Linux 4.19.133
[linux/fpc-iii.git] / fs / aio.c
blob413ec289bfa141b2716efe970d9e6d75a38345cf
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
50 #include "internal.h"
52 #define KIOCB_KEY 0
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
70 struct io_event io_events[0];
71 }; /* 128 bytes + ring size */
73 #define AIO_RING_PAGES 8
75 struct kioctx_table {
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
81 struct kioctx_cpu {
82 unsigned reqs_available;
85 struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
90 struct kioctx {
91 struct percpu_ref users;
92 atomic_t dead;
94 struct percpu_ref reqs;
96 unsigned long user_id;
98 struct __percpu kioctx_cpu *cpu;
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
104 unsigned req_batch;
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
109 * The real limit is nr_events - 1, which will be larger (see
110 * aio_setup_ring())
112 unsigned max_reqs;
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
117 unsigned long mmap_base;
118 unsigned long mmap_size;
120 struct page **ring_pages;
121 long nr_pages;
123 struct rcu_work free_rwork; /* see free_ioctx() */
126 * signals when all in-flight requests are done
128 struct ctx_rq_wait *rq_wait;
130 struct {
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
137 * We batch accesses to it with a percpu version.
139 atomic_t reqs_available;
140 } ____cacheline_aligned_in_smp;
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
147 struct {
148 struct mutex ring_lock;
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
152 struct {
153 unsigned tail;
154 unsigned completed_events;
155 spinlock_t completion_lock;
156 } ____cacheline_aligned_in_smp;
158 struct page *internal_pages[AIO_RING_PAGES];
159 struct file *aio_ring_file;
161 unsigned id;
165 * First field must be the file pointer in all the
166 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
168 struct fsync_iocb {
169 struct file *file;
170 struct work_struct work;
171 bool datasync;
172 struct cred *creds;
175 struct poll_iocb {
176 struct file *file;
177 struct wait_queue_head *head;
178 __poll_t events;
179 bool done;
180 bool cancelled;
181 struct wait_queue_entry wait;
182 struct work_struct work;
186 * NOTE! Each of the iocb union members has the file pointer
187 * as the first entry in their struct definition. So you can
188 * access the file pointer through any of the sub-structs,
189 * or directly as just 'ki_filp' in this struct.
191 struct aio_kiocb {
192 union {
193 struct file *ki_filp;
194 struct kiocb rw;
195 struct fsync_iocb fsync;
196 struct poll_iocb poll;
199 struct kioctx *ki_ctx;
200 kiocb_cancel_fn *ki_cancel;
202 struct io_event ki_res;
204 struct list_head ki_list; /* the aio core uses this
205 * for cancellation */
206 refcount_t ki_refcnt;
209 * If the aio_resfd field of the userspace iocb is not zero,
210 * this is the underlying eventfd context to deliver events to.
212 struct eventfd_ctx *ki_eventfd;
215 /*------ sysctl variables----*/
216 static DEFINE_SPINLOCK(aio_nr_lock);
217 unsigned long aio_nr; /* current system wide number of aio requests */
218 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
219 /*----end sysctl variables---*/
221 static struct kmem_cache *kiocb_cachep;
222 static struct kmem_cache *kioctx_cachep;
224 static struct vfsmount *aio_mnt;
226 static const struct file_operations aio_ring_fops;
227 static const struct address_space_operations aio_ctx_aops;
229 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
231 struct file *file;
232 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
233 if (IS_ERR(inode))
234 return ERR_CAST(inode);
236 inode->i_mapping->a_ops = &aio_ctx_aops;
237 inode->i_mapping->private_data = ctx;
238 inode->i_size = PAGE_SIZE * nr_pages;
240 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
241 O_RDWR, &aio_ring_fops);
242 if (IS_ERR(file))
243 iput(inode);
244 return file;
247 static struct dentry *aio_mount(struct file_system_type *fs_type,
248 int flags, const char *dev_name, void *data)
250 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
251 AIO_RING_MAGIC);
253 if (!IS_ERR(root))
254 root->d_sb->s_iflags |= SB_I_NOEXEC;
255 return root;
258 /* aio_setup
259 * Creates the slab caches used by the aio routines, panic on
260 * failure as this is done early during the boot sequence.
262 static int __init aio_setup(void)
264 static struct file_system_type aio_fs = {
265 .name = "aio",
266 .mount = aio_mount,
267 .kill_sb = kill_anon_super,
269 aio_mnt = kern_mount(&aio_fs);
270 if (IS_ERR(aio_mnt))
271 panic("Failed to create aio fs mount.");
273 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
274 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
275 return 0;
277 __initcall(aio_setup);
279 static void put_aio_ring_file(struct kioctx *ctx)
281 struct file *aio_ring_file = ctx->aio_ring_file;
282 struct address_space *i_mapping;
284 if (aio_ring_file) {
285 truncate_setsize(file_inode(aio_ring_file), 0);
287 /* Prevent further access to the kioctx from migratepages */
288 i_mapping = aio_ring_file->f_mapping;
289 spin_lock(&i_mapping->private_lock);
290 i_mapping->private_data = NULL;
291 ctx->aio_ring_file = NULL;
292 spin_unlock(&i_mapping->private_lock);
294 fput(aio_ring_file);
298 static void aio_free_ring(struct kioctx *ctx)
300 int i;
302 /* Disconnect the kiotx from the ring file. This prevents future
303 * accesses to the kioctx from page migration.
305 put_aio_ring_file(ctx);
307 for (i = 0; i < ctx->nr_pages; i++) {
308 struct page *page;
309 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
310 page_count(ctx->ring_pages[i]));
311 page = ctx->ring_pages[i];
312 if (!page)
313 continue;
314 ctx->ring_pages[i] = NULL;
315 put_page(page);
318 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
319 kfree(ctx->ring_pages);
320 ctx->ring_pages = NULL;
324 static int aio_ring_mremap(struct vm_area_struct *vma)
326 struct file *file = vma->vm_file;
327 struct mm_struct *mm = vma->vm_mm;
328 struct kioctx_table *table;
329 int i, res = -EINVAL;
331 spin_lock(&mm->ioctx_lock);
332 rcu_read_lock();
333 table = rcu_dereference(mm->ioctx_table);
334 for (i = 0; i < table->nr; i++) {
335 struct kioctx *ctx;
337 ctx = rcu_dereference(table->table[i]);
338 if (ctx && ctx->aio_ring_file == file) {
339 if (!atomic_read(&ctx->dead)) {
340 ctx->user_id = ctx->mmap_base = vma->vm_start;
341 res = 0;
343 break;
347 rcu_read_unlock();
348 spin_unlock(&mm->ioctx_lock);
349 return res;
352 static const struct vm_operations_struct aio_ring_vm_ops = {
353 .mremap = aio_ring_mremap,
354 #if IS_ENABLED(CONFIG_MMU)
355 .fault = filemap_fault,
356 .map_pages = filemap_map_pages,
357 .page_mkwrite = filemap_page_mkwrite,
358 #endif
361 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
363 vma->vm_flags |= VM_DONTEXPAND;
364 vma->vm_ops = &aio_ring_vm_ops;
365 return 0;
368 static const struct file_operations aio_ring_fops = {
369 .mmap = aio_ring_mmap,
372 #if IS_ENABLED(CONFIG_MIGRATION)
373 static int aio_migratepage(struct address_space *mapping, struct page *new,
374 struct page *old, enum migrate_mode mode)
376 struct kioctx *ctx;
377 unsigned long flags;
378 pgoff_t idx;
379 int rc;
382 * We cannot support the _NO_COPY case here, because copy needs to
383 * happen under the ctx->completion_lock. That does not work with the
384 * migration workflow of MIGRATE_SYNC_NO_COPY.
386 if (mode == MIGRATE_SYNC_NO_COPY)
387 return -EINVAL;
389 rc = 0;
391 /* mapping->private_lock here protects against the kioctx teardown. */
392 spin_lock(&mapping->private_lock);
393 ctx = mapping->private_data;
394 if (!ctx) {
395 rc = -EINVAL;
396 goto out;
399 /* The ring_lock mutex. The prevents aio_read_events() from writing
400 * to the ring's head, and prevents page migration from mucking in
401 * a partially initialized kiotx.
403 if (!mutex_trylock(&ctx->ring_lock)) {
404 rc = -EAGAIN;
405 goto out;
408 idx = old->index;
409 if (idx < (pgoff_t)ctx->nr_pages) {
410 /* Make sure the old page hasn't already been changed */
411 if (ctx->ring_pages[idx] != old)
412 rc = -EAGAIN;
413 } else
414 rc = -EINVAL;
416 if (rc != 0)
417 goto out_unlock;
419 /* Writeback must be complete */
420 BUG_ON(PageWriteback(old));
421 get_page(new);
423 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
424 if (rc != MIGRATEPAGE_SUCCESS) {
425 put_page(new);
426 goto out_unlock;
429 /* Take completion_lock to prevent other writes to the ring buffer
430 * while the old page is copied to the new. This prevents new
431 * events from being lost.
433 spin_lock_irqsave(&ctx->completion_lock, flags);
434 migrate_page_copy(new, old);
435 BUG_ON(ctx->ring_pages[idx] != old);
436 ctx->ring_pages[idx] = new;
437 spin_unlock_irqrestore(&ctx->completion_lock, flags);
439 /* The old page is no longer accessible. */
440 put_page(old);
442 out_unlock:
443 mutex_unlock(&ctx->ring_lock);
444 out:
445 spin_unlock(&mapping->private_lock);
446 return rc;
448 #endif
450 static const struct address_space_operations aio_ctx_aops = {
451 .set_page_dirty = __set_page_dirty_no_writeback,
452 #if IS_ENABLED(CONFIG_MIGRATION)
453 .migratepage = aio_migratepage,
454 #endif
457 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
459 struct aio_ring *ring;
460 struct mm_struct *mm = current->mm;
461 unsigned long size, unused;
462 int nr_pages;
463 int i;
464 struct file *file;
466 /* Compensate for the ring buffer's head/tail overlap entry */
467 nr_events += 2; /* 1 is required, 2 for good luck */
469 size = sizeof(struct aio_ring);
470 size += sizeof(struct io_event) * nr_events;
472 nr_pages = PFN_UP(size);
473 if (nr_pages < 0)
474 return -EINVAL;
476 file = aio_private_file(ctx, nr_pages);
477 if (IS_ERR(file)) {
478 ctx->aio_ring_file = NULL;
479 return -ENOMEM;
482 ctx->aio_ring_file = file;
483 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
484 / sizeof(struct io_event);
486 ctx->ring_pages = ctx->internal_pages;
487 if (nr_pages > AIO_RING_PAGES) {
488 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
489 GFP_KERNEL);
490 if (!ctx->ring_pages) {
491 put_aio_ring_file(ctx);
492 return -ENOMEM;
496 for (i = 0; i < nr_pages; i++) {
497 struct page *page;
498 page = find_or_create_page(file->f_mapping,
499 i, GFP_HIGHUSER | __GFP_ZERO);
500 if (!page)
501 break;
502 pr_debug("pid(%d) page[%d]->count=%d\n",
503 current->pid, i, page_count(page));
504 SetPageUptodate(page);
505 unlock_page(page);
507 ctx->ring_pages[i] = page;
509 ctx->nr_pages = i;
511 if (unlikely(i != nr_pages)) {
512 aio_free_ring(ctx);
513 return -ENOMEM;
516 ctx->mmap_size = nr_pages * PAGE_SIZE;
517 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
519 if (down_write_killable(&mm->mmap_sem)) {
520 ctx->mmap_size = 0;
521 aio_free_ring(ctx);
522 return -EINTR;
525 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
526 PROT_READ | PROT_WRITE,
527 MAP_SHARED, 0, &unused, NULL);
528 up_write(&mm->mmap_sem);
529 if (IS_ERR((void *)ctx->mmap_base)) {
530 ctx->mmap_size = 0;
531 aio_free_ring(ctx);
532 return -ENOMEM;
535 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
537 ctx->user_id = ctx->mmap_base;
538 ctx->nr_events = nr_events; /* trusted copy */
540 ring = kmap_atomic(ctx->ring_pages[0]);
541 ring->nr = nr_events; /* user copy */
542 ring->id = ~0U;
543 ring->head = ring->tail = 0;
544 ring->magic = AIO_RING_MAGIC;
545 ring->compat_features = AIO_RING_COMPAT_FEATURES;
546 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
547 ring->header_length = sizeof(struct aio_ring);
548 kunmap_atomic(ring);
549 flush_dcache_page(ctx->ring_pages[0]);
551 return 0;
554 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
555 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
556 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
558 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
560 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
561 struct kioctx *ctx = req->ki_ctx;
562 unsigned long flags;
564 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
565 return;
567 spin_lock_irqsave(&ctx->ctx_lock, flags);
568 list_add_tail(&req->ki_list, &ctx->active_reqs);
569 req->ki_cancel = cancel;
570 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
572 EXPORT_SYMBOL(kiocb_set_cancel_fn);
575 * free_ioctx() should be RCU delayed to synchronize against the RCU
576 * protected lookup_ioctx() and also needs process context to call
577 * aio_free_ring(). Use rcu_work.
579 static void free_ioctx(struct work_struct *work)
581 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
582 free_rwork);
583 pr_debug("freeing %p\n", ctx);
585 aio_free_ring(ctx);
586 free_percpu(ctx->cpu);
587 percpu_ref_exit(&ctx->reqs);
588 percpu_ref_exit(&ctx->users);
589 kmem_cache_free(kioctx_cachep, ctx);
592 static void free_ioctx_reqs(struct percpu_ref *ref)
594 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
596 /* At this point we know that there are no any in-flight requests */
597 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
598 complete(&ctx->rq_wait->comp);
600 /* Synchronize against RCU protected table->table[] dereferences */
601 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
602 queue_rcu_work(system_wq, &ctx->free_rwork);
606 * When this function runs, the kioctx has been removed from the "hash table"
607 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
608 * now it's safe to cancel any that need to be.
610 static void free_ioctx_users(struct percpu_ref *ref)
612 struct kioctx *ctx = container_of(ref, struct kioctx, users);
613 struct aio_kiocb *req;
615 spin_lock_irq(&ctx->ctx_lock);
617 while (!list_empty(&ctx->active_reqs)) {
618 req = list_first_entry(&ctx->active_reqs,
619 struct aio_kiocb, ki_list);
620 req->ki_cancel(&req->rw);
621 list_del_init(&req->ki_list);
624 spin_unlock_irq(&ctx->ctx_lock);
626 percpu_ref_kill(&ctx->reqs);
627 percpu_ref_put(&ctx->reqs);
630 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
632 unsigned i, new_nr;
633 struct kioctx_table *table, *old;
634 struct aio_ring *ring;
636 spin_lock(&mm->ioctx_lock);
637 table = rcu_dereference_raw(mm->ioctx_table);
639 while (1) {
640 if (table)
641 for (i = 0; i < table->nr; i++)
642 if (!rcu_access_pointer(table->table[i])) {
643 ctx->id = i;
644 rcu_assign_pointer(table->table[i], ctx);
645 spin_unlock(&mm->ioctx_lock);
647 /* While kioctx setup is in progress,
648 * we are protected from page migration
649 * changes ring_pages by ->ring_lock.
651 ring = kmap_atomic(ctx->ring_pages[0]);
652 ring->id = ctx->id;
653 kunmap_atomic(ring);
654 return 0;
657 new_nr = (table ? table->nr : 1) * 4;
658 spin_unlock(&mm->ioctx_lock);
660 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
661 new_nr, GFP_KERNEL);
662 if (!table)
663 return -ENOMEM;
665 table->nr = new_nr;
667 spin_lock(&mm->ioctx_lock);
668 old = rcu_dereference_raw(mm->ioctx_table);
670 if (!old) {
671 rcu_assign_pointer(mm->ioctx_table, table);
672 } else if (table->nr > old->nr) {
673 memcpy(table->table, old->table,
674 old->nr * sizeof(struct kioctx *));
676 rcu_assign_pointer(mm->ioctx_table, table);
677 kfree_rcu(old, rcu);
678 } else {
679 kfree(table);
680 table = old;
685 static void aio_nr_sub(unsigned nr)
687 spin_lock(&aio_nr_lock);
688 if (WARN_ON(aio_nr - nr > aio_nr))
689 aio_nr = 0;
690 else
691 aio_nr -= nr;
692 spin_unlock(&aio_nr_lock);
695 /* ioctx_alloc
696 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
698 static struct kioctx *ioctx_alloc(unsigned nr_events)
700 struct mm_struct *mm = current->mm;
701 struct kioctx *ctx;
702 int err = -ENOMEM;
705 * Store the original nr_events -- what userspace passed to io_setup(),
706 * for counting against the global limit -- before it changes.
708 unsigned int max_reqs = nr_events;
711 * We keep track of the number of available ringbuffer slots, to prevent
712 * overflow (reqs_available), and we also use percpu counters for this.
714 * So since up to half the slots might be on other cpu's percpu counters
715 * and unavailable, double nr_events so userspace sees what they
716 * expected: additionally, we move req_batch slots to/from percpu
717 * counters at a time, so make sure that isn't 0:
719 nr_events = max(nr_events, num_possible_cpus() * 4);
720 nr_events *= 2;
722 /* Prevent overflows */
723 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
724 pr_debug("ENOMEM: nr_events too high\n");
725 return ERR_PTR(-EINVAL);
728 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
729 return ERR_PTR(-EAGAIN);
731 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
732 if (!ctx)
733 return ERR_PTR(-ENOMEM);
735 ctx->max_reqs = max_reqs;
737 spin_lock_init(&ctx->ctx_lock);
738 spin_lock_init(&ctx->completion_lock);
739 mutex_init(&ctx->ring_lock);
740 /* Protect against page migration throughout kiotx setup by keeping
741 * the ring_lock mutex held until setup is complete. */
742 mutex_lock(&ctx->ring_lock);
743 init_waitqueue_head(&ctx->wait);
745 INIT_LIST_HEAD(&ctx->active_reqs);
747 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
748 goto err;
750 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
751 goto err;
753 ctx->cpu = alloc_percpu(struct kioctx_cpu);
754 if (!ctx->cpu)
755 goto err;
757 err = aio_setup_ring(ctx, nr_events);
758 if (err < 0)
759 goto err;
761 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
762 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
763 if (ctx->req_batch < 1)
764 ctx->req_batch = 1;
766 /* limit the number of system wide aios */
767 spin_lock(&aio_nr_lock);
768 if (aio_nr + ctx->max_reqs > aio_max_nr ||
769 aio_nr + ctx->max_reqs < aio_nr) {
770 spin_unlock(&aio_nr_lock);
771 err = -EAGAIN;
772 goto err_ctx;
774 aio_nr += ctx->max_reqs;
775 spin_unlock(&aio_nr_lock);
777 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
778 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
780 err = ioctx_add_table(ctx, mm);
781 if (err)
782 goto err_cleanup;
784 /* Release the ring_lock mutex now that all setup is complete. */
785 mutex_unlock(&ctx->ring_lock);
787 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
788 ctx, ctx->user_id, mm, ctx->nr_events);
789 return ctx;
791 err_cleanup:
792 aio_nr_sub(ctx->max_reqs);
793 err_ctx:
794 atomic_set(&ctx->dead, 1);
795 if (ctx->mmap_size)
796 vm_munmap(ctx->mmap_base, ctx->mmap_size);
797 aio_free_ring(ctx);
798 err:
799 mutex_unlock(&ctx->ring_lock);
800 free_percpu(ctx->cpu);
801 percpu_ref_exit(&ctx->reqs);
802 percpu_ref_exit(&ctx->users);
803 kmem_cache_free(kioctx_cachep, ctx);
804 pr_debug("error allocating ioctx %d\n", err);
805 return ERR_PTR(err);
808 /* kill_ioctx
809 * Cancels all outstanding aio requests on an aio context. Used
810 * when the processes owning a context have all exited to encourage
811 * the rapid destruction of the kioctx.
813 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
814 struct ctx_rq_wait *wait)
816 struct kioctx_table *table;
818 spin_lock(&mm->ioctx_lock);
819 if (atomic_xchg(&ctx->dead, 1)) {
820 spin_unlock(&mm->ioctx_lock);
821 return -EINVAL;
824 table = rcu_dereference_raw(mm->ioctx_table);
825 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
826 RCU_INIT_POINTER(table->table[ctx->id], NULL);
827 spin_unlock(&mm->ioctx_lock);
829 /* free_ioctx_reqs() will do the necessary RCU synchronization */
830 wake_up_all(&ctx->wait);
833 * It'd be more correct to do this in free_ioctx(), after all
834 * the outstanding kiocbs have finished - but by then io_destroy
835 * has already returned, so io_setup() could potentially return
836 * -EAGAIN with no ioctxs actually in use (as far as userspace
837 * could tell).
839 aio_nr_sub(ctx->max_reqs);
841 if (ctx->mmap_size)
842 vm_munmap(ctx->mmap_base, ctx->mmap_size);
844 ctx->rq_wait = wait;
845 percpu_ref_kill(&ctx->users);
846 return 0;
850 * exit_aio: called when the last user of mm goes away. At this point, there is
851 * no way for any new requests to be submited or any of the io_* syscalls to be
852 * called on the context.
854 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
855 * them.
857 void exit_aio(struct mm_struct *mm)
859 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
860 struct ctx_rq_wait wait;
861 int i, skipped;
863 if (!table)
864 return;
866 atomic_set(&wait.count, table->nr);
867 init_completion(&wait.comp);
869 skipped = 0;
870 for (i = 0; i < table->nr; ++i) {
871 struct kioctx *ctx =
872 rcu_dereference_protected(table->table[i], true);
874 if (!ctx) {
875 skipped++;
876 continue;
880 * We don't need to bother with munmap() here - exit_mmap(mm)
881 * is coming and it'll unmap everything. And we simply can't,
882 * this is not necessarily our ->mm.
883 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
884 * that it needs to unmap the area, just set it to 0.
886 ctx->mmap_size = 0;
887 kill_ioctx(mm, ctx, &wait);
890 if (!atomic_sub_and_test(skipped, &wait.count)) {
891 /* Wait until all IO for the context are done. */
892 wait_for_completion(&wait.comp);
895 RCU_INIT_POINTER(mm->ioctx_table, NULL);
896 kfree(table);
899 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
901 struct kioctx_cpu *kcpu;
902 unsigned long flags;
904 local_irq_save(flags);
905 kcpu = this_cpu_ptr(ctx->cpu);
906 kcpu->reqs_available += nr;
908 while (kcpu->reqs_available >= ctx->req_batch * 2) {
909 kcpu->reqs_available -= ctx->req_batch;
910 atomic_add(ctx->req_batch, &ctx->reqs_available);
913 local_irq_restore(flags);
916 static bool __get_reqs_available(struct kioctx *ctx)
918 struct kioctx_cpu *kcpu;
919 bool ret = false;
920 unsigned long flags;
922 local_irq_save(flags);
923 kcpu = this_cpu_ptr(ctx->cpu);
924 if (!kcpu->reqs_available) {
925 int old, avail = atomic_read(&ctx->reqs_available);
927 do {
928 if (avail < ctx->req_batch)
929 goto out;
931 old = avail;
932 avail = atomic_cmpxchg(&ctx->reqs_available,
933 avail, avail - ctx->req_batch);
934 } while (avail != old);
936 kcpu->reqs_available += ctx->req_batch;
939 ret = true;
940 kcpu->reqs_available--;
941 out:
942 local_irq_restore(flags);
943 return ret;
946 /* refill_reqs_available
947 * Updates the reqs_available reference counts used for tracking the
948 * number of free slots in the completion ring. This can be called
949 * from aio_complete() (to optimistically update reqs_available) or
950 * from aio_get_req() (the we're out of events case). It must be
951 * called holding ctx->completion_lock.
953 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
954 unsigned tail)
956 unsigned events_in_ring, completed;
958 /* Clamp head since userland can write to it. */
959 head %= ctx->nr_events;
960 if (head <= tail)
961 events_in_ring = tail - head;
962 else
963 events_in_ring = ctx->nr_events - (head - tail);
965 completed = ctx->completed_events;
966 if (events_in_ring < completed)
967 completed -= events_in_ring;
968 else
969 completed = 0;
971 if (!completed)
972 return;
974 ctx->completed_events -= completed;
975 put_reqs_available(ctx, completed);
978 /* user_refill_reqs_available
979 * Called to refill reqs_available when aio_get_req() encounters an
980 * out of space in the completion ring.
982 static void user_refill_reqs_available(struct kioctx *ctx)
984 spin_lock_irq(&ctx->completion_lock);
985 if (ctx->completed_events) {
986 struct aio_ring *ring;
987 unsigned head;
989 /* Access of ring->head may race with aio_read_events_ring()
990 * here, but that's okay since whether we read the old version
991 * or the new version, and either will be valid. The important
992 * part is that head cannot pass tail since we prevent
993 * aio_complete() from updating tail by holding
994 * ctx->completion_lock. Even if head is invalid, the check
995 * against ctx->completed_events below will make sure we do the
996 * safe/right thing.
998 ring = kmap_atomic(ctx->ring_pages[0]);
999 head = ring->head;
1000 kunmap_atomic(ring);
1002 refill_reqs_available(ctx, head, ctx->tail);
1005 spin_unlock_irq(&ctx->completion_lock);
1008 static bool get_reqs_available(struct kioctx *ctx)
1010 if (__get_reqs_available(ctx))
1011 return true;
1012 user_refill_reqs_available(ctx);
1013 return __get_reqs_available(ctx);
1016 /* aio_get_req
1017 * Allocate a slot for an aio request.
1018 * Returns NULL if no requests are free.
1020 * The refcount is initialized to 2 - one for the async op completion,
1021 * one for the synchronous code that does this.
1023 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1025 struct aio_kiocb *req;
1027 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1028 if (unlikely(!req))
1029 return NULL;
1031 percpu_ref_get(&ctx->reqs);
1032 req->ki_ctx = ctx;
1033 INIT_LIST_HEAD(&req->ki_list);
1034 refcount_set(&req->ki_refcnt, 2);
1035 req->ki_eventfd = NULL;
1036 return req;
1039 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1041 struct aio_ring __user *ring = (void __user *)ctx_id;
1042 struct mm_struct *mm = current->mm;
1043 struct kioctx *ctx, *ret = NULL;
1044 struct kioctx_table *table;
1045 unsigned id;
1047 if (get_user(id, &ring->id))
1048 return NULL;
1050 rcu_read_lock();
1051 table = rcu_dereference(mm->ioctx_table);
1053 if (!table || id >= table->nr)
1054 goto out;
1056 id = array_index_nospec(id, table->nr);
1057 ctx = rcu_dereference(table->table[id]);
1058 if (ctx && ctx->user_id == ctx_id) {
1059 if (percpu_ref_tryget_live(&ctx->users))
1060 ret = ctx;
1062 out:
1063 rcu_read_unlock();
1064 return ret;
1067 static inline void iocb_destroy(struct aio_kiocb *iocb)
1069 if (iocb->ki_filp)
1070 fput(iocb->ki_filp);
1071 percpu_ref_put(&iocb->ki_ctx->reqs);
1072 kmem_cache_free(kiocb_cachep, iocb);
1075 /* aio_complete
1076 * Called when the io request on the given iocb is complete.
1078 static void aio_complete(struct aio_kiocb *iocb)
1080 struct kioctx *ctx = iocb->ki_ctx;
1081 struct aio_ring *ring;
1082 struct io_event *ev_page, *event;
1083 unsigned tail, pos, head;
1084 unsigned long flags;
1087 * Add a completion event to the ring buffer. Must be done holding
1088 * ctx->completion_lock to prevent other code from messing with the tail
1089 * pointer since we might be called from irq context.
1091 spin_lock_irqsave(&ctx->completion_lock, flags);
1093 tail = ctx->tail;
1094 pos = tail + AIO_EVENTS_OFFSET;
1096 if (++tail >= ctx->nr_events)
1097 tail = 0;
1099 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1100 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1102 *event = iocb->ki_res;
1104 kunmap_atomic(ev_page);
1105 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1107 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1108 (void __user *)(unsigned long)iocb->ki_res.obj,
1109 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1111 /* after flagging the request as done, we
1112 * must never even look at it again
1114 smp_wmb(); /* make event visible before updating tail */
1116 ctx->tail = tail;
1118 ring = kmap_atomic(ctx->ring_pages[0]);
1119 head = ring->head;
1120 ring->tail = tail;
1121 kunmap_atomic(ring);
1122 flush_dcache_page(ctx->ring_pages[0]);
1124 ctx->completed_events++;
1125 if (ctx->completed_events > 1)
1126 refill_reqs_available(ctx, head, tail);
1127 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1129 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1132 * Check if the user asked us to deliver the result through an
1133 * eventfd. The eventfd_signal() function is safe to be called
1134 * from IRQ context.
1136 if (iocb->ki_eventfd) {
1137 eventfd_signal(iocb->ki_eventfd, 1);
1138 eventfd_ctx_put(iocb->ki_eventfd);
1142 * We have to order our ring_info tail store above and test
1143 * of the wait list below outside the wait lock. This is
1144 * like in wake_up_bit() where clearing a bit has to be
1145 * ordered with the unlocked test.
1147 smp_mb();
1149 if (waitqueue_active(&ctx->wait))
1150 wake_up(&ctx->wait);
1153 static inline void iocb_put(struct aio_kiocb *iocb)
1155 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1156 aio_complete(iocb);
1157 iocb_destroy(iocb);
1161 /* aio_read_events_ring
1162 * Pull an event off of the ioctx's event ring. Returns the number of
1163 * events fetched
1165 static long aio_read_events_ring(struct kioctx *ctx,
1166 struct io_event __user *event, long nr)
1168 struct aio_ring *ring;
1169 unsigned head, tail, pos;
1170 long ret = 0;
1171 int copy_ret;
1174 * The mutex can block and wake us up and that will cause
1175 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1176 * and repeat. This should be rare enough that it doesn't cause
1177 * peformance issues. See the comment in read_events() for more detail.
1179 sched_annotate_sleep();
1180 mutex_lock(&ctx->ring_lock);
1182 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1183 ring = kmap_atomic(ctx->ring_pages[0]);
1184 head = ring->head;
1185 tail = ring->tail;
1186 kunmap_atomic(ring);
1189 * Ensure that once we've read the current tail pointer, that
1190 * we also see the events that were stored up to the tail.
1192 smp_rmb();
1194 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1196 if (head == tail)
1197 goto out;
1199 head %= ctx->nr_events;
1200 tail %= ctx->nr_events;
1202 while (ret < nr) {
1203 long avail;
1204 struct io_event *ev;
1205 struct page *page;
1207 avail = (head <= tail ? tail : ctx->nr_events) - head;
1208 if (head == tail)
1209 break;
1211 pos = head + AIO_EVENTS_OFFSET;
1212 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1213 pos %= AIO_EVENTS_PER_PAGE;
1215 avail = min(avail, nr - ret);
1216 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1218 ev = kmap(page);
1219 copy_ret = copy_to_user(event + ret, ev + pos,
1220 sizeof(*ev) * avail);
1221 kunmap(page);
1223 if (unlikely(copy_ret)) {
1224 ret = -EFAULT;
1225 goto out;
1228 ret += avail;
1229 head += avail;
1230 head %= ctx->nr_events;
1233 ring = kmap_atomic(ctx->ring_pages[0]);
1234 ring->head = head;
1235 kunmap_atomic(ring);
1236 flush_dcache_page(ctx->ring_pages[0]);
1238 pr_debug("%li h%u t%u\n", ret, head, tail);
1239 out:
1240 mutex_unlock(&ctx->ring_lock);
1242 return ret;
1245 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1246 struct io_event __user *event, long *i)
1248 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1250 if (ret > 0)
1251 *i += ret;
1253 if (unlikely(atomic_read(&ctx->dead)))
1254 ret = -EINVAL;
1256 if (!*i)
1257 *i = ret;
1259 return ret < 0 || *i >= min_nr;
1262 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1263 struct io_event __user *event,
1264 ktime_t until)
1266 long ret = 0;
1269 * Note that aio_read_events() is being called as the conditional - i.e.
1270 * we're calling it after prepare_to_wait() has set task state to
1271 * TASK_INTERRUPTIBLE.
1273 * But aio_read_events() can block, and if it blocks it's going to flip
1274 * the task state back to TASK_RUNNING.
1276 * This should be ok, provided it doesn't flip the state back to
1277 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1278 * will only happen if the mutex_lock() call blocks, and we then find
1279 * the ringbuffer empty. So in practice we should be ok, but it's
1280 * something to be aware of when touching this code.
1282 if (until == 0)
1283 aio_read_events(ctx, min_nr, nr, event, &ret);
1284 else
1285 wait_event_interruptible_hrtimeout(ctx->wait,
1286 aio_read_events(ctx, min_nr, nr, event, &ret),
1287 until);
1288 return ret;
1291 /* sys_io_setup:
1292 * Create an aio_context capable of receiving at least nr_events.
1293 * ctxp must not point to an aio_context that already exists, and
1294 * must be initialized to 0 prior to the call. On successful
1295 * creation of the aio_context, *ctxp is filled in with the resulting
1296 * handle. May fail with -EINVAL if *ctxp is not initialized,
1297 * if the specified nr_events exceeds internal limits. May fail
1298 * with -EAGAIN if the specified nr_events exceeds the user's limit
1299 * of available events. May fail with -ENOMEM if insufficient kernel
1300 * resources are available. May fail with -EFAULT if an invalid
1301 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1302 * implemented.
1304 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1306 struct kioctx *ioctx = NULL;
1307 unsigned long ctx;
1308 long ret;
1310 ret = get_user(ctx, ctxp);
1311 if (unlikely(ret))
1312 goto out;
1314 ret = -EINVAL;
1315 if (unlikely(ctx || nr_events == 0)) {
1316 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1317 ctx, nr_events);
1318 goto out;
1321 ioctx = ioctx_alloc(nr_events);
1322 ret = PTR_ERR(ioctx);
1323 if (!IS_ERR(ioctx)) {
1324 ret = put_user(ioctx->user_id, ctxp);
1325 if (ret)
1326 kill_ioctx(current->mm, ioctx, NULL);
1327 percpu_ref_put(&ioctx->users);
1330 out:
1331 return ret;
1334 #ifdef CONFIG_COMPAT
1335 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1337 struct kioctx *ioctx = NULL;
1338 unsigned long ctx;
1339 long ret;
1341 ret = get_user(ctx, ctx32p);
1342 if (unlikely(ret))
1343 goto out;
1345 ret = -EINVAL;
1346 if (unlikely(ctx || nr_events == 0)) {
1347 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1348 ctx, nr_events);
1349 goto out;
1352 ioctx = ioctx_alloc(nr_events);
1353 ret = PTR_ERR(ioctx);
1354 if (!IS_ERR(ioctx)) {
1355 /* truncating is ok because it's a user address */
1356 ret = put_user((u32)ioctx->user_id, ctx32p);
1357 if (ret)
1358 kill_ioctx(current->mm, ioctx, NULL);
1359 percpu_ref_put(&ioctx->users);
1362 out:
1363 return ret;
1365 #endif
1367 /* sys_io_destroy:
1368 * Destroy the aio_context specified. May cancel any outstanding
1369 * AIOs and block on completion. Will fail with -ENOSYS if not
1370 * implemented. May fail with -EINVAL if the context pointed to
1371 * is invalid.
1373 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1375 struct kioctx *ioctx = lookup_ioctx(ctx);
1376 if (likely(NULL != ioctx)) {
1377 struct ctx_rq_wait wait;
1378 int ret;
1380 init_completion(&wait.comp);
1381 atomic_set(&wait.count, 1);
1383 /* Pass requests_done to kill_ioctx() where it can be set
1384 * in a thread-safe way. If we try to set it here then we have
1385 * a race condition if two io_destroy() called simultaneously.
1387 ret = kill_ioctx(current->mm, ioctx, &wait);
1388 percpu_ref_put(&ioctx->users);
1390 /* Wait until all IO for the context are done. Otherwise kernel
1391 * keep using user-space buffers even if user thinks the context
1392 * is destroyed.
1394 if (!ret)
1395 wait_for_completion(&wait.comp);
1397 return ret;
1399 pr_debug("EINVAL: invalid context id\n");
1400 return -EINVAL;
1403 static void aio_remove_iocb(struct aio_kiocb *iocb)
1405 struct kioctx *ctx = iocb->ki_ctx;
1406 unsigned long flags;
1408 spin_lock_irqsave(&ctx->ctx_lock, flags);
1409 list_del(&iocb->ki_list);
1410 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1413 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1415 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1417 if (!list_empty_careful(&iocb->ki_list))
1418 aio_remove_iocb(iocb);
1420 if (kiocb->ki_flags & IOCB_WRITE) {
1421 struct inode *inode = file_inode(kiocb->ki_filp);
1424 * Tell lockdep we inherited freeze protection from submission
1425 * thread.
1427 if (S_ISREG(inode->i_mode))
1428 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1429 file_end_write(kiocb->ki_filp);
1432 iocb->ki_res.res = res;
1433 iocb->ki_res.res2 = res2;
1434 iocb_put(iocb);
1437 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1439 int ret;
1441 req->ki_complete = aio_complete_rw;
1442 req->private = NULL;
1443 req->ki_pos = iocb->aio_offset;
1444 req->ki_flags = iocb_flags(req->ki_filp);
1445 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1446 req->ki_flags |= IOCB_EVENTFD;
1447 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1448 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1450 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1451 * aio_reqprio is interpreted as an I/O scheduling
1452 * class and priority.
1454 ret = ioprio_check_cap(iocb->aio_reqprio);
1455 if (ret) {
1456 pr_debug("aio ioprio check cap error: %d\n", ret);
1457 return ret;
1460 req->ki_ioprio = iocb->aio_reqprio;
1461 } else
1462 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1464 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1465 if (unlikely(ret))
1466 return ret;
1468 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1469 return 0;
1472 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1473 bool vectored, bool compat, struct iov_iter *iter)
1475 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1476 size_t len = iocb->aio_nbytes;
1478 if (!vectored) {
1479 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1480 *iovec = NULL;
1481 return ret;
1483 #ifdef CONFIG_COMPAT
1484 if (compat)
1485 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1486 iter);
1487 #endif
1488 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1491 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1493 switch (ret) {
1494 case -EIOCBQUEUED:
1495 break;
1496 case -ERESTARTSYS:
1497 case -ERESTARTNOINTR:
1498 case -ERESTARTNOHAND:
1499 case -ERESTART_RESTARTBLOCK:
1501 * There's no easy way to restart the syscall since other AIO's
1502 * may be already running. Just fail this IO with EINTR.
1504 ret = -EINTR;
1505 /*FALLTHRU*/
1506 default:
1507 req->ki_complete(req, ret, 0);
1511 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1512 bool vectored, bool compat)
1514 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1515 struct iov_iter iter;
1516 struct file *file;
1517 ssize_t ret;
1519 ret = aio_prep_rw(req, iocb);
1520 if (ret)
1521 return ret;
1522 file = req->ki_filp;
1523 if (unlikely(!(file->f_mode & FMODE_READ)))
1524 return -EBADF;
1525 ret = -EINVAL;
1526 if (unlikely(!file->f_op->read_iter))
1527 return -EINVAL;
1529 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1530 if (ret)
1531 return ret;
1532 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1533 if (!ret)
1534 aio_rw_done(req, call_read_iter(file, req, &iter));
1535 kfree(iovec);
1536 return ret;
1539 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1540 bool vectored, bool compat)
1542 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1543 struct iov_iter iter;
1544 struct file *file;
1545 ssize_t ret;
1547 ret = aio_prep_rw(req, iocb);
1548 if (ret)
1549 return ret;
1550 file = req->ki_filp;
1552 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1553 return -EBADF;
1554 if (unlikely(!file->f_op->write_iter))
1555 return -EINVAL;
1557 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1558 if (ret)
1559 return ret;
1560 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1561 if (!ret) {
1563 * Open-code file_start_write here to grab freeze protection,
1564 * which will be released by another thread in
1565 * aio_complete_rw(). Fool lockdep by telling it the lock got
1566 * released so that it doesn't complain about the held lock when
1567 * we return to userspace.
1569 if (S_ISREG(file_inode(file)->i_mode)) {
1570 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1571 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1573 req->ki_flags |= IOCB_WRITE;
1574 aio_rw_done(req, call_write_iter(file, req, &iter));
1576 kfree(iovec);
1577 return ret;
1580 static void aio_fsync_work(struct work_struct *work)
1582 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1583 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1585 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1586 revert_creds(old_cred);
1587 put_cred(iocb->fsync.creds);
1588 iocb_put(iocb);
1591 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1592 bool datasync)
1594 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1595 iocb->aio_rw_flags))
1596 return -EINVAL;
1598 if (unlikely(!req->file->f_op->fsync))
1599 return -EINVAL;
1601 req->creds = prepare_creds();
1602 if (!req->creds)
1603 return -ENOMEM;
1605 req->datasync = datasync;
1606 INIT_WORK(&req->work, aio_fsync_work);
1607 schedule_work(&req->work);
1608 return 0;
1611 static void aio_poll_put_work(struct work_struct *work)
1613 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1614 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1616 iocb_put(iocb);
1619 static void aio_poll_complete_work(struct work_struct *work)
1621 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1622 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1623 struct poll_table_struct pt = { ._key = req->events };
1624 struct kioctx *ctx = iocb->ki_ctx;
1625 __poll_t mask = 0;
1627 if (!READ_ONCE(req->cancelled))
1628 mask = vfs_poll(req->file, &pt) & req->events;
1631 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1632 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1633 * synchronize with them. In the cancellation case the list_del_init
1634 * itself is not actually needed, but harmless so we keep it in to
1635 * avoid further branches in the fast path.
1637 spin_lock_irq(&ctx->ctx_lock);
1638 if (!mask && !READ_ONCE(req->cancelled)) {
1639 add_wait_queue(req->head, &req->wait);
1640 spin_unlock_irq(&ctx->ctx_lock);
1641 return;
1643 list_del_init(&iocb->ki_list);
1644 iocb->ki_res.res = mangle_poll(mask);
1645 req->done = true;
1646 spin_unlock_irq(&ctx->ctx_lock);
1648 iocb_put(iocb);
1651 /* assumes we are called with irqs disabled */
1652 static int aio_poll_cancel(struct kiocb *iocb)
1654 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1655 struct poll_iocb *req = &aiocb->poll;
1657 spin_lock(&req->head->lock);
1658 WRITE_ONCE(req->cancelled, true);
1659 if (!list_empty(&req->wait.entry)) {
1660 list_del_init(&req->wait.entry);
1661 schedule_work(&aiocb->poll.work);
1663 spin_unlock(&req->head->lock);
1665 return 0;
1668 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1669 void *key)
1671 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1672 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1673 __poll_t mask = key_to_poll(key);
1674 unsigned long flags;
1676 /* for instances that support it check for an event match first: */
1677 if (mask && !(mask & req->events))
1678 return 0;
1680 list_del_init(&req->wait.entry);
1682 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1683 struct kioctx *ctx = iocb->ki_ctx;
1686 * Try to complete the iocb inline if we can. Use
1687 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1688 * call this function with IRQs disabled and because IRQs
1689 * have to be disabled before ctx_lock is obtained.
1691 list_del(&iocb->ki_list);
1692 iocb->ki_res.res = mangle_poll(mask);
1693 req->done = true;
1694 if (iocb->ki_eventfd && eventfd_signal_count()) {
1695 iocb = NULL;
1696 INIT_WORK(&req->work, aio_poll_put_work);
1697 schedule_work(&req->work);
1699 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1700 if (iocb)
1701 iocb_put(iocb);
1702 } else {
1703 schedule_work(&req->work);
1705 return 1;
1708 struct aio_poll_table {
1709 struct poll_table_struct pt;
1710 struct aio_kiocb *iocb;
1711 int error;
1714 static void
1715 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1716 struct poll_table_struct *p)
1718 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1720 /* multiple wait queues per file are not supported */
1721 if (unlikely(pt->iocb->poll.head)) {
1722 pt->error = -EINVAL;
1723 return;
1726 pt->error = 0;
1727 pt->iocb->poll.head = head;
1728 add_wait_queue(head, &pt->iocb->poll.wait);
1731 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1733 struct kioctx *ctx = aiocb->ki_ctx;
1734 struct poll_iocb *req = &aiocb->poll;
1735 struct aio_poll_table apt;
1736 bool cancel = false;
1737 __poll_t mask;
1739 /* reject any unknown events outside the normal event mask. */
1740 if ((u16)iocb->aio_buf != iocb->aio_buf)
1741 return -EINVAL;
1742 /* reject fields that are not defined for poll */
1743 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1744 return -EINVAL;
1746 INIT_WORK(&req->work, aio_poll_complete_work);
1747 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1749 req->head = NULL;
1750 req->done = false;
1751 req->cancelled = false;
1753 apt.pt._qproc = aio_poll_queue_proc;
1754 apt.pt._key = req->events;
1755 apt.iocb = aiocb;
1756 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1758 /* initialized the list so that we can do list_empty checks */
1759 INIT_LIST_HEAD(&req->wait.entry);
1760 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1762 mask = vfs_poll(req->file, &apt.pt) & req->events;
1763 spin_lock_irq(&ctx->ctx_lock);
1764 if (likely(req->head)) {
1765 spin_lock(&req->head->lock);
1766 if (unlikely(list_empty(&req->wait.entry))) {
1767 if (apt.error)
1768 cancel = true;
1769 apt.error = 0;
1770 mask = 0;
1772 if (mask || apt.error) {
1773 list_del_init(&req->wait.entry);
1774 } else if (cancel) {
1775 WRITE_ONCE(req->cancelled, true);
1776 } else if (!req->done) { /* actually waiting for an event */
1777 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1778 aiocb->ki_cancel = aio_poll_cancel;
1780 spin_unlock(&req->head->lock);
1782 if (mask) { /* no async, we'd stolen it */
1783 aiocb->ki_res.res = mangle_poll(mask);
1784 apt.error = 0;
1786 spin_unlock_irq(&ctx->ctx_lock);
1787 if (mask)
1788 iocb_put(aiocb);
1789 return apt.error;
1792 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1793 struct iocb __user *user_iocb, bool compat)
1795 struct aio_kiocb *req;
1796 ssize_t ret;
1798 /* enforce forwards compatibility on users */
1799 if (unlikely(iocb->aio_reserved2)) {
1800 pr_debug("EINVAL: reserve field set\n");
1801 return -EINVAL;
1804 /* prevent overflows */
1805 if (unlikely(
1806 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1807 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1808 ((ssize_t)iocb->aio_nbytes < 0)
1809 )) {
1810 pr_debug("EINVAL: overflow check\n");
1811 return -EINVAL;
1814 if (!get_reqs_available(ctx))
1815 return -EAGAIN;
1817 ret = -EAGAIN;
1818 req = aio_get_req(ctx);
1819 if (unlikely(!req))
1820 goto out_put_reqs_available;
1822 req->ki_filp = fget(iocb->aio_fildes);
1823 ret = -EBADF;
1824 if (unlikely(!req->ki_filp))
1825 goto out_put_req;
1827 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1829 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1830 * instance of the file* now. The file descriptor must be
1831 * an eventfd() fd, and will be signaled for each completed
1832 * event using the eventfd_signal() function.
1834 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1835 if (IS_ERR(req->ki_eventfd)) {
1836 ret = PTR_ERR(req->ki_eventfd);
1837 req->ki_eventfd = NULL;
1838 goto out_put_req;
1842 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1843 if (unlikely(ret)) {
1844 pr_debug("EFAULT: aio_key\n");
1845 goto out_put_req;
1848 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1849 req->ki_res.data = iocb->aio_data;
1850 req->ki_res.res = 0;
1851 req->ki_res.res2 = 0;
1853 switch (iocb->aio_lio_opcode) {
1854 case IOCB_CMD_PREAD:
1855 ret = aio_read(&req->rw, iocb, false, compat);
1856 break;
1857 case IOCB_CMD_PWRITE:
1858 ret = aio_write(&req->rw, iocb, false, compat);
1859 break;
1860 case IOCB_CMD_PREADV:
1861 ret = aio_read(&req->rw, iocb, true, compat);
1862 break;
1863 case IOCB_CMD_PWRITEV:
1864 ret = aio_write(&req->rw, iocb, true, compat);
1865 break;
1866 case IOCB_CMD_FSYNC:
1867 ret = aio_fsync(&req->fsync, iocb, false);
1868 break;
1869 case IOCB_CMD_FDSYNC:
1870 ret = aio_fsync(&req->fsync, iocb, true);
1871 break;
1872 case IOCB_CMD_POLL:
1873 ret = aio_poll(req, iocb);
1874 break;
1875 default:
1876 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1877 ret = -EINVAL;
1878 break;
1881 /* Done with the synchronous reference */
1882 iocb_put(req);
1885 * If ret is 0, we'd either done aio_complete() ourselves or have
1886 * arranged for that to be done asynchronously. Anything non-zero
1887 * means that we need to destroy req ourselves.
1889 if (!ret)
1890 return 0;
1892 out_put_req:
1893 if (req->ki_eventfd)
1894 eventfd_ctx_put(req->ki_eventfd);
1895 iocb_destroy(req);
1896 out_put_reqs_available:
1897 put_reqs_available(ctx, 1);
1898 return ret;
1901 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1902 bool compat)
1904 struct iocb iocb;
1906 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1907 return -EFAULT;
1909 return __io_submit_one(ctx, &iocb, user_iocb, compat);
1912 /* sys_io_submit:
1913 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1914 * the number of iocbs queued. May return -EINVAL if the aio_context
1915 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1916 * *iocbpp[0] is not properly initialized, if the operation specified
1917 * is invalid for the file descriptor in the iocb. May fail with
1918 * -EFAULT if any of the data structures point to invalid data. May
1919 * fail with -EBADF if the file descriptor specified in the first
1920 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1921 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1922 * fail with -ENOSYS if not implemented.
1924 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1925 struct iocb __user * __user *, iocbpp)
1927 struct kioctx *ctx;
1928 long ret = 0;
1929 int i = 0;
1930 struct blk_plug plug;
1932 if (unlikely(nr < 0))
1933 return -EINVAL;
1935 ctx = lookup_ioctx(ctx_id);
1936 if (unlikely(!ctx)) {
1937 pr_debug("EINVAL: invalid context id\n");
1938 return -EINVAL;
1941 if (nr > ctx->nr_events)
1942 nr = ctx->nr_events;
1944 blk_start_plug(&plug);
1945 for (i = 0; i < nr; i++) {
1946 struct iocb __user *user_iocb;
1948 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1949 ret = -EFAULT;
1950 break;
1953 ret = io_submit_one(ctx, user_iocb, false);
1954 if (ret)
1955 break;
1957 blk_finish_plug(&plug);
1959 percpu_ref_put(&ctx->users);
1960 return i ? i : ret;
1963 #ifdef CONFIG_COMPAT
1964 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1965 int, nr, compat_uptr_t __user *, iocbpp)
1967 struct kioctx *ctx;
1968 long ret = 0;
1969 int i = 0;
1970 struct blk_plug plug;
1972 if (unlikely(nr < 0))
1973 return -EINVAL;
1975 ctx = lookup_ioctx(ctx_id);
1976 if (unlikely(!ctx)) {
1977 pr_debug("EINVAL: invalid context id\n");
1978 return -EINVAL;
1981 if (nr > ctx->nr_events)
1982 nr = ctx->nr_events;
1984 blk_start_plug(&plug);
1985 for (i = 0; i < nr; i++) {
1986 compat_uptr_t user_iocb;
1988 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1989 ret = -EFAULT;
1990 break;
1993 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1994 if (ret)
1995 break;
1997 blk_finish_plug(&plug);
1999 percpu_ref_put(&ctx->users);
2000 return i ? i : ret;
2002 #endif
2004 /* sys_io_cancel:
2005 * Attempts to cancel an iocb previously passed to io_submit. If
2006 * the operation is successfully cancelled, the resulting event is
2007 * copied into the memory pointed to by result without being placed
2008 * into the completion queue and 0 is returned. May fail with
2009 * -EFAULT if any of the data structures pointed to are invalid.
2010 * May fail with -EINVAL if aio_context specified by ctx_id is
2011 * invalid. May fail with -EAGAIN if the iocb specified was not
2012 * cancelled. Will fail with -ENOSYS if not implemented.
2014 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2015 struct io_event __user *, result)
2017 struct kioctx *ctx;
2018 struct aio_kiocb *kiocb;
2019 int ret = -EINVAL;
2020 u32 key;
2021 u64 obj = (u64)(unsigned long)iocb;
2023 if (unlikely(get_user(key, &iocb->aio_key)))
2024 return -EFAULT;
2025 if (unlikely(key != KIOCB_KEY))
2026 return -EINVAL;
2028 ctx = lookup_ioctx(ctx_id);
2029 if (unlikely(!ctx))
2030 return -EINVAL;
2032 spin_lock_irq(&ctx->ctx_lock);
2033 /* TODO: use a hash or array, this sucks. */
2034 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2035 if (kiocb->ki_res.obj == obj) {
2036 ret = kiocb->ki_cancel(&kiocb->rw);
2037 list_del_init(&kiocb->ki_list);
2038 break;
2041 spin_unlock_irq(&ctx->ctx_lock);
2043 if (!ret) {
2045 * The result argument is no longer used - the io_event is
2046 * always delivered via the ring buffer. -EINPROGRESS indicates
2047 * cancellation is progress:
2049 ret = -EINPROGRESS;
2052 percpu_ref_put(&ctx->users);
2054 return ret;
2057 static long do_io_getevents(aio_context_t ctx_id,
2058 long min_nr,
2059 long nr,
2060 struct io_event __user *events,
2061 struct timespec64 *ts)
2063 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2064 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2065 long ret = -EINVAL;
2067 if (likely(ioctx)) {
2068 if (likely(min_nr <= nr && min_nr >= 0))
2069 ret = read_events(ioctx, min_nr, nr, events, until);
2070 percpu_ref_put(&ioctx->users);
2073 return ret;
2076 /* io_getevents:
2077 * Attempts to read at least min_nr events and up to nr events from
2078 * the completion queue for the aio_context specified by ctx_id. If
2079 * it succeeds, the number of read events is returned. May fail with
2080 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2081 * out of range, if timeout is out of range. May fail with -EFAULT
2082 * if any of the memory specified is invalid. May return 0 or
2083 * < min_nr if the timeout specified by timeout has elapsed
2084 * before sufficient events are available, where timeout == NULL
2085 * specifies an infinite timeout. Note that the timeout pointed to by
2086 * timeout is relative. Will fail with -ENOSYS if not implemented.
2088 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2089 long, min_nr,
2090 long, nr,
2091 struct io_event __user *, events,
2092 struct timespec __user *, timeout)
2094 struct timespec64 ts;
2095 int ret;
2097 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2098 return -EFAULT;
2100 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2101 if (!ret && signal_pending(current))
2102 ret = -EINTR;
2103 return ret;
2106 struct __aio_sigset {
2107 const sigset_t __user *sigmask;
2108 size_t sigsetsize;
2111 SYSCALL_DEFINE6(io_pgetevents,
2112 aio_context_t, ctx_id,
2113 long, min_nr,
2114 long, nr,
2115 struct io_event __user *, events,
2116 struct timespec __user *, timeout,
2117 const struct __aio_sigset __user *, usig)
2119 struct __aio_sigset ksig = { NULL, };
2120 sigset_t ksigmask, sigsaved;
2121 struct timespec64 ts;
2122 int ret;
2124 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2125 return -EFAULT;
2127 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2128 return -EFAULT;
2130 if (ksig.sigmask) {
2131 if (ksig.sigsetsize != sizeof(sigset_t))
2132 return -EINVAL;
2133 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2134 return -EFAULT;
2135 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2136 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2139 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2140 if (signal_pending(current)) {
2141 if (ksig.sigmask) {
2142 current->saved_sigmask = sigsaved;
2143 set_restore_sigmask();
2146 if (!ret)
2147 ret = -ERESTARTNOHAND;
2148 } else {
2149 if (ksig.sigmask)
2150 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2153 return ret;
2156 #ifdef CONFIG_COMPAT
2157 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2158 compat_long_t, min_nr,
2159 compat_long_t, nr,
2160 struct io_event __user *, events,
2161 struct compat_timespec __user *, timeout)
2163 struct timespec64 t;
2164 int ret;
2166 if (timeout && compat_get_timespec64(&t, timeout))
2167 return -EFAULT;
2169 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2170 if (!ret && signal_pending(current))
2171 ret = -EINTR;
2172 return ret;
2176 struct __compat_aio_sigset {
2177 compat_sigset_t __user *sigmask;
2178 compat_size_t sigsetsize;
2181 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2182 compat_aio_context_t, ctx_id,
2183 compat_long_t, min_nr,
2184 compat_long_t, nr,
2185 struct io_event __user *, events,
2186 struct compat_timespec __user *, timeout,
2187 const struct __compat_aio_sigset __user *, usig)
2189 struct __compat_aio_sigset ksig = { NULL, };
2190 sigset_t ksigmask, sigsaved;
2191 struct timespec64 t;
2192 int ret;
2194 if (timeout && compat_get_timespec64(&t, timeout))
2195 return -EFAULT;
2197 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2198 return -EFAULT;
2200 if (ksig.sigmask) {
2201 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2202 return -EINVAL;
2203 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2204 return -EFAULT;
2205 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2206 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2209 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2210 if (signal_pending(current)) {
2211 if (ksig.sigmask) {
2212 current->saved_sigmask = sigsaved;
2213 set_restore_sigmask();
2215 if (!ret)
2216 ret = -ERESTARTNOHAND;
2217 } else {
2218 if (ksig.sigmask)
2219 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2222 return ret;
2224 #endif