1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
45 #include "tests/btrfs-tests.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
51 static const struct super_operations btrfs_super_ops
;
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
61 static struct file_system_type btrfs_fs_type
;
62 static struct file_system_type btrfs_root_fs_type
;
64 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
66 const char *btrfs_decode_error(int errno
)
68 char *errstr
= "unknown";
72 errstr
= "IO failure";
75 errstr
= "Out of memory";
78 errstr
= "Readonly filesystem";
81 errstr
= "Object already exists";
84 errstr
= "No space left";
87 errstr
= "No such entry";
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the approciate error response.
99 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
100 unsigned int line
, int errno
, const char *fmt
, ...)
102 struct super_block
*sb
= fs_info
->sb
;
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
111 if (errno
== -EROFS
&& sb_rdonly(sb
))
115 errstr
= btrfs_decode_error(errno
);
117 struct va_format vaf
;
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb
->s_id
, function
, line
, errno
, errstr
);
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
137 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
139 /* Don't go through full error handling during mount */
140 if (!(sb
->s_flags
& SB_BORN
))
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb
->s_flags
|= SB_RDONLY
;
148 btrfs_info(fs_info
, "forced readonly");
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writeable
155 * again, the device replace operation continues.
160 static const char * const logtypes
[] = {
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
176 static struct ratelimit_state printk_limits
[] = {
177 RATELIMIT_STATE_INIT(printk_limits
[0], DEFAULT_RATELIMIT_INTERVAL
, 100),
178 RATELIMIT_STATE_INIT(printk_limits
[1], DEFAULT_RATELIMIT_INTERVAL
, 100),
179 RATELIMIT_STATE_INIT(printk_limits
[2], DEFAULT_RATELIMIT_INTERVAL
, 100),
180 RATELIMIT_STATE_INIT(printk_limits
[3], DEFAULT_RATELIMIT_INTERVAL
, 100),
181 RATELIMIT_STATE_INIT(printk_limits
[4], DEFAULT_RATELIMIT_INTERVAL
, 100),
182 RATELIMIT_STATE_INIT(printk_limits
[5], DEFAULT_RATELIMIT_INTERVAL
, 100),
183 RATELIMIT_STATE_INIT(printk_limits
[6], DEFAULT_RATELIMIT_INTERVAL
, 100),
184 RATELIMIT_STATE_INIT(printk_limits
[7], DEFAULT_RATELIMIT_INTERVAL
, 100),
187 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
189 char lvl
[PRINTK_MAX_SINGLE_HEADER_LEN
+ 1] = "\0";
190 struct va_format vaf
;
193 const char *type
= logtypes
[4];
194 struct ratelimit_state
*ratelimit
= &printk_limits
[4];
198 while ((kern_level
= printk_get_level(fmt
)) != 0) {
199 size_t size
= printk_skip_level(fmt
) - fmt
;
201 if (kern_level
>= '0' && kern_level
<= '7') {
202 memcpy(lvl
, fmt
, size
);
204 type
= logtypes
[kern_level
- '0'];
205 ratelimit
= &printk_limits
[kern_level
- '0'];
213 if (__ratelimit(ratelimit
))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
,
215 fs_info
? fs_info
->sb
->s_id
: "<unknown>", &vaf
);
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
235 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
236 const char *function
,
237 unsigned int line
, int errno
)
239 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
241 trans
->aborted
= errno
;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans
->dirty
&& list_empty(&trans
->new_bgs
)) {
247 errstr
= btrfs_decode_error(errno
);
249 "%s:%d: Aborting unused transaction(%s).",
250 function
, line
, errstr
);
253 WRITE_ONCE(trans
->transaction
->aborted
, errno
);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info
->transaction_wait
);
256 wake_up(&fs_info
->transaction_blocked_wait
);
257 __btrfs_handle_fs_error(fs_info
, function
, line
, errno
, NULL
);
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
264 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
265 unsigned int line
, int errno
, const char *fmt
, ...)
267 char *s_id
= "<unknown>";
269 struct va_format vaf
= { .fmt
= fmt
};
273 s_id
= fs_info
->sb
->s_id
;
278 errstr
= btrfs_decode_error(errno
);
279 if (fs_info
&& (btrfs_test_opt(fs_info
, PANIC_ON_FATAL_ERROR
)))
280 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id
, function
, line
, &vaf
, errno
, errstr
);
283 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
284 function
, line
, &vaf
, errno
, errstr
);
286 /* Caller calls BUG() */
289 static void btrfs_put_super(struct super_block
*sb
)
291 close_ctree(btrfs_sb(sb
));
300 Opt_compress_force_type
,
305 Opt_flushoncommit
, Opt_noflushoncommit
,
306 Opt_inode_cache
, Opt_noinode_cache
,
308 Opt_barrier
, Opt_nobarrier
,
309 Opt_datacow
, Opt_nodatacow
,
310 Opt_datasum
, Opt_nodatasum
,
311 Opt_defrag
, Opt_nodefrag
,
312 Opt_discard
, Opt_nodiscard
,
316 Opt_rescan_uuid_tree
,
318 Opt_space_cache
, Opt_no_space_cache
,
319 Opt_space_cache_version
,
321 Opt_ssd_spread
, Opt_nossd_spread
,
326 Opt_treelog
, Opt_notreelog
,
328 Opt_user_subvol_rm_allowed
,
330 /* Deprecated options */
335 /* Debugging options */
337 Opt_check_integrity_including_extent_data
,
338 Opt_check_integrity_print_mask
,
339 Opt_enospc_debug
, Opt_noenospc_debug
,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
349 static const match_table_t tokens
= {
351 {Opt_noacl
, "noacl"},
352 {Opt_clear_cache
, "clear_cache"},
353 {Opt_commit_interval
, "commit=%u"},
354 {Opt_compress
, "compress"},
355 {Opt_compress_type
, "compress=%s"},
356 {Opt_compress_force
, "compress-force"},
357 {Opt_compress_force_type
, "compress-force=%s"},
358 {Opt_degraded
, "degraded"},
359 {Opt_device
, "device=%s"},
360 {Opt_fatal_errors
, "fatal_errors=%s"},
361 {Opt_flushoncommit
, "flushoncommit"},
362 {Opt_noflushoncommit
, "noflushoncommit"},
363 {Opt_inode_cache
, "inode_cache"},
364 {Opt_noinode_cache
, "noinode_cache"},
365 {Opt_max_inline
, "max_inline=%s"},
366 {Opt_barrier
, "barrier"},
367 {Opt_nobarrier
, "nobarrier"},
368 {Opt_datacow
, "datacow"},
369 {Opt_nodatacow
, "nodatacow"},
370 {Opt_datasum
, "datasum"},
371 {Opt_nodatasum
, "nodatasum"},
372 {Opt_defrag
, "autodefrag"},
373 {Opt_nodefrag
, "noautodefrag"},
374 {Opt_discard
, "discard"},
375 {Opt_nodiscard
, "nodiscard"},
376 {Opt_nologreplay
, "nologreplay"},
377 {Opt_norecovery
, "norecovery"},
378 {Opt_ratio
, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
380 {Opt_skip_balance
, "skip_balance"},
381 {Opt_space_cache
, "space_cache"},
382 {Opt_no_space_cache
, "nospace_cache"},
383 {Opt_space_cache_version
, "space_cache=%s"},
385 {Opt_nossd
, "nossd"},
386 {Opt_ssd_spread
, "ssd_spread"},
387 {Opt_nossd_spread
, "nossd_spread"},
388 {Opt_subvol
, "subvol=%s"},
389 {Opt_subvol_empty
, "subvol="},
390 {Opt_subvolid
, "subvolid=%s"},
391 {Opt_thread_pool
, "thread_pool=%u"},
392 {Opt_treelog
, "treelog"},
393 {Opt_notreelog
, "notreelog"},
394 {Opt_usebackuproot
, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
397 /* Deprecated options */
398 {Opt_alloc_start
, "alloc_start=%s"},
399 {Opt_recovery
, "recovery"},
400 {Opt_subvolrootid
, "subvolrootid=%d"},
402 /* Debugging options */
403 {Opt_check_integrity
, "check_int"},
404 {Opt_check_integrity_including_extent_data
, "check_int_data"},
405 {Opt_check_integrity_print_mask
, "check_int_print_mask=%u"},
406 {Opt_enospc_debug
, "enospc_debug"},
407 {Opt_noenospc_debug
, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data
, "fragment=data"},
410 {Opt_fragment_metadata
, "fragment=metadata"},
411 {Opt_fragment_all
, "fragment=all"},
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify
, "ref_verify"},
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
424 int btrfs_parse_options(struct btrfs_fs_info
*info
, char *options
,
425 unsigned long new_flags
)
427 substring_t args
[MAX_OPT_ARGS
];
433 bool compress_force
= false;
434 enum btrfs_compression_type saved_compress_type
;
435 bool saved_compress_force
;
438 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
439 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
))
440 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
442 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
445 * Even the options are empty, we still need to do extra check
451 while ((p
= strsep(&options
, ",")) != NULL
) {
456 token
= match_token(p
, tokens
, args
);
459 btrfs_info(info
, "allowing degraded mounts");
460 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
463 case Opt_subvol_empty
:
465 case Opt_subvolrootid
:
468 * These are parsed by btrfs_parse_subvol_options or
469 * btrfs_parse_device_options and can be ignored here.
473 btrfs_set_and_info(info
, NODATASUM
,
474 "setting nodatasum");
477 if (btrfs_test_opt(info
, NODATASUM
)) {
478 if (btrfs_test_opt(info
, NODATACOW
))
480 "setting datasum, datacow enabled");
482 btrfs_info(info
, "setting datasum");
484 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
485 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
488 if (!btrfs_test_opt(info
, NODATACOW
)) {
489 if (!btrfs_test_opt(info
, COMPRESS
) ||
490 !btrfs_test_opt(info
, FORCE_COMPRESS
)) {
492 "setting nodatacow, compression disabled");
494 btrfs_info(info
, "setting nodatacow");
497 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
498 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
499 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
500 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
503 btrfs_clear_and_info(info
, NODATACOW
,
506 case Opt_compress_force
:
507 case Opt_compress_force_type
:
508 compress_force
= true;
511 case Opt_compress_type
:
512 saved_compress_type
= btrfs_test_opt(info
,
514 info
->compress_type
: BTRFS_COMPRESS_NONE
;
515 saved_compress_force
=
516 btrfs_test_opt(info
, FORCE_COMPRESS
);
517 if (token
== Opt_compress
||
518 token
== Opt_compress_force
||
519 strncmp(args
[0].from
, "zlib", 4) == 0) {
520 compress_type
= "zlib";
522 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
523 info
->compress_level
= BTRFS_ZLIB_DEFAULT_LEVEL
;
525 * args[0] contains uninitialized data since
526 * for these tokens we don't expect any
529 if (token
!= Opt_compress
&&
530 token
!= Opt_compress_force
)
531 info
->compress_level
=
532 btrfs_compress_str2level(args
[0].from
);
533 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
534 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
535 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
537 } else if (strncmp(args
[0].from
, "lzo", 3) == 0) {
538 compress_type
= "lzo";
539 info
->compress_type
= BTRFS_COMPRESS_LZO
;
540 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
541 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
542 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
543 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
545 } else if (strcmp(args
[0].from
, "zstd") == 0) {
546 compress_type
= "zstd";
547 info
->compress_type
= BTRFS_COMPRESS_ZSTD
;
548 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
549 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
550 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
551 btrfs_set_fs_incompat(info
, COMPRESS_ZSTD
);
553 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
554 compress_type
= "no";
555 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
556 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
557 compress_force
= false;
564 if (compress_force
) {
565 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
568 * If we remount from compress-force=xxx to
569 * compress=xxx, we need clear FORCE_COMPRESS
570 * flag, otherwise, there is no way for users
571 * to disable forcible compression separately.
573 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
575 if ((btrfs_test_opt(info
, COMPRESS
) &&
576 (info
->compress_type
!= saved_compress_type
||
577 compress_force
!= saved_compress_force
)) ||
578 (!btrfs_test_opt(info
, COMPRESS
) &&
580 btrfs_info(info
, "%s %s compression, level %d",
581 (compress_force
) ? "force" : "use",
582 compress_type
, info
->compress_level
);
584 compress_force
= false;
587 btrfs_set_and_info(info
, SSD
,
588 "enabling ssd optimizations");
589 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
592 btrfs_set_and_info(info
, SSD
,
593 "enabling ssd optimizations");
594 btrfs_set_and_info(info
, SSD_SPREAD
,
595 "using spread ssd allocation scheme");
596 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
599 btrfs_set_opt(info
->mount_opt
, NOSSD
);
600 btrfs_clear_and_info(info
, SSD
,
601 "not using ssd optimizations");
603 case Opt_nossd_spread
:
604 btrfs_clear_and_info(info
, SSD_SPREAD
,
605 "not using spread ssd allocation scheme");
608 btrfs_clear_and_info(info
, NOBARRIER
,
609 "turning on barriers");
612 btrfs_set_and_info(info
, NOBARRIER
,
613 "turning off barriers");
615 case Opt_thread_pool
:
616 ret
= match_int(&args
[0], &intarg
);
619 } else if (intarg
== 0) {
623 info
->thread_pool_size
= intarg
;
626 num
= match_strdup(&args
[0]);
628 info
->max_inline
= memparse(num
, NULL
);
631 if (info
->max_inline
) {
632 info
->max_inline
= min_t(u64
,
636 btrfs_info(info
, "max_inline at %llu",
643 case Opt_alloc_start
:
645 "option alloc_start is obsolete, ignored");
648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
649 info
->sb
->s_flags
|= SB_POSIXACL
;
652 btrfs_err(info
, "support for ACL not compiled in!");
657 info
->sb
->s_flags
&= ~SB_POSIXACL
;
660 btrfs_set_and_info(info
, NOTREELOG
,
661 "disabling tree log");
664 btrfs_clear_and_info(info
, NOTREELOG
,
665 "enabling tree log");
668 case Opt_nologreplay
:
669 btrfs_set_and_info(info
, NOLOGREPLAY
,
670 "disabling log replay at mount time");
672 case Opt_flushoncommit
:
673 btrfs_set_and_info(info
, FLUSHONCOMMIT
,
674 "turning on flush-on-commit");
676 case Opt_noflushoncommit
:
677 btrfs_clear_and_info(info
, FLUSHONCOMMIT
,
678 "turning off flush-on-commit");
681 ret
= match_int(&args
[0], &intarg
);
684 info
->metadata_ratio
= intarg
;
685 btrfs_info(info
, "metadata ratio %u",
686 info
->metadata_ratio
);
689 btrfs_set_and_info(info
, DISCARD
,
690 "turning on discard");
693 btrfs_clear_and_info(info
, DISCARD
,
694 "turning off discard");
696 case Opt_space_cache
:
697 case Opt_space_cache_version
:
698 if (token
== Opt_space_cache
||
699 strcmp(args
[0].from
, "v1") == 0) {
700 btrfs_clear_opt(info
->mount_opt
,
702 btrfs_set_and_info(info
, SPACE_CACHE
,
703 "enabling disk space caching");
704 } else if (strcmp(args
[0].from
, "v2") == 0) {
705 btrfs_clear_opt(info
->mount_opt
,
707 btrfs_set_and_info(info
, FREE_SPACE_TREE
,
708 "enabling free space tree");
714 case Opt_rescan_uuid_tree
:
715 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
717 case Opt_no_space_cache
:
718 if (btrfs_test_opt(info
, SPACE_CACHE
)) {
719 btrfs_clear_and_info(info
, SPACE_CACHE
,
720 "disabling disk space caching");
722 if (btrfs_test_opt(info
, FREE_SPACE_TREE
)) {
723 btrfs_clear_and_info(info
, FREE_SPACE_TREE
,
724 "disabling free space tree");
727 case Opt_inode_cache
:
728 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
729 "enabling inode map caching");
731 case Opt_noinode_cache
:
732 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
733 "disabling inode map caching");
735 case Opt_clear_cache
:
736 btrfs_set_and_info(info
, CLEAR_CACHE
,
737 "force clearing of disk cache");
739 case Opt_user_subvol_rm_allowed
:
740 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
742 case Opt_enospc_debug
:
743 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
745 case Opt_noenospc_debug
:
746 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
749 btrfs_set_and_info(info
, AUTO_DEFRAG
,
750 "enabling auto defrag");
753 btrfs_clear_and_info(info
, AUTO_DEFRAG
,
754 "disabling auto defrag");
758 "'recovery' is deprecated, use 'usebackuproot' instead");
760 case Opt_usebackuproot
:
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
765 case Opt_skip_balance
:
766 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data
:
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info
->mount_opt
,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
774 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
776 case Opt_check_integrity
:
777 btrfs_info(info
, "enabling check integrity");
778 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
780 case Opt_check_integrity_print_mask
:
781 ret
= match_int(&args
[0], &intarg
);
784 info
->check_integrity_print_mask
= intarg
;
785 btrfs_info(info
, "check_integrity_print_mask 0x%x",
786 info
->check_integrity_print_mask
);
789 case Opt_check_integrity_including_extent_data
:
790 case Opt_check_integrity
:
791 case Opt_check_integrity_print_mask
:
793 "support for check_integrity* not compiled in!");
797 case Opt_fatal_errors
:
798 if (strcmp(args
[0].from
, "panic") == 0)
799 btrfs_set_opt(info
->mount_opt
,
800 PANIC_ON_FATAL_ERROR
);
801 else if (strcmp(args
[0].from
, "bug") == 0)
802 btrfs_clear_opt(info
->mount_opt
,
803 PANIC_ON_FATAL_ERROR
);
809 case Opt_commit_interval
:
811 ret
= match_int(&args
[0], &intarg
);
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL
);
818 intarg
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
819 } else if (intarg
> 300) {
820 btrfs_warn(info
, "excessive commit interval %d",
823 info
->commit_interval
= intarg
;
825 #ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all
:
827 btrfs_info(info
, "fragmenting all space");
828 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
829 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
831 case Opt_fragment_metadata
:
832 btrfs_info(info
, "fragmenting metadata");
833 btrfs_set_opt(info
->mount_opt
,
836 case Opt_fragment_data
:
837 btrfs_info(info
, "fragmenting data");
838 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
843 btrfs_info(info
, "doing ref verification");
844 btrfs_set_opt(info
->mount_opt
, REF_VERIFY
);
848 btrfs_info(info
, "unrecognized mount option '%s'", p
);
857 * Extra check for current option against current flag
859 if (btrfs_test_opt(info
, NOLOGREPLAY
) && !(new_flags
& SB_RDONLY
)) {
861 "nologreplay must be used with ro mount option");
865 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
) &&
866 !btrfs_test_opt(info
, FREE_SPACE_TREE
) &&
867 !btrfs_test_opt(info
, CLEAR_CACHE
)) {
868 btrfs_err(info
, "cannot disable free space tree");
872 if (!ret
&& btrfs_test_opt(info
, SPACE_CACHE
))
873 btrfs_info(info
, "disk space caching is enabled");
874 if (!ret
&& btrfs_test_opt(info
, FREE_SPACE_TREE
))
875 btrfs_info(info
, "using free space tree");
880 * Parse mount options that are required early in the mount process.
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
885 static int btrfs_parse_device_options(const char *options
, fmode_t flags
,
888 substring_t args
[MAX_OPT_ARGS
];
889 char *device_name
, *opts
, *orig
, *p
;
890 struct btrfs_device
*device
= NULL
;
893 lockdep_assert_held(&uuid_mutex
);
899 * strsep changes the string, duplicate it because btrfs_parse_options
902 opts
= kstrdup(options
, GFP_KERNEL
);
907 while ((p
= strsep(&opts
, ",")) != NULL
) {
913 token
= match_token(p
, tokens
, args
);
914 if (token
== Opt_device
) {
915 device_name
= match_strdup(&args
[0]);
920 device
= btrfs_scan_one_device(device_name
, flags
,
923 if (IS_ERR(device
)) {
924 error
= PTR_ERR(device
);
936 * Parse mount options that are related to subvolume id
938 * The value is later passed to mount_subvol()
940 static int btrfs_parse_subvol_options(const char *options
, char **subvol_name
,
941 u64
*subvol_objectid
)
943 substring_t args
[MAX_OPT_ARGS
];
944 char *opts
, *orig
, *p
;
952 * strsep changes the string, duplicate it because
953 * btrfs_parse_device_options gets called later
955 opts
= kstrdup(options
, GFP_KERNEL
);
960 while ((p
= strsep(&opts
, ",")) != NULL
) {
965 token
= match_token(p
, tokens
, args
);
969 *subvol_name
= match_strdup(&args
[0]);
976 error
= match_u64(&args
[0], &subvolid
);
980 /* we want the original fs_tree */
982 subvolid
= BTRFS_FS_TREE_OBJECTID
;
984 *subvol_objectid
= subvolid
;
986 case Opt_subvolrootid
:
987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
1000 u64 subvol_objectid
)
1002 struct btrfs_root
*root
= fs_info
->tree_root
;
1003 struct btrfs_root
*fs_root
;
1004 struct btrfs_root_ref
*root_ref
;
1005 struct btrfs_inode_ref
*inode_ref
;
1006 struct btrfs_key key
;
1007 struct btrfs_path
*path
= NULL
;
1008 char *name
= NULL
, *ptr
;
1013 path
= btrfs_alloc_path();
1018 path
->leave_spinning
= 1;
1020 name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1025 ptr
= name
+ PATH_MAX
- 1;
1029 * Walk up the subvolume trees in the tree of tree roots by root
1030 * backrefs until we hit the top-level subvolume.
1032 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1033 key
.objectid
= subvol_objectid
;
1034 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
1035 key
.offset
= (u64
)-1;
1037 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1040 } else if (ret
> 0) {
1041 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
1042 BTRFS_ROOT_BACKREF_KEY
);
1045 } else if (ret
> 0) {
1051 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1052 subvol_objectid
= key
.offset
;
1054 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1055 struct btrfs_root_ref
);
1056 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
1059 ret
= -ENAMETOOLONG
;
1062 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1063 (unsigned long)(root_ref
+ 1), len
);
1065 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
1066 btrfs_release_path(path
);
1068 key
.objectid
= subvol_objectid
;
1069 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1070 key
.offset
= (u64
)-1;
1071 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1072 if (IS_ERR(fs_root
)) {
1073 ret
= PTR_ERR(fs_root
);
1078 * Walk up the filesystem tree by inode refs until we hit the
1081 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1082 key
.objectid
= dirid
;
1083 key
.type
= BTRFS_INODE_REF_KEY
;
1084 key
.offset
= (u64
)-1;
1086 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1089 } else if (ret
> 0) {
1090 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1091 BTRFS_INODE_REF_KEY
);
1094 } else if (ret
> 0) {
1100 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1103 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1105 struct btrfs_inode_ref
);
1106 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1110 ret
= -ENAMETOOLONG
;
1113 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1114 (unsigned long)(inode_ref
+ 1), len
);
1116 btrfs_release_path(path
);
1120 btrfs_free_path(path
);
1121 if (ptr
== name
+ PATH_MAX
- 1) {
1125 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1130 btrfs_free_path(path
);
1132 return ERR_PTR(ret
);
1135 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1137 struct btrfs_root
*root
= fs_info
->tree_root
;
1138 struct btrfs_dir_item
*di
;
1139 struct btrfs_path
*path
;
1140 struct btrfs_key location
;
1143 path
= btrfs_alloc_path();
1146 path
->leave_spinning
= 1;
1149 * Find the "default" dir item which points to the root item that we
1150 * will mount by default if we haven't been given a specific subvolume
1153 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1154 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1156 btrfs_free_path(path
);
1161 * Ok the default dir item isn't there. This is weird since
1162 * it's always been there, but don't freak out, just try and
1163 * mount the top-level subvolume.
1165 btrfs_free_path(path
);
1166 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1170 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1171 btrfs_free_path(path
);
1172 *objectid
= location
.objectid
;
1176 static int btrfs_fill_super(struct super_block
*sb
,
1177 struct btrfs_fs_devices
*fs_devices
,
1180 struct inode
*inode
;
1181 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1182 struct btrfs_key key
;
1185 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1186 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1187 sb
->s_op
= &btrfs_super_ops
;
1188 sb
->s_d_op
= &btrfs_dentry_operations
;
1189 sb
->s_export_op
= &btrfs_export_ops
;
1190 sb
->s_xattr
= btrfs_xattr_handlers
;
1191 sb
->s_time_gran
= 1;
1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193 sb
->s_flags
|= SB_POSIXACL
;
1195 sb
->s_flags
|= SB_I_VERSION
;
1196 sb
->s_iflags
|= SB_I_CGROUPWB
;
1198 err
= super_setup_bdi(sb
);
1200 btrfs_err(fs_info
, "super_setup_bdi failed");
1204 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1206 btrfs_err(fs_info
, "open_ctree failed");
1210 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1211 key
.type
= BTRFS_INODE_ITEM_KEY
;
1213 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1214 if (IS_ERR(inode
)) {
1215 err
= PTR_ERR(inode
);
1219 sb
->s_root
= d_make_root(inode
);
1225 cleancache_init_fs(sb
);
1226 sb
->s_flags
|= SB_ACTIVE
;
1230 close_ctree(fs_info
);
1234 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1236 struct btrfs_trans_handle
*trans
;
1237 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1238 struct btrfs_root
*root
= fs_info
->tree_root
;
1240 trace_btrfs_sync_fs(fs_info
, wait
);
1243 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1247 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1249 trans
= btrfs_attach_transaction_barrier(root
);
1250 if (IS_ERR(trans
)) {
1251 /* no transaction, don't bother */
1252 if (PTR_ERR(trans
) == -ENOENT
) {
1254 * Exit unless we have some pending changes
1255 * that need to go through commit
1257 if (fs_info
->pending_changes
== 0)
1260 * A non-blocking test if the fs is frozen. We must not
1261 * start a new transaction here otherwise a deadlock
1262 * happens. The pending operations are delayed to the
1263 * next commit after thawing.
1265 if (sb_start_write_trylock(sb
))
1269 trans
= btrfs_start_transaction(root
, 0);
1272 return PTR_ERR(trans
);
1274 return btrfs_commit_transaction(trans
);
1277 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1279 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1280 const char *compress_type
;
1282 if (btrfs_test_opt(info
, DEGRADED
))
1283 seq_puts(seq
, ",degraded");
1284 if (btrfs_test_opt(info
, NODATASUM
))
1285 seq_puts(seq
, ",nodatasum");
1286 if (btrfs_test_opt(info
, NODATACOW
))
1287 seq_puts(seq
, ",nodatacow");
1288 if (btrfs_test_opt(info
, NOBARRIER
))
1289 seq_puts(seq
, ",nobarrier");
1290 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1291 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1292 if (info
->thread_pool_size
!= min_t(unsigned long,
1293 num_online_cpus() + 2, 8))
1294 seq_printf(seq
, ",thread_pool=%u", info
->thread_pool_size
);
1295 if (btrfs_test_opt(info
, COMPRESS
)) {
1296 compress_type
= btrfs_compress_type2str(info
->compress_type
);
1297 if (btrfs_test_opt(info
, FORCE_COMPRESS
))
1298 seq_printf(seq
, ",compress-force=%s", compress_type
);
1300 seq_printf(seq
, ",compress=%s", compress_type
);
1301 if (info
->compress_level
)
1302 seq_printf(seq
, ":%d", info
->compress_level
);
1304 if (btrfs_test_opt(info
, NOSSD
))
1305 seq_puts(seq
, ",nossd");
1306 if (btrfs_test_opt(info
, SSD_SPREAD
))
1307 seq_puts(seq
, ",ssd_spread");
1308 else if (btrfs_test_opt(info
, SSD
))
1309 seq_puts(seq
, ",ssd");
1310 if (btrfs_test_opt(info
, NOTREELOG
))
1311 seq_puts(seq
, ",notreelog");
1312 if (btrfs_test_opt(info
, NOLOGREPLAY
))
1313 seq_puts(seq
, ",nologreplay");
1314 if (btrfs_test_opt(info
, FLUSHONCOMMIT
))
1315 seq_puts(seq
, ",flushoncommit");
1316 if (btrfs_test_opt(info
, DISCARD
))
1317 seq_puts(seq
, ",discard");
1318 if (!(info
->sb
->s_flags
& SB_POSIXACL
))
1319 seq_puts(seq
, ",noacl");
1320 if (btrfs_test_opt(info
, SPACE_CACHE
))
1321 seq_puts(seq
, ",space_cache");
1322 else if (btrfs_test_opt(info
, FREE_SPACE_TREE
))
1323 seq_puts(seq
, ",space_cache=v2");
1325 seq_puts(seq
, ",nospace_cache");
1326 if (btrfs_test_opt(info
, RESCAN_UUID_TREE
))
1327 seq_puts(seq
, ",rescan_uuid_tree");
1328 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1329 seq_puts(seq
, ",clear_cache");
1330 if (btrfs_test_opt(info
, USER_SUBVOL_RM_ALLOWED
))
1331 seq_puts(seq
, ",user_subvol_rm_allowed");
1332 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
1333 seq_puts(seq
, ",enospc_debug");
1334 if (btrfs_test_opt(info
, AUTO_DEFRAG
))
1335 seq_puts(seq
, ",autodefrag");
1336 if (btrfs_test_opt(info
, INODE_MAP_CACHE
))
1337 seq_puts(seq
, ",inode_cache");
1338 if (btrfs_test_opt(info
, SKIP_BALANCE
))
1339 seq_puts(seq
, ",skip_balance");
1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341 if (btrfs_test_opt(info
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1342 seq_puts(seq
, ",check_int_data");
1343 else if (btrfs_test_opt(info
, CHECK_INTEGRITY
))
1344 seq_puts(seq
, ",check_int");
1345 if (info
->check_integrity_print_mask
)
1346 seq_printf(seq
, ",check_int_print_mask=%d",
1347 info
->check_integrity_print_mask
);
1349 if (info
->metadata_ratio
)
1350 seq_printf(seq
, ",metadata_ratio=%u", info
->metadata_ratio
);
1351 if (btrfs_test_opt(info
, PANIC_ON_FATAL_ERROR
))
1352 seq_puts(seq
, ",fatal_errors=panic");
1353 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1354 seq_printf(seq
, ",commit=%u", info
->commit_interval
);
1355 #ifdef CONFIG_BTRFS_DEBUG
1356 if (btrfs_test_opt(info
, FRAGMENT_DATA
))
1357 seq_puts(seq
, ",fragment=data");
1358 if (btrfs_test_opt(info
, FRAGMENT_METADATA
))
1359 seq_puts(seq
, ",fragment=metadata");
1361 if (btrfs_test_opt(info
, REF_VERIFY
))
1362 seq_puts(seq
, ",ref_verify");
1363 seq_printf(seq
, ",subvolid=%llu",
1364 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1365 seq_puts(seq
, ",subvol=");
1366 seq_dentry(seq
, dentry
, " \t\n\\");
1370 static int btrfs_test_super(struct super_block
*s
, void *data
)
1372 struct btrfs_fs_info
*p
= data
;
1373 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1375 return fs_info
->fs_devices
== p
->fs_devices
;
1378 static int btrfs_set_super(struct super_block
*s
, void *data
)
1380 int err
= set_anon_super(s
, data
);
1382 s
->s_fs_info
= data
;
1387 * subvolumes are identified by ino 256
1389 static inline int is_subvolume_inode(struct inode
*inode
)
1391 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1396 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1397 const char *device_name
, struct vfsmount
*mnt
)
1399 struct dentry
*root
;
1403 if (!subvol_objectid
) {
1404 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1407 root
= ERR_PTR(ret
);
1411 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1413 if (IS_ERR(subvol_name
)) {
1414 root
= ERR_CAST(subvol_name
);
1421 root
= mount_subtree(mnt
, subvol_name
);
1422 /* mount_subtree() drops our reference on the vfsmount. */
1425 if (!IS_ERR(root
)) {
1426 struct super_block
*s
= root
->d_sb
;
1427 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1428 struct inode
*root_inode
= d_inode(root
);
1429 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1432 if (!is_subvolume_inode(root_inode
)) {
1433 btrfs_err(fs_info
, "'%s' is not a valid subvolume",
1437 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1439 * This will also catch a race condition where a
1440 * subvolume which was passed by ID is renamed and
1441 * another subvolume is renamed over the old location.
1444 "subvol '%s' does not match subvolid %llu",
1445 subvol_name
, subvol_objectid
);
1450 root
= ERR_PTR(ret
);
1451 deactivate_locked_super(s
);
1461 static int parse_security_options(char *orig_opts
,
1462 struct security_mnt_opts
*sec_opts
)
1464 char *secdata
= NULL
;
1467 secdata
= alloc_secdata();
1470 ret
= security_sb_copy_data(orig_opts
, secdata
);
1472 free_secdata(secdata
);
1475 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1476 free_secdata(secdata
);
1480 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1481 struct super_block
*sb
,
1482 struct security_mnt_opts
*sec_opts
)
1487 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1490 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1494 #ifdef CONFIG_SECURITY
1495 if (!fs_info
->security_opts
.num_mnt_opts
) {
1496 /* first time security setup, copy sec_opts to fs_info */
1497 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1500 * Since SELinux (the only one supporting security_mnt_opts)
1501 * does NOT support changing context during remount/mount of
1502 * the same sb, this must be the same or part of the same
1503 * security options, just free it.
1505 security_free_mnt_opts(sec_opts
);
1512 * Find a superblock for the given device / mount point.
1514 * Note: This is based on mount_bdev from fs/super.c with a few additions
1515 * for multiple device setup. Make sure to keep it in sync.
1517 static struct dentry
*btrfs_mount_root(struct file_system_type
*fs_type
,
1518 int flags
, const char *device_name
, void *data
)
1520 struct block_device
*bdev
= NULL
;
1521 struct super_block
*s
;
1522 struct btrfs_device
*device
= NULL
;
1523 struct btrfs_fs_devices
*fs_devices
= NULL
;
1524 struct btrfs_fs_info
*fs_info
= NULL
;
1525 struct security_mnt_opts new_sec_opts
;
1526 fmode_t mode
= FMODE_READ
;
1529 if (!(flags
& SB_RDONLY
))
1530 mode
|= FMODE_WRITE
;
1532 security_init_mnt_opts(&new_sec_opts
);
1534 error
= parse_security_options(data
, &new_sec_opts
);
1536 return ERR_PTR(error
);
1540 * Setup a dummy root and fs_info for test/set super. This is because
1541 * we don't actually fill this stuff out until open_ctree, but we need
1542 * it for searching for existing supers, so this lets us do that and
1543 * then open_ctree will properly initialize everything later.
1545 fs_info
= kvzalloc(sizeof(struct btrfs_fs_info
), GFP_KERNEL
);
1548 goto error_sec_opts
;
1551 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1552 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1553 security_init_mnt_opts(&fs_info
->security_opts
);
1554 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1559 mutex_lock(&uuid_mutex
);
1560 error
= btrfs_parse_device_options(data
, mode
, fs_type
);
1562 mutex_unlock(&uuid_mutex
);
1566 device
= btrfs_scan_one_device(device_name
, mode
, fs_type
);
1567 if (IS_ERR(device
)) {
1568 mutex_unlock(&uuid_mutex
);
1569 error
= PTR_ERR(device
);
1573 fs_devices
= device
->fs_devices
;
1574 fs_info
->fs_devices
= fs_devices
;
1576 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1577 mutex_unlock(&uuid_mutex
);
1581 if (!(flags
& SB_RDONLY
) && fs_devices
->rw_devices
== 0) {
1583 goto error_close_devices
;
1586 bdev
= fs_devices
->latest_bdev
;
1587 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| SB_NOSEC
,
1591 goto error_close_devices
;
1595 btrfs_close_devices(fs_devices
);
1596 free_fs_info(fs_info
);
1597 if ((flags
^ s
->s_flags
) & SB_RDONLY
)
1600 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1601 btrfs_sb(s
)->bdev_holder
= fs_type
;
1602 error
= btrfs_fill_super(s
, fs_devices
, data
);
1605 deactivate_locked_super(s
);
1606 goto error_sec_opts
;
1609 fs_info
= btrfs_sb(s
);
1610 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1612 deactivate_locked_super(s
);
1613 goto error_sec_opts
;
1616 return dget(s
->s_root
);
1618 error_close_devices
:
1619 btrfs_close_devices(fs_devices
);
1621 free_fs_info(fs_info
);
1623 security_free_mnt_opts(&new_sec_opts
);
1624 return ERR_PTR(error
);
1628 * Mount function which is called by VFS layer.
1630 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631 * which needs vfsmount* of device's root (/). This means device's root has to
1632 * be mounted internally in any case.
1635 * 1. Parse subvol id related options for later use in mount_subvol().
1637 * 2. Mount device's root (/) by calling vfs_kern_mount().
1639 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640 * first place. In order to avoid calling btrfs_mount() again, we use
1641 * different file_system_type which is not registered to VFS by
1642 * register_filesystem() (btrfs_root_fs_type). As a result,
1643 * btrfs_mount_root() is called. The return value will be used by
1644 * mount_subtree() in mount_subvol().
1646 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647 * "btrfs subvolume set-default", mount_subvol() is called always.
1649 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1650 const char *device_name
, void *data
)
1652 struct vfsmount
*mnt_root
;
1653 struct dentry
*root
;
1654 fmode_t mode
= FMODE_READ
;
1655 char *subvol_name
= NULL
;
1656 u64 subvol_objectid
= 0;
1659 if (!(flags
& SB_RDONLY
))
1660 mode
|= FMODE_WRITE
;
1662 error
= btrfs_parse_subvol_options(data
, &subvol_name
,
1666 return ERR_PTR(error
);
1669 /* mount device's root (/) */
1670 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
, flags
, device_name
, data
);
1671 if (PTR_ERR_OR_ZERO(mnt_root
) == -EBUSY
) {
1672 if (flags
& SB_RDONLY
) {
1673 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1674 flags
& ~SB_RDONLY
, device_name
, data
);
1676 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1677 flags
| SB_RDONLY
, device_name
, data
);
1678 if (IS_ERR(mnt_root
)) {
1679 root
= ERR_CAST(mnt_root
);
1684 down_write(&mnt_root
->mnt_sb
->s_umount
);
1685 error
= btrfs_remount(mnt_root
->mnt_sb
, &flags
, NULL
);
1686 up_write(&mnt_root
->mnt_sb
->s_umount
);
1688 root
= ERR_PTR(error
);
1695 if (IS_ERR(mnt_root
)) {
1696 root
= ERR_CAST(mnt_root
);
1701 /* mount_subvol() will free subvol_name and mnt_root */
1702 root
= mount_subvol(subvol_name
, subvol_objectid
, device_name
, mnt_root
);
1708 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1709 u32 new_pool_size
, u32 old_pool_size
)
1711 if (new_pool_size
== old_pool_size
)
1714 fs_info
->thread_pool_size
= new_pool_size
;
1716 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1717 old_pool_size
, new_pool_size
);
1719 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1720 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1721 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1722 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1723 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1724 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1725 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1727 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1728 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1729 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1730 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1731 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1735 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1737 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1740 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1741 unsigned long old_opts
, int flags
)
1743 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1744 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1745 (flags
& SB_RDONLY
))) {
1746 /* wait for any defraggers to finish */
1747 wait_event(fs_info
->transaction_wait
,
1748 (atomic_read(&fs_info
->defrag_running
) == 0));
1749 if (flags
& SB_RDONLY
)
1750 sync_filesystem(fs_info
->sb
);
1754 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1755 unsigned long old_opts
)
1758 * We need to cleanup all defragable inodes if the autodefragment is
1759 * close or the filesystem is read only.
1761 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1762 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) || sb_rdonly(fs_info
->sb
))) {
1763 btrfs_cleanup_defrag_inodes(fs_info
);
1766 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1769 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1771 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1772 struct btrfs_root
*root
= fs_info
->tree_root
;
1773 unsigned old_flags
= sb
->s_flags
;
1774 unsigned long old_opts
= fs_info
->mount_opt
;
1775 unsigned long old_compress_type
= fs_info
->compress_type
;
1776 u64 old_max_inline
= fs_info
->max_inline
;
1777 u32 old_thread_pool_size
= fs_info
->thread_pool_size
;
1778 u32 old_metadata_ratio
= fs_info
->metadata_ratio
;
1781 sync_filesystem(sb
);
1782 btrfs_remount_prepare(fs_info
);
1785 struct security_mnt_opts new_sec_opts
;
1787 security_init_mnt_opts(&new_sec_opts
);
1788 ret
= parse_security_options(data
, &new_sec_opts
);
1791 ret
= setup_security_options(fs_info
, sb
,
1794 security_free_mnt_opts(&new_sec_opts
);
1799 ret
= btrfs_parse_options(fs_info
, data
, *flags
);
1803 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1804 btrfs_resize_thread_pool(fs_info
,
1805 fs_info
->thread_pool_size
, old_thread_pool_size
);
1807 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
1810 if (*flags
& SB_RDONLY
) {
1812 * this also happens on 'umount -rf' or on shutdown, when
1813 * the filesystem is busy.
1815 cancel_work_sync(&fs_info
->async_reclaim_work
);
1817 /* wait for the uuid_scan task to finish */
1818 down(&fs_info
->uuid_tree_rescan_sem
);
1819 /* avoid complains from lockdep et al. */
1820 up(&fs_info
->uuid_tree_rescan_sem
);
1822 sb
->s_flags
|= SB_RDONLY
;
1825 * Setting SB_RDONLY will put the cleaner thread to
1826 * sleep at the next loop if it's already active.
1827 * If it's already asleep, we'll leave unused block
1828 * groups on disk until we're mounted read-write again
1829 * unless we clean them up here.
1831 btrfs_delete_unused_bgs(fs_info
);
1833 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1834 btrfs_scrub_cancel(fs_info
);
1835 btrfs_pause_balance(fs_info
);
1837 ret
= btrfs_commit_super(fs_info
);
1841 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1843 "Remounting read-write after error is not allowed");
1847 if (fs_info
->fs_devices
->rw_devices
== 0) {
1852 if (!btrfs_check_rw_degradable(fs_info
, NULL
)) {
1854 "too many missing devices, writeable remount is not allowed");
1859 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1861 "mount required to replay tree-log, cannot remount read-write");
1866 ret
= btrfs_cleanup_fs_roots(fs_info
);
1870 /* recover relocation */
1871 mutex_lock(&fs_info
->cleaner_mutex
);
1872 ret
= btrfs_recover_relocation(root
);
1873 mutex_unlock(&fs_info
->cleaner_mutex
);
1877 ret
= btrfs_resume_balance_async(fs_info
);
1881 ret
= btrfs_resume_dev_replace_async(fs_info
);
1883 btrfs_warn(fs_info
, "failed to resume dev_replace");
1887 btrfs_qgroup_rescan_resume(fs_info
);
1889 if (!fs_info
->uuid_root
) {
1890 btrfs_info(fs_info
, "creating UUID tree");
1891 ret
= btrfs_create_uuid_tree(fs_info
);
1894 "failed to create the UUID tree %d",
1899 sb
->s_flags
&= ~SB_RDONLY
;
1901 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
1904 wake_up_process(fs_info
->transaction_kthread
);
1905 btrfs_remount_cleanup(fs_info
, old_opts
);
1909 /* We've hit an error - don't reset SB_RDONLY */
1911 old_flags
|= SB_RDONLY
;
1912 sb
->s_flags
= old_flags
;
1913 fs_info
->mount_opt
= old_opts
;
1914 fs_info
->compress_type
= old_compress_type
;
1915 fs_info
->max_inline
= old_max_inline
;
1916 btrfs_resize_thread_pool(fs_info
,
1917 old_thread_pool_size
, fs_info
->thread_pool_size
);
1918 fs_info
->metadata_ratio
= old_metadata_ratio
;
1919 btrfs_remount_cleanup(fs_info
, old_opts
);
1923 /* Used to sort the devices by max_avail(descending sort) */
1924 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1925 const void *dev_info2
)
1927 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1928 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1930 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1931 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1938 * sort the devices by max_avail, in which max free extent size of each device
1939 * is stored.(Descending Sort)
1941 static inline void btrfs_descending_sort_devices(
1942 struct btrfs_device_info
*devices
,
1945 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1946 btrfs_cmp_device_free_bytes
, NULL
);
1950 * The helper to calc the free space on the devices that can be used to store
1953 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info
*fs_info
,
1956 struct btrfs_device_info
*devices_info
;
1957 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1958 struct btrfs_device
*device
;
1962 u64 min_stripe_size
;
1963 int min_stripes
= 1, num_stripes
= 1;
1964 int i
= 0, nr_devices
;
1967 * We aren't under the device list lock, so this is racy-ish, but good
1968 * enough for our purposes.
1970 nr_devices
= fs_info
->fs_devices
->open_devices
;
1973 nr_devices
= fs_info
->fs_devices
->open_devices
;
1981 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1986 /* calc min stripe number for data space allocation */
1987 type
= btrfs_data_alloc_profile(fs_info
);
1988 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1990 num_stripes
= nr_devices
;
1991 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1994 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1999 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2000 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
2002 min_stripe_size
= BTRFS_STRIPE_LEN
;
2005 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
2006 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2007 &device
->dev_state
) ||
2009 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
2012 if (i
>= nr_devices
)
2015 avail_space
= device
->total_bytes
- device
->bytes_used
;
2017 /* align with stripe_len */
2018 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
2019 avail_space
*= BTRFS_STRIPE_LEN
;
2022 * In order to avoid overwriting the superblock on the drive,
2023 * btrfs starts at an offset of at least 1MB when doing chunk
2029 * we can use the free space in [0, skip_space - 1], subtract
2030 * it from the total.
2032 if (avail_space
&& avail_space
>= skip_space
)
2033 avail_space
-= skip_space
;
2037 if (avail_space
< min_stripe_size
)
2040 devices_info
[i
].dev
= device
;
2041 devices_info
[i
].max_avail
= avail_space
;
2049 btrfs_descending_sort_devices(devices_info
, nr_devices
);
2053 while (nr_devices
>= min_stripes
) {
2054 if (num_stripes
> nr_devices
)
2055 num_stripes
= nr_devices
;
2057 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2061 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2062 alloc_size
= devices_info
[i
].max_avail
;
2063 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2064 devices_info
[j
].max_avail
-= alloc_size
;
2070 kfree(devices_info
);
2071 *free_bytes
= avail_space
;
2076 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2078 * If there's a redundant raid level at DATA block groups, use the respective
2079 * multiplier to scale the sizes.
2081 * Unused device space usage is based on simulating the chunk allocator
2082 * algorithm that respects the device sizes and order of allocations. This is
2083 * a close approximation of the actual use but there are other factors that may
2084 * change the result (like a new metadata chunk).
2086 * If metadata is exhausted, f_bavail will be 0.
2088 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2090 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2091 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2092 struct list_head
*head
= &fs_info
->space_info
;
2093 struct btrfs_space_info
*found
;
2095 u64 total_free_data
= 0;
2096 u64 total_free_meta
= 0;
2097 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2098 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2099 unsigned factor
= 1;
2100 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2106 list_for_each_entry_rcu(found
, head
, list
) {
2107 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2110 total_free_data
+= found
->disk_total
- found
->disk_used
;
2112 btrfs_account_ro_block_groups_free_space(found
);
2114 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2115 if (!list_empty(&found
->block_groups
[i
]))
2116 factor
= btrfs_bg_type_to_factor(
2117 btrfs_raid_array
[i
].bg_flag
);
2122 * Metadata in mixed block goup profiles are accounted in data
2124 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2125 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2128 total_free_meta
+= found
->disk_total
-
2132 total_used
+= found
->disk_used
;
2137 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2138 buf
->f_blocks
>>= bits
;
2139 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2141 /* Account global block reserve as used, it's in logical size already */
2142 spin_lock(&block_rsv
->lock
);
2143 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2144 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2145 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2148 spin_unlock(&block_rsv
->lock
);
2150 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2151 ret
= btrfs_calc_avail_data_space(fs_info
, &total_free_data
);
2154 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2155 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2158 * We calculate the remaining metadata space minus global reserve. If
2159 * this is (supposedly) smaller than zero, there's no space. But this
2160 * does not hold in practice, the exhausted state happens where's still
2161 * some positive delta. So we apply some guesswork and compare the
2162 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2164 * We probably cannot calculate the exact threshold value because this
2165 * depends on the internal reservations requested by various
2166 * operations, so some operations that consume a few metadata will
2167 * succeed even if the Avail is zero. But this is better than the other
2173 * We only want to claim there's no available space if we can no longer
2174 * allocate chunks for our metadata profile and our global reserve will
2175 * not fit in the free metadata space. If we aren't ->full then we
2176 * still can allocate chunks and thus are fine using the currently
2177 * calculated f_bavail.
2179 if (!mixed
&& block_rsv
->space_info
->full
&&
2180 total_free_meta
- thresh
< block_rsv
->size
)
2183 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2184 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2185 buf
->f_namelen
= BTRFS_NAME_LEN
;
2187 /* We treat it as constant endianness (it doesn't matter _which_)
2188 because we want the fsid to come out the same whether mounted
2189 on a big-endian or little-endian host */
2190 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2191 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2192 /* Mask in the root object ID too, to disambiguate subvols */
2193 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2194 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2199 static void btrfs_kill_super(struct super_block
*sb
)
2201 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2202 kill_anon_super(sb
);
2203 free_fs_info(fs_info
);
2206 static struct file_system_type btrfs_fs_type
= {
2207 .owner
= THIS_MODULE
,
2209 .mount
= btrfs_mount
,
2210 .kill_sb
= btrfs_kill_super
,
2211 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2214 static struct file_system_type btrfs_root_fs_type
= {
2215 .owner
= THIS_MODULE
,
2217 .mount
= btrfs_mount_root
,
2218 .kill_sb
= btrfs_kill_super
,
2219 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2222 MODULE_ALIAS_FS("btrfs");
2224 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2227 * The control file's private_data is used to hold the
2228 * transaction when it is started and is used to keep
2229 * track of whether a transaction is already in progress.
2231 file
->private_data
= NULL
;
2236 * used by btrfsctl to scan devices when no FS is mounted
2238 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2241 struct btrfs_ioctl_vol_args
*vol
;
2242 struct btrfs_device
*device
= NULL
;
2245 if (!capable(CAP_SYS_ADMIN
))
2248 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2250 return PTR_ERR(vol
);
2251 vol
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2254 case BTRFS_IOC_SCAN_DEV
:
2255 mutex_lock(&uuid_mutex
);
2256 device
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2257 &btrfs_root_fs_type
);
2258 ret
= PTR_ERR_OR_ZERO(device
);
2259 mutex_unlock(&uuid_mutex
);
2261 case BTRFS_IOC_DEVICES_READY
:
2262 mutex_lock(&uuid_mutex
);
2263 device
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2264 &btrfs_root_fs_type
);
2265 if (IS_ERR(device
)) {
2266 mutex_unlock(&uuid_mutex
);
2267 ret
= PTR_ERR(device
);
2270 ret
= !(device
->fs_devices
->num_devices
==
2271 device
->fs_devices
->total_devices
);
2272 mutex_unlock(&uuid_mutex
);
2274 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2275 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2283 static int btrfs_freeze(struct super_block
*sb
)
2285 struct btrfs_trans_handle
*trans
;
2286 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2287 struct btrfs_root
*root
= fs_info
->tree_root
;
2289 set_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2291 * We don't need a barrier here, we'll wait for any transaction that
2292 * could be in progress on other threads (and do delayed iputs that
2293 * we want to avoid on a frozen filesystem), or do the commit
2296 trans
= btrfs_attach_transaction_barrier(root
);
2297 if (IS_ERR(trans
)) {
2298 /* no transaction, don't bother */
2299 if (PTR_ERR(trans
) == -ENOENT
)
2301 return PTR_ERR(trans
);
2303 return btrfs_commit_transaction(trans
);
2306 static int btrfs_unfreeze(struct super_block
*sb
)
2308 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2310 clear_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2314 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2316 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2317 struct btrfs_fs_devices
*cur_devices
;
2318 struct btrfs_device
*dev
, *first_dev
= NULL
;
2319 struct list_head
*head
;
2322 * Lightweight locking of the devices. We should not need
2323 * device_list_mutex here as we only read the device data and the list
2324 * is protected by RCU. Even if a device is deleted during the list
2325 * traversals, we'll get valid data, the freeing callback will wait at
2326 * least until until the rcu_read_unlock.
2329 cur_devices
= fs_info
->fs_devices
;
2330 while (cur_devices
) {
2331 head
= &cur_devices
->devices
;
2332 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2333 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
2337 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2340 cur_devices
= cur_devices
->seed
;
2344 seq_escape(m
, rcu_str_deref(first_dev
->name
), " \t\n\\");
2351 static const struct super_operations btrfs_super_ops
= {
2352 .drop_inode
= btrfs_drop_inode
,
2353 .evict_inode
= btrfs_evict_inode
,
2354 .put_super
= btrfs_put_super
,
2355 .sync_fs
= btrfs_sync_fs
,
2356 .show_options
= btrfs_show_options
,
2357 .show_devname
= btrfs_show_devname
,
2358 .alloc_inode
= btrfs_alloc_inode
,
2359 .destroy_inode
= btrfs_destroy_inode
,
2360 .statfs
= btrfs_statfs
,
2361 .remount_fs
= btrfs_remount
,
2362 .freeze_fs
= btrfs_freeze
,
2363 .unfreeze_fs
= btrfs_unfreeze
,
2366 static const struct file_operations btrfs_ctl_fops
= {
2367 .open
= btrfs_control_open
,
2368 .unlocked_ioctl
= btrfs_control_ioctl
,
2369 .compat_ioctl
= btrfs_control_ioctl
,
2370 .owner
= THIS_MODULE
,
2371 .llseek
= noop_llseek
,
2374 static struct miscdevice btrfs_misc
= {
2375 .minor
= BTRFS_MINOR
,
2376 .name
= "btrfs-control",
2377 .fops
= &btrfs_ctl_fops
2380 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2381 MODULE_ALIAS("devname:btrfs-control");
2383 static int __init
btrfs_interface_init(void)
2385 return misc_register(&btrfs_misc
);
2388 static __cold
void btrfs_interface_exit(void)
2390 misc_deregister(&btrfs_misc
);
2393 static void __init
btrfs_print_mod_info(void)
2395 static const char options
[] = ""
2396 #ifdef CONFIG_BTRFS_DEBUG
2399 #ifdef CONFIG_BTRFS_ASSERT
2402 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2403 ", integrity-checker=on"
2405 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2409 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options
);
2412 static int __init
init_btrfs_fs(void)
2418 err
= btrfs_init_sysfs();
2422 btrfs_init_compress();
2424 err
= btrfs_init_cachep();
2428 err
= extent_io_init();
2432 err
= extent_map_init();
2434 goto free_extent_io
;
2436 err
= ordered_data_init();
2438 goto free_extent_map
;
2440 err
= btrfs_delayed_inode_init();
2442 goto free_ordered_data
;
2444 err
= btrfs_auto_defrag_init();
2446 goto free_delayed_inode
;
2448 err
= btrfs_delayed_ref_init();
2450 goto free_auto_defrag
;
2452 err
= btrfs_prelim_ref_init();
2454 goto free_delayed_ref
;
2456 err
= btrfs_end_io_wq_init();
2458 goto free_prelim_ref
;
2460 err
= btrfs_interface_init();
2462 goto free_end_io_wq
;
2464 btrfs_init_lockdep();
2466 btrfs_print_mod_info();
2468 err
= btrfs_run_sanity_tests();
2470 goto unregister_ioctl
;
2472 err
= register_filesystem(&btrfs_fs_type
);
2474 goto unregister_ioctl
;
2479 btrfs_interface_exit();
2481 btrfs_end_io_wq_exit();
2483 btrfs_prelim_ref_exit();
2485 btrfs_delayed_ref_exit();
2487 btrfs_auto_defrag_exit();
2489 btrfs_delayed_inode_exit();
2491 ordered_data_exit();
2497 btrfs_destroy_cachep();
2499 btrfs_exit_compress();
2505 static void __exit
exit_btrfs_fs(void)
2507 btrfs_destroy_cachep();
2508 btrfs_delayed_ref_exit();
2509 btrfs_auto_defrag_exit();
2510 btrfs_delayed_inode_exit();
2511 btrfs_prelim_ref_exit();
2512 ordered_data_exit();
2515 btrfs_interface_exit();
2516 btrfs_end_io_wq_exit();
2517 unregister_filesystem(&btrfs_fs_type
);
2519 btrfs_cleanup_fs_uuids();
2520 btrfs_exit_compress();
2523 late_initcall(init_btrfs_fs
);
2524 module_exit(exit_btrfs_fs
)
2526 MODULE_LICENSE("GPL");