Linux 4.19.133
[linux/fpc-iii.git] / drivers / xen / swiotlb-xen.c
blob3d9997595d900fb2eaeaf6325494f8ed2d02a39b
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
38 #include <linux/bootmem.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
49 #include <trace/events/swiotlb.h>
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
56 #define XEN_SWIOTLB_ERROR_CODE (~(dma_addr_t)0x0)
58 static char *xen_io_tlb_start, *xen_io_tlb_end;
59 static unsigned long xen_io_tlb_nslabs;
61 * Quick lookup value of the bus address of the IOTLB.
64 static u64 start_dma_addr;
67 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
68 * can be 32bit when dma_addr_t is 64bit leading to a loss in
69 * information if the shift is done before casting to 64bit.
71 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
73 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
74 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
76 dma |= paddr & ~XEN_PAGE_MASK;
78 return dma;
81 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
83 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
84 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
85 phys_addr_t paddr = dma;
87 paddr |= baddr & ~XEN_PAGE_MASK;
89 return paddr;
92 static inline dma_addr_t xen_virt_to_bus(void *address)
94 return xen_phys_to_bus(virt_to_phys(address));
97 static int check_pages_physically_contiguous(unsigned long xen_pfn,
98 unsigned int offset,
99 size_t length)
101 unsigned long next_bfn;
102 int i;
103 int nr_pages;
105 next_bfn = pfn_to_bfn(xen_pfn);
106 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
108 for (i = 1; i < nr_pages; i++) {
109 if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
110 return 0;
112 return 1;
115 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
117 unsigned long xen_pfn = XEN_PFN_DOWN(p);
118 unsigned int offset = p & ~XEN_PAGE_MASK;
120 if (offset + size <= XEN_PAGE_SIZE)
121 return 0;
122 if (check_pages_physically_contiguous(xen_pfn, offset, size))
123 return 0;
124 return 1;
127 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
129 unsigned long bfn = XEN_PFN_DOWN(dma_addr);
130 unsigned long xen_pfn = bfn_to_local_pfn(bfn);
131 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
133 /* If the address is outside our domain, it CAN
134 * have the same virtual address as another address
135 * in our domain. Therefore _only_ check address within our domain.
137 if (pfn_valid(PFN_DOWN(paddr))) {
138 return paddr >= virt_to_phys(xen_io_tlb_start) &&
139 paddr < virt_to_phys(xen_io_tlb_end);
141 return 0;
144 static int max_dma_bits = 32;
146 static int
147 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
149 int i, rc;
150 int dma_bits;
151 dma_addr_t dma_handle;
152 phys_addr_t p = virt_to_phys(buf);
154 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
156 i = 0;
157 do {
158 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
160 do {
161 rc = xen_create_contiguous_region(
162 p + (i << IO_TLB_SHIFT),
163 get_order(slabs << IO_TLB_SHIFT),
164 dma_bits, &dma_handle);
165 } while (rc && dma_bits++ < max_dma_bits);
166 if (rc)
167 return rc;
169 i += slabs;
170 } while (i < nslabs);
171 return 0;
173 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
175 if (!nr_tbl) {
176 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
177 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
178 } else
179 xen_io_tlb_nslabs = nr_tbl;
181 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
184 enum xen_swiotlb_err {
185 XEN_SWIOTLB_UNKNOWN = 0,
186 XEN_SWIOTLB_ENOMEM,
187 XEN_SWIOTLB_EFIXUP
190 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
192 switch (err) {
193 case XEN_SWIOTLB_ENOMEM:
194 return "Cannot allocate Xen-SWIOTLB buffer\n";
195 case XEN_SWIOTLB_EFIXUP:
196 return "Failed to get contiguous memory for DMA from Xen!\n"\
197 "You either: don't have the permissions, do not have"\
198 " enough free memory under 4GB, or the hypervisor memory"\
199 " is too fragmented!";
200 default:
201 break;
203 return "";
205 int __ref xen_swiotlb_init(int verbose, bool early)
207 unsigned long bytes, order;
208 int rc = -ENOMEM;
209 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
210 unsigned int repeat = 3;
212 xen_io_tlb_nslabs = swiotlb_nr_tbl();
213 retry:
214 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
215 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
217 * Get IO TLB memory from any location.
219 if (early)
220 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
221 else {
222 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
223 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
224 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
226 if (xen_io_tlb_start)
227 break;
228 order--;
230 if (order != get_order(bytes)) {
231 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
232 (PAGE_SIZE << order) >> 20);
233 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
234 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
237 if (!xen_io_tlb_start) {
238 m_ret = XEN_SWIOTLB_ENOMEM;
239 goto error;
241 xen_io_tlb_end = xen_io_tlb_start + bytes;
243 * And replace that memory with pages under 4GB.
245 rc = xen_swiotlb_fixup(xen_io_tlb_start,
246 bytes,
247 xen_io_tlb_nslabs);
248 if (rc) {
249 if (early)
250 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
251 else {
252 free_pages((unsigned long)xen_io_tlb_start, order);
253 xen_io_tlb_start = NULL;
255 m_ret = XEN_SWIOTLB_EFIXUP;
256 goto error;
258 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
259 if (early) {
260 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
261 verbose))
262 panic("Cannot allocate SWIOTLB buffer");
263 rc = 0;
264 } else
265 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
267 if (!rc)
268 swiotlb_set_max_segment(PAGE_SIZE);
270 return rc;
271 error:
272 if (repeat--) {
273 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
274 (xen_io_tlb_nslabs >> 1));
275 pr_info("Lowering to %luMB\n",
276 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
277 goto retry;
279 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
280 if (early)
281 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
282 else
283 free_pages((unsigned long)xen_io_tlb_start, order);
284 return rc;
287 static void *
288 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
289 dma_addr_t *dma_handle, gfp_t flags,
290 unsigned long attrs)
292 void *ret;
293 int order = get_order(size);
294 u64 dma_mask = DMA_BIT_MASK(32);
295 phys_addr_t phys;
296 dma_addr_t dev_addr;
299 * Ignore region specifiers - the kernel's ideas of
300 * pseudo-phys memory layout has nothing to do with the
301 * machine physical layout. We can't allocate highmem
302 * because we can't return a pointer to it.
304 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
306 /* Convert the size to actually allocated. */
307 size = 1UL << (order + XEN_PAGE_SHIFT);
309 /* On ARM this function returns an ioremap'ped virtual address for
310 * which virt_to_phys doesn't return the corresponding physical
311 * address. In fact on ARM virt_to_phys only works for kernel direct
312 * mapped RAM memory. Also see comment below.
314 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
316 if (!ret)
317 return ret;
319 if (hwdev && hwdev->coherent_dma_mask)
320 dma_mask = hwdev->coherent_dma_mask;
322 /* At this point dma_handle is the physical address, next we are
323 * going to set it to the machine address.
324 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
325 * to *dma_handle. */
326 phys = *dma_handle;
327 dev_addr = xen_phys_to_bus(phys);
328 if (((dev_addr + size - 1 <= dma_mask)) &&
329 !range_straddles_page_boundary(phys, size))
330 *dma_handle = dev_addr;
331 else {
332 if (xen_create_contiguous_region(phys, order,
333 fls64(dma_mask), dma_handle) != 0) {
334 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
335 return NULL;
338 memset(ret, 0, size);
339 return ret;
342 static void
343 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
344 dma_addr_t dev_addr, unsigned long attrs)
346 int order = get_order(size);
347 phys_addr_t phys;
348 u64 dma_mask = DMA_BIT_MASK(32);
350 if (hwdev && hwdev->coherent_dma_mask)
351 dma_mask = hwdev->coherent_dma_mask;
353 /* do not use virt_to_phys because on ARM it doesn't return you the
354 * physical address */
355 phys = xen_bus_to_phys(dev_addr);
357 /* Convert the size to actually allocated. */
358 size = 1UL << (order + XEN_PAGE_SHIFT);
360 if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
361 range_straddles_page_boundary(phys, size)))
362 xen_destroy_contiguous_region(phys, order);
364 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
368 * Map a single buffer of the indicated size for DMA in streaming mode. The
369 * physical address to use is returned.
371 * Once the device is given the dma address, the device owns this memory until
372 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
374 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
375 unsigned long offset, size_t size,
376 enum dma_data_direction dir,
377 unsigned long attrs)
379 phys_addr_t map, phys = page_to_phys(page) + offset;
380 dma_addr_t dev_addr = xen_phys_to_bus(phys);
382 BUG_ON(dir == DMA_NONE);
384 * If the address happens to be in the device's DMA window,
385 * we can safely return the device addr and not worry about bounce
386 * buffering it.
388 if (dma_capable(dev, dev_addr, size) &&
389 !range_straddles_page_boundary(phys, size) &&
390 !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
391 (swiotlb_force != SWIOTLB_FORCE)) {
392 /* we are not interested in the dma_addr returned by
393 * xen_dma_map_page, only in the potential cache flushes executed
394 * by the function. */
395 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
396 return dev_addr;
400 * Oh well, have to allocate and map a bounce buffer.
402 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
404 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
405 attrs);
406 if (map == SWIOTLB_MAP_ERROR)
407 return XEN_SWIOTLB_ERROR_CODE;
409 dev_addr = xen_phys_to_bus(map);
410 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
411 dev_addr, map & ~PAGE_MASK, size, dir, attrs);
414 * Ensure that the address returned is DMA'ble
416 if (dma_capable(dev, dev_addr, size))
417 return dev_addr;
419 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
420 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
422 return XEN_SWIOTLB_ERROR_CODE;
426 * Unmap a single streaming mode DMA translation. The dma_addr and size must
427 * match what was provided for in a previous xen_swiotlb_map_page call. All
428 * other usages are undefined.
430 * After this call, reads by the cpu to the buffer are guaranteed to see
431 * whatever the device wrote there.
433 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
434 size_t size, enum dma_data_direction dir,
435 unsigned long attrs)
437 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
439 BUG_ON(dir == DMA_NONE);
441 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
443 /* NOTE: We use dev_addr here, not paddr! */
444 if (is_xen_swiotlb_buffer(dev_addr)) {
445 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
446 return;
449 if (dir != DMA_FROM_DEVICE)
450 return;
453 * phys_to_virt doesn't work with hihgmem page but we could
454 * call dma_mark_clean() with hihgmem page here. However, we
455 * are fine since dma_mark_clean() is null on POWERPC. We can
456 * make dma_mark_clean() take a physical address if necessary.
458 dma_mark_clean(phys_to_virt(paddr), size);
461 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
462 size_t size, enum dma_data_direction dir,
463 unsigned long attrs)
465 xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
469 * Make physical memory consistent for a single streaming mode DMA translation
470 * after a transfer.
472 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
473 * using the cpu, yet do not wish to teardown the dma mapping, you must
474 * call this function before doing so. At the next point you give the dma
475 * address back to the card, you must first perform a
476 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
478 static void
479 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
480 size_t size, enum dma_data_direction dir,
481 enum dma_sync_target target)
483 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
485 BUG_ON(dir == DMA_NONE);
487 if (target == SYNC_FOR_CPU)
488 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
490 /* NOTE: We use dev_addr here, not paddr! */
491 if (is_xen_swiotlb_buffer(dev_addr))
492 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
494 if (target == SYNC_FOR_DEVICE)
495 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
497 if (dir != DMA_FROM_DEVICE)
498 return;
500 dma_mark_clean(phys_to_virt(paddr), size);
503 void
504 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
505 size_t size, enum dma_data_direction dir)
507 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
510 void
511 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
512 size_t size, enum dma_data_direction dir)
514 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
518 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
519 * concerning calls here are the same as for swiotlb_unmap_page() above.
521 static void
522 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
523 int nelems, enum dma_data_direction dir,
524 unsigned long attrs)
526 struct scatterlist *sg;
527 int i;
529 BUG_ON(dir == DMA_NONE);
531 for_each_sg(sgl, sg, nelems, i)
532 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
537 * Map a set of buffers described by scatterlist in streaming mode for DMA.
538 * This is the scatter-gather version of the above xen_swiotlb_map_page
539 * interface. Here the scatter gather list elements are each tagged with the
540 * appropriate dma address and length. They are obtained via
541 * sg_dma_{address,length}(SG).
543 * NOTE: An implementation may be able to use a smaller number of
544 * DMA address/length pairs than there are SG table elements.
545 * (for example via virtual mapping capabilities)
546 * The routine returns the number of addr/length pairs actually
547 * used, at most nents.
549 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
550 * same here.
552 static int
553 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
554 int nelems, enum dma_data_direction dir,
555 unsigned long attrs)
557 struct scatterlist *sg;
558 int i;
560 BUG_ON(dir == DMA_NONE);
562 for_each_sg(sgl, sg, nelems, i) {
563 phys_addr_t paddr = sg_phys(sg);
564 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
566 if (swiotlb_force == SWIOTLB_FORCE ||
567 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
568 !dma_capable(hwdev, dev_addr, sg->length) ||
569 range_straddles_page_boundary(paddr, sg->length)) {
570 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
571 start_dma_addr,
572 sg_phys(sg),
573 sg->length,
574 dir, attrs);
575 if (map == SWIOTLB_MAP_ERROR) {
576 dev_warn(hwdev, "swiotlb buffer is full\n");
577 /* Don't panic here, we expect map_sg users
578 to do proper error handling. */
579 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
580 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
581 attrs);
582 sg_dma_len(sgl) = 0;
583 return 0;
585 dev_addr = xen_phys_to_bus(map);
586 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
587 dev_addr,
588 map & ~PAGE_MASK,
589 sg->length,
590 dir,
591 attrs);
592 sg->dma_address = dev_addr;
593 } else {
594 /* we are not interested in the dma_addr returned by
595 * xen_dma_map_page, only in the potential cache flushes executed
596 * by the function. */
597 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
598 dev_addr,
599 paddr & ~PAGE_MASK,
600 sg->length,
601 dir,
602 attrs);
603 sg->dma_address = dev_addr;
605 sg_dma_len(sg) = sg->length;
607 return nelems;
611 * Make physical memory consistent for a set of streaming mode DMA translations
612 * after a transfer.
614 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
615 * and usage.
617 static void
618 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
619 int nelems, enum dma_data_direction dir,
620 enum dma_sync_target target)
622 struct scatterlist *sg;
623 int i;
625 for_each_sg(sgl, sg, nelems, i)
626 xen_swiotlb_sync_single(hwdev, sg->dma_address,
627 sg_dma_len(sg), dir, target);
630 static void
631 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
632 int nelems, enum dma_data_direction dir)
634 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
637 static void
638 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
639 int nelems, enum dma_data_direction dir)
641 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
645 * Return whether the given device DMA address mask can be supported
646 * properly. For example, if your device can only drive the low 24-bits
647 * during bus mastering, then you would pass 0x00ffffff as the mask to
648 * this function.
650 static int
651 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
653 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
657 * Create userspace mapping for the DMA-coherent memory.
658 * This function should be called with the pages from the current domain only,
659 * passing pages mapped from other domains would lead to memory corruption.
661 static int
662 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
663 void *cpu_addr, dma_addr_t dma_addr, size_t size,
664 unsigned long attrs)
666 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
667 if (xen_get_dma_ops(dev)->mmap)
668 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
669 dma_addr, size, attrs);
670 #endif
671 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
675 * This function should be called with the pages from the current domain only,
676 * passing pages mapped from other domains would lead to memory corruption.
678 static int
679 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
680 void *cpu_addr, dma_addr_t handle, size_t size,
681 unsigned long attrs)
683 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
684 if (xen_get_dma_ops(dev)->get_sgtable) {
685 #if 0
687 * This check verifies that the page belongs to the current domain and
688 * is not one mapped from another domain.
689 * This check is for debug only, and should not go to production build
691 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
692 BUG_ON (!page_is_ram(bfn));
693 #endif
694 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
695 handle, size, attrs);
697 #endif
698 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size);
701 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
703 return dma_addr == XEN_SWIOTLB_ERROR_CODE;
706 const struct dma_map_ops xen_swiotlb_dma_ops = {
707 .alloc = xen_swiotlb_alloc_coherent,
708 .free = xen_swiotlb_free_coherent,
709 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
710 .sync_single_for_device = xen_swiotlb_sync_single_for_device,
711 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
712 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
713 .map_sg = xen_swiotlb_map_sg_attrs,
714 .unmap_sg = xen_swiotlb_unmap_sg_attrs,
715 .map_page = xen_swiotlb_map_page,
716 .unmap_page = xen_swiotlb_unmap_page,
717 .dma_supported = xen_swiotlb_dma_supported,
718 .mmap = xen_swiotlb_dma_mmap,
719 .get_sgtable = xen_swiotlb_get_sgtable,
720 .mapping_error = xen_swiotlb_mapping_error,