2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
58 unsigned id
; /* kernel internal index number */
59 unsigned nr
; /* number of io_events */
60 unsigned head
; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
65 unsigned compat_features
;
66 unsigned incompat_features
;
67 unsigned header_length
; /* size of aio_ring */
70 struct io_event io_events
[0];
71 }; /* 128 bytes + ring size */
73 #define AIO_RING_PAGES 8
78 struct kioctx __rcu
*table
[];
82 unsigned reqs_available
;
86 struct completion comp
;
91 struct percpu_ref users
;
94 struct percpu_ref reqs
;
96 unsigned long user_id
;
98 struct __percpu kioctx_cpu
*cpu
;
101 * For percpu reqs_available, number of slots we move to/from global
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
109 * The real limit is nr_events - 1, which will be larger (see
114 /* Size of ringbuffer, in units of struct io_event */
117 unsigned long mmap_base
;
118 unsigned long mmap_size
;
120 struct page
**ring_pages
;
123 struct rcu_work free_rwork
; /* see free_ioctx() */
126 * signals when all in-flight requests are done
128 struct ctx_rq_wait
*rq_wait
;
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
137 * We batch accesses to it with a percpu version.
139 atomic_t reqs_available
;
140 } ____cacheline_aligned_in_smp
;
144 struct list_head active_reqs
; /* used for cancellation */
145 } ____cacheline_aligned_in_smp
;
148 struct mutex ring_lock
;
149 wait_queue_head_t wait
;
150 } ____cacheline_aligned_in_smp
;
154 unsigned completed_events
;
155 spinlock_t completion_lock
;
156 } ____cacheline_aligned_in_smp
;
158 struct page
*internal_pages
[AIO_RING_PAGES
];
159 struct file
*aio_ring_file
;
165 * First field must be the file pointer in all the
166 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
170 struct work_struct work
;
177 struct wait_queue_head
*head
;
181 struct wait_queue_entry wait
;
182 struct work_struct work
;
186 * NOTE! Each of the iocb union members has the file pointer
187 * as the first entry in their struct definition. So you can
188 * access the file pointer through any of the sub-structs,
189 * or directly as just 'ki_filp' in this struct.
193 struct file
*ki_filp
;
195 struct fsync_iocb fsync
;
196 struct poll_iocb poll
;
199 struct kioctx
*ki_ctx
;
200 kiocb_cancel_fn
*ki_cancel
;
202 struct io_event ki_res
;
204 struct list_head ki_list
; /* the aio core uses this
205 * for cancellation */
206 refcount_t ki_refcnt
;
209 * If the aio_resfd field of the userspace iocb is not zero,
210 * this is the underlying eventfd context to deliver events to.
212 struct eventfd_ctx
*ki_eventfd
;
215 /*------ sysctl variables----*/
216 static DEFINE_SPINLOCK(aio_nr_lock
);
217 unsigned long aio_nr
; /* current system wide number of aio requests */
218 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
219 /*----end sysctl variables---*/
221 static struct kmem_cache
*kiocb_cachep
;
222 static struct kmem_cache
*kioctx_cachep
;
224 static struct vfsmount
*aio_mnt
;
226 static const struct file_operations aio_ring_fops
;
227 static const struct address_space_operations aio_ctx_aops
;
229 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
232 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
234 return ERR_CAST(inode
);
236 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
237 inode
->i_mapping
->private_data
= ctx
;
238 inode
->i_size
= PAGE_SIZE
* nr_pages
;
240 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
241 O_RDWR
, &aio_ring_fops
);
247 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
248 int flags
, const char *dev_name
, void *data
)
250 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, NULL
,
254 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
259 * Creates the slab caches used by the aio routines, panic on
260 * failure as this is done early during the boot sequence.
262 static int __init
aio_setup(void)
264 static struct file_system_type aio_fs
= {
267 .kill_sb
= kill_anon_super
,
269 aio_mnt
= kern_mount(&aio_fs
);
271 panic("Failed to create aio fs mount.");
273 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
274 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
277 __initcall(aio_setup
);
279 static void put_aio_ring_file(struct kioctx
*ctx
)
281 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
282 struct address_space
*i_mapping
;
285 truncate_setsize(file_inode(aio_ring_file
), 0);
287 /* Prevent further access to the kioctx from migratepages */
288 i_mapping
= aio_ring_file
->f_mapping
;
289 spin_lock(&i_mapping
->private_lock
);
290 i_mapping
->private_data
= NULL
;
291 ctx
->aio_ring_file
= NULL
;
292 spin_unlock(&i_mapping
->private_lock
);
298 static void aio_free_ring(struct kioctx
*ctx
)
302 /* Disconnect the kiotx from the ring file. This prevents future
303 * accesses to the kioctx from page migration.
305 put_aio_ring_file(ctx
);
307 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
309 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
310 page_count(ctx
->ring_pages
[i
]));
311 page
= ctx
->ring_pages
[i
];
314 ctx
->ring_pages
[i
] = NULL
;
318 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
319 kfree(ctx
->ring_pages
);
320 ctx
->ring_pages
= NULL
;
324 static int aio_ring_mremap(struct vm_area_struct
*vma
)
326 struct file
*file
= vma
->vm_file
;
327 struct mm_struct
*mm
= vma
->vm_mm
;
328 struct kioctx_table
*table
;
329 int i
, res
= -EINVAL
;
331 spin_lock(&mm
->ioctx_lock
);
333 table
= rcu_dereference(mm
->ioctx_table
);
334 for (i
= 0; i
< table
->nr
; i
++) {
337 ctx
= rcu_dereference(table
->table
[i
]);
338 if (ctx
&& ctx
->aio_ring_file
== file
) {
339 if (!atomic_read(&ctx
->dead
)) {
340 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
348 spin_unlock(&mm
->ioctx_lock
);
352 static const struct vm_operations_struct aio_ring_vm_ops
= {
353 .mremap
= aio_ring_mremap
,
354 #if IS_ENABLED(CONFIG_MMU)
355 .fault
= filemap_fault
,
356 .map_pages
= filemap_map_pages
,
357 .page_mkwrite
= filemap_page_mkwrite
,
361 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
363 vma
->vm_flags
|= VM_DONTEXPAND
;
364 vma
->vm_ops
= &aio_ring_vm_ops
;
368 static const struct file_operations aio_ring_fops
= {
369 .mmap
= aio_ring_mmap
,
372 #if IS_ENABLED(CONFIG_MIGRATION)
373 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
374 struct page
*old
, enum migrate_mode mode
)
382 * We cannot support the _NO_COPY case here, because copy needs to
383 * happen under the ctx->completion_lock. That does not work with the
384 * migration workflow of MIGRATE_SYNC_NO_COPY.
386 if (mode
== MIGRATE_SYNC_NO_COPY
)
391 /* mapping->private_lock here protects against the kioctx teardown. */
392 spin_lock(&mapping
->private_lock
);
393 ctx
= mapping
->private_data
;
399 /* The ring_lock mutex. The prevents aio_read_events() from writing
400 * to the ring's head, and prevents page migration from mucking in
401 * a partially initialized kiotx.
403 if (!mutex_trylock(&ctx
->ring_lock
)) {
409 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
410 /* Make sure the old page hasn't already been changed */
411 if (ctx
->ring_pages
[idx
] != old
)
419 /* Writeback must be complete */
420 BUG_ON(PageWriteback(old
));
423 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
424 if (rc
!= MIGRATEPAGE_SUCCESS
) {
429 /* Take completion_lock to prevent other writes to the ring buffer
430 * while the old page is copied to the new. This prevents new
431 * events from being lost.
433 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
434 migrate_page_copy(new, old
);
435 BUG_ON(ctx
->ring_pages
[idx
] != old
);
436 ctx
->ring_pages
[idx
] = new;
437 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
439 /* The old page is no longer accessible. */
443 mutex_unlock(&ctx
->ring_lock
);
445 spin_unlock(&mapping
->private_lock
);
450 static const struct address_space_operations aio_ctx_aops
= {
451 .set_page_dirty
= __set_page_dirty_no_writeback
,
452 #if IS_ENABLED(CONFIG_MIGRATION)
453 .migratepage
= aio_migratepage
,
457 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
459 struct aio_ring
*ring
;
460 struct mm_struct
*mm
= current
->mm
;
461 unsigned long size
, unused
;
466 /* Compensate for the ring buffer's head/tail overlap entry */
467 nr_events
+= 2; /* 1 is required, 2 for good luck */
469 size
= sizeof(struct aio_ring
);
470 size
+= sizeof(struct io_event
) * nr_events
;
472 nr_pages
= PFN_UP(size
);
476 file
= aio_private_file(ctx
, nr_pages
);
478 ctx
->aio_ring_file
= NULL
;
482 ctx
->aio_ring_file
= file
;
483 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
484 / sizeof(struct io_event
);
486 ctx
->ring_pages
= ctx
->internal_pages
;
487 if (nr_pages
> AIO_RING_PAGES
) {
488 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
490 if (!ctx
->ring_pages
) {
491 put_aio_ring_file(ctx
);
496 for (i
= 0; i
< nr_pages
; i
++) {
498 page
= find_or_create_page(file
->f_mapping
,
499 i
, GFP_HIGHUSER
| __GFP_ZERO
);
502 pr_debug("pid(%d) page[%d]->count=%d\n",
503 current
->pid
, i
, page_count(page
));
504 SetPageUptodate(page
);
507 ctx
->ring_pages
[i
] = page
;
511 if (unlikely(i
!= nr_pages
)) {
516 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
517 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
519 if (down_write_killable(&mm
->mmap_sem
)) {
525 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
526 PROT_READ
| PROT_WRITE
,
527 MAP_SHARED
, 0, &unused
, NULL
);
528 up_write(&mm
->mmap_sem
);
529 if (IS_ERR((void *)ctx
->mmap_base
)) {
535 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
537 ctx
->user_id
= ctx
->mmap_base
;
538 ctx
->nr_events
= nr_events
; /* trusted copy */
540 ring
= kmap_atomic(ctx
->ring_pages
[0]);
541 ring
->nr
= nr_events
; /* user copy */
543 ring
->head
= ring
->tail
= 0;
544 ring
->magic
= AIO_RING_MAGIC
;
545 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
546 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
547 ring
->header_length
= sizeof(struct aio_ring
);
549 flush_dcache_page(ctx
->ring_pages
[0]);
554 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
555 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
556 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
558 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
560 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
561 struct kioctx
*ctx
= req
->ki_ctx
;
564 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
567 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
568 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
569 req
->ki_cancel
= cancel
;
570 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
572 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
575 * free_ioctx() should be RCU delayed to synchronize against the RCU
576 * protected lookup_ioctx() and also needs process context to call
577 * aio_free_ring(). Use rcu_work.
579 static void free_ioctx(struct work_struct
*work
)
581 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
583 pr_debug("freeing %p\n", ctx
);
586 free_percpu(ctx
->cpu
);
587 percpu_ref_exit(&ctx
->reqs
);
588 percpu_ref_exit(&ctx
->users
);
589 kmem_cache_free(kioctx_cachep
, ctx
);
592 static void free_ioctx_reqs(struct percpu_ref
*ref
)
594 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
596 /* At this point we know that there are no any in-flight requests */
597 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
598 complete(&ctx
->rq_wait
->comp
);
600 /* Synchronize against RCU protected table->table[] dereferences */
601 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
602 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
606 * When this function runs, the kioctx has been removed from the "hash table"
607 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
608 * now it's safe to cancel any that need to be.
610 static void free_ioctx_users(struct percpu_ref
*ref
)
612 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
613 struct aio_kiocb
*req
;
615 spin_lock_irq(&ctx
->ctx_lock
);
617 while (!list_empty(&ctx
->active_reqs
)) {
618 req
= list_first_entry(&ctx
->active_reqs
,
619 struct aio_kiocb
, ki_list
);
620 req
->ki_cancel(&req
->rw
);
621 list_del_init(&req
->ki_list
);
624 spin_unlock_irq(&ctx
->ctx_lock
);
626 percpu_ref_kill(&ctx
->reqs
);
627 percpu_ref_put(&ctx
->reqs
);
630 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
633 struct kioctx_table
*table
, *old
;
634 struct aio_ring
*ring
;
636 spin_lock(&mm
->ioctx_lock
);
637 table
= rcu_dereference_raw(mm
->ioctx_table
);
641 for (i
= 0; i
< table
->nr
; i
++)
642 if (!rcu_access_pointer(table
->table
[i
])) {
644 rcu_assign_pointer(table
->table
[i
], ctx
);
645 spin_unlock(&mm
->ioctx_lock
);
647 /* While kioctx setup is in progress,
648 * we are protected from page migration
649 * changes ring_pages by ->ring_lock.
651 ring
= kmap_atomic(ctx
->ring_pages
[0]);
657 new_nr
= (table
? table
->nr
: 1) * 4;
658 spin_unlock(&mm
->ioctx_lock
);
660 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
667 spin_lock(&mm
->ioctx_lock
);
668 old
= rcu_dereference_raw(mm
->ioctx_table
);
671 rcu_assign_pointer(mm
->ioctx_table
, table
);
672 } else if (table
->nr
> old
->nr
) {
673 memcpy(table
->table
, old
->table
,
674 old
->nr
* sizeof(struct kioctx
*));
676 rcu_assign_pointer(mm
->ioctx_table
, table
);
685 static void aio_nr_sub(unsigned nr
)
687 spin_lock(&aio_nr_lock
);
688 if (WARN_ON(aio_nr
- nr
> aio_nr
))
692 spin_unlock(&aio_nr_lock
);
696 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
698 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
700 struct mm_struct
*mm
= current
->mm
;
705 * Store the original nr_events -- what userspace passed to io_setup(),
706 * for counting against the global limit -- before it changes.
708 unsigned int max_reqs
= nr_events
;
711 * We keep track of the number of available ringbuffer slots, to prevent
712 * overflow (reqs_available), and we also use percpu counters for this.
714 * So since up to half the slots might be on other cpu's percpu counters
715 * and unavailable, double nr_events so userspace sees what they
716 * expected: additionally, we move req_batch slots to/from percpu
717 * counters at a time, so make sure that isn't 0:
719 nr_events
= max(nr_events
, num_possible_cpus() * 4);
722 /* Prevent overflows */
723 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
724 pr_debug("ENOMEM: nr_events too high\n");
725 return ERR_PTR(-EINVAL
);
728 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
729 return ERR_PTR(-EAGAIN
);
731 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
733 return ERR_PTR(-ENOMEM
);
735 ctx
->max_reqs
= max_reqs
;
737 spin_lock_init(&ctx
->ctx_lock
);
738 spin_lock_init(&ctx
->completion_lock
);
739 mutex_init(&ctx
->ring_lock
);
740 /* Protect against page migration throughout kiotx setup by keeping
741 * the ring_lock mutex held until setup is complete. */
742 mutex_lock(&ctx
->ring_lock
);
743 init_waitqueue_head(&ctx
->wait
);
745 INIT_LIST_HEAD(&ctx
->active_reqs
);
747 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
750 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
753 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
757 err
= aio_setup_ring(ctx
, nr_events
);
761 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
762 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
763 if (ctx
->req_batch
< 1)
766 /* limit the number of system wide aios */
767 spin_lock(&aio_nr_lock
);
768 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
769 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
770 spin_unlock(&aio_nr_lock
);
774 aio_nr
+= ctx
->max_reqs
;
775 spin_unlock(&aio_nr_lock
);
777 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
778 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
780 err
= ioctx_add_table(ctx
, mm
);
784 /* Release the ring_lock mutex now that all setup is complete. */
785 mutex_unlock(&ctx
->ring_lock
);
787 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
788 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
792 aio_nr_sub(ctx
->max_reqs
);
794 atomic_set(&ctx
->dead
, 1);
796 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
799 mutex_unlock(&ctx
->ring_lock
);
800 free_percpu(ctx
->cpu
);
801 percpu_ref_exit(&ctx
->reqs
);
802 percpu_ref_exit(&ctx
->users
);
803 kmem_cache_free(kioctx_cachep
, ctx
);
804 pr_debug("error allocating ioctx %d\n", err
);
809 * Cancels all outstanding aio requests on an aio context. Used
810 * when the processes owning a context have all exited to encourage
811 * the rapid destruction of the kioctx.
813 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
814 struct ctx_rq_wait
*wait
)
816 struct kioctx_table
*table
;
818 spin_lock(&mm
->ioctx_lock
);
819 if (atomic_xchg(&ctx
->dead
, 1)) {
820 spin_unlock(&mm
->ioctx_lock
);
824 table
= rcu_dereference_raw(mm
->ioctx_table
);
825 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
826 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
827 spin_unlock(&mm
->ioctx_lock
);
829 /* free_ioctx_reqs() will do the necessary RCU synchronization */
830 wake_up_all(&ctx
->wait
);
833 * It'd be more correct to do this in free_ioctx(), after all
834 * the outstanding kiocbs have finished - but by then io_destroy
835 * has already returned, so io_setup() could potentially return
836 * -EAGAIN with no ioctxs actually in use (as far as userspace
839 aio_nr_sub(ctx
->max_reqs
);
842 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
845 percpu_ref_kill(&ctx
->users
);
850 * exit_aio: called when the last user of mm goes away. At this point, there is
851 * no way for any new requests to be submited or any of the io_* syscalls to be
852 * called on the context.
854 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
857 void exit_aio(struct mm_struct
*mm
)
859 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
860 struct ctx_rq_wait wait
;
866 atomic_set(&wait
.count
, table
->nr
);
867 init_completion(&wait
.comp
);
870 for (i
= 0; i
< table
->nr
; ++i
) {
872 rcu_dereference_protected(table
->table
[i
], true);
880 * We don't need to bother with munmap() here - exit_mmap(mm)
881 * is coming and it'll unmap everything. And we simply can't,
882 * this is not necessarily our ->mm.
883 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
884 * that it needs to unmap the area, just set it to 0.
887 kill_ioctx(mm
, ctx
, &wait
);
890 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
891 /* Wait until all IO for the context are done. */
892 wait_for_completion(&wait
.comp
);
895 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
899 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
901 struct kioctx_cpu
*kcpu
;
904 local_irq_save(flags
);
905 kcpu
= this_cpu_ptr(ctx
->cpu
);
906 kcpu
->reqs_available
+= nr
;
908 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
909 kcpu
->reqs_available
-= ctx
->req_batch
;
910 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
913 local_irq_restore(flags
);
916 static bool __get_reqs_available(struct kioctx
*ctx
)
918 struct kioctx_cpu
*kcpu
;
922 local_irq_save(flags
);
923 kcpu
= this_cpu_ptr(ctx
->cpu
);
924 if (!kcpu
->reqs_available
) {
925 int old
, avail
= atomic_read(&ctx
->reqs_available
);
928 if (avail
< ctx
->req_batch
)
932 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
933 avail
, avail
- ctx
->req_batch
);
934 } while (avail
!= old
);
936 kcpu
->reqs_available
+= ctx
->req_batch
;
940 kcpu
->reqs_available
--;
942 local_irq_restore(flags
);
946 /* refill_reqs_available
947 * Updates the reqs_available reference counts used for tracking the
948 * number of free slots in the completion ring. This can be called
949 * from aio_complete() (to optimistically update reqs_available) or
950 * from aio_get_req() (the we're out of events case). It must be
951 * called holding ctx->completion_lock.
953 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
956 unsigned events_in_ring
, completed
;
958 /* Clamp head since userland can write to it. */
959 head
%= ctx
->nr_events
;
961 events_in_ring
= tail
- head
;
963 events_in_ring
= ctx
->nr_events
- (head
- tail
);
965 completed
= ctx
->completed_events
;
966 if (events_in_ring
< completed
)
967 completed
-= events_in_ring
;
974 ctx
->completed_events
-= completed
;
975 put_reqs_available(ctx
, completed
);
978 /* user_refill_reqs_available
979 * Called to refill reqs_available when aio_get_req() encounters an
980 * out of space in the completion ring.
982 static void user_refill_reqs_available(struct kioctx
*ctx
)
984 spin_lock_irq(&ctx
->completion_lock
);
985 if (ctx
->completed_events
) {
986 struct aio_ring
*ring
;
989 /* Access of ring->head may race with aio_read_events_ring()
990 * here, but that's okay since whether we read the old version
991 * or the new version, and either will be valid. The important
992 * part is that head cannot pass tail since we prevent
993 * aio_complete() from updating tail by holding
994 * ctx->completion_lock. Even if head is invalid, the check
995 * against ctx->completed_events below will make sure we do the
998 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1000 kunmap_atomic(ring
);
1002 refill_reqs_available(ctx
, head
, ctx
->tail
);
1005 spin_unlock_irq(&ctx
->completion_lock
);
1008 static bool get_reqs_available(struct kioctx
*ctx
)
1010 if (__get_reqs_available(ctx
))
1012 user_refill_reqs_available(ctx
);
1013 return __get_reqs_available(ctx
);
1017 * Allocate a slot for an aio request.
1018 * Returns NULL if no requests are free.
1020 * The refcount is initialized to 2 - one for the async op completion,
1021 * one for the synchronous code that does this.
1023 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1025 struct aio_kiocb
*req
;
1027 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1031 percpu_ref_get(&ctx
->reqs
);
1033 INIT_LIST_HEAD(&req
->ki_list
);
1034 refcount_set(&req
->ki_refcnt
, 2);
1035 req
->ki_eventfd
= NULL
;
1039 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1041 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1042 struct mm_struct
*mm
= current
->mm
;
1043 struct kioctx
*ctx
, *ret
= NULL
;
1044 struct kioctx_table
*table
;
1047 if (get_user(id
, &ring
->id
))
1051 table
= rcu_dereference(mm
->ioctx_table
);
1053 if (!table
|| id
>= table
->nr
)
1056 id
= array_index_nospec(id
, table
->nr
);
1057 ctx
= rcu_dereference(table
->table
[id
]);
1058 if (ctx
&& ctx
->user_id
== ctx_id
) {
1059 if (percpu_ref_tryget_live(&ctx
->users
))
1067 static inline void iocb_destroy(struct aio_kiocb
*iocb
)
1070 fput(iocb
->ki_filp
);
1071 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1072 kmem_cache_free(kiocb_cachep
, iocb
);
1076 * Called when the io request on the given iocb is complete.
1078 static void aio_complete(struct aio_kiocb
*iocb
)
1080 struct kioctx
*ctx
= iocb
->ki_ctx
;
1081 struct aio_ring
*ring
;
1082 struct io_event
*ev_page
, *event
;
1083 unsigned tail
, pos
, head
;
1084 unsigned long flags
;
1087 * Add a completion event to the ring buffer. Must be done holding
1088 * ctx->completion_lock to prevent other code from messing with the tail
1089 * pointer since we might be called from irq context.
1091 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1094 pos
= tail
+ AIO_EVENTS_OFFSET
;
1096 if (++tail
>= ctx
->nr_events
)
1099 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1100 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1102 *event
= iocb
->ki_res
;
1104 kunmap_atomic(ev_page
);
1105 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1107 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx
, tail
, iocb
,
1108 (void __user
*)(unsigned long)iocb
->ki_res
.obj
,
1109 iocb
->ki_res
.data
, iocb
->ki_res
.res
, iocb
->ki_res
.res2
);
1111 /* after flagging the request as done, we
1112 * must never even look at it again
1114 smp_wmb(); /* make event visible before updating tail */
1118 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1121 kunmap_atomic(ring
);
1122 flush_dcache_page(ctx
->ring_pages
[0]);
1124 ctx
->completed_events
++;
1125 if (ctx
->completed_events
> 1)
1126 refill_reqs_available(ctx
, head
, tail
);
1127 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1129 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1132 * Check if the user asked us to deliver the result through an
1133 * eventfd. The eventfd_signal() function is safe to be called
1136 if (iocb
->ki_eventfd
) {
1137 eventfd_signal(iocb
->ki_eventfd
, 1);
1138 eventfd_ctx_put(iocb
->ki_eventfd
);
1142 * We have to order our ring_info tail store above and test
1143 * of the wait list below outside the wait lock. This is
1144 * like in wake_up_bit() where clearing a bit has to be
1145 * ordered with the unlocked test.
1149 if (waitqueue_active(&ctx
->wait
))
1150 wake_up(&ctx
->wait
);
1153 static inline void iocb_put(struct aio_kiocb
*iocb
)
1155 if (refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1161 /* aio_read_events_ring
1162 * Pull an event off of the ioctx's event ring. Returns the number of
1165 static long aio_read_events_ring(struct kioctx
*ctx
,
1166 struct io_event __user
*event
, long nr
)
1168 struct aio_ring
*ring
;
1169 unsigned head
, tail
, pos
;
1174 * The mutex can block and wake us up and that will cause
1175 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1176 * and repeat. This should be rare enough that it doesn't cause
1177 * peformance issues. See the comment in read_events() for more detail.
1179 sched_annotate_sleep();
1180 mutex_lock(&ctx
->ring_lock
);
1182 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1183 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1186 kunmap_atomic(ring
);
1189 * Ensure that once we've read the current tail pointer, that
1190 * we also see the events that were stored up to the tail.
1194 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1199 head
%= ctx
->nr_events
;
1200 tail
%= ctx
->nr_events
;
1204 struct io_event
*ev
;
1207 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1211 pos
= head
+ AIO_EVENTS_OFFSET
;
1212 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1213 pos
%= AIO_EVENTS_PER_PAGE
;
1215 avail
= min(avail
, nr
- ret
);
1216 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1219 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1220 sizeof(*ev
) * avail
);
1223 if (unlikely(copy_ret
)) {
1230 head
%= ctx
->nr_events
;
1233 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1235 kunmap_atomic(ring
);
1236 flush_dcache_page(ctx
->ring_pages
[0]);
1238 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1240 mutex_unlock(&ctx
->ring_lock
);
1245 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1246 struct io_event __user
*event
, long *i
)
1248 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1253 if (unlikely(atomic_read(&ctx
->dead
)))
1259 return ret
< 0 || *i
>= min_nr
;
1262 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1263 struct io_event __user
*event
,
1269 * Note that aio_read_events() is being called as the conditional - i.e.
1270 * we're calling it after prepare_to_wait() has set task state to
1271 * TASK_INTERRUPTIBLE.
1273 * But aio_read_events() can block, and if it blocks it's going to flip
1274 * the task state back to TASK_RUNNING.
1276 * This should be ok, provided it doesn't flip the state back to
1277 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1278 * will only happen if the mutex_lock() call blocks, and we then find
1279 * the ringbuffer empty. So in practice we should be ok, but it's
1280 * something to be aware of when touching this code.
1283 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1285 wait_event_interruptible_hrtimeout(ctx
->wait
,
1286 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1292 * Create an aio_context capable of receiving at least nr_events.
1293 * ctxp must not point to an aio_context that already exists, and
1294 * must be initialized to 0 prior to the call. On successful
1295 * creation of the aio_context, *ctxp is filled in with the resulting
1296 * handle. May fail with -EINVAL if *ctxp is not initialized,
1297 * if the specified nr_events exceeds internal limits. May fail
1298 * with -EAGAIN if the specified nr_events exceeds the user's limit
1299 * of available events. May fail with -ENOMEM if insufficient kernel
1300 * resources are available. May fail with -EFAULT if an invalid
1301 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1304 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1306 struct kioctx
*ioctx
= NULL
;
1310 ret
= get_user(ctx
, ctxp
);
1315 if (unlikely(ctx
|| nr_events
== 0)) {
1316 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1321 ioctx
= ioctx_alloc(nr_events
);
1322 ret
= PTR_ERR(ioctx
);
1323 if (!IS_ERR(ioctx
)) {
1324 ret
= put_user(ioctx
->user_id
, ctxp
);
1326 kill_ioctx(current
->mm
, ioctx
, NULL
);
1327 percpu_ref_put(&ioctx
->users
);
1334 #ifdef CONFIG_COMPAT
1335 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1337 struct kioctx
*ioctx
= NULL
;
1341 ret
= get_user(ctx
, ctx32p
);
1346 if (unlikely(ctx
|| nr_events
== 0)) {
1347 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1352 ioctx
= ioctx_alloc(nr_events
);
1353 ret
= PTR_ERR(ioctx
);
1354 if (!IS_ERR(ioctx
)) {
1355 /* truncating is ok because it's a user address */
1356 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1358 kill_ioctx(current
->mm
, ioctx
, NULL
);
1359 percpu_ref_put(&ioctx
->users
);
1368 * Destroy the aio_context specified. May cancel any outstanding
1369 * AIOs and block on completion. Will fail with -ENOSYS if not
1370 * implemented. May fail with -EINVAL if the context pointed to
1373 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1375 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1376 if (likely(NULL
!= ioctx
)) {
1377 struct ctx_rq_wait wait
;
1380 init_completion(&wait
.comp
);
1381 atomic_set(&wait
.count
, 1);
1383 /* Pass requests_done to kill_ioctx() where it can be set
1384 * in a thread-safe way. If we try to set it here then we have
1385 * a race condition if two io_destroy() called simultaneously.
1387 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1388 percpu_ref_put(&ioctx
->users
);
1390 /* Wait until all IO for the context are done. Otherwise kernel
1391 * keep using user-space buffers even if user thinks the context
1395 wait_for_completion(&wait
.comp
);
1399 pr_debug("EINVAL: invalid context id\n");
1403 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1405 struct kioctx
*ctx
= iocb
->ki_ctx
;
1406 unsigned long flags
;
1408 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1409 list_del(&iocb
->ki_list
);
1410 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1413 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1415 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1417 if (!list_empty_careful(&iocb
->ki_list
))
1418 aio_remove_iocb(iocb
);
1420 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1421 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1424 * Tell lockdep we inherited freeze protection from submission
1427 if (S_ISREG(inode
->i_mode
))
1428 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1429 file_end_write(kiocb
->ki_filp
);
1432 iocb
->ki_res
.res
= res
;
1433 iocb
->ki_res
.res2
= res2
;
1437 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1441 req
->ki_complete
= aio_complete_rw
;
1442 req
->private = NULL
;
1443 req
->ki_pos
= iocb
->aio_offset
;
1444 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1445 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1446 req
->ki_flags
|= IOCB_EVENTFD
;
1447 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1448 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1450 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1451 * aio_reqprio is interpreted as an I/O scheduling
1452 * class and priority.
1454 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1456 pr_debug("aio ioprio check cap error: %d\n", ret
);
1460 req
->ki_ioprio
= iocb
->aio_reqprio
;
1462 req
->ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1464 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1468 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1472 static int aio_setup_rw(int rw
, const struct iocb
*iocb
, struct iovec
**iovec
,
1473 bool vectored
, bool compat
, struct iov_iter
*iter
)
1475 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1476 size_t len
= iocb
->aio_nbytes
;
1479 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1483 #ifdef CONFIG_COMPAT
1485 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1488 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1491 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1497 case -ERESTARTNOINTR
:
1498 case -ERESTARTNOHAND
:
1499 case -ERESTART_RESTARTBLOCK
:
1501 * There's no easy way to restart the syscall since other AIO's
1502 * may be already running. Just fail this IO with EINTR.
1507 req
->ki_complete(req
, ret
, 0);
1511 static ssize_t
aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1512 bool vectored
, bool compat
)
1514 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1515 struct iov_iter iter
;
1519 ret
= aio_prep_rw(req
, iocb
);
1522 file
= req
->ki_filp
;
1523 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1526 if (unlikely(!file
->f_op
->read_iter
))
1529 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1532 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1534 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1539 static ssize_t
aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1540 bool vectored
, bool compat
)
1542 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1543 struct iov_iter iter
;
1547 ret
= aio_prep_rw(req
, iocb
);
1550 file
= req
->ki_filp
;
1552 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1554 if (unlikely(!file
->f_op
->write_iter
))
1557 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1560 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1563 * Open-code file_start_write here to grab freeze protection,
1564 * which will be released by another thread in
1565 * aio_complete_rw(). Fool lockdep by telling it the lock got
1566 * released so that it doesn't complain about the held lock when
1567 * we return to userspace.
1569 if (S_ISREG(file_inode(file
)->i_mode
)) {
1570 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1571 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1573 req
->ki_flags
|= IOCB_WRITE
;
1574 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1580 static void aio_fsync_work(struct work_struct
*work
)
1582 struct aio_kiocb
*iocb
= container_of(work
, struct aio_kiocb
, fsync
.work
);
1583 const struct cred
*old_cred
= override_creds(iocb
->fsync
.creds
);
1585 iocb
->ki_res
.res
= vfs_fsync(iocb
->fsync
.file
, iocb
->fsync
.datasync
);
1586 revert_creds(old_cred
);
1587 put_cred(iocb
->fsync
.creds
);
1591 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1594 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1595 iocb
->aio_rw_flags
))
1598 if (unlikely(!req
->file
->f_op
->fsync
))
1601 req
->creds
= prepare_creds();
1605 req
->datasync
= datasync
;
1606 INIT_WORK(&req
->work
, aio_fsync_work
);
1607 schedule_work(&req
->work
);
1611 static void aio_poll_put_work(struct work_struct
*work
)
1613 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1614 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1619 static void aio_poll_complete_work(struct work_struct
*work
)
1621 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1622 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1623 struct poll_table_struct pt
= { ._key
= req
->events
};
1624 struct kioctx
*ctx
= iocb
->ki_ctx
;
1627 if (!READ_ONCE(req
->cancelled
))
1628 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1631 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1632 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1633 * synchronize with them. In the cancellation case the list_del_init
1634 * itself is not actually needed, but harmless so we keep it in to
1635 * avoid further branches in the fast path.
1637 spin_lock_irq(&ctx
->ctx_lock
);
1638 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1639 add_wait_queue(req
->head
, &req
->wait
);
1640 spin_unlock_irq(&ctx
->ctx_lock
);
1643 list_del_init(&iocb
->ki_list
);
1644 iocb
->ki_res
.res
= mangle_poll(mask
);
1646 spin_unlock_irq(&ctx
->ctx_lock
);
1651 /* assumes we are called with irqs disabled */
1652 static int aio_poll_cancel(struct kiocb
*iocb
)
1654 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1655 struct poll_iocb
*req
= &aiocb
->poll
;
1657 spin_lock(&req
->head
->lock
);
1658 WRITE_ONCE(req
->cancelled
, true);
1659 if (!list_empty(&req
->wait
.entry
)) {
1660 list_del_init(&req
->wait
.entry
);
1661 schedule_work(&aiocb
->poll
.work
);
1663 spin_unlock(&req
->head
->lock
);
1668 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1671 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1672 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1673 __poll_t mask
= key_to_poll(key
);
1674 unsigned long flags
;
1676 /* for instances that support it check for an event match first: */
1677 if (mask
&& !(mask
& req
->events
))
1680 list_del_init(&req
->wait
.entry
);
1682 if (mask
&& spin_trylock_irqsave(&iocb
->ki_ctx
->ctx_lock
, flags
)) {
1683 struct kioctx
*ctx
= iocb
->ki_ctx
;
1686 * Try to complete the iocb inline if we can. Use
1687 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1688 * call this function with IRQs disabled and because IRQs
1689 * have to be disabled before ctx_lock is obtained.
1691 list_del(&iocb
->ki_list
);
1692 iocb
->ki_res
.res
= mangle_poll(mask
);
1694 if (iocb
->ki_eventfd
&& eventfd_signal_count()) {
1696 INIT_WORK(&req
->work
, aio_poll_put_work
);
1697 schedule_work(&req
->work
);
1699 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1703 schedule_work(&req
->work
);
1708 struct aio_poll_table
{
1709 struct poll_table_struct pt
;
1710 struct aio_kiocb
*iocb
;
1715 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1716 struct poll_table_struct
*p
)
1718 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1720 /* multiple wait queues per file are not supported */
1721 if (unlikely(pt
->iocb
->poll
.head
)) {
1722 pt
->error
= -EINVAL
;
1727 pt
->iocb
->poll
.head
= head
;
1728 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1731 static ssize_t
aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1733 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1734 struct poll_iocb
*req
= &aiocb
->poll
;
1735 struct aio_poll_table apt
;
1736 bool cancel
= false;
1739 /* reject any unknown events outside the normal event mask. */
1740 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1742 /* reject fields that are not defined for poll */
1743 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1746 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1747 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1751 req
->cancelled
= false;
1753 apt
.pt
._qproc
= aio_poll_queue_proc
;
1754 apt
.pt
._key
= req
->events
;
1756 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1758 /* initialized the list so that we can do list_empty checks */
1759 INIT_LIST_HEAD(&req
->wait
.entry
);
1760 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1762 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1763 spin_lock_irq(&ctx
->ctx_lock
);
1764 if (likely(req
->head
)) {
1765 spin_lock(&req
->head
->lock
);
1766 if (unlikely(list_empty(&req
->wait
.entry
))) {
1772 if (mask
|| apt
.error
) {
1773 list_del_init(&req
->wait
.entry
);
1774 } else if (cancel
) {
1775 WRITE_ONCE(req
->cancelled
, true);
1776 } else if (!req
->done
) { /* actually waiting for an event */
1777 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1778 aiocb
->ki_cancel
= aio_poll_cancel
;
1780 spin_unlock(&req
->head
->lock
);
1782 if (mask
) { /* no async, we'd stolen it */
1783 aiocb
->ki_res
.res
= mangle_poll(mask
);
1786 spin_unlock_irq(&ctx
->ctx_lock
);
1792 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1793 struct iocb __user
*user_iocb
, bool compat
)
1795 struct aio_kiocb
*req
;
1798 /* enforce forwards compatibility on users */
1799 if (unlikely(iocb
->aio_reserved2
)) {
1800 pr_debug("EINVAL: reserve field set\n");
1804 /* prevent overflows */
1806 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1807 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1808 ((ssize_t
)iocb
->aio_nbytes
< 0)
1810 pr_debug("EINVAL: overflow check\n");
1814 if (!get_reqs_available(ctx
))
1818 req
= aio_get_req(ctx
);
1820 goto out_put_reqs_available
;
1822 req
->ki_filp
= fget(iocb
->aio_fildes
);
1824 if (unlikely(!req
->ki_filp
))
1827 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1829 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1830 * instance of the file* now. The file descriptor must be
1831 * an eventfd() fd, and will be signaled for each completed
1832 * event using the eventfd_signal() function.
1834 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1835 if (IS_ERR(req
->ki_eventfd
)) {
1836 ret
= PTR_ERR(req
->ki_eventfd
);
1837 req
->ki_eventfd
= NULL
;
1842 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1843 if (unlikely(ret
)) {
1844 pr_debug("EFAULT: aio_key\n");
1848 req
->ki_res
.obj
= (u64
)(unsigned long)user_iocb
;
1849 req
->ki_res
.data
= iocb
->aio_data
;
1850 req
->ki_res
.res
= 0;
1851 req
->ki_res
.res2
= 0;
1853 switch (iocb
->aio_lio_opcode
) {
1854 case IOCB_CMD_PREAD
:
1855 ret
= aio_read(&req
->rw
, iocb
, false, compat
);
1857 case IOCB_CMD_PWRITE
:
1858 ret
= aio_write(&req
->rw
, iocb
, false, compat
);
1860 case IOCB_CMD_PREADV
:
1861 ret
= aio_read(&req
->rw
, iocb
, true, compat
);
1863 case IOCB_CMD_PWRITEV
:
1864 ret
= aio_write(&req
->rw
, iocb
, true, compat
);
1866 case IOCB_CMD_FSYNC
:
1867 ret
= aio_fsync(&req
->fsync
, iocb
, false);
1869 case IOCB_CMD_FDSYNC
:
1870 ret
= aio_fsync(&req
->fsync
, iocb
, true);
1873 ret
= aio_poll(req
, iocb
);
1876 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1881 /* Done with the synchronous reference */
1885 * If ret is 0, we'd either done aio_complete() ourselves or have
1886 * arranged for that to be done asynchronously. Anything non-zero
1887 * means that we need to destroy req ourselves.
1893 if (req
->ki_eventfd
)
1894 eventfd_ctx_put(req
->ki_eventfd
);
1896 out_put_reqs_available
:
1897 put_reqs_available(ctx
, 1);
1901 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1906 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1909 return __io_submit_one(ctx
, &iocb
, user_iocb
, compat
);
1913 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1914 * the number of iocbs queued. May return -EINVAL if the aio_context
1915 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1916 * *iocbpp[0] is not properly initialized, if the operation specified
1917 * is invalid for the file descriptor in the iocb. May fail with
1918 * -EFAULT if any of the data structures point to invalid data. May
1919 * fail with -EBADF if the file descriptor specified in the first
1920 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1921 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1922 * fail with -ENOSYS if not implemented.
1924 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1925 struct iocb __user
* __user
*, iocbpp
)
1930 struct blk_plug plug
;
1932 if (unlikely(nr
< 0))
1935 ctx
= lookup_ioctx(ctx_id
);
1936 if (unlikely(!ctx
)) {
1937 pr_debug("EINVAL: invalid context id\n");
1941 if (nr
> ctx
->nr_events
)
1942 nr
= ctx
->nr_events
;
1944 blk_start_plug(&plug
);
1945 for (i
= 0; i
< nr
; i
++) {
1946 struct iocb __user
*user_iocb
;
1948 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1953 ret
= io_submit_one(ctx
, user_iocb
, false);
1957 blk_finish_plug(&plug
);
1959 percpu_ref_put(&ctx
->users
);
1963 #ifdef CONFIG_COMPAT
1964 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1965 int, nr
, compat_uptr_t __user
*, iocbpp
)
1970 struct blk_plug plug
;
1972 if (unlikely(nr
< 0))
1975 ctx
= lookup_ioctx(ctx_id
);
1976 if (unlikely(!ctx
)) {
1977 pr_debug("EINVAL: invalid context id\n");
1981 if (nr
> ctx
->nr_events
)
1982 nr
= ctx
->nr_events
;
1984 blk_start_plug(&plug
);
1985 for (i
= 0; i
< nr
; i
++) {
1986 compat_uptr_t user_iocb
;
1988 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1993 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1997 blk_finish_plug(&plug
);
1999 percpu_ref_put(&ctx
->users
);
2005 * Attempts to cancel an iocb previously passed to io_submit. If
2006 * the operation is successfully cancelled, the resulting event is
2007 * copied into the memory pointed to by result without being placed
2008 * into the completion queue and 0 is returned. May fail with
2009 * -EFAULT if any of the data structures pointed to are invalid.
2010 * May fail with -EINVAL if aio_context specified by ctx_id is
2011 * invalid. May fail with -EAGAIN if the iocb specified was not
2012 * cancelled. Will fail with -ENOSYS if not implemented.
2014 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
2015 struct io_event __user
*, result
)
2018 struct aio_kiocb
*kiocb
;
2021 u64 obj
= (u64
)(unsigned long)iocb
;
2023 if (unlikely(get_user(key
, &iocb
->aio_key
)))
2025 if (unlikely(key
!= KIOCB_KEY
))
2028 ctx
= lookup_ioctx(ctx_id
);
2032 spin_lock_irq(&ctx
->ctx_lock
);
2033 /* TODO: use a hash or array, this sucks. */
2034 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2035 if (kiocb
->ki_res
.obj
== obj
) {
2036 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2037 list_del_init(&kiocb
->ki_list
);
2041 spin_unlock_irq(&ctx
->ctx_lock
);
2045 * The result argument is no longer used - the io_event is
2046 * always delivered via the ring buffer. -EINPROGRESS indicates
2047 * cancellation is progress:
2052 percpu_ref_put(&ctx
->users
);
2057 static long do_io_getevents(aio_context_t ctx_id
,
2060 struct io_event __user
*events
,
2061 struct timespec64
*ts
)
2063 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2064 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2067 if (likely(ioctx
)) {
2068 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2069 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2070 percpu_ref_put(&ioctx
->users
);
2077 * Attempts to read at least min_nr events and up to nr events from
2078 * the completion queue for the aio_context specified by ctx_id. If
2079 * it succeeds, the number of read events is returned. May fail with
2080 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2081 * out of range, if timeout is out of range. May fail with -EFAULT
2082 * if any of the memory specified is invalid. May return 0 or
2083 * < min_nr if the timeout specified by timeout has elapsed
2084 * before sufficient events are available, where timeout == NULL
2085 * specifies an infinite timeout. Note that the timeout pointed to by
2086 * timeout is relative. Will fail with -ENOSYS if not implemented.
2088 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2091 struct io_event __user
*, events
,
2092 struct timespec __user
*, timeout
)
2094 struct timespec64 ts
;
2097 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2100 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2101 if (!ret
&& signal_pending(current
))
2106 struct __aio_sigset
{
2107 const sigset_t __user
*sigmask
;
2111 SYSCALL_DEFINE6(io_pgetevents
,
2112 aio_context_t
, ctx_id
,
2115 struct io_event __user
*, events
,
2116 struct timespec __user
*, timeout
,
2117 const struct __aio_sigset __user
*, usig
)
2119 struct __aio_sigset ksig
= { NULL
, };
2120 sigset_t ksigmask
, sigsaved
;
2121 struct timespec64 ts
;
2124 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2127 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2131 if (ksig
.sigsetsize
!= sizeof(sigset_t
))
2133 if (copy_from_user(&ksigmask
, ksig
.sigmask
, sizeof(ksigmask
)))
2135 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2136 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2139 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2140 if (signal_pending(current
)) {
2142 current
->saved_sigmask
= sigsaved
;
2143 set_restore_sigmask();
2147 ret
= -ERESTARTNOHAND
;
2150 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2156 #ifdef CONFIG_COMPAT
2157 COMPAT_SYSCALL_DEFINE5(io_getevents
, compat_aio_context_t
, ctx_id
,
2158 compat_long_t
, min_nr
,
2160 struct io_event __user
*, events
,
2161 struct compat_timespec __user
*, timeout
)
2163 struct timespec64 t
;
2166 if (timeout
&& compat_get_timespec64(&t
, timeout
))
2169 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2170 if (!ret
&& signal_pending(current
))
2176 struct __compat_aio_sigset
{
2177 compat_sigset_t __user
*sigmask
;
2178 compat_size_t sigsetsize
;
2181 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2182 compat_aio_context_t
, ctx_id
,
2183 compat_long_t
, min_nr
,
2185 struct io_event __user
*, events
,
2186 struct compat_timespec __user
*, timeout
,
2187 const struct __compat_aio_sigset __user
*, usig
)
2189 struct __compat_aio_sigset ksig
= { NULL
, };
2190 sigset_t ksigmask
, sigsaved
;
2191 struct timespec64 t
;
2194 if (timeout
&& compat_get_timespec64(&t
, timeout
))
2197 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2201 if (ksig
.sigsetsize
!= sizeof(compat_sigset_t
))
2203 if (get_compat_sigset(&ksigmask
, ksig
.sigmask
))
2205 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2206 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2209 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2210 if (signal_pending(current
)) {
2212 current
->saved_sigmask
= sigsaved
;
2213 set_restore_sigmask();
2216 ret
= -ERESTARTNOHAND
;
2219 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);