Linux 4.19.133
[linux/fpc-iii.git] / fs / binfmt_elf.c
blob975dd0dbc25274096d131e7bdf2c7b6e03cc5f0c
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 int, int, unsigned long);
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
70 * If we don't support core dumping, then supply a NULL so we
71 * don't even try.
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump NULL
77 #endif
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN PAGE_SIZE
83 #endif
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS 0
87 #endif
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
93 static struct linux_binfmt elf_format = {
94 .module = THIS_MODULE,
95 .load_binary = load_elf_binary,
96 .load_shlib = load_elf_library,
97 .core_dump = elf_core_dump,
98 .min_coredump = ELF_EXEC_PAGESIZE,
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
103 static int set_brk(unsigned long start, unsigned long end, int prot)
105 start = ELF_PAGEALIGN(start);
106 end = ELF_PAGEALIGN(end);
107 if (end > start) {
109 * Map the last of the bss segment.
110 * If the header is requesting these pages to be
111 * executable, honour that (ppc32 needs this).
113 int error = vm_brk_flags(start, end - start,
114 prot & PROT_EXEC ? VM_EXEC : 0);
115 if (error)
116 return error;
118 current->mm->start_brk = current->mm->brk = end;
119 return 0;
122 /* We need to explicitly zero any fractional pages
123 after the data section (i.e. bss). This would
124 contain the junk from the file that should not
125 be in memory
127 static int padzero(unsigned long elf_bss)
129 unsigned long nbyte;
131 nbyte = ELF_PAGEOFFSET(elf_bss);
132 if (nbyte) {
133 nbyte = ELF_MIN_ALIGN - nbyte;
134 if (clear_user((void __user *) elf_bss, nbyte))
135 return -EFAULT;
137 return 0;
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 (((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
155 #ifndef ELF_BASE_PLATFORM
157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159 * will be copied to the user stack in the same manner as AT_PLATFORM.
161 #define ELF_BASE_PLATFORM NULL
162 #endif
164 static int
165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 unsigned long load_addr, unsigned long interp_load_addr)
168 unsigned long p = bprm->p;
169 int argc = bprm->argc;
170 int envc = bprm->envc;
171 elf_addr_t __user *sp;
172 elf_addr_t __user *u_platform;
173 elf_addr_t __user *u_base_platform;
174 elf_addr_t __user *u_rand_bytes;
175 const char *k_platform = ELF_PLATFORM;
176 const char *k_base_platform = ELF_BASE_PLATFORM;
177 unsigned char k_rand_bytes[16];
178 int items;
179 elf_addr_t *elf_info;
180 int ei_index = 0;
181 const struct cred *cred = current_cred();
182 struct vm_area_struct *vma;
185 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 * evictions by the processes running on the same package. One
187 * thing we can do is to shuffle the initial stack for them.
190 p = arch_align_stack(p);
193 * If this architecture has a platform capability string, copy it
194 * to userspace. In some cases (Sparc), this info is impossible
195 * for userspace to get any other way, in others (i386) it is
196 * merely difficult.
198 u_platform = NULL;
199 if (k_platform) {
200 size_t len = strlen(k_platform) + 1;
202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_platform, k_platform, len))
204 return -EFAULT;
208 * If this architecture has a "base" platform capability
209 * string, copy it to userspace.
211 u_base_platform = NULL;
212 if (k_base_platform) {
213 size_t len = strlen(k_base_platform) + 1;
215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 if (__copy_to_user(u_base_platform, k_base_platform, len))
217 return -EFAULT;
221 * Generate 16 random bytes for userspace PRNG seeding.
223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 u_rand_bytes = (elf_addr_t __user *)
225 STACK_ALLOC(p, sizeof(k_rand_bytes));
226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 return -EFAULT;
229 /* Create the ELF interpreter info */
230 elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 do { \
234 elf_info[ei_index++] = id; \
235 elf_info[ei_index++] = val; \
236 } while (0)
238 #ifdef ARCH_DLINFO
240 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * AUXV.
242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 * ARCH_DLINFO changes
245 ARCH_DLINFO;
246 #endif
247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 NEW_AUX_ENT(AT_FLAGS, 0);
255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 if (k_platform) {
267 NEW_AUX_ENT(AT_PLATFORM,
268 (elf_addr_t)(unsigned long)u_platform);
270 if (k_base_platform) {
271 NEW_AUX_ENT(AT_BASE_PLATFORM,
272 (elf_addr_t)(unsigned long)u_base_platform);
274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
277 #undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(&elf_info[ei_index], 0,
280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
282 /* And advance past the AT_NULL entry. */
283 ei_index += 2;
285 sp = STACK_ADD(p, ei_index);
287 items = (argc + 1) + (envc + 1) + 1;
288 bprm->p = STACK_ROUND(sp, items);
290 /* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 sp = (elf_addr_t __user *)bprm->p;
296 #endif
300 * Grow the stack manually; some architectures have a limit on how
301 * far ahead a user-space access may be in order to grow the stack.
303 vma = find_extend_vma(current->mm, bprm->p);
304 if (!vma)
305 return -EFAULT;
307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 if (__put_user(argc, sp++))
309 return -EFAULT;
311 /* Populate list of argv pointers back to argv strings. */
312 p = current->mm->arg_end = current->mm->arg_start;
313 while (argc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, sp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
322 if (__put_user(0, sp++))
323 return -EFAULT;
324 current->mm->arg_end = p;
326 /* Populate list of envp pointers back to envp strings. */
327 current->mm->env_end = current->mm->env_start = p;
328 while (envc-- > 0) {
329 size_t len;
330 if (__put_user((elf_addr_t)p, sp++))
331 return -EFAULT;
332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 if (!len || len > MAX_ARG_STRLEN)
334 return -EINVAL;
335 p += len;
337 if (__put_user(0, sp++))
338 return -EFAULT;
339 current->mm->env_end = p;
341 /* Put the elf_info on the stack in the right place. */
342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 return -EFAULT;
344 return 0;
347 #ifndef elf_map
349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 struct elf_phdr *eppnt, int prot, int type,
351 unsigned long total_size)
353 unsigned long map_addr;
354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 addr = ELF_PAGESTART(addr);
357 size = ELF_PAGEALIGN(size);
359 /* mmap() will return -EINVAL if given a zero size, but a
360 * segment with zero filesize is perfectly valid */
361 if (!size)
362 return addr;
365 * total_size is the size of the ELF (interpreter) image.
366 * The _first_ mmap needs to know the full size, otherwise
367 * randomization might put this image into an overlapping
368 * position with the ELF binary image. (since size < total_size)
369 * So we first map the 'big' image - and unmap the remainder at
370 * the end. (which unmap is needed for ELF images with holes.)
372 if (total_size) {
373 total_size = ELF_PAGEALIGN(total_size);
374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 if (!BAD_ADDR(map_addr))
376 vm_munmap(map_addr+size, total_size-size);
377 } else
378 map_addr = vm_mmap(filep, addr, size, prot, type, off);
380 if ((type & MAP_FIXED_NOREPLACE) &&
381 PTR_ERR((void *)map_addr) == -EEXIST)
382 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
383 task_pid_nr(current), current->comm, (void *)addr);
385 return(map_addr);
388 #endif /* !elf_map */
390 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
392 int i, first_idx = -1, last_idx = -1;
394 for (i = 0; i < nr; i++) {
395 if (cmds[i].p_type == PT_LOAD) {
396 last_idx = i;
397 if (first_idx == -1)
398 first_idx = i;
401 if (first_idx == -1)
402 return 0;
404 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
405 ELF_PAGESTART(cmds[first_idx].p_vaddr);
409 * load_elf_phdrs() - load ELF program headers
410 * @elf_ex: ELF header of the binary whose program headers should be loaded
411 * @elf_file: the opened ELF binary file
413 * Loads ELF program headers from the binary file elf_file, which has the ELF
414 * header pointed to by elf_ex, into a newly allocated array. The caller is
415 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
417 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
418 struct file *elf_file)
420 struct elf_phdr *elf_phdata = NULL;
421 int retval, size, err = -1;
422 loff_t pos = elf_ex->e_phoff;
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 goto out;
431 /* Sanity check the number of program headers... */
432 if (elf_ex->e_phnum < 1 ||
433 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
434 goto out;
436 /* ...and their total size. */
437 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
438 if (size > ELF_MIN_ALIGN)
439 goto out;
441 elf_phdata = kmalloc(size, GFP_KERNEL);
442 if (!elf_phdata)
443 goto out;
445 /* Read in the program headers */
446 retval = kernel_read(elf_file, elf_phdata, size, &pos);
447 if (retval != size) {
448 err = (retval < 0) ? retval : -EIO;
449 goto out;
452 /* Success! */
453 err = 0;
454 out:
455 if (err) {
456 kfree(elf_phdata);
457 elf_phdata = NULL;
459 return elf_phdata;
462 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
465 * struct arch_elf_state - arch-specific ELF loading state
467 * This structure is used to preserve architecture specific data during
468 * the loading of an ELF file, throughout the checking of architecture
469 * specific ELF headers & through to the point where the ELF load is
470 * known to be proceeding (ie. SET_PERSONALITY).
472 * This implementation is a dummy for architectures which require no
473 * specific state.
475 struct arch_elf_state {
478 #define INIT_ARCH_ELF_STATE {}
481 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
482 * @ehdr: The main ELF header
483 * @phdr: The program header to check
484 * @elf: The open ELF file
485 * @is_interp: True if the phdr is from the interpreter of the ELF being
486 * loaded, else false.
487 * @state: Architecture-specific state preserved throughout the process
488 * of loading the ELF.
490 * Inspects the program header phdr to validate its correctness and/or
491 * suitability for the system. Called once per ELF program header in the
492 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
493 * interpreter.
495 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
496 * with that return code.
498 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
499 struct elf_phdr *phdr,
500 struct file *elf, bool is_interp,
501 struct arch_elf_state *state)
503 /* Dummy implementation, always proceed */
504 return 0;
508 * arch_check_elf() - check an ELF executable
509 * @ehdr: The main ELF header
510 * @has_interp: True if the ELF has an interpreter, else false.
511 * @interp_ehdr: The interpreter's ELF header
512 * @state: Architecture-specific state preserved throughout the process
513 * of loading the ELF.
515 * Provides a final opportunity for architecture code to reject the loading
516 * of the ELF & cause an exec syscall to return an error. This is called after
517 * all program headers to be checked by arch_elf_pt_proc have been.
519 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
520 * with that return code.
522 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
523 struct elfhdr *interp_ehdr,
524 struct arch_elf_state *state)
526 /* Dummy implementation, always proceed */
527 return 0;
530 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
532 /* This is much more generalized than the library routine read function,
533 so we keep this separate. Technically the library read function
534 is only provided so that we can read a.out libraries that have
535 an ELF header */
537 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
538 struct file *interpreter, unsigned long *interp_map_addr,
539 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
541 struct elf_phdr *eppnt;
542 unsigned long load_addr = 0;
543 int load_addr_set = 0;
544 unsigned long last_bss = 0, elf_bss = 0;
545 int bss_prot = 0;
546 unsigned long error = ~0UL;
547 unsigned long total_size;
548 int i;
550 /* First of all, some simple consistency checks */
551 if (interp_elf_ex->e_type != ET_EXEC &&
552 interp_elf_ex->e_type != ET_DYN)
553 goto out;
554 if (!elf_check_arch(interp_elf_ex) ||
555 elf_check_fdpic(interp_elf_ex))
556 goto out;
557 if (!interpreter->f_op->mmap)
558 goto out;
560 total_size = total_mapping_size(interp_elf_phdata,
561 interp_elf_ex->e_phnum);
562 if (!total_size) {
563 error = -EINVAL;
564 goto out;
567 eppnt = interp_elf_phdata;
568 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
569 if (eppnt->p_type == PT_LOAD) {
570 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
571 int elf_prot = 0;
572 unsigned long vaddr = 0;
573 unsigned long k, map_addr;
575 if (eppnt->p_flags & PF_R)
576 elf_prot = PROT_READ;
577 if (eppnt->p_flags & PF_W)
578 elf_prot |= PROT_WRITE;
579 if (eppnt->p_flags & PF_X)
580 elf_prot |= PROT_EXEC;
581 vaddr = eppnt->p_vaddr;
582 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
583 elf_type |= MAP_FIXED_NOREPLACE;
584 else if (no_base && interp_elf_ex->e_type == ET_DYN)
585 load_addr = -vaddr;
587 map_addr = elf_map(interpreter, load_addr + vaddr,
588 eppnt, elf_prot, elf_type, total_size);
589 total_size = 0;
590 if (!*interp_map_addr)
591 *interp_map_addr = map_addr;
592 error = map_addr;
593 if (BAD_ADDR(map_addr))
594 goto out;
596 if (!load_addr_set &&
597 interp_elf_ex->e_type == ET_DYN) {
598 load_addr = map_addr - ELF_PAGESTART(vaddr);
599 load_addr_set = 1;
603 * Check to see if the section's size will overflow the
604 * allowed task size. Note that p_filesz must always be
605 * <= p_memsize so it's only necessary to check p_memsz.
607 k = load_addr + eppnt->p_vaddr;
608 if (BAD_ADDR(k) ||
609 eppnt->p_filesz > eppnt->p_memsz ||
610 eppnt->p_memsz > TASK_SIZE ||
611 TASK_SIZE - eppnt->p_memsz < k) {
612 error = -ENOMEM;
613 goto out;
617 * Find the end of the file mapping for this phdr, and
618 * keep track of the largest address we see for this.
620 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
621 if (k > elf_bss)
622 elf_bss = k;
625 * Do the same thing for the memory mapping - between
626 * elf_bss and last_bss is the bss section.
628 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
629 if (k > last_bss) {
630 last_bss = k;
631 bss_prot = elf_prot;
637 * Now fill out the bss section: first pad the last page from
638 * the file up to the page boundary, and zero it from elf_bss
639 * up to the end of the page.
641 if (padzero(elf_bss)) {
642 error = -EFAULT;
643 goto out;
646 * Next, align both the file and mem bss up to the page size,
647 * since this is where elf_bss was just zeroed up to, and where
648 * last_bss will end after the vm_brk_flags() below.
650 elf_bss = ELF_PAGEALIGN(elf_bss);
651 last_bss = ELF_PAGEALIGN(last_bss);
652 /* Finally, if there is still more bss to allocate, do it. */
653 if (last_bss > elf_bss) {
654 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
655 bss_prot & PROT_EXEC ? VM_EXEC : 0);
656 if (error)
657 goto out;
660 error = load_addr;
661 out:
662 return error;
666 * These are the functions used to load ELF style executables and shared
667 * libraries. There is no binary dependent code anywhere else.
670 #ifndef STACK_RND_MASK
671 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
672 #endif
674 static unsigned long randomize_stack_top(unsigned long stack_top)
676 unsigned long random_variable = 0;
678 if (current->flags & PF_RANDOMIZE) {
679 random_variable = get_random_long();
680 random_variable &= STACK_RND_MASK;
681 random_variable <<= PAGE_SHIFT;
683 #ifdef CONFIG_STACK_GROWSUP
684 return PAGE_ALIGN(stack_top) + random_variable;
685 #else
686 return PAGE_ALIGN(stack_top) - random_variable;
687 #endif
690 static int load_elf_binary(struct linux_binprm *bprm)
692 struct file *interpreter = NULL; /* to shut gcc up */
693 unsigned long load_addr = 0, load_bias = 0;
694 int load_addr_set = 0;
695 char * elf_interpreter = NULL;
696 unsigned long error;
697 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
698 unsigned long elf_bss, elf_brk;
699 int bss_prot = 0;
700 int retval, i;
701 unsigned long elf_entry;
702 unsigned long interp_load_addr = 0;
703 unsigned long start_code, end_code, start_data, end_data;
704 unsigned long reloc_func_desc __maybe_unused = 0;
705 int executable_stack = EXSTACK_DEFAULT;
706 struct pt_regs *regs = current_pt_regs();
707 struct {
708 struct elfhdr elf_ex;
709 struct elfhdr interp_elf_ex;
710 } *loc;
711 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 loff_t pos;
714 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 if (!loc) {
716 retval = -ENOMEM;
717 goto out_ret;
720 /* Get the exec-header */
721 loc->elf_ex = *((struct elfhdr *)bprm->buf);
723 retval = -ENOEXEC;
724 /* First of all, some simple consistency checks */
725 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 goto out;
728 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 goto out;
730 if (!elf_check_arch(&loc->elf_ex))
731 goto out;
732 if (elf_check_fdpic(&loc->elf_ex))
733 goto out;
734 if (!bprm->file->f_op->mmap)
735 goto out;
737 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 if (!elf_phdata)
739 goto out;
741 elf_ppnt = elf_phdata;
742 elf_bss = 0;
743 elf_brk = 0;
745 start_code = ~0UL;
746 end_code = 0;
747 start_data = 0;
748 end_data = 0;
750 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
751 if (elf_ppnt->p_type == PT_INTERP) {
752 /* This is the program interpreter used for
753 * shared libraries - for now assume that this
754 * is an a.out format binary
756 retval = -ENOEXEC;
757 if (elf_ppnt->p_filesz > PATH_MAX ||
758 elf_ppnt->p_filesz < 2)
759 goto out_free_ph;
761 retval = -ENOMEM;
762 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
763 GFP_KERNEL);
764 if (!elf_interpreter)
765 goto out_free_ph;
767 pos = elf_ppnt->p_offset;
768 retval = kernel_read(bprm->file, elf_interpreter,
769 elf_ppnt->p_filesz, &pos);
770 if (retval != elf_ppnt->p_filesz) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_interp;
775 /* make sure path is NULL terminated */
776 retval = -ENOEXEC;
777 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
778 goto out_free_interp;
780 interpreter = open_exec(elf_interpreter);
781 retval = PTR_ERR(interpreter);
782 if (IS_ERR(interpreter))
783 goto out_free_interp;
786 * If the binary is not readable then enforce
787 * mm->dumpable = 0 regardless of the interpreter's
788 * permissions.
790 would_dump(bprm, interpreter);
792 /* Get the exec headers */
793 pos = 0;
794 retval = kernel_read(interpreter, &loc->interp_elf_ex,
795 sizeof(loc->interp_elf_ex), &pos);
796 if (retval != sizeof(loc->interp_elf_ex)) {
797 if (retval >= 0)
798 retval = -EIO;
799 goto out_free_dentry;
802 break;
804 elf_ppnt++;
807 elf_ppnt = elf_phdata;
808 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
809 switch (elf_ppnt->p_type) {
810 case PT_GNU_STACK:
811 if (elf_ppnt->p_flags & PF_X)
812 executable_stack = EXSTACK_ENABLE_X;
813 else
814 executable_stack = EXSTACK_DISABLE_X;
815 break;
817 case PT_LOPROC ... PT_HIPROC:
818 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
819 bprm->file, false,
820 &arch_state);
821 if (retval)
822 goto out_free_dentry;
823 break;
826 /* Some simple consistency checks for the interpreter */
827 if (elf_interpreter) {
828 retval = -ELIBBAD;
829 /* Not an ELF interpreter */
830 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
831 goto out_free_dentry;
832 /* Verify the interpreter has a valid arch */
833 if (!elf_check_arch(&loc->interp_elf_ex) ||
834 elf_check_fdpic(&loc->interp_elf_ex))
835 goto out_free_dentry;
837 /* Load the interpreter program headers */
838 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
839 interpreter);
840 if (!interp_elf_phdata)
841 goto out_free_dentry;
843 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
844 elf_ppnt = interp_elf_phdata;
845 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
846 switch (elf_ppnt->p_type) {
847 case PT_LOPROC ... PT_HIPROC:
848 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
849 elf_ppnt, interpreter,
850 true, &arch_state);
851 if (retval)
852 goto out_free_dentry;
853 break;
858 * Allow arch code to reject the ELF at this point, whilst it's
859 * still possible to return an error to the code that invoked
860 * the exec syscall.
862 retval = arch_check_elf(&loc->elf_ex,
863 !!interpreter, &loc->interp_elf_ex,
864 &arch_state);
865 if (retval)
866 goto out_free_dentry;
868 /* Flush all traces of the currently running executable */
869 retval = flush_old_exec(bprm);
870 if (retval)
871 goto out_free_dentry;
873 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
874 may depend on the personality. */
875 SET_PERSONALITY2(loc->elf_ex, &arch_state);
876 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
877 current->personality |= READ_IMPLIES_EXEC;
879 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
880 current->flags |= PF_RANDOMIZE;
882 setup_new_exec(bprm);
883 install_exec_creds(bprm);
885 /* Do this so that we can load the interpreter, if need be. We will
886 change some of these later */
887 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
888 executable_stack);
889 if (retval < 0)
890 goto out_free_dentry;
892 current->mm->start_stack = bprm->p;
894 /* Now we do a little grungy work by mmapping the ELF image into
895 the correct location in memory. */
896 for(i = 0, elf_ppnt = elf_phdata;
897 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
898 int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
899 unsigned long k, vaddr;
900 unsigned long total_size = 0;
902 if (elf_ppnt->p_type != PT_LOAD)
903 continue;
905 if (unlikely (elf_brk > elf_bss)) {
906 unsigned long nbyte;
908 /* There was a PT_LOAD segment with p_memsz > p_filesz
909 before this one. Map anonymous pages, if needed,
910 and clear the area. */
911 retval = set_brk(elf_bss + load_bias,
912 elf_brk + load_bias,
913 bss_prot);
914 if (retval)
915 goto out_free_dentry;
916 nbyte = ELF_PAGEOFFSET(elf_bss);
917 if (nbyte) {
918 nbyte = ELF_MIN_ALIGN - nbyte;
919 if (nbyte > elf_brk - elf_bss)
920 nbyte = elf_brk - elf_bss;
921 if (clear_user((void __user *)elf_bss +
922 load_bias, nbyte)) {
924 * This bss-zeroing can fail if the ELF
925 * file specifies odd protections. So
926 * we don't check the return value
932 * Some binaries have overlapping elf segments and then
933 * we have to forcefully map over an existing mapping
934 * e.g. over this newly established brk mapping.
936 elf_fixed = MAP_FIXED;
939 if (elf_ppnt->p_flags & PF_R)
940 elf_prot |= PROT_READ;
941 if (elf_ppnt->p_flags & PF_W)
942 elf_prot |= PROT_WRITE;
943 if (elf_ppnt->p_flags & PF_X)
944 elf_prot |= PROT_EXEC;
946 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
948 vaddr = elf_ppnt->p_vaddr;
950 * If we are loading ET_EXEC or we have already performed
951 * the ET_DYN load_addr calculations, proceed normally.
953 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
954 elf_flags |= elf_fixed;
955 } else if (loc->elf_ex.e_type == ET_DYN) {
957 * This logic is run once for the first LOAD Program
958 * Header for ET_DYN binaries to calculate the
959 * randomization (load_bias) for all the LOAD
960 * Program Headers, and to calculate the entire
961 * size of the ELF mapping (total_size). (Note that
962 * load_addr_set is set to true later once the
963 * initial mapping is performed.)
965 * There are effectively two types of ET_DYN
966 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
967 * and loaders (ET_DYN without INTERP, since they
968 * _are_ the ELF interpreter). The loaders must
969 * be loaded away from programs since the program
970 * may otherwise collide with the loader (especially
971 * for ET_EXEC which does not have a randomized
972 * position). For example to handle invocations of
973 * "./ld.so someprog" to test out a new version of
974 * the loader, the subsequent program that the
975 * loader loads must avoid the loader itself, so
976 * they cannot share the same load range. Sufficient
977 * room for the brk must be allocated with the
978 * loader as well, since brk must be available with
979 * the loader.
981 * Therefore, programs are loaded offset from
982 * ELF_ET_DYN_BASE and loaders are loaded into the
983 * independently randomized mmap region (0 load_bias
984 * without MAP_FIXED).
986 if (elf_interpreter) {
987 load_bias = ELF_ET_DYN_BASE;
988 if (current->flags & PF_RANDOMIZE)
989 load_bias += arch_mmap_rnd();
990 elf_flags |= elf_fixed;
991 } else
992 load_bias = 0;
995 * Since load_bias is used for all subsequent loading
996 * calculations, we must lower it by the first vaddr
997 * so that the remaining calculations based on the
998 * ELF vaddrs will be correctly offset. The result
999 * is then page aligned.
1001 load_bias = ELF_PAGESTART(load_bias - vaddr);
1003 total_size = total_mapping_size(elf_phdata,
1004 loc->elf_ex.e_phnum);
1005 if (!total_size) {
1006 retval = -EINVAL;
1007 goto out_free_dentry;
1011 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1012 elf_prot, elf_flags, total_size);
1013 if (BAD_ADDR(error)) {
1014 retval = IS_ERR((void *)error) ?
1015 PTR_ERR((void*)error) : -EINVAL;
1016 goto out_free_dentry;
1019 if (!load_addr_set) {
1020 load_addr_set = 1;
1021 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1022 if (loc->elf_ex.e_type == ET_DYN) {
1023 load_bias += error -
1024 ELF_PAGESTART(load_bias + vaddr);
1025 load_addr += load_bias;
1026 reloc_func_desc = load_bias;
1029 k = elf_ppnt->p_vaddr;
1030 if (k < start_code)
1031 start_code = k;
1032 if (start_data < k)
1033 start_data = k;
1036 * Check to see if the section's size will overflow the
1037 * allowed task size. Note that p_filesz must always be
1038 * <= p_memsz so it is only necessary to check p_memsz.
1040 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1041 elf_ppnt->p_memsz > TASK_SIZE ||
1042 TASK_SIZE - elf_ppnt->p_memsz < k) {
1043 /* set_brk can never work. Avoid overflows. */
1044 retval = -EINVAL;
1045 goto out_free_dentry;
1048 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1050 if (k > elf_bss)
1051 elf_bss = k;
1052 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1053 end_code = k;
1054 if (end_data < k)
1055 end_data = k;
1056 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1057 if (k > elf_brk) {
1058 bss_prot = elf_prot;
1059 elf_brk = k;
1063 loc->elf_ex.e_entry += load_bias;
1064 elf_bss += load_bias;
1065 elf_brk += load_bias;
1066 start_code += load_bias;
1067 end_code += load_bias;
1068 start_data += load_bias;
1069 end_data += load_bias;
1071 /* Calling set_brk effectively mmaps the pages that we need
1072 * for the bss and break sections. We must do this before
1073 * mapping in the interpreter, to make sure it doesn't wind
1074 * up getting placed where the bss needs to go.
1076 retval = set_brk(elf_bss, elf_brk, bss_prot);
1077 if (retval)
1078 goto out_free_dentry;
1079 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1080 retval = -EFAULT; /* Nobody gets to see this, but.. */
1081 goto out_free_dentry;
1084 if (elf_interpreter) {
1085 unsigned long interp_map_addr = 0;
1087 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1088 interpreter,
1089 &interp_map_addr,
1090 load_bias, interp_elf_phdata);
1091 if (!IS_ERR((void *)elf_entry)) {
1093 * load_elf_interp() returns relocation
1094 * adjustment
1096 interp_load_addr = elf_entry;
1097 elf_entry += loc->interp_elf_ex.e_entry;
1099 if (BAD_ADDR(elf_entry)) {
1100 retval = IS_ERR((void *)elf_entry) ?
1101 (int)elf_entry : -EINVAL;
1102 goto out_free_dentry;
1104 reloc_func_desc = interp_load_addr;
1106 allow_write_access(interpreter);
1107 fput(interpreter);
1108 kfree(elf_interpreter);
1109 } else {
1110 elf_entry = loc->elf_ex.e_entry;
1111 if (BAD_ADDR(elf_entry)) {
1112 retval = -EINVAL;
1113 goto out_free_dentry;
1117 kfree(interp_elf_phdata);
1118 kfree(elf_phdata);
1120 set_binfmt(&elf_format);
1122 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1123 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1124 if (retval < 0)
1125 goto out;
1126 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1128 retval = create_elf_tables(bprm, &loc->elf_ex,
1129 load_addr, interp_load_addr);
1130 if (retval < 0)
1131 goto out;
1132 /* N.B. passed_fileno might not be initialized? */
1133 current->mm->end_code = end_code;
1134 current->mm->start_code = start_code;
1135 current->mm->start_data = start_data;
1136 current->mm->end_data = end_data;
1137 current->mm->start_stack = bprm->p;
1139 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1141 * For architectures with ELF randomization, when executing
1142 * a loader directly (i.e. no interpreter listed in ELF
1143 * headers), move the brk area out of the mmap region
1144 * (since it grows up, and may collide early with the stack
1145 * growing down), and into the unused ELF_ET_DYN_BASE region.
1147 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1148 loc->elf_ex.e_type == ET_DYN && !interpreter)
1149 current->mm->brk = current->mm->start_brk =
1150 ELF_ET_DYN_BASE;
1152 current->mm->brk = current->mm->start_brk =
1153 arch_randomize_brk(current->mm);
1154 #ifdef compat_brk_randomized
1155 current->brk_randomized = 1;
1156 #endif
1159 if (current->personality & MMAP_PAGE_ZERO) {
1160 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1161 and some applications "depend" upon this behavior.
1162 Since we do not have the power to recompile these, we
1163 emulate the SVr4 behavior. Sigh. */
1164 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1165 MAP_FIXED | MAP_PRIVATE, 0);
1168 #ifdef ELF_PLAT_INIT
1170 * The ABI may specify that certain registers be set up in special
1171 * ways (on i386 %edx is the address of a DT_FINI function, for
1172 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1173 * that the e_entry field is the address of the function descriptor
1174 * for the startup routine, rather than the address of the startup
1175 * routine itself. This macro performs whatever initialization to
1176 * the regs structure is required as well as any relocations to the
1177 * function descriptor entries when executing dynamically links apps.
1179 ELF_PLAT_INIT(regs, reloc_func_desc);
1180 #endif
1182 finalize_exec(bprm);
1183 start_thread(regs, elf_entry, bprm->p);
1184 retval = 0;
1185 out:
1186 kfree(loc);
1187 out_ret:
1188 return retval;
1190 /* error cleanup */
1191 out_free_dentry:
1192 kfree(interp_elf_phdata);
1193 allow_write_access(interpreter);
1194 if (interpreter)
1195 fput(interpreter);
1196 out_free_interp:
1197 kfree(elf_interpreter);
1198 out_free_ph:
1199 kfree(elf_phdata);
1200 goto out;
1203 #ifdef CONFIG_USELIB
1204 /* This is really simpleminded and specialized - we are loading an
1205 a.out library that is given an ELF header. */
1206 static int load_elf_library(struct file *file)
1208 struct elf_phdr *elf_phdata;
1209 struct elf_phdr *eppnt;
1210 unsigned long elf_bss, bss, len;
1211 int retval, error, i, j;
1212 struct elfhdr elf_ex;
1213 loff_t pos = 0;
1215 error = -ENOEXEC;
1216 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1217 if (retval != sizeof(elf_ex))
1218 goto out;
1220 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1221 goto out;
1223 /* First of all, some simple consistency checks */
1224 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1225 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1226 goto out;
1227 if (elf_check_fdpic(&elf_ex))
1228 goto out;
1230 /* Now read in all of the header information */
1232 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1233 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1235 error = -ENOMEM;
1236 elf_phdata = kmalloc(j, GFP_KERNEL);
1237 if (!elf_phdata)
1238 goto out;
1240 eppnt = elf_phdata;
1241 error = -ENOEXEC;
1242 pos = elf_ex.e_phoff;
1243 retval = kernel_read(file, eppnt, j, &pos);
1244 if (retval != j)
1245 goto out_free_ph;
1247 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1248 if ((eppnt + i)->p_type == PT_LOAD)
1249 j++;
1250 if (j != 1)
1251 goto out_free_ph;
1253 while (eppnt->p_type != PT_LOAD)
1254 eppnt++;
1256 /* Now use mmap to map the library into memory. */
1257 error = vm_mmap(file,
1258 ELF_PAGESTART(eppnt->p_vaddr),
1259 (eppnt->p_filesz +
1260 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1261 PROT_READ | PROT_WRITE | PROT_EXEC,
1262 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1263 (eppnt->p_offset -
1264 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1265 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1266 goto out_free_ph;
1268 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1269 if (padzero(elf_bss)) {
1270 error = -EFAULT;
1271 goto out_free_ph;
1274 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1275 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1276 if (bss > len) {
1277 error = vm_brk(len, bss - len);
1278 if (error)
1279 goto out_free_ph;
1281 error = 0;
1283 out_free_ph:
1284 kfree(elf_phdata);
1285 out:
1286 return error;
1288 #endif /* #ifdef CONFIG_USELIB */
1290 #ifdef CONFIG_ELF_CORE
1292 * ELF core dumper
1294 * Modelled on fs/exec.c:aout_core_dump()
1295 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1299 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1300 * that are useful for post-mortem analysis are included in every core dump.
1301 * In that way we ensure that the core dump is fully interpretable later
1302 * without matching up the same kernel and hardware config to see what PC values
1303 * meant. These special mappings include - vDSO, vsyscall, and other
1304 * architecture specific mappings
1306 static bool always_dump_vma(struct vm_area_struct *vma)
1308 /* Any vsyscall mappings? */
1309 if (vma == get_gate_vma(vma->vm_mm))
1310 return true;
1313 * Assume that all vmas with a .name op should always be dumped.
1314 * If this changes, a new vm_ops field can easily be added.
1316 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1317 return true;
1320 * arch_vma_name() returns non-NULL for special architecture mappings,
1321 * such as vDSO sections.
1323 if (arch_vma_name(vma))
1324 return true;
1326 return false;
1330 * Decide what to dump of a segment, part, all or none.
1332 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1333 unsigned long mm_flags)
1335 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1337 /* always dump the vdso and vsyscall sections */
1338 if (always_dump_vma(vma))
1339 goto whole;
1341 if (vma->vm_flags & VM_DONTDUMP)
1342 return 0;
1344 /* support for DAX */
1345 if (vma_is_dax(vma)) {
1346 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1347 goto whole;
1348 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1349 goto whole;
1350 return 0;
1353 /* Hugetlb memory check */
1354 if (vma->vm_flags & VM_HUGETLB) {
1355 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1356 goto whole;
1357 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1358 goto whole;
1359 return 0;
1362 /* Do not dump I/O mapped devices or special mappings */
1363 if (vma->vm_flags & VM_IO)
1364 return 0;
1366 /* By default, dump shared memory if mapped from an anonymous file. */
1367 if (vma->vm_flags & VM_SHARED) {
1368 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1369 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1370 goto whole;
1371 return 0;
1374 /* Dump segments that have been written to. */
1375 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1376 goto whole;
1377 if (vma->vm_file == NULL)
1378 return 0;
1380 if (FILTER(MAPPED_PRIVATE))
1381 goto whole;
1384 * If this looks like the beginning of a DSO or executable mapping,
1385 * check for an ELF header. If we find one, dump the first page to
1386 * aid in determining what was mapped here.
1388 if (FILTER(ELF_HEADERS) &&
1389 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1390 u32 __user *header = (u32 __user *) vma->vm_start;
1391 u32 word;
1392 mm_segment_t fs = get_fs();
1394 * Doing it this way gets the constant folded by GCC.
1396 union {
1397 u32 cmp;
1398 char elfmag[SELFMAG];
1399 } magic;
1400 BUILD_BUG_ON(SELFMAG != sizeof word);
1401 magic.elfmag[EI_MAG0] = ELFMAG0;
1402 magic.elfmag[EI_MAG1] = ELFMAG1;
1403 magic.elfmag[EI_MAG2] = ELFMAG2;
1404 magic.elfmag[EI_MAG3] = ELFMAG3;
1406 * Switch to the user "segment" for get_user(),
1407 * then put back what elf_core_dump() had in place.
1409 set_fs(USER_DS);
1410 if (unlikely(get_user(word, header)))
1411 word = 0;
1412 set_fs(fs);
1413 if (word == magic.cmp)
1414 return PAGE_SIZE;
1417 #undef FILTER
1419 return 0;
1421 whole:
1422 return vma->vm_end - vma->vm_start;
1425 /* An ELF note in memory */
1426 struct memelfnote
1428 const char *name;
1429 int type;
1430 unsigned int datasz;
1431 void *data;
1434 static int notesize(struct memelfnote *en)
1436 int sz;
1438 sz = sizeof(struct elf_note);
1439 sz += roundup(strlen(en->name) + 1, 4);
1440 sz += roundup(en->datasz, 4);
1442 return sz;
1445 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1447 struct elf_note en;
1448 en.n_namesz = strlen(men->name) + 1;
1449 en.n_descsz = men->datasz;
1450 en.n_type = men->type;
1452 return dump_emit(cprm, &en, sizeof(en)) &&
1453 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1454 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1457 static void fill_elf_header(struct elfhdr *elf, int segs,
1458 u16 machine, u32 flags)
1460 memset(elf, 0, sizeof(*elf));
1462 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1463 elf->e_ident[EI_CLASS] = ELF_CLASS;
1464 elf->e_ident[EI_DATA] = ELF_DATA;
1465 elf->e_ident[EI_VERSION] = EV_CURRENT;
1466 elf->e_ident[EI_OSABI] = ELF_OSABI;
1468 elf->e_type = ET_CORE;
1469 elf->e_machine = machine;
1470 elf->e_version = EV_CURRENT;
1471 elf->e_phoff = sizeof(struct elfhdr);
1472 elf->e_flags = flags;
1473 elf->e_ehsize = sizeof(struct elfhdr);
1474 elf->e_phentsize = sizeof(struct elf_phdr);
1475 elf->e_phnum = segs;
1477 return;
1480 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1482 phdr->p_type = PT_NOTE;
1483 phdr->p_offset = offset;
1484 phdr->p_vaddr = 0;
1485 phdr->p_paddr = 0;
1486 phdr->p_filesz = sz;
1487 phdr->p_memsz = 0;
1488 phdr->p_flags = 0;
1489 phdr->p_align = 0;
1490 return;
1493 static void fill_note(struct memelfnote *note, const char *name, int type,
1494 unsigned int sz, void *data)
1496 note->name = name;
1497 note->type = type;
1498 note->datasz = sz;
1499 note->data = data;
1500 return;
1504 * fill up all the fields in prstatus from the given task struct, except
1505 * registers which need to be filled up separately.
1507 static void fill_prstatus(struct elf_prstatus *prstatus,
1508 struct task_struct *p, long signr)
1510 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1511 prstatus->pr_sigpend = p->pending.signal.sig[0];
1512 prstatus->pr_sighold = p->blocked.sig[0];
1513 rcu_read_lock();
1514 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1515 rcu_read_unlock();
1516 prstatus->pr_pid = task_pid_vnr(p);
1517 prstatus->pr_pgrp = task_pgrp_vnr(p);
1518 prstatus->pr_sid = task_session_vnr(p);
1519 if (thread_group_leader(p)) {
1520 struct task_cputime cputime;
1523 * This is the record for the group leader. It shows the
1524 * group-wide total, not its individual thread total.
1526 thread_group_cputime(p, &cputime);
1527 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1528 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1529 } else {
1530 u64 utime, stime;
1532 task_cputime(p, &utime, &stime);
1533 prstatus->pr_utime = ns_to_timeval(utime);
1534 prstatus->pr_stime = ns_to_timeval(stime);
1537 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1538 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1541 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1542 struct mm_struct *mm)
1544 const struct cred *cred;
1545 unsigned int i, len;
1547 /* first copy the parameters from user space */
1548 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1550 len = mm->arg_end - mm->arg_start;
1551 if (len >= ELF_PRARGSZ)
1552 len = ELF_PRARGSZ-1;
1553 if (copy_from_user(&psinfo->pr_psargs,
1554 (const char __user *)mm->arg_start, len))
1555 return -EFAULT;
1556 for(i = 0; i < len; i++)
1557 if (psinfo->pr_psargs[i] == 0)
1558 psinfo->pr_psargs[i] = ' ';
1559 psinfo->pr_psargs[len] = 0;
1561 rcu_read_lock();
1562 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1563 rcu_read_unlock();
1564 psinfo->pr_pid = task_pid_vnr(p);
1565 psinfo->pr_pgrp = task_pgrp_vnr(p);
1566 psinfo->pr_sid = task_session_vnr(p);
1568 i = p->state ? ffz(~p->state) + 1 : 0;
1569 psinfo->pr_state = i;
1570 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1571 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1572 psinfo->pr_nice = task_nice(p);
1573 psinfo->pr_flag = p->flags;
1574 rcu_read_lock();
1575 cred = __task_cred(p);
1576 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1577 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1578 rcu_read_unlock();
1579 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1581 return 0;
1584 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1586 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1587 int i = 0;
1589 i += 2;
1590 while (auxv[i - 2] != AT_NULL);
1591 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1594 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1595 const siginfo_t *siginfo)
1597 mm_segment_t old_fs = get_fs();
1598 set_fs(KERNEL_DS);
1599 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1600 set_fs(old_fs);
1601 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1604 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1606 * Format of NT_FILE note:
1608 * long count -- how many files are mapped
1609 * long page_size -- units for file_ofs
1610 * array of [COUNT] elements of
1611 * long start
1612 * long end
1613 * long file_ofs
1614 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1616 static int fill_files_note(struct memelfnote *note)
1618 struct vm_area_struct *vma;
1619 unsigned count, size, names_ofs, remaining, n;
1620 user_long_t *data;
1621 user_long_t *start_end_ofs;
1622 char *name_base, *name_curpos;
1624 /* *Estimated* file count and total data size needed */
1625 count = current->mm->map_count;
1626 if (count > UINT_MAX / 64)
1627 return -EINVAL;
1628 size = count * 64;
1630 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1631 alloc:
1632 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1633 return -EINVAL;
1634 size = round_up(size, PAGE_SIZE);
1635 data = kvmalloc(size, GFP_KERNEL);
1636 if (ZERO_OR_NULL_PTR(data))
1637 return -ENOMEM;
1639 start_end_ofs = data + 2;
1640 name_base = name_curpos = ((char *)data) + names_ofs;
1641 remaining = size - names_ofs;
1642 count = 0;
1643 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1644 struct file *file;
1645 const char *filename;
1647 file = vma->vm_file;
1648 if (!file)
1649 continue;
1650 filename = file_path(file, name_curpos, remaining);
1651 if (IS_ERR(filename)) {
1652 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1653 kvfree(data);
1654 size = size * 5 / 4;
1655 goto alloc;
1657 continue;
1660 /* file_path() fills at the end, move name down */
1661 /* n = strlen(filename) + 1: */
1662 n = (name_curpos + remaining) - filename;
1663 remaining = filename - name_curpos;
1664 memmove(name_curpos, filename, n);
1665 name_curpos += n;
1667 *start_end_ofs++ = vma->vm_start;
1668 *start_end_ofs++ = vma->vm_end;
1669 *start_end_ofs++ = vma->vm_pgoff;
1670 count++;
1673 /* Now we know exact count of files, can store it */
1674 data[0] = count;
1675 data[1] = PAGE_SIZE;
1677 * Count usually is less than current->mm->map_count,
1678 * we need to move filenames down.
1680 n = current->mm->map_count - count;
1681 if (n != 0) {
1682 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1683 memmove(name_base - shift_bytes, name_base,
1684 name_curpos - name_base);
1685 name_curpos -= shift_bytes;
1688 size = name_curpos - (char *)data;
1689 fill_note(note, "CORE", NT_FILE, size, data);
1690 return 0;
1693 #ifdef CORE_DUMP_USE_REGSET
1694 #include <linux/regset.h>
1696 struct elf_thread_core_info {
1697 struct elf_thread_core_info *next;
1698 struct task_struct *task;
1699 struct elf_prstatus prstatus;
1700 struct memelfnote notes[0];
1703 struct elf_note_info {
1704 struct elf_thread_core_info *thread;
1705 struct memelfnote psinfo;
1706 struct memelfnote signote;
1707 struct memelfnote auxv;
1708 struct memelfnote files;
1709 user_siginfo_t csigdata;
1710 size_t size;
1711 int thread_notes;
1715 * When a regset has a writeback hook, we call it on each thread before
1716 * dumping user memory. On register window machines, this makes sure the
1717 * user memory backing the register data is up to date before we read it.
1719 static void do_thread_regset_writeback(struct task_struct *task,
1720 const struct user_regset *regset)
1722 if (regset->writeback)
1723 regset->writeback(task, regset, 1);
1726 #ifndef PRSTATUS_SIZE
1727 #define PRSTATUS_SIZE(S, R) sizeof(S)
1728 #endif
1730 #ifndef SET_PR_FPVALID
1731 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1732 #endif
1734 static int fill_thread_core_info(struct elf_thread_core_info *t,
1735 const struct user_regset_view *view,
1736 long signr, size_t *total)
1738 unsigned int i;
1739 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1742 * NT_PRSTATUS is the one special case, because the regset data
1743 * goes into the pr_reg field inside the note contents, rather
1744 * than being the whole note contents. We fill the reset in here.
1745 * We assume that regset 0 is NT_PRSTATUS.
1747 fill_prstatus(&t->prstatus, t->task, signr);
1748 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1749 &t->prstatus.pr_reg, NULL);
1751 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1752 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1753 *total += notesize(&t->notes[0]);
1755 do_thread_regset_writeback(t->task, &view->regsets[0]);
1758 * Each other regset might generate a note too. For each regset
1759 * that has no core_note_type or is inactive, we leave t->notes[i]
1760 * all zero and we'll know to skip writing it later.
1762 for (i = 1; i < view->n; ++i) {
1763 const struct user_regset *regset = &view->regsets[i];
1764 do_thread_regset_writeback(t->task, regset);
1765 if (regset->core_note_type && regset->get &&
1766 (!regset->active || regset->active(t->task, regset) > 0)) {
1767 int ret;
1768 size_t size = regset_size(t->task, regset);
1769 void *data = kzalloc(size, GFP_KERNEL);
1770 if (unlikely(!data))
1771 return 0;
1772 ret = regset->get(t->task, regset,
1773 0, size, data, NULL);
1774 if (unlikely(ret))
1775 kfree(data);
1776 else {
1777 if (regset->core_note_type != NT_PRFPREG)
1778 fill_note(&t->notes[i], "LINUX",
1779 regset->core_note_type,
1780 size, data);
1781 else {
1782 SET_PR_FPVALID(&t->prstatus,
1783 1, regset0_size);
1784 fill_note(&t->notes[i], "CORE",
1785 NT_PRFPREG, size, data);
1787 *total += notesize(&t->notes[i]);
1792 return 1;
1795 static int fill_note_info(struct elfhdr *elf, int phdrs,
1796 struct elf_note_info *info,
1797 const siginfo_t *siginfo, struct pt_regs *regs)
1799 struct task_struct *dump_task = current;
1800 const struct user_regset_view *view = task_user_regset_view(dump_task);
1801 struct elf_thread_core_info *t;
1802 struct elf_prpsinfo *psinfo;
1803 struct core_thread *ct;
1804 unsigned int i;
1806 info->size = 0;
1807 info->thread = NULL;
1809 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1810 if (psinfo == NULL) {
1811 info->psinfo.data = NULL; /* So we don't free this wrongly */
1812 return 0;
1815 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1818 * Figure out how many notes we're going to need for each thread.
1820 info->thread_notes = 0;
1821 for (i = 0; i < view->n; ++i)
1822 if (view->regsets[i].core_note_type != 0)
1823 ++info->thread_notes;
1826 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1827 * since it is our one special case.
1829 if (unlikely(info->thread_notes == 0) ||
1830 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1831 WARN_ON(1);
1832 return 0;
1836 * Initialize the ELF file header.
1838 fill_elf_header(elf, phdrs,
1839 view->e_machine, view->e_flags);
1842 * Allocate a structure for each thread.
1844 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1845 t = kzalloc(offsetof(struct elf_thread_core_info,
1846 notes[info->thread_notes]),
1847 GFP_KERNEL);
1848 if (unlikely(!t))
1849 return 0;
1851 t->task = ct->task;
1852 if (ct->task == dump_task || !info->thread) {
1853 t->next = info->thread;
1854 info->thread = t;
1855 } else {
1857 * Make sure to keep the original task at
1858 * the head of the list.
1860 t->next = info->thread->next;
1861 info->thread->next = t;
1866 * Now fill in each thread's information.
1868 for (t = info->thread; t != NULL; t = t->next)
1869 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1870 return 0;
1873 * Fill in the two process-wide notes.
1875 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1876 info->size += notesize(&info->psinfo);
1878 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1879 info->size += notesize(&info->signote);
1881 fill_auxv_note(&info->auxv, current->mm);
1882 info->size += notesize(&info->auxv);
1884 if (fill_files_note(&info->files) == 0)
1885 info->size += notesize(&info->files);
1887 return 1;
1890 static size_t get_note_info_size(struct elf_note_info *info)
1892 return info->size;
1896 * Write all the notes for each thread. When writing the first thread, the
1897 * process-wide notes are interleaved after the first thread-specific note.
1899 static int write_note_info(struct elf_note_info *info,
1900 struct coredump_params *cprm)
1902 bool first = true;
1903 struct elf_thread_core_info *t = info->thread;
1905 do {
1906 int i;
1908 if (!writenote(&t->notes[0], cprm))
1909 return 0;
1911 if (first && !writenote(&info->psinfo, cprm))
1912 return 0;
1913 if (first && !writenote(&info->signote, cprm))
1914 return 0;
1915 if (first && !writenote(&info->auxv, cprm))
1916 return 0;
1917 if (first && info->files.data &&
1918 !writenote(&info->files, cprm))
1919 return 0;
1921 for (i = 1; i < info->thread_notes; ++i)
1922 if (t->notes[i].data &&
1923 !writenote(&t->notes[i], cprm))
1924 return 0;
1926 first = false;
1927 t = t->next;
1928 } while (t);
1930 return 1;
1933 static void free_note_info(struct elf_note_info *info)
1935 struct elf_thread_core_info *threads = info->thread;
1936 while (threads) {
1937 unsigned int i;
1938 struct elf_thread_core_info *t = threads;
1939 threads = t->next;
1940 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1941 for (i = 1; i < info->thread_notes; ++i)
1942 kfree(t->notes[i].data);
1943 kfree(t);
1945 kfree(info->psinfo.data);
1946 kvfree(info->files.data);
1949 #else
1951 /* Here is the structure in which status of each thread is captured. */
1952 struct elf_thread_status
1954 struct list_head list;
1955 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1956 elf_fpregset_t fpu; /* NT_PRFPREG */
1957 struct task_struct *thread;
1958 #ifdef ELF_CORE_COPY_XFPREGS
1959 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1960 #endif
1961 struct memelfnote notes[3];
1962 int num_notes;
1966 * In order to add the specific thread information for the elf file format,
1967 * we need to keep a linked list of every threads pr_status and then create
1968 * a single section for them in the final core file.
1970 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1972 int sz = 0;
1973 struct task_struct *p = t->thread;
1974 t->num_notes = 0;
1976 fill_prstatus(&t->prstatus, p, signr);
1977 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1979 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1980 &(t->prstatus));
1981 t->num_notes++;
1982 sz += notesize(&t->notes[0]);
1984 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1985 &t->fpu))) {
1986 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1987 &(t->fpu));
1988 t->num_notes++;
1989 sz += notesize(&t->notes[1]);
1992 #ifdef ELF_CORE_COPY_XFPREGS
1993 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1994 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1995 sizeof(t->xfpu), &t->xfpu);
1996 t->num_notes++;
1997 sz += notesize(&t->notes[2]);
1999 #endif
2000 return sz;
2003 struct elf_note_info {
2004 struct memelfnote *notes;
2005 struct memelfnote *notes_files;
2006 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
2007 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2008 struct list_head thread_list;
2009 elf_fpregset_t *fpu;
2010 #ifdef ELF_CORE_COPY_XFPREGS
2011 elf_fpxregset_t *xfpu;
2012 #endif
2013 user_siginfo_t csigdata;
2014 int thread_status_size;
2015 int numnote;
2018 static int elf_note_info_init(struct elf_note_info *info)
2020 memset(info, 0, sizeof(*info));
2021 INIT_LIST_HEAD(&info->thread_list);
2023 /* Allocate space for ELF notes */
2024 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2025 if (!info->notes)
2026 return 0;
2027 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2028 if (!info->psinfo)
2029 return 0;
2030 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2031 if (!info->prstatus)
2032 return 0;
2033 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2034 if (!info->fpu)
2035 return 0;
2036 #ifdef ELF_CORE_COPY_XFPREGS
2037 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2038 if (!info->xfpu)
2039 return 0;
2040 #endif
2041 return 1;
2044 static int fill_note_info(struct elfhdr *elf, int phdrs,
2045 struct elf_note_info *info,
2046 const siginfo_t *siginfo, struct pt_regs *regs)
2048 struct list_head *t;
2049 struct core_thread *ct;
2050 struct elf_thread_status *ets;
2052 if (!elf_note_info_init(info))
2053 return 0;
2055 for (ct = current->mm->core_state->dumper.next;
2056 ct; ct = ct->next) {
2057 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2058 if (!ets)
2059 return 0;
2061 ets->thread = ct->task;
2062 list_add(&ets->list, &info->thread_list);
2065 list_for_each(t, &info->thread_list) {
2066 int sz;
2068 ets = list_entry(t, struct elf_thread_status, list);
2069 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2070 info->thread_status_size += sz;
2072 /* now collect the dump for the current */
2073 memset(info->prstatus, 0, sizeof(*info->prstatus));
2074 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2075 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2077 /* Set up header */
2078 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2081 * Set up the notes in similar form to SVR4 core dumps made
2082 * with info from their /proc.
2085 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2086 sizeof(*info->prstatus), info->prstatus);
2087 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2088 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2089 sizeof(*info->psinfo), info->psinfo);
2091 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2092 fill_auxv_note(info->notes + 3, current->mm);
2093 info->numnote = 4;
2095 if (fill_files_note(info->notes + info->numnote) == 0) {
2096 info->notes_files = info->notes + info->numnote;
2097 info->numnote++;
2100 /* Try to dump the FPU. */
2101 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2102 info->fpu);
2103 if (info->prstatus->pr_fpvalid)
2104 fill_note(info->notes + info->numnote++,
2105 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2106 #ifdef ELF_CORE_COPY_XFPREGS
2107 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2108 fill_note(info->notes + info->numnote++,
2109 "LINUX", ELF_CORE_XFPREG_TYPE,
2110 sizeof(*info->xfpu), info->xfpu);
2111 #endif
2113 return 1;
2116 static size_t get_note_info_size(struct elf_note_info *info)
2118 int sz = 0;
2119 int i;
2121 for (i = 0; i < info->numnote; i++)
2122 sz += notesize(info->notes + i);
2124 sz += info->thread_status_size;
2126 return sz;
2129 static int write_note_info(struct elf_note_info *info,
2130 struct coredump_params *cprm)
2132 int i;
2133 struct list_head *t;
2135 for (i = 0; i < info->numnote; i++)
2136 if (!writenote(info->notes + i, cprm))
2137 return 0;
2139 /* write out the thread status notes section */
2140 list_for_each(t, &info->thread_list) {
2141 struct elf_thread_status *tmp =
2142 list_entry(t, struct elf_thread_status, list);
2144 for (i = 0; i < tmp->num_notes; i++)
2145 if (!writenote(&tmp->notes[i], cprm))
2146 return 0;
2149 return 1;
2152 static void free_note_info(struct elf_note_info *info)
2154 while (!list_empty(&info->thread_list)) {
2155 struct list_head *tmp = info->thread_list.next;
2156 list_del(tmp);
2157 kfree(list_entry(tmp, struct elf_thread_status, list));
2160 /* Free data possibly allocated by fill_files_note(): */
2161 if (info->notes_files)
2162 kvfree(info->notes_files->data);
2164 kfree(info->prstatus);
2165 kfree(info->psinfo);
2166 kfree(info->notes);
2167 kfree(info->fpu);
2168 #ifdef ELF_CORE_COPY_XFPREGS
2169 kfree(info->xfpu);
2170 #endif
2173 #endif
2175 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2176 struct vm_area_struct *gate_vma)
2178 struct vm_area_struct *ret = tsk->mm->mmap;
2180 if (ret)
2181 return ret;
2182 return gate_vma;
2185 * Helper function for iterating across a vma list. It ensures that the caller
2186 * will visit `gate_vma' prior to terminating the search.
2188 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2189 struct vm_area_struct *gate_vma)
2191 struct vm_area_struct *ret;
2193 ret = this_vma->vm_next;
2194 if (ret)
2195 return ret;
2196 if (this_vma == gate_vma)
2197 return NULL;
2198 return gate_vma;
2201 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2202 elf_addr_t e_shoff, int segs)
2204 elf->e_shoff = e_shoff;
2205 elf->e_shentsize = sizeof(*shdr4extnum);
2206 elf->e_shnum = 1;
2207 elf->e_shstrndx = SHN_UNDEF;
2209 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2211 shdr4extnum->sh_type = SHT_NULL;
2212 shdr4extnum->sh_size = elf->e_shnum;
2213 shdr4extnum->sh_link = elf->e_shstrndx;
2214 shdr4extnum->sh_info = segs;
2218 * Actual dumper
2220 * This is a two-pass process; first we find the offsets of the bits,
2221 * and then they are actually written out. If we run out of core limit
2222 * we just truncate.
2224 static int elf_core_dump(struct coredump_params *cprm)
2226 int has_dumped = 0;
2227 mm_segment_t fs;
2228 int segs, i;
2229 size_t vma_data_size = 0;
2230 struct vm_area_struct *vma, *gate_vma;
2231 struct elfhdr *elf = NULL;
2232 loff_t offset = 0, dataoff;
2233 struct elf_note_info info = { };
2234 struct elf_phdr *phdr4note = NULL;
2235 struct elf_shdr *shdr4extnum = NULL;
2236 Elf_Half e_phnum;
2237 elf_addr_t e_shoff;
2238 elf_addr_t *vma_filesz = NULL;
2241 * We no longer stop all VM operations.
2243 * This is because those proceses that could possibly change map_count
2244 * or the mmap / vma pages are now blocked in do_exit on current
2245 * finishing this core dump.
2247 * Only ptrace can touch these memory addresses, but it doesn't change
2248 * the map_count or the pages allocated. So no possibility of crashing
2249 * exists while dumping the mm->vm_next areas to the core file.
2252 /* alloc memory for large data structures: too large to be on stack */
2253 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2254 if (!elf)
2255 goto out;
2257 * The number of segs are recored into ELF header as 16bit value.
2258 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2260 segs = current->mm->map_count;
2261 segs += elf_core_extra_phdrs();
2263 gate_vma = get_gate_vma(current->mm);
2264 if (gate_vma != NULL)
2265 segs++;
2267 /* for notes section */
2268 segs++;
2270 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2271 * this, kernel supports extended numbering. Have a look at
2272 * include/linux/elf.h for further information. */
2273 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2276 * Collect all the non-memory information about the process for the
2277 * notes. This also sets up the file header.
2279 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2280 goto cleanup;
2282 has_dumped = 1;
2284 fs = get_fs();
2285 set_fs(KERNEL_DS);
2287 offset += sizeof(*elf); /* Elf header */
2288 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2290 /* Write notes phdr entry */
2292 size_t sz = get_note_info_size(&info);
2294 sz += elf_coredump_extra_notes_size();
2296 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2297 if (!phdr4note)
2298 goto end_coredump;
2300 fill_elf_note_phdr(phdr4note, sz, offset);
2301 offset += sz;
2304 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2306 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2307 goto end_coredump;
2308 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2309 GFP_KERNEL);
2310 if (ZERO_OR_NULL_PTR(vma_filesz))
2311 goto end_coredump;
2313 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2314 vma = next_vma(vma, gate_vma)) {
2315 unsigned long dump_size;
2317 dump_size = vma_dump_size(vma, cprm->mm_flags);
2318 vma_filesz[i++] = dump_size;
2319 vma_data_size += dump_size;
2322 offset += vma_data_size;
2323 offset += elf_core_extra_data_size();
2324 e_shoff = offset;
2326 if (e_phnum == PN_XNUM) {
2327 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2328 if (!shdr4extnum)
2329 goto end_coredump;
2330 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2333 offset = dataoff;
2335 if (!dump_emit(cprm, elf, sizeof(*elf)))
2336 goto end_coredump;
2338 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2339 goto end_coredump;
2341 /* Write program headers for segments dump */
2342 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2343 vma = next_vma(vma, gate_vma)) {
2344 struct elf_phdr phdr;
2346 phdr.p_type = PT_LOAD;
2347 phdr.p_offset = offset;
2348 phdr.p_vaddr = vma->vm_start;
2349 phdr.p_paddr = 0;
2350 phdr.p_filesz = vma_filesz[i++];
2351 phdr.p_memsz = vma->vm_end - vma->vm_start;
2352 offset += phdr.p_filesz;
2353 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2354 if (vma->vm_flags & VM_WRITE)
2355 phdr.p_flags |= PF_W;
2356 if (vma->vm_flags & VM_EXEC)
2357 phdr.p_flags |= PF_X;
2358 phdr.p_align = ELF_EXEC_PAGESIZE;
2360 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2361 goto end_coredump;
2364 if (!elf_core_write_extra_phdrs(cprm, offset))
2365 goto end_coredump;
2367 /* write out the notes section */
2368 if (!write_note_info(&info, cprm))
2369 goto end_coredump;
2371 if (elf_coredump_extra_notes_write(cprm))
2372 goto end_coredump;
2374 /* Align to page */
2375 if (!dump_skip(cprm, dataoff - cprm->pos))
2376 goto end_coredump;
2378 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2379 vma = next_vma(vma, gate_vma)) {
2380 unsigned long addr;
2381 unsigned long end;
2383 end = vma->vm_start + vma_filesz[i++];
2385 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2386 struct page *page;
2387 int stop;
2389 page = get_dump_page(addr);
2390 if (page) {
2391 void *kaddr = kmap(page);
2392 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2393 kunmap(page);
2394 put_page(page);
2395 } else
2396 stop = !dump_skip(cprm, PAGE_SIZE);
2397 if (stop)
2398 goto end_coredump;
2401 dump_truncate(cprm);
2403 if (!elf_core_write_extra_data(cprm))
2404 goto end_coredump;
2406 if (e_phnum == PN_XNUM) {
2407 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2408 goto end_coredump;
2411 end_coredump:
2412 set_fs(fs);
2414 cleanup:
2415 free_note_info(&info);
2416 kfree(shdr4extnum);
2417 kvfree(vma_filesz);
2418 kfree(phdr4note);
2419 kfree(elf);
2420 out:
2421 return has_dumped;
2424 #endif /* CONFIG_ELF_CORE */
2426 static int __init init_elf_binfmt(void)
2428 register_binfmt(&elf_format);
2429 return 0;
2432 static void __exit exit_elf_binfmt(void)
2434 /* Remove the COFF and ELF loaders. */
2435 unregister_binfmt(&elf_format);
2438 core_initcall(init_elf_binfmt);
2439 module_exit(exit_elf_binfmt);
2440 MODULE_LICENSE("GPL");