Linux 4.19.133
[linux/fpc-iii.git] / fs / btrfs / delayed-inode.c
blob7374fb23381ca1096a1c29c48961a29a0057fe6b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
16 #define BTRFS_DELAYED_WRITEBACK 512
17 #define BTRFS_DELAYED_BACKGROUND 128
18 #define BTRFS_DELAYED_BATCH 16
20 static struct kmem_cache *delayed_node_cache;
22 int __init btrfs_delayed_inode_init(void)
24 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
25 sizeof(struct btrfs_delayed_node),
27 SLAB_MEM_SPREAD,
28 NULL);
29 if (!delayed_node_cache)
30 return -ENOMEM;
31 return 0;
34 void __cold btrfs_delayed_inode_exit(void)
36 kmem_cache_destroy(delayed_node_cache);
39 static inline void btrfs_init_delayed_node(
40 struct btrfs_delayed_node *delayed_node,
41 struct btrfs_root *root, u64 inode_id)
43 delayed_node->root = root;
44 delayed_node->inode_id = inode_id;
45 refcount_set(&delayed_node->refs, 0);
46 delayed_node->ins_root = RB_ROOT;
47 delayed_node->del_root = RB_ROOT;
48 mutex_init(&delayed_node->mutex);
49 INIT_LIST_HEAD(&delayed_node->n_list);
50 INIT_LIST_HEAD(&delayed_node->p_list);
53 static inline int btrfs_is_continuous_delayed_item(
54 struct btrfs_delayed_item *item1,
55 struct btrfs_delayed_item *item2)
57 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
58 item1->key.objectid == item2->key.objectid &&
59 item1->key.type == item2->key.type &&
60 item1->key.offset + 1 == item2->key.offset)
61 return 1;
62 return 0;
65 static struct btrfs_delayed_node *btrfs_get_delayed_node(
66 struct btrfs_inode *btrfs_inode)
68 struct btrfs_root *root = btrfs_inode->root;
69 u64 ino = btrfs_ino(btrfs_inode);
70 struct btrfs_delayed_node *node;
72 node = READ_ONCE(btrfs_inode->delayed_node);
73 if (node) {
74 refcount_inc(&node->refs);
75 return node;
78 spin_lock(&root->inode_lock);
79 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81 if (node) {
82 if (btrfs_inode->delayed_node) {
83 refcount_inc(&node->refs); /* can be accessed */
84 BUG_ON(btrfs_inode->delayed_node != node);
85 spin_unlock(&root->inode_lock);
86 return node;
90 * It's possible that we're racing into the middle of removing
91 * this node from the radix tree. In this case, the refcount
92 * was zero and it should never go back to one. Just return
93 * NULL like it was never in the radix at all; our release
94 * function is in the process of removing it.
96 * Some implementations of refcount_inc refuse to bump the
97 * refcount once it has hit zero. If we don't do this dance
98 * here, refcount_inc() may decide to just WARN_ONCE() instead
99 * of actually bumping the refcount.
101 * If this node is properly in the radix, we want to bump the
102 * refcount twice, once for the inode and once for this get
103 * operation.
105 if (refcount_inc_not_zero(&node->refs)) {
106 refcount_inc(&node->refs);
107 btrfs_inode->delayed_node = node;
108 } else {
109 node = NULL;
112 spin_unlock(&root->inode_lock);
113 return node;
115 spin_unlock(&root->inode_lock);
117 return NULL;
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct btrfs_inode *btrfs_inode)
124 struct btrfs_delayed_node *node;
125 struct btrfs_root *root = btrfs_inode->root;
126 u64 ino = btrfs_ino(btrfs_inode);
127 int ret;
129 again:
130 node = btrfs_get_delayed_node(btrfs_inode);
131 if (node)
132 return node;
134 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
135 if (!node)
136 return ERR_PTR(-ENOMEM);
137 btrfs_init_delayed_node(node, root, ino);
139 /* cached in the btrfs inode and can be accessed */
140 refcount_set(&node->refs, 2);
142 ret = radix_tree_preload(GFP_NOFS);
143 if (ret) {
144 kmem_cache_free(delayed_node_cache, node);
145 return ERR_PTR(ret);
148 spin_lock(&root->inode_lock);
149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 if (ret == -EEXIST) {
151 spin_unlock(&root->inode_lock);
152 kmem_cache_free(delayed_node_cache, node);
153 radix_tree_preload_end();
154 goto again;
156 btrfs_inode->delayed_node = node;
157 spin_unlock(&root->inode_lock);
158 radix_tree_preload_end();
160 return node;
164 * Call it when holding delayed_node->mutex
166 * If mod = 1, add this node into the prepared list.
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 spin_unlock(&root->lock);
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 spin_unlock(&root->lock);
204 static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217 out:
218 spin_unlock(&delayed_root->lock);
220 return node;
223 static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244 out:
245 spin_unlock(&delayed_root->lock);
247 return next;
250 static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
254 struct btrfs_delayed_root *delayed_root;
256 if (!delayed_node)
257 return;
259 delayed_root = delayed_node->root->fs_info->delayed_root;
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
271 spin_lock(&root->inode_lock);
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 radix_tree_delete(&root->delayed_nodes_tree,
278 delayed_node->inode_id);
279 spin_unlock(&root->inode_lock);
280 kmem_cache_free(delayed_node_cache, delayed_node);
284 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 __btrfs_release_delayed_node(node, 0);
289 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 struct btrfs_delayed_root *delayed_root)
292 struct list_head *p;
293 struct btrfs_delayed_node *node = NULL;
295 spin_lock(&delayed_root->lock);
296 if (list_empty(&delayed_root->prepare_list))
297 goto out;
299 p = delayed_root->prepare_list.next;
300 list_del_init(p);
301 node = list_entry(p, struct btrfs_delayed_node, p_list);
302 refcount_inc(&node->refs);
303 out:
304 spin_unlock(&delayed_root->lock);
306 return node;
309 static inline void btrfs_release_prepared_delayed_node(
310 struct btrfs_delayed_node *node)
312 __btrfs_release_delayed_node(node, 1);
315 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 struct btrfs_delayed_item *item;
318 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 if (item) {
320 item->data_len = data_len;
321 item->ins_or_del = 0;
322 item->bytes_reserved = 0;
323 item->delayed_node = NULL;
324 refcount_set(&item->refs, 1);
326 return item;
330 * __btrfs_lookup_delayed_item - look up the delayed item by key
331 * @delayed_node: pointer to the delayed node
332 * @key: the key to look up
333 * @prev: used to store the prev item if the right item isn't found
334 * @next: used to store the next item if the right item isn't found
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
339 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
341 struct btrfs_key *key,
342 struct btrfs_delayed_item **prev,
343 struct btrfs_delayed_item **next)
345 struct rb_node *node, *prev_node = NULL;
346 struct btrfs_delayed_item *delayed_item = NULL;
347 int ret = 0;
349 node = root->rb_node;
351 while (node) {
352 delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 rb_node);
354 prev_node = node;
355 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 if (ret < 0)
357 node = node->rb_right;
358 else if (ret > 0)
359 node = node->rb_left;
360 else
361 return delayed_item;
364 if (prev) {
365 if (!prev_node)
366 *prev = NULL;
367 else if (ret < 0)
368 *prev = delayed_item;
369 else if ((node = rb_prev(prev_node)) != NULL) {
370 *prev = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *prev = NULL;
376 if (next) {
377 if (!prev_node)
378 *next = NULL;
379 else if (ret > 0)
380 *next = delayed_item;
381 else if ((node = rb_next(prev_node)) != NULL) {
382 *next = rb_entry(node, struct btrfs_delayed_item,
383 rb_node);
384 } else
385 *next = NULL;
387 return NULL;
390 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 struct btrfs_delayed_node *delayed_node,
392 struct btrfs_key *key)
394 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
395 NULL, NULL);
398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 struct btrfs_delayed_item *ins,
400 int action)
402 struct rb_node **p, *node;
403 struct rb_node *parent_node = NULL;
404 struct rb_root *root;
405 struct btrfs_delayed_item *item;
406 int cmp;
408 if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 root = &delayed_node->ins_root;
410 else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 root = &delayed_node->del_root;
412 else
413 BUG();
414 p = &root->rb_node;
415 node = &ins->rb_node;
417 while (*p) {
418 parent_node = *p;
419 item = rb_entry(parent_node, struct btrfs_delayed_item,
420 rb_node);
422 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 if (cmp < 0)
424 p = &(*p)->rb_right;
425 else if (cmp > 0)
426 p = &(*p)->rb_left;
427 else
428 return -EEXIST;
431 rb_link_node(node, parent_node, p);
432 rb_insert_color(node, root);
433 ins->delayed_node = delayed_node;
434 ins->ins_or_del = action;
436 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437 action == BTRFS_DELAYED_INSERTION_ITEM &&
438 ins->key.offset >= delayed_node->index_cnt)
439 delayed_node->index_cnt = ins->key.offset + 1;
441 delayed_node->count++;
442 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443 return 0;
446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447 struct btrfs_delayed_item *item)
449 return __btrfs_add_delayed_item(node, item,
450 BTRFS_DELAYED_INSERTION_ITEM);
453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454 struct btrfs_delayed_item *item)
456 return __btrfs_add_delayed_item(node, item,
457 BTRFS_DELAYED_DELETION_ITEM);
460 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
462 int seq = atomic_inc_return(&delayed_root->items_seq);
464 /* atomic_dec_return implies a barrier */
465 if ((atomic_dec_return(&delayed_root->items) <
466 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
467 cond_wake_up_nomb(&delayed_root->wait);
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
472 struct rb_root *root;
473 struct btrfs_delayed_root *delayed_root;
475 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
477 BUG_ON(!delayed_root);
478 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
479 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
481 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
482 root = &delayed_item->delayed_node->ins_root;
483 else
484 root = &delayed_item->delayed_node->del_root;
486 rb_erase(&delayed_item->rb_node, root);
487 delayed_item->delayed_node->count--;
489 finish_one_item(delayed_root);
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
494 if (item) {
495 __btrfs_remove_delayed_item(item);
496 if (refcount_dec_and_test(&item->refs))
497 kfree(item);
501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
502 struct btrfs_delayed_node *delayed_node)
504 struct rb_node *p;
505 struct btrfs_delayed_item *item = NULL;
507 p = rb_first(&delayed_node->ins_root);
508 if (p)
509 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
511 return item;
514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
515 struct btrfs_delayed_node *delayed_node)
517 struct rb_node *p;
518 struct btrfs_delayed_item *item = NULL;
520 p = rb_first(&delayed_node->del_root);
521 if (p)
522 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524 return item;
527 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
528 struct btrfs_delayed_item *item)
530 struct rb_node *p;
531 struct btrfs_delayed_item *next = NULL;
533 p = rb_next(&item->rb_node);
534 if (p)
535 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 return next;
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root,
542 struct btrfs_delayed_item *item)
544 struct btrfs_block_rsv *src_rsv;
545 struct btrfs_block_rsv *dst_rsv;
546 struct btrfs_fs_info *fs_info = root->fs_info;
547 u64 num_bytes;
548 int ret;
550 if (!trans->bytes_reserved)
551 return 0;
553 src_rsv = trans->block_rsv;
554 dst_rsv = &fs_info->delayed_block_rsv;
556 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559 * Here we migrate space rsv from transaction rsv, since have already
560 * reserved space when starting a transaction. So no need to reserve
561 * qgroup space here.
563 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
564 if (!ret) {
565 trace_btrfs_space_reservation(fs_info, "delayed_item",
566 item->key.objectid,
567 num_bytes, 1);
568 item->bytes_reserved = num_bytes;
571 return ret;
574 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
575 struct btrfs_delayed_item *item)
577 struct btrfs_block_rsv *rsv;
578 struct btrfs_fs_info *fs_info = root->fs_info;
580 if (!item->bytes_reserved)
581 return;
583 rsv = &fs_info->delayed_block_rsv;
585 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
586 * to release/reserve qgroup space.
588 trace_btrfs_space_reservation(fs_info, "delayed_item",
589 item->key.objectid, item->bytes_reserved,
591 btrfs_block_rsv_release(fs_info, rsv,
592 item->bytes_reserved);
595 static int btrfs_delayed_inode_reserve_metadata(
596 struct btrfs_trans_handle *trans,
597 struct btrfs_root *root,
598 struct btrfs_inode *inode,
599 struct btrfs_delayed_node *node)
601 struct btrfs_fs_info *fs_info = root->fs_info;
602 struct btrfs_block_rsv *src_rsv;
603 struct btrfs_block_rsv *dst_rsv;
604 u64 num_bytes;
605 int ret;
607 src_rsv = trans->block_rsv;
608 dst_rsv = &fs_info->delayed_block_rsv;
610 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
614 * which doesn't reserve space for speed. This is a problem since we
615 * still need to reserve space for this update, so try to reserve the
616 * space.
618 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
619 * we always reserve enough to update the inode item.
621 if (!src_rsv || (!trans->bytes_reserved &&
622 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
623 ret = btrfs_qgroup_reserve_meta_prealloc(root,
624 fs_info->nodesize, true);
625 if (ret < 0)
626 return ret;
627 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
628 BTRFS_RESERVE_NO_FLUSH);
630 * Since we're under a transaction reserve_metadata_bytes could
631 * try to commit the transaction which will make it return
632 * EAGAIN to make us stop the transaction we have, so return
633 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
635 if (ret == -EAGAIN) {
636 ret = -ENOSPC;
637 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639 if (!ret) {
640 node->bytes_reserved = num_bytes;
641 trace_btrfs_space_reservation(fs_info,
642 "delayed_inode",
643 btrfs_ino(inode),
644 num_bytes, 1);
645 } else {
646 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
648 return ret;
651 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
652 if (!ret) {
653 trace_btrfs_space_reservation(fs_info, "delayed_inode",
654 btrfs_ino(inode), num_bytes, 1);
655 node->bytes_reserved = num_bytes;
658 return ret;
661 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
662 struct btrfs_delayed_node *node,
663 bool qgroup_free)
665 struct btrfs_block_rsv *rsv;
667 if (!node->bytes_reserved)
668 return;
670 rsv = &fs_info->delayed_block_rsv;
671 trace_btrfs_space_reservation(fs_info, "delayed_inode",
672 node->inode_id, node->bytes_reserved, 0);
673 btrfs_block_rsv_release(fs_info, rsv,
674 node->bytes_reserved);
675 if (qgroup_free)
676 btrfs_qgroup_free_meta_prealloc(node->root,
677 node->bytes_reserved);
678 else
679 btrfs_qgroup_convert_reserved_meta(node->root,
680 node->bytes_reserved);
681 node->bytes_reserved = 0;
685 * This helper will insert some continuous items into the same leaf according
686 * to the free space of the leaf.
688 static int btrfs_batch_insert_items(struct btrfs_root *root,
689 struct btrfs_path *path,
690 struct btrfs_delayed_item *item)
692 struct btrfs_fs_info *fs_info = root->fs_info;
693 struct btrfs_delayed_item *curr, *next;
694 int free_space;
695 int total_data_size = 0, total_size = 0;
696 struct extent_buffer *leaf;
697 char *data_ptr;
698 struct btrfs_key *keys;
699 u32 *data_size;
700 struct list_head head;
701 int slot;
702 int nitems;
703 int i;
704 int ret = 0;
706 BUG_ON(!path->nodes[0]);
708 leaf = path->nodes[0];
709 free_space = btrfs_leaf_free_space(fs_info, leaf);
710 INIT_LIST_HEAD(&head);
712 next = item;
713 nitems = 0;
716 * count the number of the continuous items that we can insert in batch
718 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
719 free_space) {
720 total_data_size += next->data_len;
721 total_size += next->data_len + sizeof(struct btrfs_item);
722 list_add_tail(&next->tree_list, &head);
723 nitems++;
725 curr = next;
726 next = __btrfs_next_delayed_item(curr);
727 if (!next)
728 break;
730 if (!btrfs_is_continuous_delayed_item(curr, next))
731 break;
734 if (!nitems) {
735 ret = 0;
736 goto out;
740 * we need allocate some memory space, but it might cause the task
741 * to sleep, so we set all locked nodes in the path to blocking locks
742 * first.
744 btrfs_set_path_blocking(path);
746 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
747 if (!keys) {
748 ret = -ENOMEM;
749 goto out;
752 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
753 if (!data_size) {
754 ret = -ENOMEM;
755 goto error;
758 /* get keys of all the delayed items */
759 i = 0;
760 list_for_each_entry(next, &head, tree_list) {
761 keys[i] = next->key;
762 data_size[i] = next->data_len;
763 i++;
766 /* reset all the locked nodes in the patch to spinning locks. */
767 btrfs_clear_path_blocking(path, NULL, 0);
769 /* insert the keys of the items */
770 setup_items_for_insert(root, path, keys, data_size,
771 total_data_size, total_size, nitems);
773 /* insert the dir index items */
774 slot = path->slots[0];
775 list_for_each_entry_safe(curr, next, &head, tree_list) {
776 data_ptr = btrfs_item_ptr(leaf, slot, char);
777 write_extent_buffer(leaf, &curr->data,
778 (unsigned long)data_ptr,
779 curr->data_len);
780 slot++;
782 btrfs_delayed_item_release_metadata(root, curr);
784 list_del(&curr->tree_list);
785 btrfs_release_delayed_item(curr);
788 error:
789 kfree(data_size);
790 kfree(keys);
791 out:
792 return ret;
796 * This helper can just do simple insertion that needn't extend item for new
797 * data, such as directory name index insertion, inode insertion.
799 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root,
801 struct btrfs_path *path,
802 struct btrfs_delayed_item *delayed_item)
804 struct extent_buffer *leaf;
805 unsigned int nofs_flag;
806 char *ptr;
807 int ret;
809 nofs_flag = memalloc_nofs_save();
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 memalloc_nofs_restore(nofs_flag);
813 if (ret < 0 && ret != -EEXIST)
814 return ret;
816 leaf = path->nodes[0];
818 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
820 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
821 delayed_item->data_len);
822 btrfs_mark_buffer_dirty(leaf);
824 btrfs_delayed_item_release_metadata(root, delayed_item);
825 return 0;
829 * we insert an item first, then if there are some continuous items, we try
830 * to insert those items into the same leaf.
832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
833 struct btrfs_path *path,
834 struct btrfs_root *root,
835 struct btrfs_delayed_node *node)
837 struct btrfs_delayed_item *curr, *prev;
838 int ret = 0;
840 do_again:
841 mutex_lock(&node->mutex);
842 curr = __btrfs_first_delayed_insertion_item(node);
843 if (!curr)
844 goto insert_end;
846 ret = btrfs_insert_delayed_item(trans, root, path, curr);
847 if (ret < 0) {
848 btrfs_release_path(path);
849 goto insert_end;
852 prev = curr;
853 curr = __btrfs_next_delayed_item(prev);
854 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
855 /* insert the continuous items into the same leaf */
856 path->slots[0]++;
857 btrfs_batch_insert_items(root, path, curr);
859 btrfs_release_delayed_item(prev);
860 btrfs_mark_buffer_dirty(path->nodes[0]);
862 btrfs_release_path(path);
863 mutex_unlock(&node->mutex);
864 goto do_again;
866 insert_end:
867 mutex_unlock(&node->mutex);
868 return ret;
871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root,
873 struct btrfs_path *path,
874 struct btrfs_delayed_item *item)
876 struct btrfs_delayed_item *curr, *next;
877 struct extent_buffer *leaf;
878 struct btrfs_key key;
879 struct list_head head;
880 int nitems, i, last_item;
881 int ret = 0;
883 BUG_ON(!path->nodes[0]);
885 leaf = path->nodes[0];
887 i = path->slots[0];
888 last_item = btrfs_header_nritems(leaf) - 1;
889 if (i > last_item)
890 return -ENOENT; /* FIXME: Is errno suitable? */
892 next = item;
893 INIT_LIST_HEAD(&head);
894 btrfs_item_key_to_cpu(leaf, &key, i);
895 nitems = 0;
897 * count the number of the dir index items that we can delete in batch
899 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
900 list_add_tail(&next->tree_list, &head);
901 nitems++;
903 curr = next;
904 next = __btrfs_next_delayed_item(curr);
905 if (!next)
906 break;
908 if (!btrfs_is_continuous_delayed_item(curr, next))
909 break;
911 i++;
912 if (i > last_item)
913 break;
914 btrfs_item_key_to_cpu(leaf, &key, i);
917 if (!nitems)
918 return 0;
920 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
921 if (ret)
922 goto out;
924 list_for_each_entry_safe(curr, next, &head, tree_list) {
925 btrfs_delayed_item_release_metadata(root, curr);
926 list_del(&curr->tree_list);
927 btrfs_release_delayed_item(curr);
930 out:
931 return ret;
934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
935 struct btrfs_path *path,
936 struct btrfs_root *root,
937 struct btrfs_delayed_node *node)
939 struct btrfs_delayed_item *curr, *prev;
940 unsigned int nofs_flag;
941 int ret = 0;
943 do_again:
944 mutex_lock(&node->mutex);
945 curr = __btrfs_first_delayed_deletion_item(node);
946 if (!curr)
947 goto delete_fail;
949 nofs_flag = memalloc_nofs_save();
950 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
951 memalloc_nofs_restore(nofs_flag);
952 if (ret < 0)
953 goto delete_fail;
954 else if (ret > 0) {
956 * can't find the item which the node points to, so this node
957 * is invalid, just drop it.
959 prev = curr;
960 curr = __btrfs_next_delayed_item(prev);
961 btrfs_release_delayed_item(prev);
962 ret = 0;
963 btrfs_release_path(path);
964 if (curr) {
965 mutex_unlock(&node->mutex);
966 goto do_again;
967 } else
968 goto delete_fail;
971 btrfs_batch_delete_items(trans, root, path, curr);
972 btrfs_release_path(path);
973 mutex_unlock(&node->mutex);
974 goto do_again;
976 delete_fail:
977 btrfs_release_path(path);
978 mutex_unlock(&node->mutex);
979 return ret;
982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
984 struct btrfs_delayed_root *delayed_root;
986 if (delayed_node &&
987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 BUG_ON(!delayed_node->root);
989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 delayed_node->count--;
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
999 struct btrfs_delayed_root *delayed_root;
1001 ASSERT(delayed_node->root);
1002 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1003 delayed_node->count--;
1005 delayed_root = delayed_node->root->fs_info->delayed_root;
1006 finish_one_item(delayed_root);
1009 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root,
1011 struct btrfs_path *path,
1012 struct btrfs_delayed_node *node)
1014 struct btrfs_fs_info *fs_info = root->fs_info;
1015 struct btrfs_key key;
1016 struct btrfs_inode_item *inode_item;
1017 struct extent_buffer *leaf;
1018 unsigned int nofs_flag;
1019 int mod;
1020 int ret;
1022 key.objectid = node->inode_id;
1023 key.type = BTRFS_INODE_ITEM_KEY;
1024 key.offset = 0;
1026 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027 mod = -1;
1028 else
1029 mod = 1;
1031 nofs_flag = memalloc_nofs_save();
1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 memalloc_nofs_restore(nofs_flag);
1034 if (ret > 0) {
1035 btrfs_release_path(path);
1036 return -ENOENT;
1037 } else if (ret < 0) {
1038 return ret;
1041 leaf = path->nodes[0];
1042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043 struct btrfs_inode_item);
1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045 sizeof(struct btrfs_inode_item));
1046 btrfs_mark_buffer_dirty(leaf);
1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049 goto no_iref;
1051 path->slots[0]++;
1052 if (path->slots[0] >= btrfs_header_nritems(leaf))
1053 goto search;
1054 again:
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != node->inode_id)
1057 goto out;
1059 if (key.type != BTRFS_INODE_REF_KEY &&
1060 key.type != BTRFS_INODE_EXTREF_KEY)
1061 goto out;
1064 * Delayed iref deletion is for the inode who has only one link,
1065 * so there is only one iref. The case that several irefs are
1066 * in the same item doesn't exist.
1068 btrfs_del_item(trans, root, path);
1069 out:
1070 btrfs_release_delayed_iref(node);
1071 no_iref:
1072 btrfs_release_path(path);
1073 err_out:
1074 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1075 btrfs_release_delayed_inode(node);
1077 return ret;
1079 search:
1080 btrfs_release_path(path);
1082 key.type = BTRFS_INODE_EXTREF_KEY;
1083 key.offset = -1;
1085 nofs_flag = memalloc_nofs_save();
1086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 memalloc_nofs_restore(nofs_flag);
1088 if (ret < 0)
1089 goto err_out;
1090 ASSERT(ret);
1092 ret = 0;
1093 leaf = path->nodes[0];
1094 path->slots[0]--;
1095 goto again;
1098 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1103 int ret;
1105 mutex_lock(&node->mutex);
1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107 mutex_unlock(&node->mutex);
1108 return 0;
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1116 static inline int
1117 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1121 int ret;
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1151 if (trans->aborted)
1152 return -EIO;
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157 path->leave_spinning = 1;
1159 block_rsv = trans->block_rsv;
1160 trans->block_rsv = &fs_info->delayed_block_rsv;
1162 delayed_root = fs_info->delayed_root;
1164 curr_node = btrfs_first_delayed_node(delayed_root);
1165 while (curr_node && (!count || (count && nr--))) {
1166 ret = __btrfs_commit_inode_delayed_items(trans, path,
1167 curr_node);
1168 if (ret) {
1169 btrfs_release_delayed_node(curr_node);
1170 curr_node = NULL;
1171 btrfs_abort_transaction(trans, ret);
1172 break;
1175 prev_node = curr_node;
1176 curr_node = btrfs_next_delayed_node(curr_node);
1177 btrfs_release_delayed_node(prev_node);
1180 if (curr_node)
1181 btrfs_release_delayed_node(curr_node);
1182 btrfs_free_path(path);
1183 trans->block_rsv = block_rsv;
1185 return ret;
1188 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1190 return __btrfs_run_delayed_items(trans, -1);
1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1195 return __btrfs_run_delayed_items(trans, nr);
1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct btrfs_inode *inode)
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1206 if (!delayed_node)
1207 return 0;
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1215 mutex_unlock(&delayed_node->mutex);
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1222 path->leave_spinning = 1;
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1233 return ret;
1236 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1238 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1245 if (!delayed_node)
1246 return 0;
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1254 mutex_unlock(&delayed_node->mutex);
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1267 path->leave_spinning = 1;
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282 trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285 out:
1286 btrfs_release_delayed_node(delayed_node);
1288 return ret;
1291 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1293 struct btrfs_delayed_node *delayed_node;
1295 delayed_node = READ_ONCE(inode->delayed_node);
1296 if (!delayed_node)
1297 return;
1299 inode->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1303 struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1327 do {
1328 if (atomic_read(&delayed_root->items) <
1329 BTRFS_DELAYED_BACKGROUND / 2)
1330 break;
1332 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1333 if (!delayed_node)
1334 break;
1336 path->leave_spinning = 1;
1337 root = delayed_node->root;
1339 trans = btrfs_join_transaction(root);
1340 if (IS_ERR(trans)) {
1341 btrfs_release_path(path);
1342 btrfs_release_prepared_delayed_node(delayed_node);
1343 total_done++;
1344 continue;
1347 block_rsv = trans->block_rsv;
1348 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1350 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1352 trans->block_rsv = block_rsv;
1353 btrfs_end_transaction(trans);
1354 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1356 btrfs_release_path(path);
1357 btrfs_release_prepared_delayed_node(delayed_node);
1358 total_done++;
1360 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1361 || total_done < async_work->nr);
1363 btrfs_free_path(path);
1364 out:
1365 wake_up(&delayed_root->wait);
1366 kfree(async_work);
1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1371 struct btrfs_fs_info *fs_info, int nr)
1373 struct btrfs_async_delayed_work *async_work;
1375 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1376 if (!async_work)
1377 return -ENOMEM;
1379 async_work->delayed_root = delayed_root;
1380 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1381 btrfs_async_run_delayed_root, NULL, NULL);
1382 async_work->nr = nr;
1384 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1385 return 0;
1388 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395 int val = atomic_read(&delayed_root->items_seq);
1397 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1398 return 1;
1400 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1401 return 1;
1403 return 0;
1406 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1411 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1412 return;
1414 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1415 int seq;
1416 int ret;
1418 seq = atomic_read(&delayed_root->items_seq);
1420 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1421 if (ret)
1422 return;
1424 wait_event_interruptible(delayed_root->wait,
1425 could_end_wait(delayed_root, seq));
1426 return;
1429 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432 /* Will return 0 or -ENOMEM */
1433 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434 const char *name, int name_len,
1435 struct btrfs_inode *dir,
1436 struct btrfs_disk_key *disk_key, u8 type,
1437 u64 index)
1439 struct btrfs_delayed_node *delayed_node;
1440 struct btrfs_delayed_item *delayed_item;
1441 struct btrfs_dir_item *dir_item;
1442 int ret;
1444 delayed_node = btrfs_get_or_create_delayed_node(dir);
1445 if (IS_ERR(delayed_node))
1446 return PTR_ERR(delayed_node);
1448 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1449 if (!delayed_item) {
1450 ret = -ENOMEM;
1451 goto release_node;
1454 delayed_item->key.objectid = btrfs_ino(dir);
1455 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1456 delayed_item->key.offset = index;
1458 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1459 dir_item->location = *disk_key;
1460 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1461 btrfs_set_stack_dir_data_len(dir_item, 0);
1462 btrfs_set_stack_dir_name_len(dir_item, name_len);
1463 btrfs_set_stack_dir_type(dir_item, type);
1464 memcpy((char *)(dir_item + 1), name, name_len);
1466 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1468 * we have reserved enough space when we start a new transaction,
1469 * so reserving metadata failure is impossible
1471 BUG_ON(ret);
1473 mutex_lock(&delayed_node->mutex);
1474 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1475 if (unlikely(ret)) {
1476 btrfs_err(trans->fs_info,
1477 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1478 name_len, name, delayed_node->root->objectid,
1479 delayed_node->inode_id, ret);
1480 BUG();
1482 mutex_unlock(&delayed_node->mutex);
1484 release_node:
1485 btrfs_release_delayed_node(delayed_node);
1486 return ret;
1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1490 struct btrfs_delayed_node *node,
1491 struct btrfs_key *key)
1493 struct btrfs_delayed_item *item;
1495 mutex_lock(&node->mutex);
1496 item = __btrfs_lookup_delayed_insertion_item(node, key);
1497 if (!item) {
1498 mutex_unlock(&node->mutex);
1499 return 1;
1502 btrfs_delayed_item_release_metadata(node->root, item);
1503 btrfs_release_delayed_item(item);
1504 mutex_unlock(&node->mutex);
1505 return 0;
1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1509 struct btrfs_inode *dir, u64 index)
1511 struct btrfs_delayed_node *node;
1512 struct btrfs_delayed_item *item;
1513 struct btrfs_key item_key;
1514 int ret;
1516 node = btrfs_get_or_create_delayed_node(dir);
1517 if (IS_ERR(node))
1518 return PTR_ERR(node);
1520 item_key.objectid = btrfs_ino(dir);
1521 item_key.type = BTRFS_DIR_INDEX_KEY;
1522 item_key.offset = index;
1524 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1525 &item_key);
1526 if (!ret)
1527 goto end;
1529 item = btrfs_alloc_delayed_item(0);
1530 if (!item) {
1531 ret = -ENOMEM;
1532 goto end;
1535 item->key = item_key;
1537 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1539 * we have reserved enough space when we start a new transaction,
1540 * so reserving metadata failure is impossible.
1542 BUG_ON(ret);
1544 mutex_lock(&node->mutex);
1545 ret = __btrfs_add_delayed_deletion_item(node, item);
1546 if (unlikely(ret)) {
1547 btrfs_err(trans->fs_info,
1548 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1549 index, node->root->objectid, node->inode_id, ret);
1550 BUG();
1552 mutex_unlock(&node->mutex);
1553 end:
1554 btrfs_release_delayed_node(node);
1555 return ret;
1558 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1560 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1562 if (!delayed_node)
1563 return -ENOENT;
1566 * Since we have held i_mutex of this directory, it is impossible that
1567 * a new directory index is added into the delayed node and index_cnt
1568 * is updated now. So we needn't lock the delayed node.
1570 if (!delayed_node->index_cnt) {
1571 btrfs_release_delayed_node(delayed_node);
1572 return -EINVAL;
1575 inode->index_cnt = delayed_node->index_cnt;
1576 btrfs_release_delayed_node(delayed_node);
1577 return 0;
1580 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1581 struct list_head *ins_list,
1582 struct list_head *del_list)
1584 struct btrfs_delayed_node *delayed_node;
1585 struct btrfs_delayed_item *item;
1587 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1588 if (!delayed_node)
1589 return false;
1592 * We can only do one readdir with delayed items at a time because of
1593 * item->readdir_list.
1595 inode_unlock_shared(inode);
1596 inode_lock(inode);
1598 mutex_lock(&delayed_node->mutex);
1599 item = __btrfs_first_delayed_insertion_item(delayed_node);
1600 while (item) {
1601 refcount_inc(&item->refs);
1602 list_add_tail(&item->readdir_list, ins_list);
1603 item = __btrfs_next_delayed_item(item);
1606 item = __btrfs_first_delayed_deletion_item(delayed_node);
1607 while (item) {
1608 refcount_inc(&item->refs);
1609 list_add_tail(&item->readdir_list, del_list);
1610 item = __btrfs_next_delayed_item(item);
1612 mutex_unlock(&delayed_node->mutex);
1614 * This delayed node is still cached in the btrfs inode, so refs
1615 * must be > 1 now, and we needn't check it is going to be freed
1616 * or not.
1618 * Besides that, this function is used to read dir, we do not
1619 * insert/delete delayed items in this period. So we also needn't
1620 * requeue or dequeue this delayed node.
1622 refcount_dec(&delayed_node->refs);
1624 return true;
1627 void btrfs_readdir_put_delayed_items(struct inode *inode,
1628 struct list_head *ins_list,
1629 struct list_head *del_list)
1631 struct btrfs_delayed_item *curr, *next;
1633 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1634 list_del(&curr->readdir_list);
1635 if (refcount_dec_and_test(&curr->refs))
1636 kfree(curr);
1639 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1640 list_del(&curr->readdir_list);
1641 if (refcount_dec_and_test(&curr->refs))
1642 kfree(curr);
1646 * The VFS is going to do up_read(), so we need to downgrade back to a
1647 * read lock.
1649 downgrade_write(&inode->i_rwsem);
1652 int btrfs_should_delete_dir_index(struct list_head *del_list,
1653 u64 index)
1655 struct btrfs_delayed_item *curr;
1656 int ret = 0;
1658 list_for_each_entry(curr, del_list, readdir_list) {
1659 if (curr->key.offset > index)
1660 break;
1661 if (curr->key.offset == index) {
1662 ret = 1;
1663 break;
1666 return ret;
1670 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1673 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1674 struct list_head *ins_list)
1676 struct btrfs_dir_item *di;
1677 struct btrfs_delayed_item *curr, *next;
1678 struct btrfs_key location;
1679 char *name;
1680 int name_len;
1681 int over = 0;
1682 unsigned char d_type;
1684 if (list_empty(ins_list))
1685 return 0;
1688 * Changing the data of the delayed item is impossible. So
1689 * we needn't lock them. And we have held i_mutex of the
1690 * directory, nobody can delete any directory indexes now.
1692 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1693 list_del(&curr->readdir_list);
1695 if (curr->key.offset < ctx->pos) {
1696 if (refcount_dec_and_test(&curr->refs))
1697 kfree(curr);
1698 continue;
1701 ctx->pos = curr->key.offset;
1703 di = (struct btrfs_dir_item *)curr->data;
1704 name = (char *)(di + 1);
1705 name_len = btrfs_stack_dir_name_len(di);
1707 d_type = btrfs_filetype_table[di->type];
1708 btrfs_disk_key_to_cpu(&location, &di->location);
1710 over = !dir_emit(ctx, name, name_len,
1711 location.objectid, d_type);
1713 if (refcount_dec_and_test(&curr->refs))
1714 kfree(curr);
1716 if (over)
1717 return 1;
1718 ctx->pos++;
1720 return 0;
1723 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1724 struct btrfs_inode_item *inode_item,
1725 struct inode *inode)
1727 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1728 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1729 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1730 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1731 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1732 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1733 btrfs_set_stack_inode_generation(inode_item,
1734 BTRFS_I(inode)->generation);
1735 btrfs_set_stack_inode_sequence(inode_item,
1736 inode_peek_iversion(inode));
1737 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1738 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1739 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1740 btrfs_set_stack_inode_block_group(inode_item, 0);
1742 btrfs_set_stack_timespec_sec(&inode_item->atime,
1743 inode->i_atime.tv_sec);
1744 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1745 inode->i_atime.tv_nsec);
1747 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1748 inode->i_mtime.tv_sec);
1749 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1750 inode->i_mtime.tv_nsec);
1752 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1753 inode->i_ctime.tv_sec);
1754 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1755 inode->i_ctime.tv_nsec);
1757 btrfs_set_stack_timespec_sec(&inode_item->otime,
1758 BTRFS_I(inode)->i_otime.tv_sec);
1759 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1760 BTRFS_I(inode)->i_otime.tv_nsec);
1763 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1765 struct btrfs_delayed_node *delayed_node;
1766 struct btrfs_inode_item *inode_item;
1768 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1769 if (!delayed_node)
1770 return -ENOENT;
1772 mutex_lock(&delayed_node->mutex);
1773 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1774 mutex_unlock(&delayed_node->mutex);
1775 btrfs_release_delayed_node(delayed_node);
1776 return -ENOENT;
1779 inode_item = &delayed_node->inode_item;
1781 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1782 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1783 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1784 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1785 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1786 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1787 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1788 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1790 inode_set_iversion_queried(inode,
1791 btrfs_stack_inode_sequence(inode_item));
1792 inode->i_rdev = 0;
1793 *rdev = btrfs_stack_inode_rdev(inode_item);
1794 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1796 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1797 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1799 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1800 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1802 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1803 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1805 BTRFS_I(inode)->i_otime.tv_sec =
1806 btrfs_stack_timespec_sec(&inode_item->otime);
1807 BTRFS_I(inode)->i_otime.tv_nsec =
1808 btrfs_stack_timespec_nsec(&inode_item->otime);
1810 inode->i_generation = BTRFS_I(inode)->generation;
1811 BTRFS_I(inode)->index_cnt = (u64)-1;
1813 mutex_unlock(&delayed_node->mutex);
1814 btrfs_release_delayed_node(delayed_node);
1815 return 0;
1818 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root, struct inode *inode)
1821 struct btrfs_delayed_node *delayed_node;
1822 int ret = 0;
1824 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1825 if (IS_ERR(delayed_node))
1826 return PTR_ERR(delayed_node);
1828 mutex_lock(&delayed_node->mutex);
1829 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1830 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1831 goto release_node;
1834 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1835 delayed_node);
1836 if (ret)
1837 goto release_node;
1839 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1840 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1841 delayed_node->count++;
1842 atomic_inc(&root->fs_info->delayed_root->items);
1843 release_node:
1844 mutex_unlock(&delayed_node->mutex);
1845 btrfs_release_delayed_node(delayed_node);
1846 return ret;
1849 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1851 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1852 struct btrfs_delayed_node *delayed_node;
1855 * we don't do delayed inode updates during log recovery because it
1856 * leads to enospc problems. This means we also can't do
1857 * delayed inode refs
1859 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1860 return -EAGAIN;
1862 delayed_node = btrfs_get_or_create_delayed_node(inode);
1863 if (IS_ERR(delayed_node))
1864 return PTR_ERR(delayed_node);
1867 * We don't reserve space for inode ref deletion is because:
1868 * - We ONLY do async inode ref deletion for the inode who has only
1869 * one link(i_nlink == 1), it means there is only one inode ref.
1870 * And in most case, the inode ref and the inode item are in the
1871 * same leaf, and we will deal with them at the same time.
1872 * Since we are sure we will reserve the space for the inode item,
1873 * it is unnecessary to reserve space for inode ref deletion.
1874 * - If the inode ref and the inode item are not in the same leaf,
1875 * We also needn't worry about enospc problem, because we reserve
1876 * much more space for the inode update than it needs.
1877 * - At the worst, we can steal some space from the global reservation.
1878 * It is very rare.
1880 mutex_lock(&delayed_node->mutex);
1881 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1882 goto release_node;
1884 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1885 delayed_node->count++;
1886 atomic_inc(&fs_info->delayed_root->items);
1887 release_node:
1888 mutex_unlock(&delayed_node->mutex);
1889 btrfs_release_delayed_node(delayed_node);
1890 return 0;
1893 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1895 struct btrfs_root *root = delayed_node->root;
1896 struct btrfs_fs_info *fs_info = root->fs_info;
1897 struct btrfs_delayed_item *curr_item, *prev_item;
1899 mutex_lock(&delayed_node->mutex);
1900 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1901 while (curr_item) {
1902 btrfs_delayed_item_release_metadata(root, curr_item);
1903 prev_item = curr_item;
1904 curr_item = __btrfs_next_delayed_item(prev_item);
1905 btrfs_release_delayed_item(prev_item);
1908 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1909 while (curr_item) {
1910 btrfs_delayed_item_release_metadata(root, curr_item);
1911 prev_item = curr_item;
1912 curr_item = __btrfs_next_delayed_item(prev_item);
1913 btrfs_release_delayed_item(prev_item);
1916 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1917 btrfs_release_delayed_iref(delayed_node);
1919 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1920 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1921 btrfs_release_delayed_inode(delayed_node);
1923 mutex_unlock(&delayed_node->mutex);
1926 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1928 struct btrfs_delayed_node *delayed_node;
1930 delayed_node = btrfs_get_delayed_node(inode);
1931 if (!delayed_node)
1932 return;
1934 __btrfs_kill_delayed_node(delayed_node);
1935 btrfs_release_delayed_node(delayed_node);
1938 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1940 u64 inode_id = 0;
1941 struct btrfs_delayed_node *delayed_nodes[8];
1942 int i, n;
1944 while (1) {
1945 spin_lock(&root->inode_lock);
1946 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1947 (void **)delayed_nodes, inode_id,
1948 ARRAY_SIZE(delayed_nodes));
1949 if (!n) {
1950 spin_unlock(&root->inode_lock);
1951 break;
1954 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1955 for (i = 0; i < n; i++) {
1957 * Don't increase refs in case the node is dead and
1958 * about to be removed from the tree in the loop below
1960 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1961 delayed_nodes[i] = NULL;
1963 spin_unlock(&root->inode_lock);
1965 for (i = 0; i < n; i++) {
1966 if (!delayed_nodes[i])
1967 continue;
1968 __btrfs_kill_delayed_node(delayed_nodes[i]);
1969 btrfs_release_delayed_node(delayed_nodes[i]);
1974 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1976 struct btrfs_delayed_node *curr_node, *prev_node;
1978 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1979 while (curr_node) {
1980 __btrfs_kill_delayed_node(curr_node);
1982 prev_node = curr_node;
1983 curr_node = btrfs_next_delayed_node(curr_node);
1984 btrfs_release_delayed_node(prev_node);