ERR(fbi->mmio_base)) {
2333 dev_err(&dev->dev, "failed to get I/O memory\n");
2334 ret = -EBUSY;
2335 goto failed;
2338 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2339 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2340 &fbi->dma_buff_phys, GFP_KERNEL);
2341 if (fbi->dma_buff == NULL) {
2342 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2343 ret = -ENOMEM;
2344 goto failed;
2347 ret = pxafb_init_video_memory(fbi);
2348 if (ret) {
2349 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2350 ret = -ENOMEM;
2351 goto failed_free_dma;
2354 irq = platform_get_irq(dev, 0);
2355 if (irq < 0) {
2356 dev_err(&dev->dev, "no IRQ defined\n");
2357 ret = -ENODEV;
2358 goto failed_free_mem;
2361 ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi);
2362 if (ret) {
2363 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2364 ret = -EBUSY;
2365 goto failed_free_mem;
2368 ret = pxafb_smart_init(fbi);
2369 if (ret) {
2370 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2371 goto failed_free_mem;
2375 * This makes sure that our colour bitfield
2376 * descriptors are correctly initialised.
2378 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2379 if (ret) {
2380 dev_err(&dev->dev, "failed to get suitable mode\n");
2381 goto failed_free_mem;
2384 ret = pxafb_set_par(&fbi->fb);
2385 if (ret) {
2386 dev_err(&dev->dev, "Failed to set parameters\n");
2387 goto failed_free_mem;
2390 platform_set_drvdata(dev, fbi);
2392 ret = register_framebuffer(&fbi->fb);
2393 if (ret < 0) {
2394 dev_err(&dev->dev,
2395 "Failed to register framebuffer device: %d\n", ret);
2396 goto failed_free_cmap;
2399 pxafb_overlay_init(fbi);
2401 #ifdef CONFIG_CPU_FREQ
2402 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2403 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2404 cpufreq_register_notifier(&fbi->freq_transition,
2405 CPUFREQ_TRANSITION_NOTIFIER);
2406 cpufreq_register_notifier(&fbi->freq_policy,
2407 CPUFREQ_POLICY_NOTIFIER);
2408 #endif
2411 * Ok, now enable the LCD controller
2413 set_ctrlr_state(fbi, C_ENABLE);
2415 return 0;
2417 failed_free_cmap:
2418 if (fbi->fb.cmap.len)
2419 fb_dealloc_cmap(&fbi->fb.cmap);
2420 failed_free_mem:
2421 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2422 failed_free_dma:
2423 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2424 fbi->dma_buff, fbi->dma_buff_phys);
2425 failed:
2426 return ret;
2429 static int pxafb_remove(struct platform_device *dev)
2431 struct pxafb_info *fbi = platform_get_drvdata(dev);
2432 struct fb_info *info;
2434 if (!fbi)
2435 return 0;
2437 info = &fbi->fb;
2439 pxafb_overlay_exit(fbi);
2440 unregister_framebuffer(info);
2442 pxafb_disable_controller(fbi);
2444 if (fbi->fb.cmap.len)
2445 fb_dealloc_cmap(&fbi->fb.cmap);
2447 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2449 dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
2450 fbi->dma_buff_phys);
2452 return 0;
2455 static const struct of_device_id pxafb_of_dev_id[] = {
2456 { .compatible = "marvell,pxa270-lcdc", },
2457 { .compatible = "marvell,pxa300-lcdc", },
2458 { .compatible = "marvell,pxa2xx-lcdc", },
2459 { /* sentinel */ }
2461 MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
2463 static struct platform_driver pxafb_driver = {
2464 .probe = pxafb_probe,
2465 .remove = pxafb_remove,
2466 .driver = {
2467 .name = "pxa2xx-fb",
2468 .of_match_table = pxafb_of_dev_id,
2469 #ifdef CONFIG_PM
2470 .pm = &pxafb_pm_ops,
2471 #endif
2475 static int __init pxafb_init(void)
2477 if (pxafb_setup_options())
2478 return -EINVAL;
2480 return platform_driver_register(&pxafb_driver);
2483 static void __exit pxafb_exit(void)
2485 platform_driver_unregister(&pxafb_driver);
2488 module_init(pxafb_init);
2489 module_exit(pxafb_exit);
2491 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2492 MODULE_LICENSE("GPL");