Linux 4.19.133
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blob9740f7b5d4fb4f4030b6c45a26e9bd0d0f62c5dc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
71 * by writes to insert metadata for new file extents after IO is complete.
73 struct btrfs_end_io_wq {
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
78 blk_status_t status;
79 enum btrfs_wq_endio_type metadata;
80 struct btrfs_work work;
83 static struct kmem_cache *btrfs_end_io_wq_cache;
85 int __init btrfs_end_io_wq_init(void)
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
90 SLAB_MEM_SPREAD,
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
97 void __cold btrfs_end_io_wq_exit(void)
99 kmem_cache_destroy(btrfs_end_io_wq_cache);
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
107 struct async_submit_bio {
108 void *private_data;
109 struct bio *bio;
110 extent_submit_bio_start_t *submit_bio_start;
111 int mirror_num;
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
116 u64 bio_offset;
117 struct btrfs_work work;
118 blk_status_t status;
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
129 * by btrfs_root->objectid. This ensures that all special purpose roots
130 * have separate keysets.
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 # error
147 # endif
149 static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
167 { .id = 0, .name_stem = "tree" },
170 void __init btrfs_init_lockdep(void)
172 int i, j;
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
187 struct btrfs_lockdep_keyset *ks;
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
200 #endif
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 struct page *page, size_t pg_offset, u64 start, u64 len,
208 int create)
210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 struct extent_map_tree *em_tree = &inode->extent_tree;
212 struct extent_map *em;
213 int ret;
215 read_lock(&em_tree->lock);
216 em = lookup_extent_mapping(em_tree, start, len);
217 if (em) {
218 em->bdev = fs_info->fs_devices->latest_bdev;
219 read_unlock(&em_tree->lock);
220 goto out;
222 read_unlock(&em_tree->lock);
224 em = alloc_extent_map();
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
229 em->start = 0;
230 em->len = (u64)-1;
231 em->block_len = (u64)-1;
232 em->block_start = 0;
233 em->bdev = fs_info->fs_devices->latest_bdev;
235 write_lock(&em_tree->lock);
236 ret = add_extent_mapping(em_tree, em, 0);
237 if (ret == -EEXIST) {
238 free_extent_map(em);
239 em = lookup_extent_mapping(em_tree, start, len);
240 if (!em)
241 em = ERR_PTR(-EIO);
242 } else if (ret) {
243 free_extent_map(em);
244 em = ERR_PTR(ret);
246 write_unlock(&em_tree->lock);
248 out:
249 return em;
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
254 return crc32c(seed, data, len);
257 void btrfs_csum_final(u32 crc, u8 *result)
259 put_unaligned_le32(~crc, result);
263 * compute the csum for a btree block, and either verify it or write it
264 * into the csum field of the block.
266 static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 struct extent_buffer *buf,
268 int verify)
270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
271 char result[BTRFS_CSUM_SIZE];
272 unsigned long len;
273 unsigned long cur_len;
274 unsigned long offset = BTRFS_CSUM_SIZE;
275 char *kaddr;
276 unsigned long map_start;
277 unsigned long map_len;
278 int err;
279 u32 crc = ~(u32)0;
281 len = buf->len - offset;
282 while (len > 0) {
283 err = map_private_extent_buffer(buf, offset, 32,
284 &kaddr, &map_start, &map_len);
285 if (err)
286 return err;
287 cur_len = min(len, map_len - (offset - map_start));
288 crc = btrfs_csum_data(kaddr + offset - map_start,
289 crc, cur_len);
290 len -= cur_len;
291 offset += cur_len;
293 memset(result, 0, BTRFS_CSUM_SIZE);
295 btrfs_csum_final(crc, result);
297 if (verify) {
298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 u32 val;
300 u32 found = 0;
301 memcpy(&found, result, csum_size);
303 read_extent_buffer(buf, &val, 0, csum_size);
304 btrfs_warn_rl(fs_info,
305 "%s checksum verify failed on %llu wanted %X found %X level %d",
306 fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 return -EUCLEAN;
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
314 return 0;
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
327 struct extent_state *cached_state = NULL;
328 int ret;
329 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
334 if (atomic)
335 return -EAGAIN;
337 if (need_lock) {
338 btrfs_tree_read_lock(eb);
339 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
343 &cached_state);
344 if (extent_buffer_uptodate(eb) &&
345 btrfs_header_generation(eb) == parent_transid) {
346 ret = 0;
347 goto out;
349 btrfs_err_rl(eb->fs_info,
350 "parent transid verify failed on %llu wanted %llu found %llu",
351 eb->start,
352 parent_transid, btrfs_header_generation(eb));
353 ret = 1;
356 * Things reading via commit roots that don't have normal protection,
357 * like send, can have a really old block in cache that may point at a
358 * block that has been freed and re-allocated. So don't clear uptodate
359 * if we find an eb that is under IO (dirty/writeback) because we could
360 * end up reading in the stale data and then writing it back out and
361 * making everybody very sad.
363 if (!extent_buffer_under_io(eb))
364 clear_extent_buffer_uptodate(eb);
365 out:
366 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
367 &cached_state);
368 if (need_lock)
369 btrfs_tree_read_unlock_blocking(eb);
370 return ret;
374 * Return 0 if the superblock checksum type matches the checksum value of that
375 * algorithm. Pass the raw disk superblock data.
377 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
378 char *raw_disk_sb)
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 char result[sizeof(crc)];
390 * The super_block structure does not span the whole
391 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
392 * is filled with zeros and is included in the checksum.
394 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
395 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
396 btrfs_csum_final(crc, result);
398 if (memcmp(raw_disk_sb, result, sizeof(result)))
399 ret = 1;
402 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
403 btrfs_err(fs_info, "unsupported checksum algorithm %u",
404 csum_type);
405 ret = 1;
408 return ret;
411 int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
412 struct extent_buffer *eb, int level,
413 struct btrfs_key *first_key, u64 parent_transid)
415 int found_level;
416 struct btrfs_key found_key;
417 int ret;
419 found_level = btrfs_header_level(eb);
420 if (found_level != level) {
421 #ifdef CONFIG_BTRFS_DEBUG
422 WARN_ON(1);
423 btrfs_err(fs_info,
424 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
425 eb->start, level, found_level);
426 #endif
427 return -EIO;
430 if (!first_key)
431 return 0;
434 * For live tree block (new tree blocks in current transaction),
435 * we need proper lock context to avoid race, which is impossible here.
436 * So we only checks tree blocks which is read from disk, whose
437 * generation <= fs_info->last_trans_committed.
439 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
440 return 0;
442 /* We have @first_key, so this @eb must have at least one item */
443 if (btrfs_header_nritems(eb) == 0) {
444 btrfs_err(fs_info,
445 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
446 eb->start);
447 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
448 return -EUCLEAN;
451 if (found_level)
452 btrfs_node_key_to_cpu(eb, &found_key, 0);
453 else
454 btrfs_item_key_to_cpu(eb, &found_key, 0);
455 ret = btrfs_comp_cpu_keys(first_key, &found_key);
457 #ifdef CONFIG_BTRFS_DEBUG
458 if (ret) {
459 WARN_ON(1);
460 btrfs_err(fs_info,
461 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
462 eb->start, parent_transid, first_key->objectid,
463 first_key->type, first_key->offset,
464 found_key.objectid, found_key.type,
465 found_key.offset);
467 #endif
468 return ret;
472 * helper to read a given tree block, doing retries as required when
473 * the checksums don't match and we have alternate mirrors to try.
475 * @parent_transid: expected transid, skip check if 0
476 * @level: expected level, mandatory check
477 * @first_key: expected key of first slot, skip check if NULL
479 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
480 struct extent_buffer *eb,
481 u64 parent_transid, int level,
482 struct btrfs_key *first_key)
484 struct extent_io_tree *io_tree;
485 int failed = 0;
486 int ret;
487 int num_copies = 0;
488 int mirror_num = 0;
489 int failed_mirror = 0;
491 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
492 while (1) {
493 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
494 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
495 mirror_num);
496 if (!ret) {
497 if (verify_parent_transid(io_tree, eb,
498 parent_transid, 0))
499 ret = -EIO;
500 else if (btrfs_verify_level_key(fs_info, eb, level,
501 first_key, parent_transid))
502 ret = -EUCLEAN;
503 else
504 break;
507 num_copies = btrfs_num_copies(fs_info,
508 eb->start, eb->len);
509 if (num_copies == 1)
510 break;
512 if (!failed_mirror) {
513 failed = 1;
514 failed_mirror = eb->read_mirror;
517 mirror_num++;
518 if (mirror_num == failed_mirror)
519 mirror_num++;
521 if (mirror_num > num_copies)
522 break;
525 if (failed && !ret && failed_mirror)
526 repair_eb_io_failure(fs_info, eb, failed_mirror);
528 return ret;
532 * checksum a dirty tree block before IO. This has extra checks to make sure
533 * we only fill in the checksum field in the first page of a multi-page block
536 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
538 u64 start = page_offset(page);
539 u64 found_start;
540 struct extent_buffer *eb;
542 eb = (struct extent_buffer *)page->private;
543 if (page != eb->pages[0])
544 return 0;
546 found_start = btrfs_header_bytenr(eb);
548 * Please do not consolidate these warnings into a single if.
549 * It is useful to know what went wrong.
551 if (WARN_ON(found_start != start))
552 return -EUCLEAN;
553 if (WARN_ON(!PageUptodate(page)))
554 return -EUCLEAN;
556 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
557 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
559 return csum_tree_block(fs_info, eb, 0);
562 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
563 struct extent_buffer *eb)
565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
566 u8 fsid[BTRFS_FSID_SIZE];
567 int ret = 1;
569 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
570 while (fs_devices) {
571 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
572 ret = 0;
573 break;
575 fs_devices = fs_devices->seed;
577 return ret;
580 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
581 u64 phy_offset, struct page *page,
582 u64 start, u64 end, int mirror)
584 u64 found_start;
585 int found_level;
586 struct extent_buffer *eb;
587 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588 struct btrfs_fs_info *fs_info = root->fs_info;
589 int ret = 0;
590 int reads_done;
592 if (!page->private)
593 goto out;
595 eb = (struct extent_buffer *)page->private;
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
600 extent_buffer_get(eb);
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
616 ret = -EIO;
617 goto err;
619 if (check_tree_block_fsid(fs_info, eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
622 ret = -EIO;
623 goto err;
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
629 ret = -EIO;
630 goto err;
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
636 ret = csum_tree_block(fs_info, eb, 1);
637 if (ret)
638 goto err;
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
643 * return -EIO.
645 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 ret = -EIO;
650 if (found_level > 0 && btrfs_check_node(fs_info, eb))
651 ret = -EIO;
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(eb, ret);
660 if (ret) {
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
669 free_extent_buffer(eb);
670 out:
671 return ret;
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 struct extent_buffer *eb;
678 eb = (struct extent_buffer *)page->private;
679 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
680 eb->read_mirror = failed_mirror;
681 atomic_dec(&eb->io_pages);
682 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 btree_readahead_hook(eb, -EIO);
684 return -EIO; /* we fixed nothing */
687 static void end_workqueue_bio(struct bio *bio)
689 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
690 struct btrfs_fs_info *fs_info;
691 struct btrfs_workqueue *wq;
692 btrfs_work_func_t func;
694 fs_info = end_io_wq->info;
695 end_io_wq->status = bio->bi_status;
697 if (bio_op(bio) == REQ_OP_WRITE) {
698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
699 wq = fs_info->endio_meta_write_workers;
700 func = btrfs_endio_meta_write_helper;
701 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
702 wq = fs_info->endio_freespace_worker;
703 func = btrfs_freespace_write_helper;
704 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
705 wq = fs_info->endio_raid56_workers;
706 func = btrfs_endio_raid56_helper;
707 } else {
708 wq = fs_info->endio_write_workers;
709 func = btrfs_endio_write_helper;
711 } else {
712 if (unlikely(end_io_wq->metadata ==
713 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
714 wq = fs_info->endio_repair_workers;
715 func = btrfs_endio_repair_helper;
716 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 wq = fs_info->endio_raid56_workers;
718 func = btrfs_endio_raid56_helper;
719 } else if (end_io_wq->metadata) {
720 wq = fs_info->endio_meta_workers;
721 func = btrfs_endio_meta_helper;
722 } else {
723 wq = fs_info->endio_workers;
724 func = btrfs_endio_helper;
728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 btrfs_queue_work(wq, &end_io_wq->work);
732 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 enum btrfs_wq_endio_type metadata)
735 struct btrfs_end_io_wq *end_io_wq;
737 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
738 if (!end_io_wq)
739 return BLK_STS_RESOURCE;
741 end_io_wq->private = bio->bi_private;
742 end_io_wq->end_io = bio->bi_end_io;
743 end_io_wq->info = info;
744 end_io_wq->status = 0;
745 end_io_wq->bio = bio;
746 end_io_wq->metadata = metadata;
748 bio->bi_private = end_io_wq;
749 bio->bi_end_io = end_workqueue_bio;
750 return 0;
753 static void run_one_async_start(struct btrfs_work *work)
755 struct async_submit_bio *async;
756 blk_status_t ret;
758 async = container_of(work, struct async_submit_bio, work);
759 ret = async->submit_bio_start(async->private_data, async->bio,
760 async->bio_offset);
761 if (ret)
762 async->status = ret;
765 static void run_one_async_done(struct btrfs_work *work)
767 struct async_submit_bio *async;
769 async = container_of(work, struct async_submit_bio, work);
771 /* If an error occurred we just want to clean up the bio and move on */
772 if (async->status) {
773 async->bio->bi_status = async->status;
774 bio_endio(async->bio);
775 return;
778 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
781 static void run_one_async_free(struct btrfs_work *work)
783 struct async_submit_bio *async;
785 async = container_of(work, struct async_submit_bio, work);
786 kfree(async);
789 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
790 int mirror_num, unsigned long bio_flags,
791 u64 bio_offset, void *private_data,
792 extent_submit_bio_start_t *submit_bio_start)
794 struct async_submit_bio *async;
796 async = kmalloc(sizeof(*async), GFP_NOFS);
797 if (!async)
798 return BLK_STS_RESOURCE;
800 async->private_data = private_data;
801 async->bio = bio;
802 async->mirror_num = mirror_num;
803 async->submit_bio_start = submit_bio_start;
805 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
806 run_one_async_done, run_one_async_free);
808 async->bio_offset = bio_offset;
810 async->status = 0;
812 if (op_is_sync(bio->bi_opf))
813 btrfs_set_work_high_priority(&async->work);
815 btrfs_queue_work(fs_info->workers, &async->work);
816 return 0;
819 static blk_status_t btree_csum_one_bio(struct bio *bio)
821 struct bio_vec *bvec;
822 struct btrfs_root *root;
823 int i, ret = 0;
825 ASSERT(!bio_flagged(bio, BIO_CLONED));
826 bio_for_each_segment_all(bvec, bio, i) {
827 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
828 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
829 if (ret)
830 break;
833 return errno_to_blk_status(ret);
836 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
837 u64 bio_offset)
840 * when we're called for a write, we're already in the async
841 * submission context. Just jump into btrfs_map_bio
843 return btree_csum_one_bio(bio);
846 static int check_async_write(struct btrfs_inode *bi)
848 if (atomic_read(&bi->sync_writers))
849 return 0;
850 #ifdef CONFIG_X86
851 if (static_cpu_has(X86_FEATURE_XMM4_2))
852 return 0;
853 #endif
854 return 1;
857 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
858 int mirror_num, unsigned long bio_flags,
859 u64 bio_offset)
861 struct inode *inode = private_data;
862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
863 int async = check_async_write(BTRFS_I(inode));
864 blk_status_t ret;
866 if (bio_op(bio) != REQ_OP_WRITE) {
868 * called for a read, do the setup so that checksum validation
869 * can happen in the async kernel threads
871 ret = btrfs_bio_wq_end_io(fs_info, bio,
872 BTRFS_WQ_ENDIO_METADATA);
873 if (ret)
874 goto out_w_error;
875 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
876 } else if (!async) {
877 ret = btree_csum_one_bio(bio);
878 if (ret)
879 goto out_w_error;
880 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
881 } else {
883 * kthread helpers are used to submit writes so that
884 * checksumming can happen in parallel across all CPUs
886 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
887 bio_offset, private_data,
888 btree_submit_bio_start);
891 if (ret)
892 goto out_w_error;
893 return 0;
895 out_w_error:
896 bio->bi_status = ret;
897 bio_endio(bio);
898 return ret;
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
910 if (PageDirty(page))
911 return -EAGAIN;
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
921 #endif
924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
927 struct btrfs_fs_info *fs_info;
928 int ret;
930 if (wbc->sync_mode == WB_SYNC_NONE) {
932 if (wbc->for_kupdate)
933 return 0;
935 fs_info = BTRFS_I(mapping->host)->root->fs_info;
936 /* this is a bit racy, but that's ok */
937 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
938 BTRFS_DIRTY_METADATA_THRESH,
939 fs_info->dirty_metadata_batch);
940 if (ret < 0)
941 return 0;
943 return btree_write_cache_pages(mapping, wbc);
946 static int btree_readpage(struct file *file, struct page *page)
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
950 return extent_read_full_page(tree, page, btree_get_extent, 0);
953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
955 if (PageWriteback(page) || PageDirty(page))
956 return 0;
958 return try_release_extent_buffer(page);
961 static void btree_invalidatepage(struct page *page, unsigned int offset,
962 unsigned int length)
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(page->mapping->host)->io_tree;
966 extent_invalidatepage(tree, page, offset);
967 btree_releasepage(page, GFP_NOFS);
968 if (PagePrivate(page)) {
969 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
970 "page private not zero on page %llu",
971 (unsigned long long)page_offset(page));
972 ClearPagePrivate(page);
973 set_page_private(page, 0);
974 put_page(page);
978 static int btree_set_page_dirty(struct page *page)
980 #ifdef DEBUG
981 struct extent_buffer *eb;
983 BUG_ON(!PagePrivate(page));
984 eb = (struct extent_buffer *)page->private;
985 BUG_ON(!eb);
986 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 BUG_ON(!atomic_read(&eb->refs));
988 btrfs_assert_tree_locked(eb);
989 #endif
990 return __set_page_dirty_nobuffers(page);
993 static const struct address_space_operations btree_aops = {
994 .readpage = btree_readpage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1000 #endif
1001 .set_page_dirty = btree_set_page_dirty,
1004 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = fs_info->btree_inode;
1008 int ret;
1010 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1011 if (IS_ERR(buf))
1012 return;
1014 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1015 WAIT_NONE, 0);
1016 if (ret < 0)
1017 free_extent_buffer_stale(buf);
1018 else
1019 free_extent_buffer(buf);
1022 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1023 int mirror_num, struct extent_buffer **eb)
1025 struct extent_buffer *buf = NULL;
1026 struct inode *btree_inode = fs_info->btree_inode;
1027 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1028 int ret;
1030 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1031 if (IS_ERR(buf))
1032 return 0;
1034 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1036 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1037 mirror_num);
1038 if (ret) {
1039 free_extent_buffer_stale(buf);
1040 return ret;
1043 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1044 free_extent_buffer_stale(buf);
1045 return -EIO;
1046 } else if (extent_buffer_uptodate(buf)) {
1047 *eb = buf;
1048 } else {
1049 free_extent_buffer(buf);
1051 return 0;
1054 struct extent_buffer *btrfs_find_create_tree_block(
1055 struct btrfs_fs_info *fs_info,
1056 u64 bytenr)
1058 if (btrfs_is_testing(fs_info))
1059 return alloc_test_extent_buffer(fs_info, bytenr);
1060 return alloc_extent_buffer(fs_info, bytenr);
1064 int btrfs_write_tree_block(struct extent_buffer *buf)
1066 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1067 buf->start + buf->len - 1);
1070 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1072 filemap_fdatawait_range(buf->pages[0]->mapping,
1073 buf->start, buf->start + buf->len - 1);
1077 * Read tree block at logical address @bytenr and do variant basic but critical
1078 * verification.
1080 * @parent_transid: expected transid of this tree block, skip check if 0
1081 * @level: expected level, mandatory check
1082 * @first_key: expected key in slot 0, skip check if NULL
1084 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1085 u64 parent_transid, int level,
1086 struct btrfs_key *first_key)
1088 struct extent_buffer *buf = NULL;
1089 int ret;
1091 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1092 if (IS_ERR(buf))
1093 return buf;
1095 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1096 level, first_key);
1097 if (ret) {
1098 free_extent_buffer_stale(buf);
1099 return ERR_PTR(ret);
1101 return buf;
1105 void clean_tree_block(struct btrfs_fs_info *fs_info,
1106 struct extent_buffer *buf)
1108 if (btrfs_header_generation(buf) ==
1109 fs_info->running_transaction->transid) {
1110 btrfs_assert_tree_locked(buf);
1112 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1114 -buf->len,
1115 fs_info->dirty_metadata_batch);
1116 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1117 btrfs_set_lock_blocking(buf);
1118 clear_extent_buffer_dirty(buf);
1123 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1125 struct btrfs_subvolume_writers *writers;
1126 int ret;
1128 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1129 if (!writers)
1130 return ERR_PTR(-ENOMEM);
1132 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1133 if (ret < 0) {
1134 kfree(writers);
1135 return ERR_PTR(ret);
1138 init_waitqueue_head(&writers->wait);
1139 return writers;
1142 static void
1143 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1145 percpu_counter_destroy(&writers->counter);
1146 kfree(writers);
1149 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1150 u64 objectid)
1152 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1153 root->node = NULL;
1154 root->commit_root = NULL;
1155 root->state = 0;
1156 root->orphan_cleanup_state = 0;
1158 root->objectid = objectid;
1159 root->last_trans = 0;
1160 root->highest_objectid = 0;
1161 root->nr_delalloc_inodes = 0;
1162 root->nr_ordered_extents = 0;
1163 root->inode_tree = RB_ROOT;
1164 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1165 root->block_rsv = NULL;
1167 INIT_LIST_HEAD(&root->dirty_list);
1168 INIT_LIST_HEAD(&root->root_list);
1169 INIT_LIST_HEAD(&root->delalloc_inodes);
1170 INIT_LIST_HEAD(&root->delalloc_root);
1171 INIT_LIST_HEAD(&root->ordered_extents);
1172 INIT_LIST_HEAD(&root->ordered_root);
1173 INIT_LIST_HEAD(&root->logged_list[0]);
1174 INIT_LIST_HEAD(&root->logged_list[1]);
1175 spin_lock_init(&root->inode_lock);
1176 spin_lock_init(&root->delalloc_lock);
1177 spin_lock_init(&root->ordered_extent_lock);
1178 spin_lock_init(&root->accounting_lock);
1179 spin_lock_init(&root->log_extents_lock[0]);
1180 spin_lock_init(&root->log_extents_lock[1]);
1181 spin_lock_init(&root->qgroup_meta_rsv_lock);
1182 mutex_init(&root->objectid_mutex);
1183 mutex_init(&root->log_mutex);
1184 mutex_init(&root->ordered_extent_mutex);
1185 mutex_init(&root->delalloc_mutex);
1186 init_waitqueue_head(&root->log_writer_wait);
1187 init_waitqueue_head(&root->log_commit_wait[0]);
1188 init_waitqueue_head(&root->log_commit_wait[1]);
1189 INIT_LIST_HEAD(&root->log_ctxs[0]);
1190 INIT_LIST_HEAD(&root->log_ctxs[1]);
1191 atomic_set(&root->log_commit[0], 0);
1192 atomic_set(&root->log_commit[1], 0);
1193 atomic_set(&root->log_writers, 0);
1194 atomic_set(&root->log_batch, 0);
1195 refcount_set(&root->refs, 1);
1196 atomic_set(&root->will_be_snapshotted, 0);
1197 atomic_set(&root->snapshot_force_cow, 0);
1198 root->log_transid = 0;
1199 root->log_transid_committed = -1;
1200 root->last_log_commit = 0;
1201 if (!dummy)
1202 extent_io_tree_init(&root->dirty_log_pages, NULL);
1204 memset(&root->root_key, 0, sizeof(root->root_key));
1205 memset(&root->root_item, 0, sizeof(root->root_item));
1206 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1207 if (!dummy)
1208 root->defrag_trans_start = fs_info->generation;
1209 else
1210 root->defrag_trans_start = 0;
1211 root->root_key.objectid = objectid;
1212 root->anon_dev = 0;
1214 spin_lock_init(&root->root_item_lock);
1217 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1218 gfp_t flags)
1220 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1221 if (root)
1222 root->fs_info = fs_info;
1223 return root;
1226 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1227 /* Should only be used by the testing infrastructure */
1228 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1230 struct btrfs_root *root;
1232 if (!fs_info)
1233 return ERR_PTR(-EINVAL);
1235 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1239 /* We don't use the stripesize in selftest, set it as sectorsize */
1240 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1241 root->alloc_bytenr = 0;
1243 return root;
1245 #endif
1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248 struct btrfs_fs_info *fs_info,
1249 u64 objectid)
1251 struct extent_buffer *leaf;
1252 struct btrfs_root *tree_root = fs_info->tree_root;
1253 struct btrfs_root *root;
1254 struct btrfs_key key;
1255 unsigned int nofs_flag;
1256 int ret = 0;
1257 uuid_le uuid = NULL_UUID_LE;
1260 * We're holding a transaction handle, so use a NOFS memory allocation
1261 * context to avoid deadlock if reclaim happens.
1263 nofs_flag = memalloc_nofs_save();
1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265 memalloc_nofs_restore(nofs_flag);
1266 if (!root)
1267 return ERR_PTR(-ENOMEM);
1269 __setup_root(root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1274 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275 if (IS_ERR(leaf)) {
1276 ret = PTR_ERR(leaf);
1277 leaf = NULL;
1278 goto fail;
1281 root->node = leaf;
1282 btrfs_mark_buffer_dirty(leaf);
1284 root->commit_root = btrfs_root_node(root);
1285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1287 root->root_item.flags = 0;
1288 root->root_item.byte_limit = 0;
1289 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290 btrfs_set_root_generation(&root->root_item, trans->transid);
1291 btrfs_set_root_level(&root->root_item, 0);
1292 btrfs_set_root_refs(&root->root_item, 1);
1293 btrfs_set_root_used(&root->root_item, leaf->len);
1294 btrfs_set_root_last_snapshot(&root->root_item, 0);
1295 btrfs_set_root_dirid(&root->root_item, 0);
1296 if (is_fstree(objectid))
1297 uuid_le_gen(&uuid);
1298 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299 root->root_item.drop_level = 0;
1301 key.objectid = objectid;
1302 key.type = BTRFS_ROOT_ITEM_KEY;
1303 key.offset = 0;
1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 if (ret)
1306 goto fail;
1308 btrfs_tree_unlock(leaf);
1310 return root;
1312 fail:
1313 if (leaf) {
1314 btrfs_tree_unlock(leaf);
1315 free_extent_buffer(root->commit_root);
1316 free_extent_buffer(leaf);
1318 kfree(root);
1320 return ERR_PTR(ret);
1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_fs_info *fs_info)
1326 struct btrfs_root *root;
1327 struct extent_buffer *leaf;
1329 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330 if (!root)
1331 return ERR_PTR(-ENOMEM);
1333 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1340 * DON'T set REF_COWS for log trees
1342 * log trees do not get reference counted because they go away
1343 * before a real commit is actually done. They do store pointers
1344 * to file data extents, and those reference counts still get
1345 * updated (along with back refs to the log tree).
1348 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1349 NULL, 0, 0, 0);
1350 if (IS_ERR(leaf)) {
1351 kfree(root);
1352 return ERR_CAST(leaf);
1355 root->node = leaf;
1357 btrfs_mark_buffer_dirty(root->node);
1358 btrfs_tree_unlock(root->node);
1359 return root;
1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info)
1365 struct btrfs_root *log_root;
1367 log_root = alloc_log_tree(trans, fs_info);
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370 WARN_ON(fs_info->log_root_tree);
1371 fs_info->log_root_tree = log_root;
1372 return 0;
1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root)
1378 struct btrfs_fs_info *fs_info = root->fs_info;
1379 struct btrfs_root *log_root;
1380 struct btrfs_inode_item *inode_item;
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1386 log_root->last_trans = trans->transid;
1387 log_root->root_key.offset = root->root_key.objectid;
1389 inode_item = &log_root->root_item.inode;
1390 btrfs_set_stack_inode_generation(inode_item, 1);
1391 btrfs_set_stack_inode_size(inode_item, 3);
1392 btrfs_set_stack_inode_nlink(inode_item, 1);
1393 btrfs_set_stack_inode_nbytes(inode_item,
1394 fs_info->nodesize);
1395 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1397 btrfs_set_root_node(&log_root->root_item, log_root->node);
1399 WARN_ON(root->log_root);
1400 root->log_root = log_root;
1401 root->log_transid = 0;
1402 root->log_transid_committed = -1;
1403 root->last_log_commit = 0;
1404 return 0;
1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 struct btrfs_key *key)
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1413 u64 generation;
1414 int ret;
1415 int level;
1417 path = btrfs_alloc_path();
1418 if (!path)
1419 return ERR_PTR(-ENOMEM);
1421 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1422 if (!root) {
1423 ret = -ENOMEM;
1424 goto alloc_fail;
1427 __setup_root(root, fs_info, key->objectid);
1429 ret = btrfs_find_root(tree_root, key, path,
1430 &root->root_item, &root->root_key);
1431 if (ret) {
1432 if (ret > 0)
1433 ret = -ENOENT;
1434 goto find_fail;
1437 generation = btrfs_root_generation(&root->root_item);
1438 level = btrfs_root_level(&root->root_item);
1439 root->node = read_tree_block(fs_info,
1440 btrfs_root_bytenr(&root->root_item),
1441 generation, level, NULL);
1442 if (IS_ERR(root->node)) {
1443 ret = PTR_ERR(root->node);
1444 goto find_fail;
1445 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446 ret = -EIO;
1447 free_extent_buffer(root->node);
1448 goto find_fail;
1450 root->commit_root = btrfs_root_node(root);
1451 out:
1452 btrfs_free_path(path);
1453 return root;
1455 find_fail:
1456 kfree(root);
1457 alloc_fail:
1458 root = ERR_PTR(ret);
1459 goto out;
1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463 struct btrfs_key *location)
1465 struct btrfs_root *root;
1467 root = btrfs_read_tree_root(tree_root, location);
1468 if (IS_ERR(root))
1469 return root;
1471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473 btrfs_check_and_init_root_item(&root->root_item);
1476 return root;
1479 int btrfs_init_fs_root(struct btrfs_root *root)
1481 int ret;
1482 struct btrfs_subvolume_writers *writers;
1484 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 GFP_NOFS);
1487 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488 ret = -ENOMEM;
1489 goto fail;
1492 writers = btrfs_alloc_subvolume_writers();
1493 if (IS_ERR(writers)) {
1494 ret = PTR_ERR(writers);
1495 goto fail;
1497 root->subv_writers = writers;
1499 btrfs_init_free_ino_ctl(root);
1500 spin_lock_init(&root->ino_cache_lock);
1501 init_waitqueue_head(&root->ino_cache_wait);
1503 ret = get_anon_bdev(&root->anon_dev);
1504 if (ret)
1505 goto fail;
1507 mutex_lock(&root->objectid_mutex);
1508 ret = btrfs_find_highest_objectid(root,
1509 &root->highest_objectid);
1510 if (ret) {
1511 mutex_unlock(&root->objectid_mutex);
1512 goto fail;
1515 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1517 mutex_unlock(&root->objectid_mutex);
1519 return 0;
1520 fail:
1521 /* The caller is responsible to call btrfs_free_fs_root */
1522 return ret;
1525 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526 u64 root_id)
1528 struct btrfs_root *root;
1530 spin_lock(&fs_info->fs_roots_radix_lock);
1531 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532 (unsigned long)root_id);
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 return root;
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_root *root)
1540 int ret;
1542 ret = radix_tree_preload(GFP_NOFS);
1543 if (ret)
1544 return ret;
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
1550 if (ret == 0)
1551 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
1555 return ret;
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559 struct btrfs_key *location,
1560 bool check_ref)
1562 struct btrfs_root *root;
1563 struct btrfs_path *path;
1564 struct btrfs_key key;
1565 int ret;
1567 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1568 return fs_info->tree_root;
1569 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1570 return fs_info->extent_root;
1571 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1572 return fs_info->chunk_root;
1573 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1574 return fs_info->dev_root;
1575 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1576 return fs_info->csum_root;
1577 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1578 return fs_info->quota_root ? fs_info->quota_root :
1579 ERR_PTR(-ENOENT);
1580 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1581 return fs_info->uuid_root ? fs_info->uuid_root :
1582 ERR_PTR(-ENOENT);
1583 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1584 return fs_info->free_space_root ? fs_info->free_space_root :
1585 ERR_PTR(-ENOENT);
1586 again:
1587 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588 if (root) {
1589 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1590 return ERR_PTR(-ENOENT);
1591 return root;
1594 root = btrfs_read_fs_root(fs_info->tree_root, location);
1595 if (IS_ERR(root))
1596 return root;
1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1599 ret = -ENOENT;
1600 goto fail;
1603 ret = btrfs_init_fs_root(root);
1604 if (ret)
1605 goto fail;
1607 path = btrfs_alloc_path();
1608 if (!path) {
1609 ret = -ENOMEM;
1610 goto fail;
1612 key.objectid = BTRFS_ORPHAN_OBJECTID;
1613 key.type = BTRFS_ORPHAN_ITEM_KEY;
1614 key.offset = location->objectid;
1616 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1617 btrfs_free_path(path);
1618 if (ret < 0)
1619 goto fail;
1620 if (ret == 0)
1621 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1623 ret = btrfs_insert_fs_root(fs_info, root);
1624 if (ret) {
1625 if (ret == -EEXIST) {
1626 btrfs_free_fs_root(root);
1627 goto again;
1629 goto fail;
1631 return root;
1632 fail:
1633 btrfs_free_fs_root(root);
1634 return ERR_PTR(ret);
1637 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1639 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1640 int ret = 0;
1641 struct btrfs_device *device;
1642 struct backing_dev_info *bdi;
1644 rcu_read_lock();
1645 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1646 if (!device->bdev)
1647 continue;
1648 bdi = device->bdev->bd_bdi;
1649 if (bdi_congested(bdi, bdi_bits)) {
1650 ret = 1;
1651 break;
1654 rcu_read_unlock();
1655 return ret;
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1662 static void end_workqueue_fn(struct btrfs_work *work)
1664 struct bio *bio;
1665 struct btrfs_end_io_wq *end_io_wq;
1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668 bio = end_io_wq->bio;
1670 bio->bi_status = end_io_wq->status;
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
1673 bio_endio(bio);
1674 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1677 static int cleaner_kthread(void *arg)
1679 struct btrfs_root *root = arg;
1680 struct btrfs_fs_info *fs_info = root->fs_info;
1681 int again;
1683 while (1) {
1684 again = 0;
1686 /* Make the cleaner go to sleep early. */
1687 if (btrfs_need_cleaner_sleep(fs_info))
1688 goto sleep;
1691 * Do not do anything if we might cause open_ctree() to block
1692 * before we have finished mounting the filesystem.
1694 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1695 goto sleep;
1697 if (!mutex_trylock(&fs_info->cleaner_mutex))
1698 goto sleep;
1701 * Avoid the problem that we change the status of the fs
1702 * during the above check and trylock.
1704 if (btrfs_need_cleaner_sleep(fs_info)) {
1705 mutex_unlock(&fs_info->cleaner_mutex);
1706 goto sleep;
1709 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1710 btrfs_run_delayed_iputs(fs_info);
1711 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1713 again = btrfs_clean_one_deleted_snapshot(root);
1714 mutex_unlock(&fs_info->cleaner_mutex);
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
1720 btrfs_run_defrag_inodes(fs_info);
1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 * with relocation (btrfs_relocate_chunk) and relocation
1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 * unused block groups.
1730 btrfs_delete_unused_bgs(fs_info);
1731 sleep:
1732 if (kthread_should_park())
1733 kthread_parkme();
1734 if (kthread_should_stop())
1735 return 0;
1736 if (!again) {
1737 set_current_state(TASK_INTERRUPTIBLE);
1738 schedule();
1739 __set_current_state(TASK_RUNNING);
1744 static int transaction_kthread(void *arg)
1746 struct btrfs_root *root = arg;
1747 struct btrfs_fs_info *fs_info = root->fs_info;
1748 struct btrfs_trans_handle *trans;
1749 struct btrfs_transaction *cur;
1750 u64 transid;
1751 time64_t now;
1752 unsigned long delay;
1753 bool cannot_commit;
1755 do {
1756 cannot_commit = false;
1757 delay = HZ * fs_info->commit_interval;
1758 mutex_lock(&fs_info->transaction_kthread_mutex);
1760 spin_lock(&fs_info->trans_lock);
1761 cur = fs_info->running_transaction;
1762 if (!cur) {
1763 spin_unlock(&fs_info->trans_lock);
1764 goto sleep;
1767 now = ktime_get_seconds();
1768 if (cur->state < TRANS_STATE_BLOCKED &&
1769 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1770 (now < cur->start_time ||
1771 now - cur->start_time < fs_info->commit_interval)) {
1772 spin_unlock(&fs_info->trans_lock);
1773 delay = HZ * 5;
1774 goto sleep;
1776 transid = cur->transid;
1777 spin_unlock(&fs_info->trans_lock);
1779 /* If the file system is aborted, this will always fail. */
1780 trans = btrfs_attach_transaction(root);
1781 if (IS_ERR(trans)) {
1782 if (PTR_ERR(trans) != -ENOENT)
1783 cannot_commit = true;
1784 goto sleep;
1786 if (transid == trans->transid) {
1787 btrfs_commit_transaction(trans);
1788 } else {
1789 btrfs_end_transaction(trans);
1791 sleep:
1792 wake_up_process(fs_info->cleaner_kthread);
1793 mutex_unlock(&fs_info->transaction_kthread_mutex);
1795 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1796 &fs_info->fs_state)))
1797 btrfs_cleanup_transaction(fs_info);
1798 if (!kthread_should_stop() &&
1799 (!btrfs_transaction_blocked(fs_info) ||
1800 cannot_commit))
1801 schedule_timeout_interruptible(delay);
1802 } while (!kthread_should_stop());
1803 return 0;
1807 * this will find the highest generation in the array of
1808 * root backups. The index of the highest array is returned,
1809 * or -1 if we can't find anything.
1811 * We check to make sure the array is valid by comparing the
1812 * generation of the latest root in the array with the generation
1813 * in the super block. If they don't match we pitch it.
1815 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1817 u64 cur;
1818 int newest_index = -1;
1819 struct btrfs_root_backup *root_backup;
1820 int i;
1822 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1823 root_backup = info->super_copy->super_roots + i;
1824 cur = btrfs_backup_tree_root_gen(root_backup);
1825 if (cur == newest_gen)
1826 newest_index = i;
1829 /* check to see if we actually wrapped around */
1830 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1831 root_backup = info->super_copy->super_roots;
1832 cur = btrfs_backup_tree_root_gen(root_backup);
1833 if (cur == newest_gen)
1834 newest_index = 0;
1836 return newest_index;
1841 * find the oldest backup so we know where to store new entries
1842 * in the backup array. This will set the backup_root_index
1843 * field in the fs_info struct
1845 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1846 u64 newest_gen)
1848 int newest_index = -1;
1850 newest_index = find_newest_super_backup(info, newest_gen);
1851 /* if there was garbage in there, just move along */
1852 if (newest_index == -1) {
1853 info->backup_root_index = 0;
1854 } else {
1855 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1860 * copy all the root pointers into the super backup array.
1861 * this will bump the backup pointer by one when it is
1862 * done
1864 static void backup_super_roots(struct btrfs_fs_info *info)
1866 int next_backup;
1867 struct btrfs_root_backup *root_backup;
1868 int last_backup;
1870 next_backup = info->backup_root_index;
1871 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1872 BTRFS_NUM_BACKUP_ROOTS;
1875 * just overwrite the last backup if we're at the same generation
1876 * this happens only at umount
1878 root_backup = info->super_for_commit->super_roots + last_backup;
1879 if (btrfs_backup_tree_root_gen(root_backup) ==
1880 btrfs_header_generation(info->tree_root->node))
1881 next_backup = last_backup;
1883 root_backup = info->super_for_commit->super_roots + next_backup;
1886 * make sure all of our padding and empty slots get zero filled
1887 * regardless of which ones we use today
1889 memset(root_backup, 0, sizeof(*root_backup));
1891 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1893 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1894 btrfs_set_backup_tree_root_gen(root_backup,
1895 btrfs_header_generation(info->tree_root->node));
1897 btrfs_set_backup_tree_root_level(root_backup,
1898 btrfs_header_level(info->tree_root->node));
1900 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1901 btrfs_set_backup_chunk_root_gen(root_backup,
1902 btrfs_header_generation(info->chunk_root->node));
1903 btrfs_set_backup_chunk_root_level(root_backup,
1904 btrfs_header_level(info->chunk_root->node));
1906 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1907 btrfs_set_backup_extent_root_gen(root_backup,
1908 btrfs_header_generation(info->extent_root->node));
1909 btrfs_set_backup_extent_root_level(root_backup,
1910 btrfs_header_level(info->extent_root->node));
1913 * we might commit during log recovery, which happens before we set
1914 * the fs_root. Make sure it is valid before we fill it in.
1916 if (info->fs_root && info->fs_root->node) {
1917 btrfs_set_backup_fs_root(root_backup,
1918 info->fs_root->node->start);
1919 btrfs_set_backup_fs_root_gen(root_backup,
1920 btrfs_header_generation(info->fs_root->node));
1921 btrfs_set_backup_fs_root_level(root_backup,
1922 btrfs_header_level(info->fs_root->node));
1925 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1926 btrfs_set_backup_dev_root_gen(root_backup,
1927 btrfs_header_generation(info->dev_root->node));
1928 btrfs_set_backup_dev_root_level(root_backup,
1929 btrfs_header_level(info->dev_root->node));
1931 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1932 btrfs_set_backup_csum_root_gen(root_backup,
1933 btrfs_header_generation(info->csum_root->node));
1934 btrfs_set_backup_csum_root_level(root_backup,
1935 btrfs_header_level(info->csum_root->node));
1937 btrfs_set_backup_total_bytes(root_backup,
1938 btrfs_super_total_bytes(info->super_copy));
1939 btrfs_set_backup_bytes_used(root_backup,
1940 btrfs_super_bytes_used(info->super_copy));
1941 btrfs_set_backup_num_devices(root_backup,
1942 btrfs_super_num_devices(info->super_copy));
1945 * if we don't copy this out to the super_copy, it won't get remembered
1946 * for the next commit
1948 memcpy(&info->super_copy->super_roots,
1949 &info->super_for_commit->super_roots,
1950 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1954 * this copies info out of the root backup array and back into
1955 * the in-memory super block. It is meant to help iterate through
1956 * the array, so you send it the number of backups you've already
1957 * tried and the last backup index you used.
1959 * this returns -1 when it has tried all the backups
1961 static noinline int next_root_backup(struct btrfs_fs_info *info,
1962 struct btrfs_super_block *super,
1963 int *num_backups_tried, int *backup_index)
1965 struct btrfs_root_backup *root_backup;
1966 int newest = *backup_index;
1968 if (*num_backups_tried == 0) {
1969 u64 gen = btrfs_super_generation(super);
1971 newest = find_newest_super_backup(info, gen);
1972 if (newest == -1)
1973 return -1;
1975 *backup_index = newest;
1976 *num_backups_tried = 1;
1977 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1978 /* we've tried all the backups, all done */
1979 return -1;
1980 } else {
1981 /* jump to the next oldest backup */
1982 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1983 BTRFS_NUM_BACKUP_ROOTS;
1984 *backup_index = newest;
1985 *num_backups_tried += 1;
1987 root_backup = super->super_roots + newest;
1989 btrfs_set_super_generation(super,
1990 btrfs_backup_tree_root_gen(root_backup));
1991 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1992 btrfs_set_super_root_level(super,
1993 btrfs_backup_tree_root_level(root_backup));
1994 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1997 * fixme: the total bytes and num_devices need to match or we should
1998 * need a fsck
2000 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2001 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2002 return 0;
2005 /* helper to cleanup workers */
2006 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2008 btrfs_destroy_workqueue(fs_info->fixup_workers);
2009 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2010 btrfs_destroy_workqueue(fs_info->workers);
2011 btrfs_destroy_workqueue(fs_info->endio_workers);
2012 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2013 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2014 btrfs_destroy_workqueue(fs_info->rmw_workers);
2015 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2016 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2017 btrfs_destroy_workqueue(fs_info->submit_workers);
2018 btrfs_destroy_workqueue(fs_info->delayed_workers);
2019 btrfs_destroy_workqueue(fs_info->caching_workers);
2020 btrfs_destroy_workqueue(fs_info->readahead_workers);
2021 btrfs_destroy_workqueue(fs_info->flush_workers);
2022 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2023 btrfs_destroy_workqueue(fs_info->extent_workers);
2025 * Now that all other work queues are destroyed, we can safely destroy
2026 * the queues used for metadata I/O, since tasks from those other work
2027 * queues can do metadata I/O operations.
2029 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2030 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2033 static void free_root_extent_buffers(struct btrfs_root *root)
2035 if (root) {
2036 free_extent_buffer(root->node);
2037 free_extent_buffer(root->commit_root);
2038 root->node = NULL;
2039 root->commit_root = NULL;
2043 /* helper to cleanup tree roots */
2044 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2046 free_root_extent_buffers(info->tree_root);
2048 free_root_extent_buffers(info->dev_root);
2049 free_root_extent_buffers(info->extent_root);
2050 free_root_extent_buffers(info->csum_root);
2051 free_root_extent_buffers(info->quota_root);
2052 free_root_extent_buffers(info->uuid_root);
2053 if (free_chunk_root)
2054 free_root_extent_buffers(info->chunk_root);
2055 free_root_extent_buffers(info->free_space_root);
2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2060 int ret;
2061 struct btrfs_root *gang[8];
2062 int i;
2064 while (!list_empty(&fs_info->dead_roots)) {
2065 gang[0] = list_entry(fs_info->dead_roots.next,
2066 struct btrfs_root, root_list);
2067 list_del(&gang[0]->root_list);
2069 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2070 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071 } else {
2072 free_extent_buffer(gang[0]->node);
2073 free_extent_buffer(gang[0]->commit_root);
2074 btrfs_put_fs_root(gang[0]);
2078 while (1) {
2079 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2080 (void **)gang, 0,
2081 ARRAY_SIZE(gang));
2082 if (!ret)
2083 break;
2084 for (i = 0; i < ret; i++)
2085 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2088 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2089 btrfs_free_log_root_tree(NULL, fs_info);
2090 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2094 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2096 mutex_init(&fs_info->scrub_lock);
2097 atomic_set(&fs_info->scrubs_running, 0);
2098 atomic_set(&fs_info->scrub_pause_req, 0);
2099 atomic_set(&fs_info->scrubs_paused, 0);
2100 atomic_set(&fs_info->scrub_cancel_req, 0);
2101 init_waitqueue_head(&fs_info->scrub_pause_wait);
2102 fs_info->scrub_workers_refcnt = 0;
2105 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2107 spin_lock_init(&fs_info->balance_lock);
2108 mutex_init(&fs_info->balance_mutex);
2109 atomic_set(&fs_info->balance_pause_req, 0);
2110 atomic_set(&fs_info->balance_cancel_req, 0);
2111 fs_info->balance_ctl = NULL;
2112 init_waitqueue_head(&fs_info->balance_wait_q);
2115 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2117 struct inode *inode = fs_info->btree_inode;
2119 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2120 set_nlink(inode, 1);
2122 * we set the i_size on the btree inode to the max possible int.
2123 * the real end of the address space is determined by all of
2124 * the devices in the system
2126 inode->i_size = OFFSET_MAX;
2127 inode->i_mapping->a_ops = &btree_aops;
2129 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2130 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2131 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2132 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2134 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2136 BTRFS_I(inode)->root = fs_info->tree_root;
2137 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2138 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2139 btrfs_insert_inode_hash(inode);
2142 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2144 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2145 rwlock_init(&fs_info->dev_replace.lock);
2146 atomic_set(&fs_info->dev_replace.read_locks, 0);
2147 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2148 init_waitqueue_head(&fs_info->replace_wait);
2149 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2152 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2154 spin_lock_init(&fs_info->qgroup_lock);
2155 mutex_init(&fs_info->qgroup_ioctl_lock);
2156 fs_info->qgroup_tree = RB_ROOT;
2157 fs_info->qgroup_op_tree = RB_ROOT;
2158 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2159 fs_info->qgroup_seq = 1;
2160 fs_info->qgroup_ulist = NULL;
2161 fs_info->qgroup_rescan_running = false;
2162 mutex_init(&fs_info->qgroup_rescan_lock);
2165 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2166 struct btrfs_fs_devices *fs_devices)
2168 u32 max_active = fs_info->thread_pool_size;
2169 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2171 fs_info->workers =
2172 btrfs_alloc_workqueue(fs_info, "worker",
2173 flags | WQ_HIGHPRI, max_active, 16);
2175 fs_info->delalloc_workers =
2176 btrfs_alloc_workqueue(fs_info, "delalloc",
2177 flags, max_active, 2);
2179 fs_info->flush_workers =
2180 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2181 flags, max_active, 0);
2183 fs_info->caching_workers =
2184 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2187 * a higher idle thresh on the submit workers makes it much more
2188 * likely that bios will be send down in a sane order to the
2189 * devices
2191 fs_info->submit_workers =
2192 btrfs_alloc_workqueue(fs_info, "submit", flags,
2193 min_t(u64, fs_devices->num_devices,
2194 max_active), 64);
2196 fs_info->fixup_workers =
2197 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2200 * endios are largely parallel and should have a very
2201 * low idle thresh
2203 fs_info->endio_workers =
2204 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2205 fs_info->endio_meta_workers =
2206 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2207 max_active, 4);
2208 fs_info->endio_meta_write_workers =
2209 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2210 max_active, 2);
2211 fs_info->endio_raid56_workers =
2212 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2213 max_active, 4);
2214 fs_info->endio_repair_workers =
2215 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2216 fs_info->rmw_workers =
2217 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2218 fs_info->endio_write_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2220 max_active, 2);
2221 fs_info->endio_freespace_worker =
2222 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2223 max_active, 0);
2224 fs_info->delayed_workers =
2225 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2226 max_active, 0);
2227 fs_info->readahead_workers =
2228 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2229 max_active, 2);
2230 fs_info->qgroup_rescan_workers =
2231 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2232 fs_info->extent_workers =
2233 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2234 min_t(u64, fs_devices->num_devices,
2235 max_active), 8);
2237 if (!(fs_info->workers && fs_info->delalloc_workers &&
2238 fs_info->submit_workers && fs_info->flush_workers &&
2239 fs_info->endio_workers && fs_info->endio_meta_workers &&
2240 fs_info->endio_meta_write_workers &&
2241 fs_info->endio_repair_workers &&
2242 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2243 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2244 fs_info->caching_workers && fs_info->readahead_workers &&
2245 fs_info->fixup_workers && fs_info->delayed_workers &&
2246 fs_info->extent_workers &&
2247 fs_info->qgroup_rescan_workers)) {
2248 return -ENOMEM;
2251 return 0;
2254 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2255 struct btrfs_fs_devices *fs_devices)
2257 int ret;
2258 struct btrfs_root *log_tree_root;
2259 struct btrfs_super_block *disk_super = fs_info->super_copy;
2260 u64 bytenr = btrfs_super_log_root(disk_super);
2261 int level = btrfs_super_log_root_level(disk_super);
2263 if (fs_devices->rw_devices == 0) {
2264 btrfs_warn(fs_info, "log replay required on RO media");
2265 return -EIO;
2268 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2269 if (!log_tree_root)
2270 return -ENOMEM;
2272 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2274 log_tree_root->node = read_tree_block(fs_info, bytenr,
2275 fs_info->generation + 1,
2276 level, NULL);
2277 if (IS_ERR(log_tree_root->node)) {
2278 btrfs_warn(fs_info, "failed to read log tree");
2279 ret = PTR_ERR(log_tree_root->node);
2280 kfree(log_tree_root);
2281 return ret;
2282 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2283 btrfs_err(fs_info, "failed to read log tree");
2284 free_extent_buffer(log_tree_root->node);
2285 kfree(log_tree_root);
2286 return -EIO;
2288 /* returns with log_tree_root freed on success */
2289 ret = btrfs_recover_log_trees(log_tree_root);
2290 if (ret) {
2291 btrfs_handle_fs_error(fs_info, ret,
2292 "Failed to recover log tree");
2293 free_extent_buffer(log_tree_root->node);
2294 kfree(log_tree_root);
2295 return ret;
2298 if (sb_rdonly(fs_info->sb)) {
2299 ret = btrfs_commit_super(fs_info);
2300 if (ret)
2301 return ret;
2304 return 0;
2307 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2309 struct btrfs_root *tree_root = fs_info->tree_root;
2310 struct btrfs_root *root;
2311 struct btrfs_key location;
2312 int ret;
2314 BUG_ON(!fs_info->tree_root);
2316 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2317 location.type = BTRFS_ROOT_ITEM_KEY;
2318 location.offset = 0;
2320 root = btrfs_read_tree_root(tree_root, &location);
2321 if (IS_ERR(root)) {
2322 ret = PTR_ERR(root);
2323 goto out;
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->extent_root = root;
2328 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2329 root = btrfs_read_tree_root(tree_root, &location);
2330 if (IS_ERR(root)) {
2331 ret = PTR_ERR(root);
2332 goto out;
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->dev_root = root;
2336 btrfs_init_devices_late(fs_info);
2338 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2339 root = btrfs_read_tree_root(tree_root, &location);
2340 if (IS_ERR(root)) {
2341 ret = PTR_ERR(root);
2342 goto out;
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->csum_root = root;
2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (!IS_ERR(root)) {
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352 fs_info->quota_root = root;
2355 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (IS_ERR(root)) {
2358 ret = PTR_ERR(root);
2359 if (ret != -ENOENT)
2360 goto out;
2361 } else {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->uuid_root = root;
2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 goto out;
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->free_space_root = root;
2377 return 0;
2378 out:
2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380 location.objectid, ret);
2381 return ret;
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2388 * @sb: super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 * 0 the primary (1st) sb
2391 * 1, 2 2nd and 3rd backup copy
2392 * -1 skip bytenr check
2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395 struct btrfs_super_block *sb, int mirror_num)
2397 u64 nodesize = btrfs_super_nodesize(sb);
2398 u64 sectorsize = btrfs_super_sectorsize(sb);
2399 int ret = 0;
2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402 btrfs_err(fs_info, "no valid FS found");
2403 ret = -EINVAL;
2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408 ret = -EINVAL;
2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423 ret = -EINVAL;
2427 * Check sectorsize and nodesize first, other check will need it.
2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433 ret = -EINVAL;
2435 /* Only PAGE SIZE is supported yet */
2436 if (sectorsize != PAGE_SIZE) {
2437 btrfs_err(fs_info,
2438 "sectorsize %llu not supported yet, only support %lu",
2439 sectorsize, PAGE_SIZE);
2440 ret = -EINVAL;
2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445 ret = -EINVAL;
2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449 le32_to_cpu(sb->__unused_leafsize), nodesize);
2450 ret = -EINVAL;
2453 /* Root alignment check */
2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456 btrfs_super_root(sb));
2457 ret = -EINVAL;
2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461 btrfs_super_chunk_root(sb));
2462 ret = -EINVAL;
2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466 btrfs_super_log_root(sb));
2467 ret = -EINVAL;
2470 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2471 btrfs_err(fs_info,
2472 "dev_item UUID does not match fsid: %pU != %pU",
2473 fs_info->fsid, sb->dev_item.fsid);
2474 ret = -EINVAL;
2478 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2479 * done later
2481 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2482 btrfs_err(fs_info, "bytes_used is too small %llu",
2483 btrfs_super_bytes_used(sb));
2484 ret = -EINVAL;
2486 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2487 btrfs_err(fs_info, "invalid stripesize %u",
2488 btrfs_super_stripesize(sb));
2489 ret = -EINVAL;
2491 if (btrfs_super_num_devices(sb) > (1UL << 31))
2492 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2493 btrfs_super_num_devices(sb));
2494 if (btrfs_super_num_devices(sb) == 0) {
2495 btrfs_err(fs_info, "number of devices is 0");
2496 ret = -EINVAL;
2499 if (mirror_num >= 0 &&
2500 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2501 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2502 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2503 ret = -EINVAL;
2507 * Obvious sys_chunk_array corruptions, it must hold at least one key
2508 * and one chunk
2510 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2511 btrfs_err(fs_info, "system chunk array too big %u > %u",
2512 btrfs_super_sys_array_size(sb),
2513 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2514 ret = -EINVAL;
2516 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2517 + sizeof(struct btrfs_chunk)) {
2518 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2519 btrfs_super_sys_array_size(sb),
2520 sizeof(struct btrfs_disk_key)
2521 + sizeof(struct btrfs_chunk));
2522 ret = -EINVAL;
2526 * The generation is a global counter, we'll trust it more than the others
2527 * but it's still possible that it's the one that's wrong.
2529 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2530 btrfs_warn(fs_info,
2531 "suspicious: generation < chunk_root_generation: %llu < %llu",
2532 btrfs_super_generation(sb),
2533 btrfs_super_chunk_root_generation(sb));
2534 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2535 && btrfs_super_cache_generation(sb) != (u64)-1)
2536 btrfs_warn(fs_info,
2537 "suspicious: generation < cache_generation: %llu < %llu",
2538 btrfs_super_generation(sb),
2539 btrfs_super_cache_generation(sb));
2541 return ret;
2545 * Validation of super block at mount time.
2546 * Some checks already done early at mount time, like csum type and incompat
2547 * flags will be skipped.
2549 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551 return validate_super(fs_info, fs_info->super_copy, 0);
2555 * Validation of super block at write time.
2556 * Some checks like bytenr check will be skipped as their values will be
2557 * overwritten soon.
2558 * Extra checks like csum type and incompat flags will be done here.
2560 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2561 struct btrfs_super_block *sb)
2563 int ret;
2565 ret = validate_super(fs_info, sb, -1);
2566 if (ret < 0)
2567 goto out;
2568 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2569 ret = -EUCLEAN;
2570 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2571 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2572 goto out;
2574 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2575 ret = -EUCLEAN;
2576 btrfs_err(fs_info,
2577 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2578 btrfs_super_incompat_flags(sb),
2579 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2580 goto out;
2582 out:
2583 if (ret < 0)
2584 btrfs_err(fs_info,
2585 "super block corruption detected before writing it to disk");
2586 return ret;
2589 int open_ctree(struct super_block *sb,
2590 struct btrfs_fs_devices *fs_devices,
2591 char *options)
2593 u32 sectorsize;
2594 u32 nodesize;
2595 u32 stripesize;
2596 u64 generation;
2597 u64 features;
2598 struct btrfs_key location;
2599 struct buffer_head *bh;
2600 struct btrfs_super_block *disk_super;
2601 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2602 struct btrfs_root *tree_root;
2603 struct btrfs_root *chunk_root;
2604 int ret;
2605 int err = -EINVAL;
2606 int num_backups_tried = 0;
2607 int backup_index = 0;
2608 int clear_free_space_tree = 0;
2609 int level;
2611 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2612 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2613 if (!tree_root || !chunk_root) {
2614 err = -ENOMEM;
2615 goto fail;
2618 ret = init_srcu_struct(&fs_info->subvol_srcu);
2619 if (ret) {
2620 err = ret;
2621 goto fail;
2624 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2625 if (ret) {
2626 err = ret;
2627 goto fail_srcu;
2629 fs_info->dirty_metadata_batch = PAGE_SIZE *
2630 (1 + ilog2(nr_cpu_ids));
2632 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2633 if (ret) {
2634 err = ret;
2635 goto fail_dirty_metadata_bytes;
2638 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2639 if (ret) {
2640 err = ret;
2641 goto fail_delalloc_bytes;
2644 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2645 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2646 INIT_LIST_HEAD(&fs_info->trans_list);
2647 INIT_LIST_HEAD(&fs_info->dead_roots);
2648 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2649 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2650 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2651 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2652 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2653 spin_lock_init(&fs_info->delalloc_root_lock);
2654 spin_lock_init(&fs_info->trans_lock);
2655 spin_lock_init(&fs_info->fs_roots_radix_lock);
2656 spin_lock_init(&fs_info->delayed_iput_lock);
2657 spin_lock_init(&fs_info->defrag_inodes_lock);
2658 spin_lock_init(&fs_info->super_lock);
2659 spin_lock_init(&fs_info->qgroup_op_lock);
2660 spin_lock_init(&fs_info->buffer_lock);
2661 spin_lock_init(&fs_info->unused_bgs_lock);
2662 rwlock_init(&fs_info->tree_mod_log_lock);
2663 mutex_init(&fs_info->unused_bg_unpin_mutex);
2664 mutex_init(&fs_info->delete_unused_bgs_mutex);
2665 mutex_init(&fs_info->reloc_mutex);
2666 mutex_init(&fs_info->delalloc_root_mutex);
2667 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2668 seqlock_init(&fs_info->profiles_lock);
2670 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2671 INIT_LIST_HEAD(&fs_info->space_info);
2672 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2673 INIT_LIST_HEAD(&fs_info->unused_bgs);
2674 btrfs_mapping_init(&fs_info->mapping_tree);
2675 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2676 BTRFS_BLOCK_RSV_GLOBAL);
2677 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2678 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2679 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2680 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2681 BTRFS_BLOCK_RSV_DELOPS);
2682 atomic_set(&fs_info->async_delalloc_pages, 0);
2683 atomic_set(&fs_info->defrag_running, 0);
2684 atomic_set(&fs_info->qgroup_op_seq, 0);
2685 atomic_set(&fs_info->reada_works_cnt, 0);
2686 atomic64_set(&fs_info->tree_mod_seq, 0);
2687 fs_info->sb = sb;
2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2689 fs_info->metadata_ratio = 0;
2690 fs_info->defrag_inodes = RB_ROOT;
2691 atomic64_set(&fs_info->free_chunk_space, 0);
2692 fs_info->tree_mod_log = RB_ROOT;
2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2695 /* readahead state */
2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2697 spin_lock_init(&fs_info->reada_lock);
2698 btrfs_init_ref_verify(fs_info);
2700 fs_info->thread_pool_size = min_t(unsigned long,
2701 num_online_cpus() + 2, 8);
2703 INIT_LIST_HEAD(&fs_info->ordered_roots);
2704 spin_lock_init(&fs_info->ordered_root_lock);
2706 fs_info->btree_inode = new_inode(sb);
2707 if (!fs_info->btree_inode) {
2708 err = -ENOMEM;
2709 goto fail_bio_counter;
2711 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2713 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2714 GFP_KERNEL);
2715 if (!fs_info->delayed_root) {
2716 err = -ENOMEM;
2717 goto fail_iput;
2719 btrfs_init_delayed_root(fs_info->delayed_root);
2721 btrfs_init_scrub(fs_info);
2722 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2723 fs_info->check_integrity_print_mask = 0;
2724 #endif
2725 btrfs_init_balance(fs_info);
2726 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2728 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2729 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2731 btrfs_init_btree_inode(fs_info);
2733 spin_lock_init(&fs_info->block_group_cache_lock);
2734 fs_info->block_group_cache_tree = RB_ROOT;
2735 fs_info->first_logical_byte = (u64)-1;
2737 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2738 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2739 fs_info->pinned_extents = &fs_info->freed_extents[0];
2740 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2742 mutex_init(&fs_info->ordered_operations_mutex);
2743 mutex_init(&fs_info->tree_log_mutex);
2744 mutex_init(&fs_info->chunk_mutex);
2745 mutex_init(&fs_info->transaction_kthread_mutex);
2746 mutex_init(&fs_info->cleaner_mutex);
2747 mutex_init(&fs_info->ro_block_group_mutex);
2748 init_rwsem(&fs_info->commit_root_sem);
2749 init_rwsem(&fs_info->cleanup_work_sem);
2750 init_rwsem(&fs_info->subvol_sem);
2751 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2753 btrfs_init_dev_replace_locks(fs_info);
2754 btrfs_init_qgroup(fs_info);
2756 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2757 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2759 init_waitqueue_head(&fs_info->transaction_throttle);
2760 init_waitqueue_head(&fs_info->transaction_wait);
2761 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2762 init_waitqueue_head(&fs_info->async_submit_wait);
2764 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2766 /* Usable values until the real ones are cached from the superblock */
2767 fs_info->nodesize = 4096;
2768 fs_info->sectorsize = 4096;
2769 fs_info->stripesize = 4096;
2771 ret = btrfs_alloc_stripe_hash_table(fs_info);
2772 if (ret) {
2773 err = ret;
2774 goto fail_alloc;
2777 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2779 invalidate_bdev(fs_devices->latest_bdev);
2782 * Read super block and check the signature bytes only
2784 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2785 if (IS_ERR(bh)) {
2786 err = PTR_ERR(bh);
2787 goto fail_alloc;
2791 * We want to check superblock checksum, the type is stored inside.
2792 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2794 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2795 btrfs_err(fs_info, "superblock checksum mismatch");
2796 err = -EINVAL;
2797 brelse(bh);
2798 goto fail_alloc;
2802 * super_copy is zeroed at allocation time and we never touch the
2803 * following bytes up to INFO_SIZE, the checksum is calculated from
2804 * the whole block of INFO_SIZE
2806 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2807 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2808 sizeof(*fs_info->super_for_commit));
2809 brelse(bh);
2811 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2813 ret = btrfs_validate_mount_super(fs_info);
2814 if (ret) {
2815 btrfs_err(fs_info, "superblock contains fatal errors");
2816 err = -EINVAL;
2817 goto fail_alloc;
2820 disk_super = fs_info->super_copy;
2821 if (!btrfs_super_root(disk_super))
2822 goto fail_alloc;
2824 /* check FS state, whether FS is broken. */
2825 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2826 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2829 * run through our array of backup supers and setup
2830 * our ring pointer to the oldest one
2832 generation = btrfs_super_generation(disk_super);
2833 find_oldest_super_backup(fs_info, generation);
2836 * In the long term, we'll store the compression type in the super
2837 * block, and it'll be used for per file compression control.
2839 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2841 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2842 if (ret) {
2843 err = ret;
2844 goto fail_alloc;
2847 features = btrfs_super_incompat_flags(disk_super) &
2848 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2849 if (features) {
2850 btrfs_err(fs_info,
2851 "cannot mount because of unsupported optional features (%llx)",
2852 features);
2853 err = -EINVAL;
2854 goto fail_alloc;
2857 features = btrfs_super_incompat_flags(disk_super);
2858 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2859 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2860 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2861 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2862 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2864 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2865 btrfs_info(fs_info, "has skinny extents");
2868 * flag our filesystem as having big metadata blocks if
2869 * they are bigger than the page size
2871 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2872 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2873 btrfs_info(fs_info,
2874 "flagging fs with big metadata feature");
2875 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2878 nodesize = btrfs_super_nodesize(disk_super);
2879 sectorsize = btrfs_super_sectorsize(disk_super);
2880 stripesize = sectorsize;
2881 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2882 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2884 /* Cache block sizes */
2885 fs_info->nodesize = nodesize;
2886 fs_info->sectorsize = sectorsize;
2887 fs_info->stripesize = stripesize;
2890 * mixed block groups end up with duplicate but slightly offset
2891 * extent buffers for the same range. It leads to corruptions
2893 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2894 (sectorsize != nodesize)) {
2895 btrfs_err(fs_info,
2896 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2897 nodesize, sectorsize);
2898 goto fail_alloc;
2902 * Needn't use the lock because there is no other task which will
2903 * update the flag.
2905 btrfs_set_super_incompat_flags(disk_super, features);
2907 features = btrfs_super_compat_ro_flags(disk_super) &
2908 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2909 if (!sb_rdonly(sb) && features) {
2910 btrfs_err(fs_info,
2911 "cannot mount read-write because of unsupported optional features (%llx)",
2912 features);
2913 err = -EINVAL;
2914 goto fail_alloc;
2917 ret = btrfs_init_workqueues(fs_info, fs_devices);
2918 if (ret) {
2919 err = ret;
2920 goto fail_sb_buffer;
2923 sb->s_bdi->congested_fn = btrfs_congested_fn;
2924 sb->s_bdi->congested_data = fs_info;
2925 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2926 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2927 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2928 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2930 sb->s_blocksize = sectorsize;
2931 sb->s_blocksize_bits = blksize_bits(sectorsize);
2932 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2934 mutex_lock(&fs_info->chunk_mutex);
2935 ret = btrfs_read_sys_array(fs_info);
2936 mutex_unlock(&fs_info->chunk_mutex);
2937 if (ret) {
2938 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2939 goto fail_sb_buffer;
2942 generation = btrfs_super_chunk_root_generation(disk_super);
2943 level = btrfs_super_chunk_root_level(disk_super);
2945 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2947 chunk_root->node = read_tree_block(fs_info,
2948 btrfs_super_chunk_root(disk_super),
2949 generation, level, NULL);
2950 if (IS_ERR(chunk_root->node) ||
2951 !extent_buffer_uptodate(chunk_root->node)) {
2952 btrfs_err(fs_info, "failed to read chunk root");
2953 if (!IS_ERR(chunk_root->node))
2954 free_extent_buffer(chunk_root->node);
2955 chunk_root->node = NULL;
2956 goto fail_tree_roots;
2958 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2959 chunk_root->commit_root = btrfs_root_node(chunk_root);
2961 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2962 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2964 ret = btrfs_read_chunk_tree(fs_info);
2965 if (ret) {
2966 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2967 goto fail_tree_roots;
2971 * Keep the devid that is marked to be the target device for the
2972 * device replace procedure
2974 btrfs_free_extra_devids(fs_devices, 0);
2976 if (!fs_devices->latest_bdev) {
2977 btrfs_err(fs_info, "failed to read devices");
2978 goto fail_tree_roots;
2981 retry_root_backup:
2982 generation = btrfs_super_generation(disk_super);
2983 level = btrfs_super_root_level(disk_super);
2985 tree_root->node = read_tree_block(fs_info,
2986 btrfs_super_root(disk_super),
2987 generation, level, NULL);
2988 if (IS_ERR(tree_root->node) ||
2989 !extent_buffer_uptodate(tree_root->node)) {
2990 btrfs_warn(fs_info, "failed to read tree root");
2991 if (!IS_ERR(tree_root->node))
2992 free_extent_buffer(tree_root->node);
2993 tree_root->node = NULL;
2994 goto recovery_tree_root;
2997 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2998 tree_root->commit_root = btrfs_root_node(tree_root);
2999 btrfs_set_root_refs(&tree_root->root_item, 1);
3001 mutex_lock(&tree_root->objectid_mutex);
3002 ret = btrfs_find_highest_objectid(tree_root,
3003 &tree_root->highest_objectid);
3004 if (ret) {
3005 mutex_unlock(&tree_root->objectid_mutex);
3006 goto recovery_tree_root;
3009 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3011 mutex_unlock(&tree_root->objectid_mutex);
3013 ret = btrfs_read_roots(fs_info);
3014 if (ret)
3015 goto recovery_tree_root;
3017 fs_info->generation = generation;
3018 fs_info->last_trans_committed = generation;
3021 * If we have a uuid root and we're not being told to rescan we need to
3022 * check the generation here so we can set the
3023 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3024 * transaction during a balance or the log replay without updating the
3025 * uuid generation, and then if we crash we would rescan the uuid tree,
3026 * even though it was perfectly fine.
3028 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3029 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3030 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3032 ret = btrfs_verify_dev_extents(fs_info);
3033 if (ret) {
3034 btrfs_err(fs_info,
3035 "failed to verify dev extents against chunks: %d",
3036 ret);
3037 goto fail_block_groups;
3039 ret = btrfs_recover_balance(fs_info);
3040 if (ret) {
3041 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3042 goto fail_block_groups;
3045 ret = btrfs_init_dev_stats(fs_info);
3046 if (ret) {
3047 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3048 goto fail_block_groups;
3051 ret = btrfs_init_dev_replace(fs_info);
3052 if (ret) {
3053 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3054 goto fail_block_groups;
3057 btrfs_free_extra_devids(fs_devices, 1);
3059 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3060 if (ret) {
3061 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3062 ret);
3063 goto fail_block_groups;
3066 ret = btrfs_sysfs_add_device(fs_devices);
3067 if (ret) {
3068 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3069 ret);
3070 goto fail_fsdev_sysfs;
3073 ret = btrfs_sysfs_add_mounted(fs_info);
3074 if (ret) {
3075 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3076 goto fail_fsdev_sysfs;
3079 ret = btrfs_init_space_info(fs_info);
3080 if (ret) {
3081 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3082 goto fail_sysfs;
3085 ret = btrfs_read_block_groups(fs_info);
3086 if (ret) {
3087 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3088 goto fail_sysfs;
3091 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3092 btrfs_warn(fs_info,
3093 "writeable mount is not allowed due to too many missing devices");
3094 goto fail_sysfs;
3097 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3098 "btrfs-cleaner");
3099 if (IS_ERR(fs_info->cleaner_kthread))
3100 goto fail_sysfs;
3102 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3103 tree_root,
3104 "btrfs-transaction");
3105 if (IS_ERR(fs_info->transaction_kthread))
3106 goto fail_cleaner;
3108 if (!btrfs_test_opt(fs_info, NOSSD) &&
3109 !fs_info->fs_devices->rotating) {
3110 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3114 * Mount does not set all options immediately, we can do it now and do
3115 * not have to wait for transaction commit
3117 btrfs_apply_pending_changes(fs_info);
3119 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3120 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3121 ret = btrfsic_mount(fs_info, fs_devices,
3122 btrfs_test_opt(fs_info,
3123 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3124 1 : 0,
3125 fs_info->check_integrity_print_mask);
3126 if (ret)
3127 btrfs_warn(fs_info,
3128 "failed to initialize integrity check module: %d",
3129 ret);
3131 #endif
3132 ret = btrfs_read_qgroup_config(fs_info);
3133 if (ret)
3134 goto fail_trans_kthread;
3136 if (btrfs_build_ref_tree(fs_info))
3137 btrfs_err(fs_info, "couldn't build ref tree");
3139 /* do not make disk changes in broken FS or nologreplay is given */
3140 if (btrfs_super_log_root(disk_super) != 0 &&
3141 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3142 btrfs_info(fs_info, "start tree-log replay");
3143 ret = btrfs_replay_log(fs_info, fs_devices);
3144 if (ret) {
3145 err = ret;
3146 goto fail_qgroup;
3150 ret = btrfs_find_orphan_roots(fs_info);
3151 if (ret)
3152 goto fail_qgroup;
3154 if (!sb_rdonly(sb)) {
3155 ret = btrfs_cleanup_fs_roots(fs_info);
3156 if (ret)
3157 goto fail_qgroup;
3159 mutex_lock(&fs_info->cleaner_mutex);
3160 ret = btrfs_recover_relocation(tree_root);
3161 mutex_unlock(&fs_info->cleaner_mutex);
3162 if (ret < 0) {
3163 btrfs_warn(fs_info, "failed to recover relocation: %d",
3164 ret);
3165 err = -EINVAL;
3166 goto fail_qgroup;
3170 location.objectid = BTRFS_FS_TREE_OBJECTID;
3171 location.type = BTRFS_ROOT_ITEM_KEY;
3172 location.offset = 0;
3174 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3175 if (IS_ERR(fs_info->fs_root)) {
3176 err = PTR_ERR(fs_info->fs_root);
3177 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3178 fs_info->fs_root = NULL;
3179 goto fail_qgroup;
3182 if (sb_rdonly(sb))
3183 return 0;
3185 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3186 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3187 clear_free_space_tree = 1;
3188 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3189 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3190 btrfs_warn(fs_info, "free space tree is invalid");
3191 clear_free_space_tree = 1;
3194 if (clear_free_space_tree) {
3195 btrfs_info(fs_info, "clearing free space tree");
3196 ret = btrfs_clear_free_space_tree(fs_info);
3197 if (ret) {
3198 btrfs_warn(fs_info,
3199 "failed to clear free space tree: %d", ret);
3200 close_ctree(fs_info);
3201 return ret;
3205 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3206 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3207 btrfs_info(fs_info, "creating free space tree");
3208 ret = btrfs_create_free_space_tree(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info,
3211 "failed to create free space tree: %d", ret);
3212 close_ctree(fs_info);
3213 return ret;
3217 down_read(&fs_info->cleanup_work_sem);
3218 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3219 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3220 up_read(&fs_info->cleanup_work_sem);
3221 close_ctree(fs_info);
3222 return ret;
3224 up_read(&fs_info->cleanup_work_sem);
3226 ret = btrfs_resume_balance_async(fs_info);
3227 if (ret) {
3228 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3229 close_ctree(fs_info);
3230 return ret;
3233 ret = btrfs_resume_dev_replace_async(fs_info);
3234 if (ret) {
3235 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3236 close_ctree(fs_info);
3237 return ret;
3240 btrfs_qgroup_rescan_resume(fs_info);
3242 if (!fs_info->uuid_root) {
3243 btrfs_info(fs_info, "creating UUID tree");
3244 ret = btrfs_create_uuid_tree(fs_info);
3245 if (ret) {
3246 btrfs_warn(fs_info,
3247 "failed to create the UUID tree: %d", ret);
3248 close_ctree(fs_info);
3249 return ret;
3251 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3252 fs_info->generation !=
3253 btrfs_super_uuid_tree_generation(disk_super)) {
3254 btrfs_info(fs_info, "checking UUID tree");
3255 ret = btrfs_check_uuid_tree(fs_info);
3256 if (ret) {
3257 btrfs_warn(fs_info,
3258 "failed to check the UUID tree: %d", ret);
3259 close_ctree(fs_info);
3260 return ret;
3263 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3266 * backuproot only affect mount behavior, and if open_ctree succeeded,
3267 * no need to keep the flag
3269 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3271 return 0;
3273 fail_qgroup:
3274 btrfs_free_qgroup_config(fs_info);
3275 fail_trans_kthread:
3276 kthread_stop(fs_info->transaction_kthread);
3277 btrfs_cleanup_transaction(fs_info);
3278 btrfs_free_fs_roots(fs_info);
3279 fail_cleaner:
3280 kthread_stop(fs_info->cleaner_kthread);
3283 * make sure we're done with the btree inode before we stop our
3284 * kthreads
3286 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3288 fail_sysfs:
3289 btrfs_sysfs_remove_mounted(fs_info);
3291 fail_fsdev_sysfs:
3292 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3294 fail_block_groups:
3295 btrfs_put_block_group_cache(fs_info);
3297 fail_tree_roots:
3298 free_root_pointers(fs_info, true);
3299 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3301 fail_sb_buffer:
3302 btrfs_stop_all_workers(fs_info);
3303 btrfs_free_block_groups(fs_info);
3304 fail_alloc:
3305 fail_iput:
3306 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3308 iput(fs_info->btree_inode);
3309 fail_bio_counter:
3310 percpu_counter_destroy(&fs_info->bio_counter);
3311 fail_delalloc_bytes:
3312 percpu_counter_destroy(&fs_info->delalloc_bytes);
3313 fail_dirty_metadata_bytes:
3314 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3315 fail_srcu:
3316 cleanup_srcu_struct(&fs_info->subvol_srcu);
3317 fail:
3318 btrfs_free_stripe_hash_table(fs_info);
3319 btrfs_close_devices(fs_info->fs_devices);
3320 return err;
3322 recovery_tree_root:
3323 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3324 goto fail_tree_roots;
3326 free_root_pointers(fs_info, false);
3328 /* don't use the log in recovery mode, it won't be valid */
3329 btrfs_set_super_log_root(disk_super, 0);
3331 /* we can't trust the free space cache either */
3332 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3334 ret = next_root_backup(fs_info, fs_info->super_copy,
3335 &num_backups_tried, &backup_index);
3336 if (ret == -1)
3337 goto fail_block_groups;
3338 goto retry_root_backup;
3340 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3342 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3344 if (uptodate) {
3345 set_buffer_uptodate(bh);
3346 } else {
3347 struct btrfs_device *device = (struct btrfs_device *)
3348 bh->b_private;
3350 btrfs_warn_rl_in_rcu(device->fs_info,
3351 "lost page write due to IO error on %s",
3352 rcu_str_deref(device->name));
3353 /* note, we don't set_buffer_write_io_error because we have
3354 * our own ways of dealing with the IO errors
3356 clear_buffer_uptodate(bh);
3357 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3359 unlock_buffer(bh);
3360 put_bh(bh);
3363 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3364 struct buffer_head **bh_ret)
3366 struct buffer_head *bh;
3367 struct btrfs_super_block *super;
3368 u64 bytenr;
3370 bytenr = btrfs_sb_offset(copy_num);
3371 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3372 return -EINVAL;
3374 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3376 * If we fail to read from the underlying devices, as of now
3377 * the best option we have is to mark it EIO.
3379 if (!bh)
3380 return -EIO;
3382 super = (struct btrfs_super_block *)bh->b_data;
3383 if (btrfs_super_bytenr(super) != bytenr ||
3384 btrfs_super_magic(super) != BTRFS_MAGIC) {
3385 brelse(bh);
3386 return -EINVAL;
3389 *bh_ret = bh;
3390 return 0;
3394 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3396 struct buffer_head *bh;
3397 struct buffer_head *latest = NULL;
3398 struct btrfs_super_block *super;
3399 int i;
3400 u64 transid = 0;
3401 int ret = -EINVAL;
3403 /* we would like to check all the supers, but that would make
3404 * a btrfs mount succeed after a mkfs from a different FS.
3405 * So, we need to add a special mount option to scan for
3406 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3408 for (i = 0; i < 1; i++) {
3409 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3410 if (ret)
3411 continue;
3413 super = (struct btrfs_super_block *)bh->b_data;
3415 if (!latest || btrfs_super_generation(super) > transid) {
3416 brelse(latest);
3417 latest = bh;
3418 transid = btrfs_super_generation(super);
3419 } else {
3420 brelse(bh);
3424 if (!latest)
3425 return ERR_PTR(ret);
3427 return latest;
3431 * Write superblock @sb to the @device. Do not wait for completion, all the
3432 * buffer heads we write are pinned.
3434 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3435 * the expected device size at commit time. Note that max_mirrors must be
3436 * same for write and wait phases.
3438 * Return number of errors when buffer head is not found or submission fails.
3440 static int write_dev_supers(struct btrfs_device *device,
3441 struct btrfs_super_block *sb, int max_mirrors)
3443 struct buffer_head *bh;
3444 int i;
3445 int ret;
3446 int errors = 0;
3447 u32 crc;
3448 u64 bytenr;
3449 int op_flags;
3451 if (max_mirrors == 0)
3452 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3454 for (i = 0; i < max_mirrors; i++) {
3455 bytenr = btrfs_sb_offset(i);
3456 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3457 device->commit_total_bytes)
3458 break;
3460 btrfs_set_super_bytenr(sb, bytenr);
3462 crc = ~(u32)0;
3463 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3464 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3465 btrfs_csum_final(crc, sb->csum);
3467 /* One reference for us, and we leave it for the caller */
3468 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3469 BTRFS_SUPER_INFO_SIZE);
3470 if (!bh) {
3471 btrfs_err(device->fs_info,
3472 "couldn't get super buffer head for bytenr %llu",
3473 bytenr);
3474 errors++;
3475 continue;
3478 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3480 /* one reference for submit_bh */
3481 get_bh(bh);
3483 set_buffer_uptodate(bh);
3484 lock_buffer(bh);
3485 bh->b_end_io = btrfs_end_buffer_write_sync;
3486 bh->b_private = device;
3489 * we fua the first super. The others we allow
3490 * to go down lazy.
3492 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3493 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3494 op_flags |= REQ_FUA;
3495 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3496 if (ret)
3497 errors++;
3499 return errors < i ? 0 : -1;
3503 * Wait for write completion of superblocks done by write_dev_supers,
3504 * @max_mirrors same for write and wait phases.
3506 * Return number of errors when buffer head is not found or not marked up to
3507 * date.
3509 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3511 struct buffer_head *bh;
3512 int i;
3513 int errors = 0;
3514 bool primary_failed = false;
3515 u64 bytenr;
3517 if (max_mirrors == 0)
3518 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3520 for (i = 0; i < max_mirrors; i++) {
3521 bytenr = btrfs_sb_offset(i);
3522 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3523 device->commit_total_bytes)
3524 break;
3526 bh = __find_get_block(device->bdev,
3527 bytenr / BTRFS_BDEV_BLOCKSIZE,
3528 BTRFS_SUPER_INFO_SIZE);
3529 if (!bh) {
3530 errors++;
3531 if (i == 0)
3532 primary_failed = true;
3533 continue;
3535 wait_on_buffer(bh);
3536 if (!buffer_uptodate(bh)) {
3537 errors++;
3538 if (i == 0)
3539 primary_failed = true;
3542 /* drop our reference */
3543 brelse(bh);
3545 /* drop the reference from the writing run */
3546 brelse(bh);
3549 /* log error, force error return */
3550 if (primary_failed) {
3551 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3552 device->devid);
3553 return -1;
3556 return errors < i ? 0 : -1;
3560 * endio for the write_dev_flush, this will wake anyone waiting
3561 * for the barrier when it is done
3563 static void btrfs_end_empty_barrier(struct bio *bio)
3565 complete(bio->bi_private);
3569 * Submit a flush request to the device if it supports it. Error handling is
3570 * done in the waiting counterpart.
3572 static void write_dev_flush(struct btrfs_device *device)
3574 struct request_queue *q = bdev_get_queue(device->bdev);
3575 struct bio *bio = device->flush_bio;
3577 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3578 return;
3580 bio_reset(bio);
3581 bio->bi_end_io = btrfs_end_empty_barrier;
3582 bio_set_dev(bio, device->bdev);
3583 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3584 init_completion(&device->flush_wait);
3585 bio->bi_private = &device->flush_wait;
3587 btrfsic_submit_bio(bio);
3588 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3592 * If the flush bio has been submitted by write_dev_flush, wait for it.
3594 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3596 struct bio *bio = device->flush_bio;
3598 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3599 return BLK_STS_OK;
3601 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3602 wait_for_completion_io(&device->flush_wait);
3604 return bio->bi_status;
3607 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3609 if (!btrfs_check_rw_degradable(fs_info, NULL))
3610 return -EIO;
3611 return 0;
3615 * send an empty flush down to each device in parallel,
3616 * then wait for them
3618 static int barrier_all_devices(struct btrfs_fs_info *info)
3620 struct list_head *head;
3621 struct btrfs_device *dev;
3622 int errors_wait = 0;
3623 blk_status_t ret;
3625 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3626 /* send down all the barriers */
3627 head = &info->fs_devices->devices;
3628 list_for_each_entry(dev, head, dev_list) {
3629 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3630 continue;
3631 if (!dev->bdev)
3632 continue;
3633 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3634 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3635 continue;
3637 write_dev_flush(dev);
3638 dev->last_flush_error = BLK_STS_OK;
3641 /* wait for all the barriers */
3642 list_for_each_entry(dev, head, dev_list) {
3643 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3644 continue;
3645 if (!dev->bdev) {
3646 errors_wait++;
3647 continue;
3649 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3650 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3651 continue;
3653 ret = wait_dev_flush(dev);
3654 if (ret) {
3655 dev->last_flush_error = ret;
3656 btrfs_dev_stat_inc_and_print(dev,
3657 BTRFS_DEV_STAT_FLUSH_ERRS);
3658 errors_wait++;
3662 if (errors_wait) {
3664 * At some point we need the status of all disks
3665 * to arrive at the volume status. So error checking
3666 * is being pushed to a separate loop.
3668 return check_barrier_error(info);
3670 return 0;
3673 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3675 int raid_type;
3676 int min_tolerated = INT_MAX;
3678 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3679 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3680 min_tolerated = min(min_tolerated,
3681 btrfs_raid_array[BTRFS_RAID_SINGLE].
3682 tolerated_failures);
3684 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3685 if (raid_type == BTRFS_RAID_SINGLE)
3686 continue;
3687 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3688 continue;
3689 min_tolerated = min(min_tolerated,
3690 btrfs_raid_array[raid_type].
3691 tolerated_failures);
3694 if (min_tolerated == INT_MAX) {
3695 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3696 min_tolerated = 0;
3699 return min_tolerated;
3702 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3704 struct list_head *head;
3705 struct btrfs_device *dev;
3706 struct btrfs_super_block *sb;
3707 struct btrfs_dev_item *dev_item;
3708 int ret;
3709 int do_barriers;
3710 int max_errors;
3711 int total_errors = 0;
3712 u64 flags;
3714 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3717 * max_mirrors == 0 indicates we're from commit_transaction,
3718 * not from fsync where the tree roots in fs_info have not
3719 * been consistent on disk.
3721 if (max_mirrors == 0)
3722 backup_super_roots(fs_info);
3724 sb = fs_info->super_for_commit;
3725 dev_item = &sb->dev_item;
3727 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3728 head = &fs_info->fs_devices->devices;
3729 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3731 if (do_barriers) {
3732 ret = barrier_all_devices(fs_info);
3733 if (ret) {
3734 mutex_unlock(
3735 &fs_info->fs_devices->device_list_mutex);
3736 btrfs_handle_fs_error(fs_info, ret,
3737 "errors while submitting device barriers.");
3738 return ret;
3742 list_for_each_entry(dev, head, dev_list) {
3743 if (!dev->bdev) {
3744 total_errors++;
3745 continue;
3747 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3748 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3749 continue;
3751 btrfs_set_stack_device_generation(dev_item, 0);
3752 btrfs_set_stack_device_type(dev_item, dev->type);
3753 btrfs_set_stack_device_id(dev_item, dev->devid);
3754 btrfs_set_stack_device_total_bytes(dev_item,
3755 dev->commit_total_bytes);
3756 btrfs_set_stack_device_bytes_used(dev_item,
3757 dev->commit_bytes_used);
3758 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3759 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3760 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3761 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3762 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3764 flags = btrfs_super_flags(sb);
3765 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3767 ret = btrfs_validate_write_super(fs_info, sb);
3768 if (ret < 0) {
3769 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3770 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3771 "unexpected superblock corruption detected");
3772 return -EUCLEAN;
3775 ret = write_dev_supers(dev, sb, max_mirrors);
3776 if (ret)
3777 total_errors++;
3779 if (total_errors > max_errors) {
3780 btrfs_err(fs_info, "%d errors while writing supers",
3781 total_errors);
3782 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784 /* FUA is masked off if unsupported and can't be the reason */
3785 btrfs_handle_fs_error(fs_info, -EIO,
3786 "%d errors while writing supers",
3787 total_errors);
3788 return -EIO;
3791 total_errors = 0;
3792 list_for_each_entry(dev, head, dev_list) {
3793 if (!dev->bdev)
3794 continue;
3795 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797 continue;
3799 ret = wait_dev_supers(dev, max_mirrors);
3800 if (ret)
3801 total_errors++;
3803 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804 if (total_errors > max_errors) {
3805 btrfs_handle_fs_error(fs_info, -EIO,
3806 "%d errors while writing supers",
3807 total_errors);
3808 return -EIO;
3810 return 0;
3813 /* Drop a fs root from the radix tree and free it. */
3814 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3815 struct btrfs_root *root)
3817 spin_lock(&fs_info->fs_roots_radix_lock);
3818 radix_tree_delete(&fs_info->fs_roots_radix,
3819 (unsigned long)root->root_key.objectid);
3820 spin_unlock(&fs_info->fs_roots_radix_lock);
3822 if (btrfs_root_refs(&root->root_item) == 0)
3823 synchronize_srcu(&fs_info->subvol_srcu);
3825 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3826 btrfs_free_log(NULL, root);
3827 if (root->reloc_root) {
3828 free_extent_buffer(root->reloc_root->node);
3829 free_extent_buffer(root->reloc_root->commit_root);
3830 btrfs_put_fs_root(root->reloc_root);
3831 root->reloc_root = NULL;
3835 if (root->free_ino_pinned)
3836 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3837 if (root->free_ino_ctl)
3838 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3839 btrfs_free_fs_root(root);
3842 void btrfs_free_fs_root(struct btrfs_root *root)
3844 iput(root->ino_cache_inode);
3845 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3846 if (root->anon_dev)
3847 free_anon_bdev(root->anon_dev);
3848 if (root->subv_writers)
3849 btrfs_free_subvolume_writers(root->subv_writers);
3850 free_extent_buffer(root->node);
3851 free_extent_buffer(root->commit_root);
3852 kfree(root->free_ino_ctl);
3853 kfree(root->free_ino_pinned);
3854 btrfs_put_fs_root(root);
3857 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3859 u64 root_objectid = 0;
3860 struct btrfs_root *gang[8];
3861 int i = 0;
3862 int err = 0;
3863 unsigned int ret = 0;
3864 int index;
3866 while (1) {
3867 index = srcu_read_lock(&fs_info->subvol_srcu);
3868 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3869 (void **)gang, root_objectid,
3870 ARRAY_SIZE(gang));
3871 if (!ret) {
3872 srcu_read_unlock(&fs_info->subvol_srcu, index);
3873 break;
3875 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3877 for (i = 0; i < ret; i++) {
3878 /* Avoid to grab roots in dead_roots */
3879 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3880 gang[i] = NULL;
3881 continue;
3883 /* grab all the search result for later use */
3884 gang[i] = btrfs_grab_fs_root(gang[i]);
3886 srcu_read_unlock(&fs_info->subvol_srcu, index);
3888 for (i = 0; i < ret; i++) {
3889 if (!gang[i])
3890 continue;
3891 root_objectid = gang[i]->root_key.objectid;
3892 err = btrfs_orphan_cleanup(gang[i]);
3893 if (err)
3894 break;
3895 btrfs_put_fs_root(gang[i]);
3897 root_objectid++;
3900 /* release the uncleaned roots due to error */
3901 for (; i < ret; i++) {
3902 if (gang[i])
3903 btrfs_put_fs_root(gang[i]);
3905 return err;
3908 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3910 struct btrfs_root *root = fs_info->tree_root;
3911 struct btrfs_trans_handle *trans;
3913 mutex_lock(&fs_info->cleaner_mutex);
3914 btrfs_run_delayed_iputs(fs_info);
3915 mutex_unlock(&fs_info->cleaner_mutex);
3916 wake_up_process(fs_info->cleaner_kthread);
3918 /* wait until ongoing cleanup work done */
3919 down_write(&fs_info->cleanup_work_sem);
3920 up_write(&fs_info->cleanup_work_sem);
3922 trans = btrfs_join_transaction(root);
3923 if (IS_ERR(trans))
3924 return PTR_ERR(trans);
3925 return btrfs_commit_transaction(trans);
3928 void close_ctree(struct btrfs_fs_info *fs_info)
3930 int ret;
3932 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3934 * We don't want the cleaner to start new transactions, add more delayed
3935 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3936 * because that frees the task_struct, and the transaction kthread might
3937 * still try to wake up the cleaner.
3939 kthread_park(fs_info->cleaner_kthread);
3941 /* wait for the qgroup rescan worker to stop */
3942 btrfs_qgroup_wait_for_completion(fs_info, false);
3944 /* wait for the uuid_scan task to finish */
3945 down(&fs_info->uuid_tree_rescan_sem);
3946 /* avoid complains from lockdep et al., set sem back to initial state */
3947 up(&fs_info->uuid_tree_rescan_sem);
3949 /* pause restriper - we want to resume on mount */
3950 btrfs_pause_balance(fs_info);
3952 btrfs_dev_replace_suspend_for_unmount(fs_info);
3954 btrfs_scrub_cancel(fs_info);
3956 /* wait for any defraggers to finish */
3957 wait_event(fs_info->transaction_wait,
3958 (atomic_read(&fs_info->defrag_running) == 0));
3960 /* clear out the rbtree of defraggable inodes */
3961 btrfs_cleanup_defrag_inodes(fs_info);
3963 cancel_work_sync(&fs_info->async_reclaim_work);
3965 if (!sb_rdonly(fs_info->sb)) {
3967 * The cleaner kthread is stopped, so do one final pass over
3968 * unused block groups.
3970 btrfs_delete_unused_bgs(fs_info);
3973 * There might be existing delayed inode workers still running
3974 * and holding an empty delayed inode item. We must wait for
3975 * them to complete first because they can create a transaction.
3976 * This happens when someone calls btrfs_balance_delayed_items()
3977 * and then a transaction commit runs the same delayed nodes
3978 * before any delayed worker has done something with the nodes.
3979 * We must wait for any worker here and not at transaction
3980 * commit time since that could cause a deadlock.
3981 * This is a very rare case.
3983 btrfs_flush_workqueue(fs_info->delayed_workers);
3985 ret = btrfs_commit_super(fs_info);
3986 if (ret)
3987 btrfs_err(fs_info, "commit super ret %d", ret);
3990 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3991 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3992 btrfs_error_commit_super(fs_info);
3994 kthread_stop(fs_info->transaction_kthread);
3995 kthread_stop(fs_info->cleaner_kthread);
3997 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3999 btrfs_free_qgroup_config(fs_info);
4000 ASSERT(list_empty(&fs_info->delalloc_roots));
4002 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4003 btrfs_info(fs_info, "at unmount delalloc count %lld",
4004 percpu_counter_sum(&fs_info->delalloc_bytes));
4007 btrfs_sysfs_remove_mounted(fs_info);
4008 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4010 btrfs_free_fs_roots(fs_info);
4012 btrfs_put_block_group_cache(fs_info);
4015 * we must make sure there is not any read request to
4016 * submit after we stopping all workers.
4018 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4019 btrfs_stop_all_workers(fs_info);
4021 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4022 free_root_pointers(fs_info, true);
4025 * We must free the block groups after dropping the fs_roots as we could
4026 * have had an IO error and have left over tree log blocks that aren't
4027 * cleaned up until the fs roots are freed. This makes the block group
4028 * accounting appear to be wrong because there's pending reserved bytes,
4029 * so make sure we do the block group cleanup afterwards.
4031 btrfs_free_block_groups(fs_info);
4033 iput(fs_info->btree_inode);
4035 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4036 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4037 btrfsic_unmount(fs_info->fs_devices);
4038 #endif
4040 btrfs_close_devices(fs_info->fs_devices);
4041 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4043 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4044 percpu_counter_destroy(&fs_info->delalloc_bytes);
4045 percpu_counter_destroy(&fs_info->bio_counter);
4046 cleanup_srcu_struct(&fs_info->subvol_srcu);
4048 btrfs_free_stripe_hash_table(fs_info);
4049 btrfs_free_ref_cache(fs_info);
4051 while (!list_empty(&fs_info->pinned_chunks)) {
4052 struct extent_map *em;
4054 em = list_first_entry(&fs_info->pinned_chunks,
4055 struct extent_map, list);
4056 list_del_init(&em->list);
4057 free_extent_map(em);
4061 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4062 int atomic)
4064 int ret;
4065 struct inode *btree_inode = buf->pages[0]->mapping->host;
4067 ret = extent_buffer_uptodate(buf);
4068 if (!ret)
4069 return ret;
4071 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4072 parent_transid, atomic);
4073 if (ret == -EAGAIN)
4074 return ret;
4075 return !ret;
4078 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4080 struct btrfs_fs_info *fs_info;
4081 struct btrfs_root *root;
4082 u64 transid = btrfs_header_generation(buf);
4083 int was_dirty;
4085 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4087 * This is a fast path so only do this check if we have sanity tests
4088 * enabled. Normal people shouldn't be using umapped buffers as dirty
4089 * outside of the sanity tests.
4091 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4092 return;
4093 #endif
4094 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4095 fs_info = root->fs_info;
4096 btrfs_assert_tree_locked(buf);
4097 if (transid != fs_info->generation)
4098 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4099 buf->start, transid, fs_info->generation);
4100 was_dirty = set_extent_buffer_dirty(buf);
4101 if (!was_dirty)
4102 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103 buf->len,
4104 fs_info->dirty_metadata_batch);
4105 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4107 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4108 * but item data not updated.
4109 * So here we should only check item pointers, not item data.
4111 if (btrfs_header_level(buf) == 0 &&
4112 btrfs_check_leaf_relaxed(fs_info, buf)) {
4113 btrfs_print_leaf(buf);
4114 ASSERT(0);
4116 #endif
4119 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4120 int flush_delayed)
4123 * looks as though older kernels can get into trouble with
4124 * this code, they end up stuck in balance_dirty_pages forever
4126 int ret;
4128 if (current->flags & PF_MEMALLOC)
4129 return;
4131 if (flush_delayed)
4132 btrfs_balance_delayed_items(fs_info);
4134 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4135 BTRFS_DIRTY_METADATA_THRESH,
4136 fs_info->dirty_metadata_batch);
4137 if (ret > 0) {
4138 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4142 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4144 __btrfs_btree_balance_dirty(fs_info, 1);
4147 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4149 __btrfs_btree_balance_dirty(fs_info, 0);
4152 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4153 struct btrfs_key *first_key)
4155 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4156 struct btrfs_fs_info *fs_info = root->fs_info;
4158 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4159 level, first_key);
4162 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4164 /* cleanup FS via transaction */
4165 btrfs_cleanup_transaction(fs_info);
4167 mutex_lock(&fs_info->cleaner_mutex);
4168 btrfs_run_delayed_iputs(fs_info);
4169 mutex_unlock(&fs_info->cleaner_mutex);
4171 down_write(&fs_info->cleanup_work_sem);
4172 up_write(&fs_info->cleanup_work_sem);
4175 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4177 struct btrfs_ordered_extent *ordered;
4179 spin_lock(&root->ordered_extent_lock);
4181 * This will just short circuit the ordered completion stuff which will
4182 * make sure the ordered extent gets properly cleaned up.
4184 list_for_each_entry(ordered, &root->ordered_extents,
4185 root_extent_list)
4186 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4187 spin_unlock(&root->ordered_extent_lock);
4190 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4192 struct btrfs_root *root;
4193 struct list_head splice;
4195 INIT_LIST_HEAD(&splice);
4197 spin_lock(&fs_info->ordered_root_lock);
4198 list_splice_init(&fs_info->ordered_roots, &splice);
4199 while (!list_empty(&splice)) {
4200 root = list_first_entry(&splice, struct btrfs_root,
4201 ordered_root);
4202 list_move_tail(&root->ordered_root,
4203 &fs_info->ordered_roots);
4205 spin_unlock(&fs_info->ordered_root_lock);
4206 btrfs_destroy_ordered_extents(root);
4208 cond_resched();
4209 spin_lock(&fs_info->ordered_root_lock);
4211 spin_unlock(&fs_info->ordered_root_lock);
4214 * We need this here because if we've been flipped read-only we won't
4215 * get sync() from the umount, so we need to make sure any ordered
4216 * extents that haven't had their dirty pages IO start writeout yet
4217 * actually get run and error out properly.
4219 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4222 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4223 struct btrfs_fs_info *fs_info)
4225 struct rb_node *node;
4226 struct btrfs_delayed_ref_root *delayed_refs;
4227 struct btrfs_delayed_ref_node *ref;
4228 int ret = 0;
4230 delayed_refs = &trans->delayed_refs;
4232 spin_lock(&delayed_refs->lock);
4233 if (atomic_read(&delayed_refs->num_entries) == 0) {
4234 spin_unlock(&delayed_refs->lock);
4235 btrfs_info(fs_info, "delayed_refs has NO entry");
4236 return ret;
4239 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4240 struct btrfs_delayed_ref_head *head;
4241 struct rb_node *n;
4242 bool pin_bytes = false;
4244 head = rb_entry(node, struct btrfs_delayed_ref_head,
4245 href_node);
4246 if (!mutex_trylock(&head->mutex)) {
4247 refcount_inc(&head->refs);
4248 spin_unlock(&delayed_refs->lock);
4250 mutex_lock(&head->mutex);
4251 mutex_unlock(&head->mutex);
4252 btrfs_put_delayed_ref_head(head);
4253 spin_lock(&delayed_refs->lock);
4254 continue;
4256 spin_lock(&head->lock);
4257 while ((n = rb_first(&head->ref_tree)) != NULL) {
4258 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4259 ref_node);
4260 ref->in_tree = 0;
4261 rb_erase(&ref->ref_node, &head->ref_tree);
4262 RB_CLEAR_NODE(&ref->ref_node);
4263 if (!list_empty(&ref->add_list))
4264 list_del(&ref->add_list);
4265 atomic_dec(&delayed_refs->num_entries);
4266 btrfs_put_delayed_ref(ref);
4268 if (head->must_insert_reserved)
4269 pin_bytes = true;
4270 btrfs_free_delayed_extent_op(head->extent_op);
4271 delayed_refs->num_heads--;
4272 if (head->processing == 0)
4273 delayed_refs->num_heads_ready--;
4274 atomic_dec(&delayed_refs->num_entries);
4275 rb_erase(&head->href_node, &delayed_refs->href_root);
4276 RB_CLEAR_NODE(&head->href_node);
4277 spin_unlock(&head->lock);
4278 spin_unlock(&delayed_refs->lock);
4279 mutex_unlock(&head->mutex);
4281 if (pin_bytes)
4282 btrfs_pin_extent(fs_info, head->bytenr,
4283 head->num_bytes, 1);
4284 btrfs_put_delayed_ref_head(head);
4285 cond_resched();
4286 spin_lock(&delayed_refs->lock);
4289 spin_unlock(&delayed_refs->lock);
4291 return ret;
4294 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4296 struct btrfs_inode *btrfs_inode;
4297 struct list_head splice;
4299 INIT_LIST_HEAD(&splice);
4301 spin_lock(&root->delalloc_lock);
4302 list_splice_init(&root->delalloc_inodes, &splice);
4304 while (!list_empty(&splice)) {
4305 struct inode *inode = NULL;
4306 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4307 delalloc_inodes);
4308 __btrfs_del_delalloc_inode(root, btrfs_inode);
4309 spin_unlock(&root->delalloc_lock);
4312 * Make sure we get a live inode and that it'll not disappear
4313 * meanwhile.
4315 inode = igrab(&btrfs_inode->vfs_inode);
4316 if (inode) {
4317 invalidate_inode_pages2(inode->i_mapping);
4318 iput(inode);
4320 spin_lock(&root->delalloc_lock);
4322 spin_unlock(&root->delalloc_lock);
4325 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4327 struct btrfs_root *root;
4328 struct list_head splice;
4330 INIT_LIST_HEAD(&splice);
4332 spin_lock(&fs_info->delalloc_root_lock);
4333 list_splice_init(&fs_info->delalloc_roots, &splice);
4334 while (!list_empty(&splice)) {
4335 root = list_first_entry(&splice, struct btrfs_root,
4336 delalloc_root);
4337 root = btrfs_grab_fs_root(root);
4338 BUG_ON(!root);
4339 spin_unlock(&fs_info->delalloc_root_lock);
4341 btrfs_destroy_delalloc_inodes(root);
4342 btrfs_put_fs_root(root);
4344 spin_lock(&fs_info->delalloc_root_lock);
4346 spin_unlock(&fs_info->delalloc_root_lock);
4349 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4350 struct extent_io_tree *dirty_pages,
4351 int mark)
4353 int ret;
4354 struct extent_buffer *eb;
4355 u64 start = 0;
4356 u64 end;
4358 while (1) {
4359 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4360 mark, NULL);
4361 if (ret)
4362 break;
4364 clear_extent_bits(dirty_pages, start, end, mark);
4365 while (start <= end) {
4366 eb = find_extent_buffer(fs_info, start);
4367 start += fs_info->nodesize;
4368 if (!eb)
4369 continue;
4370 wait_on_extent_buffer_writeback(eb);
4372 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4373 &eb->bflags))
4374 clear_extent_buffer_dirty(eb);
4375 free_extent_buffer_stale(eb);
4379 return ret;
4382 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4383 struct extent_io_tree *pinned_extents)
4385 struct extent_io_tree *unpin;
4386 u64 start;
4387 u64 end;
4388 int ret;
4389 bool loop = true;
4391 unpin = pinned_extents;
4392 again:
4393 while (1) {
4394 struct extent_state *cached_state = NULL;
4397 * The btrfs_finish_extent_commit() may get the same range as
4398 * ours between find_first_extent_bit and clear_extent_dirty.
4399 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4400 * the same extent range.
4402 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4403 ret = find_first_extent_bit(unpin, 0, &start, &end,
4404 EXTENT_DIRTY, &cached_state);
4405 if (ret) {
4406 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4407 break;
4410 clear_extent_dirty(unpin, start, end, &cached_state);
4411 free_extent_state(cached_state);
4412 btrfs_error_unpin_extent_range(fs_info, start, end);
4413 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4414 cond_resched();
4417 if (loop) {
4418 if (unpin == &fs_info->freed_extents[0])
4419 unpin = &fs_info->freed_extents[1];
4420 else
4421 unpin = &fs_info->freed_extents[0];
4422 loop = false;
4423 goto again;
4426 return 0;
4429 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4431 struct inode *inode;
4433 inode = cache->io_ctl.inode;
4434 if (inode) {
4435 invalidate_inode_pages2(inode->i_mapping);
4436 BTRFS_I(inode)->generation = 0;
4437 cache->io_ctl.inode = NULL;
4438 iput(inode);
4440 btrfs_put_block_group(cache);
4443 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4444 struct btrfs_fs_info *fs_info)
4446 struct btrfs_block_group_cache *cache;
4448 spin_lock(&cur_trans->dirty_bgs_lock);
4449 while (!list_empty(&cur_trans->dirty_bgs)) {
4450 cache = list_first_entry(&cur_trans->dirty_bgs,
4451 struct btrfs_block_group_cache,
4452 dirty_list);
4454 if (!list_empty(&cache->io_list)) {
4455 spin_unlock(&cur_trans->dirty_bgs_lock);
4456 list_del_init(&cache->io_list);
4457 btrfs_cleanup_bg_io(cache);
4458 spin_lock(&cur_trans->dirty_bgs_lock);
4461 list_del_init(&cache->dirty_list);
4462 spin_lock(&cache->lock);
4463 cache->disk_cache_state = BTRFS_DC_ERROR;
4464 spin_unlock(&cache->lock);
4466 spin_unlock(&cur_trans->dirty_bgs_lock);
4467 btrfs_put_block_group(cache);
4468 spin_lock(&cur_trans->dirty_bgs_lock);
4470 spin_unlock(&cur_trans->dirty_bgs_lock);
4473 * Refer to the definition of io_bgs member for details why it's safe
4474 * to use it without any locking
4476 while (!list_empty(&cur_trans->io_bgs)) {
4477 cache = list_first_entry(&cur_trans->io_bgs,
4478 struct btrfs_block_group_cache,
4479 io_list);
4481 list_del_init(&cache->io_list);
4482 spin_lock(&cache->lock);
4483 cache->disk_cache_state = BTRFS_DC_ERROR;
4484 spin_unlock(&cache->lock);
4485 btrfs_cleanup_bg_io(cache);
4489 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4490 struct btrfs_fs_info *fs_info)
4492 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4493 ASSERT(list_empty(&cur_trans->dirty_bgs));
4494 ASSERT(list_empty(&cur_trans->io_bgs));
4496 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4498 cur_trans->state = TRANS_STATE_COMMIT_START;
4499 wake_up(&fs_info->transaction_blocked_wait);
4501 cur_trans->state = TRANS_STATE_UNBLOCKED;
4502 wake_up(&fs_info->transaction_wait);
4504 btrfs_destroy_delayed_inodes(fs_info);
4506 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4507 EXTENT_DIRTY);
4508 btrfs_destroy_pinned_extent(fs_info,
4509 fs_info->pinned_extents);
4511 cur_trans->state =TRANS_STATE_COMPLETED;
4512 wake_up(&cur_trans->commit_wait);
4515 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4517 struct btrfs_transaction *t;
4519 mutex_lock(&fs_info->transaction_kthread_mutex);
4521 spin_lock(&fs_info->trans_lock);
4522 while (!list_empty(&fs_info->trans_list)) {
4523 t = list_first_entry(&fs_info->trans_list,
4524 struct btrfs_transaction, list);
4525 if (t->state >= TRANS_STATE_COMMIT_START) {
4526 refcount_inc(&t->use_count);
4527 spin_unlock(&fs_info->trans_lock);
4528 btrfs_wait_for_commit(fs_info, t->transid);
4529 btrfs_put_transaction(t);
4530 spin_lock(&fs_info->trans_lock);
4531 continue;
4533 if (t == fs_info->running_transaction) {
4534 t->state = TRANS_STATE_COMMIT_DOING;
4535 spin_unlock(&fs_info->trans_lock);
4537 * We wait for 0 num_writers since we don't hold a trans
4538 * handle open currently for this transaction.
4540 wait_event(t->writer_wait,
4541 atomic_read(&t->num_writers) == 0);
4542 } else {
4543 spin_unlock(&fs_info->trans_lock);
4545 btrfs_cleanup_one_transaction(t, fs_info);
4547 spin_lock(&fs_info->trans_lock);
4548 if (t == fs_info->running_transaction)
4549 fs_info->running_transaction = NULL;
4550 list_del_init(&t->list);
4551 spin_unlock(&fs_info->trans_lock);
4553 btrfs_put_transaction(t);
4554 trace_btrfs_transaction_commit(fs_info->tree_root);
4555 spin_lock(&fs_info->trans_lock);
4557 spin_unlock(&fs_info->trans_lock);
4558 btrfs_destroy_all_ordered_extents(fs_info);
4559 btrfs_destroy_delayed_inodes(fs_info);
4560 btrfs_assert_delayed_root_empty(fs_info);
4561 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4562 btrfs_destroy_all_delalloc_inodes(fs_info);
4563 mutex_unlock(&fs_info->transaction_kthread_mutex);
4565 return 0;
4568 static const struct extent_io_ops btree_extent_io_ops = {
4569 /* mandatory callbacks */
4570 .submit_bio_hook = btree_submit_bio_hook,
4571 .readpage_end_io_hook = btree_readpage_end_io_hook,
4572 .readpage_io_failed_hook = btree_io_failed_hook,
4574 /* optional callbacks */