Linux 4.19.133
[linux/fpc-iii.git] / fs / btrfs / super.c
blob6a5b16a119eda27c80a746b0c50948ba21c889fc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
51 static const struct super_operations btrfs_super_ops;
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
57 * btrfs_mount.
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
66 const char *btrfs_decode_error(int errno)
68 char *errstr = "unknown";
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 case -ENOSPC:
84 errstr = "No space left";
85 break;
86 case -ENOENT:
87 errstr = "No such entry";
88 break;
91 return errstr;
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the approciate error response.
98 __cold
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 unsigned int line, int errno, const char *fmt, ...)
102 struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 const char *errstr;
105 #endif
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
111 if (errno == -EROFS && sb_rdonly(sb))
112 return;
114 #ifdef CONFIG_PRINTK
115 errstr = btrfs_decode_error(errno);
116 if (fmt) {
117 struct va_format vaf;
118 va_list args;
120 va_start(args, fmt);
121 vaf.fmt = fmt;
122 vaf.va = &args;
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb->s_id, function, line, errno, errstr, &vaf);
126 va_end(args);
127 } else {
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb->s_id, function, line, errno, errstr);
131 #endif
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
139 /* Don't go through full error handling during mount */
140 if (!(sb->s_flags & SB_BORN))
141 return;
143 if (sb_rdonly(sb))
144 return;
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb->s_flags |= SB_RDONLY;
148 btrfs_info(fs_info, "forced readonly");
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writeable
155 * again, the device replace operation continues.
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 "emergency",
162 "alert",
163 "critical",
164 "error",
165 "warning",
166 "notice",
167 "info",
168 "debug",
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
176 static struct ratelimit_state printk_limits[] = {
177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 struct va_format vaf;
191 va_list args;
192 int kern_level;
193 const char *type = logtypes[4];
194 struct ratelimit_state *ratelimit = &printk_limits[4];
196 va_start(args, fmt);
198 while ((kern_level = printk_get_level(fmt)) != 0) {
199 size_t size = printk_skip_level(fmt) - fmt;
201 if (kern_level >= '0' && kern_level <= '7') {
202 memcpy(lvl, fmt, size);
203 lvl[size] = '\0';
204 type = logtypes[kern_level - '0'];
205 ratelimit = &printk_limits[kern_level - '0'];
207 fmt += size;
210 vaf.fmt = fmt;
211 vaf.va = &args;
213 if (__ratelimit(ratelimit))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
217 va_end(args);
219 #endif
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 const char *function,
237 unsigned int line, int errno)
239 struct btrfs_fs_info *fs_info = trans->fs_info;
241 trans->aborted = errno;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 const char *errstr;
247 errstr = btrfs_decode_error(errno);
248 btrfs_warn(fs_info,
249 "%s:%d: Aborting unused transaction(%s).",
250 function, line, errstr);
251 return;
253 WRITE_ONCE(trans->transaction->aborted, errno);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info->transaction_wait);
256 wake_up(&fs_info->transaction_blocked_wait);
257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
263 __cold
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 unsigned int line, int errno, const char *fmt, ...)
267 char *s_id = "<unknown>";
268 const char *errstr;
269 struct va_format vaf = { .fmt = fmt };
270 va_list args;
272 if (fs_info)
273 s_id = fs_info->sb->s_id;
275 va_start(args, fmt);
276 vaf.va = &args;
278 errstr = btrfs_decode_error(errno);
279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id, function, line, &vaf, errno, errstr);
283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 function, line, &vaf, errno, errstr);
285 va_end(args);
286 /* Caller calls BUG() */
289 static void btrfs_put_super(struct super_block *sb)
291 close_ctree(btrfs_sb(sb));
294 enum {
295 Opt_acl, Opt_noacl,
296 Opt_clear_cache,
297 Opt_commit_interval,
298 Opt_compress,
299 Opt_compress_force,
300 Opt_compress_force_type,
301 Opt_compress_type,
302 Opt_degraded,
303 Opt_device,
304 Opt_fatal_errors,
305 Opt_flushoncommit, Opt_noflushoncommit,
306 Opt_inode_cache, Opt_noinode_cache,
307 Opt_max_inline,
308 Opt_barrier, Opt_nobarrier,
309 Opt_datacow, Opt_nodatacow,
310 Opt_datasum, Opt_nodatasum,
311 Opt_defrag, Opt_nodefrag,
312 Opt_discard, Opt_nodiscard,
313 Opt_nologreplay,
314 Opt_norecovery,
315 Opt_ratio,
316 Opt_rescan_uuid_tree,
317 Opt_skip_balance,
318 Opt_space_cache, Opt_no_space_cache,
319 Opt_space_cache_version,
320 Opt_ssd, Opt_nossd,
321 Opt_ssd_spread, Opt_nossd_spread,
322 Opt_subvol,
323 Opt_subvol_empty,
324 Opt_subvolid,
325 Opt_thread_pool,
326 Opt_treelog, Opt_notreelog,
327 Opt_usebackuproot,
328 Opt_user_subvol_rm_allowed,
330 /* Deprecated options */
331 Opt_alloc_start,
332 Opt_recovery,
333 Opt_subvolrootid,
335 /* Debugging options */
336 Opt_check_integrity,
337 Opt_check_integrity_including_extent_data,
338 Opt_check_integrity_print_mask,
339 Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 Opt_ref_verify,
345 #endif
346 Opt_err,
349 static const match_table_t tokens = {
350 {Opt_acl, "acl"},
351 {Opt_noacl, "noacl"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_commit_interval, "commit=%u"},
354 {Opt_compress, "compress"},
355 {Opt_compress_type, "compress=%s"},
356 {Opt_compress_force, "compress-force"},
357 {Opt_compress_force_type, "compress-force=%s"},
358 {Opt_degraded, "degraded"},
359 {Opt_device, "device=%s"},
360 {Opt_fatal_errors, "fatal_errors=%s"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_inode_cache, "inode_cache"},
364 {Opt_noinode_cache, "noinode_cache"},
365 {Opt_max_inline, "max_inline=%s"},
366 {Opt_barrier, "barrier"},
367 {Opt_nobarrier, "nobarrier"},
368 {Opt_datacow, "datacow"},
369 {Opt_nodatacow, "nodatacow"},
370 {Opt_datasum, "datasum"},
371 {Opt_nodatasum, "nodatasum"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_discard, "discard"},
375 {Opt_nodiscard, "nodiscard"},
376 {Opt_nologreplay, "nologreplay"},
377 {Opt_norecovery, "norecovery"},
378 {Opt_ratio, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 {Opt_skip_balance, "skip_balance"},
381 {Opt_space_cache, "space_cache"},
382 {Opt_no_space_cache, "nospace_cache"},
383 {Opt_space_cache_version, "space_cache=%s"},
384 {Opt_ssd, "ssd"},
385 {Opt_nossd, "nossd"},
386 {Opt_ssd_spread, "ssd_spread"},
387 {Opt_nossd_spread, "nossd_spread"},
388 {Opt_subvol, "subvol=%s"},
389 {Opt_subvol_empty, "subvol="},
390 {Opt_subvolid, "subvolid=%s"},
391 {Opt_thread_pool, "thread_pool=%u"},
392 {Opt_treelog, "treelog"},
393 {Opt_notreelog, "notreelog"},
394 {Opt_usebackuproot, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397 /* Deprecated options */
398 {Opt_alloc_start, "alloc_start=%s"},
399 {Opt_recovery, "recovery"},
400 {Opt_subvolrootid, "subvolrootid=%d"},
402 /* Debugging options */
403 {Opt_check_integrity, "check_int"},
404 {Opt_check_integrity_including_extent_data, "check_int_data"},
405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 {Opt_enospc_debug, "enospc_debug"},
407 {Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data, "fragment=data"},
410 {Opt_fragment_metadata, "fragment=metadata"},
411 {Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify, "ref_verify"},
415 #endif
416 {Opt_err, NULL},
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 unsigned long new_flags)
427 substring_t args[MAX_OPT_ARGS];
428 char *p, *num;
429 u64 cache_gen;
430 int intarg;
431 int ret = 0;
432 char *compress_type;
433 bool compress_force = false;
434 enum btrfs_compression_type saved_compress_type;
435 bool saved_compress_force;
436 int no_compress = 0;
438 cache_gen = btrfs_super_cache_generation(info->super_copy);
439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441 else if (cache_gen)
442 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
445 * Even the options are empty, we still need to do extra check
446 * against new flags
448 if (!options)
449 goto check;
451 while ((p = strsep(&options, ",")) != NULL) {
452 int token;
453 if (!*p)
454 continue;
456 token = match_token(p, tokens, args);
457 switch (token) {
458 case Opt_degraded:
459 btrfs_info(info, "allowing degraded mounts");
460 btrfs_set_opt(info->mount_opt, DEGRADED);
461 break;
462 case Opt_subvol:
463 case Opt_subvol_empty:
464 case Opt_subvolid:
465 case Opt_subvolrootid:
466 case Opt_device:
468 * These are parsed by btrfs_parse_subvol_options or
469 * btrfs_parse_device_options and can be ignored here.
471 break;
472 case Opt_nodatasum:
473 btrfs_set_and_info(info, NODATASUM,
474 "setting nodatasum");
475 break;
476 case Opt_datasum:
477 if (btrfs_test_opt(info, NODATASUM)) {
478 if (btrfs_test_opt(info, NODATACOW))
479 btrfs_info(info,
480 "setting datasum, datacow enabled");
481 else
482 btrfs_info(info, "setting datasum");
484 btrfs_clear_opt(info->mount_opt, NODATACOW);
485 btrfs_clear_opt(info->mount_opt, NODATASUM);
486 break;
487 case Opt_nodatacow:
488 if (!btrfs_test_opt(info, NODATACOW)) {
489 if (!btrfs_test_opt(info, COMPRESS) ||
490 !btrfs_test_opt(info, FORCE_COMPRESS)) {
491 btrfs_info(info,
492 "setting nodatacow, compression disabled");
493 } else {
494 btrfs_info(info, "setting nodatacow");
497 btrfs_clear_opt(info->mount_opt, COMPRESS);
498 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499 btrfs_set_opt(info->mount_opt, NODATACOW);
500 btrfs_set_opt(info->mount_opt, NODATASUM);
501 break;
502 case Opt_datacow:
503 btrfs_clear_and_info(info, NODATACOW,
504 "setting datacow");
505 break;
506 case Opt_compress_force:
507 case Opt_compress_force_type:
508 compress_force = true;
509 /* Fallthrough */
510 case Opt_compress:
511 case Opt_compress_type:
512 saved_compress_type = btrfs_test_opt(info,
513 COMPRESS) ?
514 info->compress_type : BTRFS_COMPRESS_NONE;
515 saved_compress_force =
516 btrfs_test_opt(info, FORCE_COMPRESS);
517 if (token == Opt_compress ||
518 token == Opt_compress_force ||
519 strncmp(args[0].from, "zlib", 4) == 0) {
520 compress_type = "zlib";
522 info->compress_type = BTRFS_COMPRESS_ZLIB;
523 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
525 * args[0] contains uninitialized data since
526 * for these tokens we don't expect any
527 * parameter.
529 if (token != Opt_compress &&
530 token != Opt_compress_force)
531 info->compress_level =
532 btrfs_compress_str2level(args[0].from);
533 btrfs_set_opt(info->mount_opt, COMPRESS);
534 btrfs_clear_opt(info->mount_opt, NODATACOW);
535 btrfs_clear_opt(info->mount_opt, NODATASUM);
536 no_compress = 0;
537 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
538 compress_type = "lzo";
539 info->compress_type = BTRFS_COMPRESS_LZO;
540 btrfs_set_opt(info->mount_opt, COMPRESS);
541 btrfs_clear_opt(info->mount_opt, NODATACOW);
542 btrfs_clear_opt(info->mount_opt, NODATASUM);
543 btrfs_set_fs_incompat(info, COMPRESS_LZO);
544 no_compress = 0;
545 } else if (strcmp(args[0].from, "zstd") == 0) {
546 compress_type = "zstd";
547 info->compress_type = BTRFS_COMPRESS_ZSTD;
548 btrfs_set_opt(info->mount_opt, COMPRESS);
549 btrfs_clear_opt(info->mount_opt, NODATACOW);
550 btrfs_clear_opt(info->mount_opt, NODATASUM);
551 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
552 no_compress = 0;
553 } else if (strncmp(args[0].from, "no", 2) == 0) {
554 compress_type = "no";
555 btrfs_clear_opt(info->mount_opt, COMPRESS);
556 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
557 compress_force = false;
558 no_compress++;
559 } else {
560 ret = -EINVAL;
561 goto out;
564 if (compress_force) {
565 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
566 } else {
568 * If we remount from compress-force=xxx to
569 * compress=xxx, we need clear FORCE_COMPRESS
570 * flag, otherwise, there is no way for users
571 * to disable forcible compression separately.
573 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
575 if ((btrfs_test_opt(info, COMPRESS) &&
576 (info->compress_type != saved_compress_type ||
577 compress_force != saved_compress_force)) ||
578 (!btrfs_test_opt(info, COMPRESS) &&
579 no_compress == 1)) {
580 btrfs_info(info, "%s %s compression, level %d",
581 (compress_force) ? "force" : "use",
582 compress_type, info->compress_level);
584 compress_force = false;
585 break;
586 case Opt_ssd:
587 btrfs_set_and_info(info, SSD,
588 "enabling ssd optimizations");
589 btrfs_clear_opt(info->mount_opt, NOSSD);
590 break;
591 case Opt_ssd_spread:
592 btrfs_set_and_info(info, SSD,
593 "enabling ssd optimizations");
594 btrfs_set_and_info(info, SSD_SPREAD,
595 "using spread ssd allocation scheme");
596 btrfs_clear_opt(info->mount_opt, NOSSD);
597 break;
598 case Opt_nossd:
599 btrfs_set_opt(info->mount_opt, NOSSD);
600 btrfs_clear_and_info(info, SSD,
601 "not using ssd optimizations");
602 /* Fallthrough */
603 case Opt_nossd_spread:
604 btrfs_clear_and_info(info, SSD_SPREAD,
605 "not using spread ssd allocation scheme");
606 break;
607 case Opt_barrier:
608 btrfs_clear_and_info(info, NOBARRIER,
609 "turning on barriers");
610 break;
611 case Opt_nobarrier:
612 btrfs_set_and_info(info, NOBARRIER,
613 "turning off barriers");
614 break;
615 case Opt_thread_pool:
616 ret = match_int(&args[0], &intarg);
617 if (ret) {
618 goto out;
619 } else if (intarg == 0) {
620 ret = -EINVAL;
621 goto out;
623 info->thread_pool_size = intarg;
624 break;
625 case Opt_max_inline:
626 num = match_strdup(&args[0]);
627 if (num) {
628 info->max_inline = memparse(num, NULL);
629 kfree(num);
631 if (info->max_inline) {
632 info->max_inline = min_t(u64,
633 info->max_inline,
634 info->sectorsize);
636 btrfs_info(info, "max_inline at %llu",
637 info->max_inline);
638 } else {
639 ret = -ENOMEM;
640 goto out;
642 break;
643 case Opt_alloc_start:
644 btrfs_info(info,
645 "option alloc_start is obsolete, ignored");
646 break;
647 case Opt_acl:
648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
649 info->sb->s_flags |= SB_POSIXACL;
650 break;
651 #else
652 btrfs_err(info, "support for ACL not compiled in!");
653 ret = -EINVAL;
654 goto out;
655 #endif
656 case Opt_noacl:
657 info->sb->s_flags &= ~SB_POSIXACL;
658 break;
659 case Opt_notreelog:
660 btrfs_set_and_info(info, NOTREELOG,
661 "disabling tree log");
662 break;
663 case Opt_treelog:
664 btrfs_clear_and_info(info, NOTREELOG,
665 "enabling tree log");
666 break;
667 case Opt_norecovery:
668 case Opt_nologreplay:
669 btrfs_set_and_info(info, NOLOGREPLAY,
670 "disabling log replay at mount time");
671 break;
672 case Opt_flushoncommit:
673 btrfs_set_and_info(info, FLUSHONCOMMIT,
674 "turning on flush-on-commit");
675 break;
676 case Opt_noflushoncommit:
677 btrfs_clear_and_info(info, FLUSHONCOMMIT,
678 "turning off flush-on-commit");
679 break;
680 case Opt_ratio:
681 ret = match_int(&args[0], &intarg);
682 if (ret)
683 goto out;
684 info->metadata_ratio = intarg;
685 btrfs_info(info, "metadata ratio %u",
686 info->metadata_ratio);
687 break;
688 case Opt_discard:
689 btrfs_set_and_info(info, DISCARD,
690 "turning on discard");
691 break;
692 case Opt_nodiscard:
693 btrfs_clear_and_info(info, DISCARD,
694 "turning off discard");
695 break;
696 case Opt_space_cache:
697 case Opt_space_cache_version:
698 if (token == Opt_space_cache ||
699 strcmp(args[0].from, "v1") == 0) {
700 btrfs_clear_opt(info->mount_opt,
701 FREE_SPACE_TREE);
702 btrfs_set_and_info(info, SPACE_CACHE,
703 "enabling disk space caching");
704 } else if (strcmp(args[0].from, "v2") == 0) {
705 btrfs_clear_opt(info->mount_opt,
706 SPACE_CACHE);
707 btrfs_set_and_info(info, FREE_SPACE_TREE,
708 "enabling free space tree");
709 } else {
710 ret = -EINVAL;
711 goto out;
713 break;
714 case Opt_rescan_uuid_tree:
715 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
716 break;
717 case Opt_no_space_cache:
718 if (btrfs_test_opt(info, SPACE_CACHE)) {
719 btrfs_clear_and_info(info, SPACE_CACHE,
720 "disabling disk space caching");
722 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
723 btrfs_clear_and_info(info, FREE_SPACE_TREE,
724 "disabling free space tree");
726 break;
727 case Opt_inode_cache:
728 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
729 "enabling inode map caching");
730 break;
731 case Opt_noinode_cache:
732 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
733 "disabling inode map caching");
734 break;
735 case Opt_clear_cache:
736 btrfs_set_and_info(info, CLEAR_CACHE,
737 "force clearing of disk cache");
738 break;
739 case Opt_user_subvol_rm_allowed:
740 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
741 break;
742 case Opt_enospc_debug:
743 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
744 break;
745 case Opt_noenospc_debug:
746 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
747 break;
748 case Opt_defrag:
749 btrfs_set_and_info(info, AUTO_DEFRAG,
750 "enabling auto defrag");
751 break;
752 case Opt_nodefrag:
753 btrfs_clear_and_info(info, AUTO_DEFRAG,
754 "disabling auto defrag");
755 break;
756 case Opt_recovery:
757 btrfs_warn(info,
758 "'recovery' is deprecated, use 'usebackuproot' instead");
759 /* fall through */
760 case Opt_usebackuproot:
761 btrfs_info(info,
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 break;
765 case Opt_skip_balance:
766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 break;
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data:
770 btrfs_info(info,
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info->mount_opt,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 break;
776 case Opt_check_integrity:
777 btrfs_info(info, "enabling check integrity");
778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 break;
780 case Opt_check_integrity_print_mask:
781 ret = match_int(&args[0], &intarg);
782 if (ret)
783 goto out;
784 info->check_integrity_print_mask = intarg;
785 btrfs_info(info, "check_integrity_print_mask 0x%x",
786 info->check_integrity_print_mask);
787 break;
788 #else
789 case Opt_check_integrity_including_extent_data:
790 case Opt_check_integrity:
791 case Opt_check_integrity_print_mask:
792 btrfs_err(info,
793 "support for check_integrity* not compiled in!");
794 ret = -EINVAL;
795 goto out;
796 #endif
797 case Opt_fatal_errors:
798 if (strcmp(args[0].from, "panic") == 0)
799 btrfs_set_opt(info->mount_opt,
800 PANIC_ON_FATAL_ERROR);
801 else if (strcmp(args[0].from, "bug") == 0)
802 btrfs_clear_opt(info->mount_opt,
803 PANIC_ON_FATAL_ERROR);
804 else {
805 ret = -EINVAL;
806 goto out;
808 break;
809 case Opt_commit_interval:
810 intarg = 0;
811 ret = match_int(&args[0], &intarg);
812 if (ret)
813 goto out;
814 if (intarg == 0) {
815 btrfs_info(info,
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL);
818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 } else if (intarg > 300) {
820 btrfs_warn(info, "excessive commit interval %d",
821 intarg);
823 info->commit_interval = intarg;
824 break;
825 #ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all:
827 btrfs_info(info, "fragmenting all space");
828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_metadata:
832 btrfs_info(info, "fragmenting metadata");
833 btrfs_set_opt(info->mount_opt,
834 FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_data:
837 btrfs_info(info, "fragmenting data");
838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 break;
840 #endif
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 case Opt_ref_verify:
843 btrfs_info(info, "doing ref verification");
844 btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 break;
846 #endif
847 case Opt_err:
848 btrfs_info(info, "unrecognized mount option '%s'", p);
849 ret = -EINVAL;
850 goto out;
851 default:
852 break;
855 check:
857 * Extra check for current option against current flag
859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 btrfs_err(info,
861 "nologreplay must be used with ro mount option");
862 ret = -EINVAL;
864 out:
865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, CLEAR_CACHE)) {
868 btrfs_err(info, "cannot disable free space tree");
869 ret = -EINVAL;
872 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 btrfs_info(info, "disk space caching is enabled");
874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 btrfs_info(info, "using free space tree");
876 return ret;
880 * Parse mount options that are required early in the mount process.
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
885 static int btrfs_parse_device_options(const char *options, fmode_t flags,
886 void *holder)
888 substring_t args[MAX_OPT_ARGS];
889 char *device_name, *opts, *orig, *p;
890 struct btrfs_device *device = NULL;
891 int error = 0;
893 lockdep_assert_held(&uuid_mutex);
895 if (!options)
896 return 0;
899 * strsep changes the string, duplicate it because btrfs_parse_options
900 * gets called later
902 opts = kstrdup(options, GFP_KERNEL);
903 if (!opts)
904 return -ENOMEM;
905 orig = opts;
907 while ((p = strsep(&opts, ",")) != NULL) {
908 int token;
910 if (!*p)
911 continue;
913 token = match_token(p, tokens, args);
914 if (token == Opt_device) {
915 device_name = match_strdup(&args[0]);
916 if (!device_name) {
917 error = -ENOMEM;
918 goto out;
920 device = btrfs_scan_one_device(device_name, flags,
921 holder);
922 kfree(device_name);
923 if (IS_ERR(device)) {
924 error = PTR_ERR(device);
925 goto out;
930 out:
931 kfree(orig);
932 return error;
936 * Parse mount options that are related to subvolume id
938 * The value is later passed to mount_subvol()
940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
941 u64 *subvol_objectid)
943 substring_t args[MAX_OPT_ARGS];
944 char *opts, *orig, *p;
945 int error = 0;
946 u64 subvolid;
948 if (!options)
949 return 0;
952 * strsep changes the string, duplicate it because
953 * btrfs_parse_device_options gets called later
955 opts = kstrdup(options, GFP_KERNEL);
956 if (!opts)
957 return -ENOMEM;
958 orig = opts;
960 while ((p = strsep(&opts, ",")) != NULL) {
961 int token;
962 if (!*p)
963 continue;
965 token = match_token(p, tokens, args);
966 switch (token) {
967 case Opt_subvol:
968 kfree(*subvol_name);
969 *subvol_name = match_strdup(&args[0]);
970 if (!*subvol_name) {
971 error = -ENOMEM;
972 goto out;
974 break;
975 case Opt_subvolid:
976 error = match_u64(&args[0], &subvolid);
977 if (error)
978 goto out;
980 /* we want the original fs_tree */
981 if (subvolid == 0)
982 subvolid = BTRFS_FS_TREE_OBJECTID;
984 *subvol_objectid = subvolid;
985 break;
986 case Opt_subvolrootid:
987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
988 break;
989 default:
990 break;
994 out:
995 kfree(orig);
996 return error;
999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000 u64 subvol_objectid)
1002 struct btrfs_root *root = fs_info->tree_root;
1003 struct btrfs_root *fs_root;
1004 struct btrfs_root_ref *root_ref;
1005 struct btrfs_inode_ref *inode_ref;
1006 struct btrfs_key key;
1007 struct btrfs_path *path = NULL;
1008 char *name = NULL, *ptr;
1009 u64 dirid;
1010 int len;
1011 int ret;
1013 path = btrfs_alloc_path();
1014 if (!path) {
1015 ret = -ENOMEM;
1016 goto err;
1018 path->leave_spinning = 1;
1020 name = kmalloc(PATH_MAX, GFP_KERNEL);
1021 if (!name) {
1022 ret = -ENOMEM;
1023 goto err;
1025 ptr = name + PATH_MAX - 1;
1026 ptr[0] = '\0';
1029 * Walk up the subvolume trees in the tree of tree roots by root
1030 * backrefs until we hit the top-level subvolume.
1032 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1033 key.objectid = subvol_objectid;
1034 key.type = BTRFS_ROOT_BACKREF_KEY;
1035 key.offset = (u64)-1;
1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 if (ret < 0) {
1039 goto err;
1040 } else if (ret > 0) {
1041 ret = btrfs_previous_item(root, path, subvol_objectid,
1042 BTRFS_ROOT_BACKREF_KEY);
1043 if (ret < 0) {
1044 goto err;
1045 } else if (ret > 0) {
1046 ret = -ENOENT;
1047 goto err;
1051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052 subvol_objectid = key.offset;
1054 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1055 struct btrfs_root_ref);
1056 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057 ptr -= len + 1;
1058 if (ptr < name) {
1059 ret = -ENAMETOOLONG;
1060 goto err;
1062 read_extent_buffer(path->nodes[0], ptr + 1,
1063 (unsigned long)(root_ref + 1), len);
1064 ptr[0] = '/';
1065 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1066 btrfs_release_path(path);
1068 key.objectid = subvol_objectid;
1069 key.type = BTRFS_ROOT_ITEM_KEY;
1070 key.offset = (u64)-1;
1071 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1072 if (IS_ERR(fs_root)) {
1073 ret = PTR_ERR(fs_root);
1074 goto err;
1078 * Walk up the filesystem tree by inode refs until we hit the
1079 * root directory.
1081 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1082 key.objectid = dirid;
1083 key.type = BTRFS_INODE_REF_KEY;
1084 key.offset = (u64)-1;
1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087 if (ret < 0) {
1088 goto err;
1089 } else if (ret > 0) {
1090 ret = btrfs_previous_item(fs_root, path, dirid,
1091 BTRFS_INODE_REF_KEY);
1092 if (ret < 0) {
1093 goto err;
1094 } else if (ret > 0) {
1095 ret = -ENOENT;
1096 goto err;
1100 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101 dirid = key.offset;
1103 inode_ref = btrfs_item_ptr(path->nodes[0],
1104 path->slots[0],
1105 struct btrfs_inode_ref);
1106 len = btrfs_inode_ref_name_len(path->nodes[0],
1107 inode_ref);
1108 ptr -= len + 1;
1109 if (ptr < name) {
1110 ret = -ENAMETOOLONG;
1111 goto err;
1113 read_extent_buffer(path->nodes[0], ptr + 1,
1114 (unsigned long)(inode_ref + 1), len);
1115 ptr[0] = '/';
1116 btrfs_release_path(path);
1120 btrfs_free_path(path);
1121 if (ptr == name + PATH_MAX - 1) {
1122 name[0] = '/';
1123 name[1] = '\0';
1124 } else {
1125 memmove(name, ptr, name + PATH_MAX - ptr);
1127 return name;
1129 err:
1130 btrfs_free_path(path);
1131 kfree(name);
1132 return ERR_PTR(ret);
1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1137 struct btrfs_root *root = fs_info->tree_root;
1138 struct btrfs_dir_item *di;
1139 struct btrfs_path *path;
1140 struct btrfs_key location;
1141 u64 dir_id;
1143 path = btrfs_alloc_path();
1144 if (!path)
1145 return -ENOMEM;
1146 path->leave_spinning = 1;
1149 * Find the "default" dir item which points to the root item that we
1150 * will mount by default if we haven't been given a specific subvolume
1151 * to mount.
1153 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1154 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1155 if (IS_ERR(di)) {
1156 btrfs_free_path(path);
1157 return PTR_ERR(di);
1159 if (!di) {
1161 * Ok the default dir item isn't there. This is weird since
1162 * it's always been there, but don't freak out, just try and
1163 * mount the top-level subvolume.
1165 btrfs_free_path(path);
1166 *objectid = BTRFS_FS_TREE_OBJECTID;
1167 return 0;
1170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1171 btrfs_free_path(path);
1172 *objectid = location.objectid;
1173 return 0;
1176 static int btrfs_fill_super(struct super_block *sb,
1177 struct btrfs_fs_devices *fs_devices,
1178 void *data)
1180 struct inode *inode;
1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182 struct btrfs_key key;
1183 int err;
1185 sb->s_maxbytes = MAX_LFS_FILESIZE;
1186 sb->s_magic = BTRFS_SUPER_MAGIC;
1187 sb->s_op = &btrfs_super_ops;
1188 sb->s_d_op = &btrfs_dentry_operations;
1189 sb->s_export_op = &btrfs_export_ops;
1190 sb->s_xattr = btrfs_xattr_handlers;
1191 sb->s_time_gran = 1;
1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193 sb->s_flags |= SB_POSIXACL;
1194 #endif
1195 sb->s_flags |= SB_I_VERSION;
1196 sb->s_iflags |= SB_I_CGROUPWB;
1198 err = super_setup_bdi(sb);
1199 if (err) {
1200 btrfs_err(fs_info, "super_setup_bdi failed");
1201 return err;
1204 err = open_ctree(sb, fs_devices, (char *)data);
1205 if (err) {
1206 btrfs_err(fs_info, "open_ctree failed");
1207 return err;
1210 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1211 key.type = BTRFS_INODE_ITEM_KEY;
1212 key.offset = 0;
1213 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1214 if (IS_ERR(inode)) {
1215 err = PTR_ERR(inode);
1216 goto fail_close;
1219 sb->s_root = d_make_root(inode);
1220 if (!sb->s_root) {
1221 err = -ENOMEM;
1222 goto fail_close;
1225 cleancache_init_fs(sb);
1226 sb->s_flags |= SB_ACTIVE;
1227 return 0;
1229 fail_close:
1230 close_ctree(fs_info);
1231 return err;
1234 int btrfs_sync_fs(struct super_block *sb, int wait)
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1238 struct btrfs_root *root = fs_info->tree_root;
1240 trace_btrfs_sync_fs(fs_info, wait);
1242 if (!wait) {
1243 filemap_flush(fs_info->btree_inode->i_mapping);
1244 return 0;
1247 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1249 trans = btrfs_attach_transaction_barrier(root);
1250 if (IS_ERR(trans)) {
1251 /* no transaction, don't bother */
1252 if (PTR_ERR(trans) == -ENOENT) {
1254 * Exit unless we have some pending changes
1255 * that need to go through commit
1257 if (fs_info->pending_changes == 0)
1258 return 0;
1260 * A non-blocking test if the fs is frozen. We must not
1261 * start a new transaction here otherwise a deadlock
1262 * happens. The pending operations are delayed to the
1263 * next commit after thawing.
1265 if (sb_start_write_trylock(sb))
1266 sb_end_write(sb);
1267 else
1268 return 0;
1269 trans = btrfs_start_transaction(root, 0);
1271 if (IS_ERR(trans))
1272 return PTR_ERR(trans);
1274 return btrfs_commit_transaction(trans);
1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1279 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1280 const char *compress_type;
1282 if (btrfs_test_opt(info, DEGRADED))
1283 seq_puts(seq, ",degraded");
1284 if (btrfs_test_opt(info, NODATASUM))
1285 seq_puts(seq, ",nodatasum");
1286 if (btrfs_test_opt(info, NODATACOW))
1287 seq_puts(seq, ",nodatacow");
1288 if (btrfs_test_opt(info, NOBARRIER))
1289 seq_puts(seq, ",nobarrier");
1290 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1291 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1292 if (info->thread_pool_size != min_t(unsigned long,
1293 num_online_cpus() + 2, 8))
1294 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1295 if (btrfs_test_opt(info, COMPRESS)) {
1296 compress_type = btrfs_compress_type2str(info->compress_type);
1297 if (btrfs_test_opt(info, FORCE_COMPRESS))
1298 seq_printf(seq, ",compress-force=%s", compress_type);
1299 else
1300 seq_printf(seq, ",compress=%s", compress_type);
1301 if (info->compress_level)
1302 seq_printf(seq, ":%d", info->compress_level);
1304 if (btrfs_test_opt(info, NOSSD))
1305 seq_puts(seq, ",nossd");
1306 if (btrfs_test_opt(info, SSD_SPREAD))
1307 seq_puts(seq, ",ssd_spread");
1308 else if (btrfs_test_opt(info, SSD))
1309 seq_puts(seq, ",ssd");
1310 if (btrfs_test_opt(info, NOTREELOG))
1311 seq_puts(seq, ",notreelog");
1312 if (btrfs_test_opt(info, NOLOGREPLAY))
1313 seq_puts(seq, ",nologreplay");
1314 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1315 seq_puts(seq, ",flushoncommit");
1316 if (btrfs_test_opt(info, DISCARD))
1317 seq_puts(seq, ",discard");
1318 if (!(info->sb->s_flags & SB_POSIXACL))
1319 seq_puts(seq, ",noacl");
1320 if (btrfs_test_opt(info, SPACE_CACHE))
1321 seq_puts(seq, ",space_cache");
1322 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1323 seq_puts(seq, ",space_cache=v2");
1324 else
1325 seq_puts(seq, ",nospace_cache");
1326 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1327 seq_puts(seq, ",rescan_uuid_tree");
1328 if (btrfs_test_opt(info, CLEAR_CACHE))
1329 seq_puts(seq, ",clear_cache");
1330 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1331 seq_puts(seq, ",user_subvol_rm_allowed");
1332 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1333 seq_puts(seq, ",enospc_debug");
1334 if (btrfs_test_opt(info, AUTO_DEFRAG))
1335 seq_puts(seq, ",autodefrag");
1336 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1337 seq_puts(seq, ",inode_cache");
1338 if (btrfs_test_opt(info, SKIP_BALANCE))
1339 seq_puts(seq, ",skip_balance");
1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1342 seq_puts(seq, ",check_int_data");
1343 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1344 seq_puts(seq, ",check_int");
1345 if (info->check_integrity_print_mask)
1346 seq_printf(seq, ",check_int_print_mask=%d",
1347 info->check_integrity_print_mask);
1348 #endif
1349 if (info->metadata_ratio)
1350 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1351 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1352 seq_puts(seq, ",fatal_errors=panic");
1353 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1354 seq_printf(seq, ",commit=%u", info->commit_interval);
1355 #ifdef CONFIG_BTRFS_DEBUG
1356 if (btrfs_test_opt(info, FRAGMENT_DATA))
1357 seq_puts(seq, ",fragment=data");
1358 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1359 seq_puts(seq, ",fragment=metadata");
1360 #endif
1361 if (btrfs_test_opt(info, REF_VERIFY))
1362 seq_puts(seq, ",ref_verify");
1363 seq_printf(seq, ",subvolid=%llu",
1364 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1365 seq_puts(seq, ",subvol=");
1366 seq_dentry(seq, dentry, " \t\n\\");
1367 return 0;
1370 static int btrfs_test_super(struct super_block *s, void *data)
1372 struct btrfs_fs_info *p = data;
1373 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1375 return fs_info->fs_devices == p->fs_devices;
1378 static int btrfs_set_super(struct super_block *s, void *data)
1380 int err = set_anon_super(s, data);
1381 if (!err)
1382 s->s_fs_info = data;
1383 return err;
1387 * subvolumes are identified by ino 256
1389 static inline int is_subvolume_inode(struct inode *inode)
1391 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1392 return 1;
1393 return 0;
1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1397 const char *device_name, struct vfsmount *mnt)
1399 struct dentry *root;
1400 int ret;
1402 if (!subvol_name) {
1403 if (!subvol_objectid) {
1404 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405 &subvol_objectid);
1406 if (ret) {
1407 root = ERR_PTR(ret);
1408 goto out;
1411 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1412 subvol_objectid);
1413 if (IS_ERR(subvol_name)) {
1414 root = ERR_CAST(subvol_name);
1415 subvol_name = NULL;
1416 goto out;
1421 root = mount_subtree(mnt, subvol_name);
1422 /* mount_subtree() drops our reference on the vfsmount. */
1423 mnt = NULL;
1425 if (!IS_ERR(root)) {
1426 struct super_block *s = root->d_sb;
1427 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1428 struct inode *root_inode = d_inode(root);
1429 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1431 ret = 0;
1432 if (!is_subvolume_inode(root_inode)) {
1433 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1434 subvol_name);
1435 ret = -EINVAL;
1437 if (subvol_objectid && root_objectid != subvol_objectid) {
1439 * This will also catch a race condition where a
1440 * subvolume which was passed by ID is renamed and
1441 * another subvolume is renamed over the old location.
1443 btrfs_err(fs_info,
1444 "subvol '%s' does not match subvolid %llu",
1445 subvol_name, subvol_objectid);
1446 ret = -EINVAL;
1448 if (ret) {
1449 dput(root);
1450 root = ERR_PTR(ret);
1451 deactivate_locked_super(s);
1455 out:
1456 mntput(mnt);
1457 kfree(subvol_name);
1458 return root;
1461 static int parse_security_options(char *orig_opts,
1462 struct security_mnt_opts *sec_opts)
1464 char *secdata = NULL;
1465 int ret = 0;
1467 secdata = alloc_secdata();
1468 if (!secdata)
1469 return -ENOMEM;
1470 ret = security_sb_copy_data(orig_opts, secdata);
1471 if (ret) {
1472 free_secdata(secdata);
1473 return ret;
1475 ret = security_sb_parse_opts_str(secdata, sec_opts);
1476 free_secdata(secdata);
1477 return ret;
1480 static int setup_security_options(struct btrfs_fs_info *fs_info,
1481 struct super_block *sb,
1482 struct security_mnt_opts *sec_opts)
1484 int ret = 0;
1487 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488 * is valid.
1490 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1491 if (ret)
1492 return ret;
1494 #ifdef CONFIG_SECURITY
1495 if (!fs_info->security_opts.num_mnt_opts) {
1496 /* first time security setup, copy sec_opts to fs_info */
1497 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498 } else {
1500 * Since SELinux (the only one supporting security_mnt_opts)
1501 * does NOT support changing context during remount/mount of
1502 * the same sb, this must be the same or part of the same
1503 * security options, just free it.
1505 security_free_mnt_opts(sec_opts);
1507 #endif
1508 return ret;
1512 * Find a superblock for the given device / mount point.
1514 * Note: This is based on mount_bdev from fs/super.c with a few additions
1515 * for multiple device setup. Make sure to keep it in sync.
1517 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1518 int flags, const char *device_name, void *data)
1520 struct block_device *bdev = NULL;
1521 struct super_block *s;
1522 struct btrfs_device *device = NULL;
1523 struct btrfs_fs_devices *fs_devices = NULL;
1524 struct btrfs_fs_info *fs_info = NULL;
1525 struct security_mnt_opts new_sec_opts;
1526 fmode_t mode = FMODE_READ;
1527 int error = 0;
1529 if (!(flags & SB_RDONLY))
1530 mode |= FMODE_WRITE;
1532 security_init_mnt_opts(&new_sec_opts);
1533 if (data) {
1534 error = parse_security_options(data, &new_sec_opts);
1535 if (error)
1536 return ERR_PTR(error);
1540 * Setup a dummy root and fs_info for test/set super. This is because
1541 * we don't actually fill this stuff out until open_ctree, but we need
1542 * it for searching for existing supers, so this lets us do that and
1543 * then open_ctree will properly initialize everything later.
1545 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1546 if (!fs_info) {
1547 error = -ENOMEM;
1548 goto error_sec_opts;
1551 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1552 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1553 security_init_mnt_opts(&fs_info->security_opts);
1554 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1555 error = -ENOMEM;
1556 goto error_fs_info;
1559 mutex_lock(&uuid_mutex);
1560 error = btrfs_parse_device_options(data, mode, fs_type);
1561 if (error) {
1562 mutex_unlock(&uuid_mutex);
1563 goto error_fs_info;
1566 device = btrfs_scan_one_device(device_name, mode, fs_type);
1567 if (IS_ERR(device)) {
1568 mutex_unlock(&uuid_mutex);
1569 error = PTR_ERR(device);
1570 goto error_fs_info;
1573 fs_devices = device->fs_devices;
1574 fs_info->fs_devices = fs_devices;
1576 error = btrfs_open_devices(fs_devices, mode, fs_type);
1577 mutex_unlock(&uuid_mutex);
1578 if (error)
1579 goto error_fs_info;
1581 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1582 error = -EACCES;
1583 goto error_close_devices;
1586 bdev = fs_devices->latest_bdev;
1587 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588 fs_info);
1589 if (IS_ERR(s)) {
1590 error = PTR_ERR(s);
1591 goto error_close_devices;
1594 if (s->s_root) {
1595 btrfs_close_devices(fs_devices);
1596 free_fs_info(fs_info);
1597 if ((flags ^ s->s_flags) & SB_RDONLY)
1598 error = -EBUSY;
1599 } else {
1600 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1601 btrfs_sb(s)->bdev_holder = fs_type;
1602 error = btrfs_fill_super(s, fs_devices, data);
1604 if (error) {
1605 deactivate_locked_super(s);
1606 goto error_sec_opts;
1609 fs_info = btrfs_sb(s);
1610 error = setup_security_options(fs_info, s, &new_sec_opts);
1611 if (error) {
1612 deactivate_locked_super(s);
1613 goto error_sec_opts;
1616 return dget(s->s_root);
1618 error_close_devices:
1619 btrfs_close_devices(fs_devices);
1620 error_fs_info:
1621 free_fs_info(fs_info);
1622 error_sec_opts:
1623 security_free_mnt_opts(&new_sec_opts);
1624 return ERR_PTR(error);
1628 * Mount function which is called by VFS layer.
1630 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631 * which needs vfsmount* of device's root (/). This means device's root has to
1632 * be mounted internally in any case.
1634 * Operation flow:
1635 * 1. Parse subvol id related options for later use in mount_subvol().
1637 * 2. Mount device's root (/) by calling vfs_kern_mount().
1639 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640 * first place. In order to avoid calling btrfs_mount() again, we use
1641 * different file_system_type which is not registered to VFS by
1642 * register_filesystem() (btrfs_root_fs_type). As a result,
1643 * btrfs_mount_root() is called. The return value will be used by
1644 * mount_subtree() in mount_subvol().
1646 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647 * "btrfs subvolume set-default", mount_subvol() is called always.
1649 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1650 const char *device_name, void *data)
1652 struct vfsmount *mnt_root;
1653 struct dentry *root;
1654 fmode_t mode = FMODE_READ;
1655 char *subvol_name = NULL;
1656 u64 subvol_objectid = 0;
1657 int error = 0;
1659 if (!(flags & SB_RDONLY))
1660 mode |= FMODE_WRITE;
1662 error = btrfs_parse_subvol_options(data, &subvol_name,
1663 &subvol_objectid);
1664 if (error) {
1665 kfree(subvol_name);
1666 return ERR_PTR(error);
1669 /* mount device's root (/) */
1670 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1671 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1672 if (flags & SB_RDONLY) {
1673 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674 flags & ~SB_RDONLY, device_name, data);
1675 } else {
1676 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1677 flags | SB_RDONLY, device_name, data);
1678 if (IS_ERR(mnt_root)) {
1679 root = ERR_CAST(mnt_root);
1680 kfree(subvol_name);
1681 goto out;
1684 down_write(&mnt_root->mnt_sb->s_umount);
1685 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1686 up_write(&mnt_root->mnt_sb->s_umount);
1687 if (error < 0) {
1688 root = ERR_PTR(error);
1689 mntput(mnt_root);
1690 kfree(subvol_name);
1691 goto out;
1695 if (IS_ERR(mnt_root)) {
1696 root = ERR_CAST(mnt_root);
1697 kfree(subvol_name);
1698 goto out;
1701 /* mount_subvol() will free subvol_name and mnt_root */
1702 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1704 out:
1705 return root;
1708 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1709 u32 new_pool_size, u32 old_pool_size)
1711 if (new_pool_size == old_pool_size)
1712 return;
1714 fs_info->thread_pool_size = new_pool_size;
1716 btrfs_info(fs_info, "resize thread pool %d -> %d",
1717 old_pool_size, new_pool_size);
1719 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1720 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1721 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1722 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1723 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1724 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1725 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1726 new_pool_size);
1727 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1728 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1729 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1730 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1731 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1732 new_pool_size);
1735 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1737 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1740 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1741 unsigned long old_opts, int flags)
1743 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1744 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1745 (flags & SB_RDONLY))) {
1746 /* wait for any defraggers to finish */
1747 wait_event(fs_info->transaction_wait,
1748 (atomic_read(&fs_info->defrag_running) == 0));
1749 if (flags & SB_RDONLY)
1750 sync_filesystem(fs_info->sb);
1754 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1755 unsigned long old_opts)
1758 * We need to cleanup all defragable inodes if the autodefragment is
1759 * close or the filesystem is read only.
1761 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1762 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1763 btrfs_cleanup_defrag_inodes(fs_info);
1766 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1769 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1771 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1772 struct btrfs_root *root = fs_info->tree_root;
1773 unsigned old_flags = sb->s_flags;
1774 unsigned long old_opts = fs_info->mount_opt;
1775 unsigned long old_compress_type = fs_info->compress_type;
1776 u64 old_max_inline = fs_info->max_inline;
1777 u32 old_thread_pool_size = fs_info->thread_pool_size;
1778 u32 old_metadata_ratio = fs_info->metadata_ratio;
1779 int ret;
1781 sync_filesystem(sb);
1782 btrfs_remount_prepare(fs_info);
1784 if (data) {
1785 struct security_mnt_opts new_sec_opts;
1787 security_init_mnt_opts(&new_sec_opts);
1788 ret = parse_security_options(data, &new_sec_opts);
1789 if (ret)
1790 goto restore;
1791 ret = setup_security_options(fs_info, sb,
1792 &new_sec_opts);
1793 if (ret) {
1794 security_free_mnt_opts(&new_sec_opts);
1795 goto restore;
1799 ret = btrfs_parse_options(fs_info, data, *flags);
1800 if (ret)
1801 goto restore;
1803 btrfs_remount_begin(fs_info, old_opts, *flags);
1804 btrfs_resize_thread_pool(fs_info,
1805 fs_info->thread_pool_size, old_thread_pool_size);
1807 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1808 goto out;
1810 if (*flags & SB_RDONLY) {
1812 * this also happens on 'umount -rf' or on shutdown, when
1813 * the filesystem is busy.
1815 cancel_work_sync(&fs_info->async_reclaim_work);
1817 /* wait for the uuid_scan task to finish */
1818 down(&fs_info->uuid_tree_rescan_sem);
1819 /* avoid complains from lockdep et al. */
1820 up(&fs_info->uuid_tree_rescan_sem);
1822 sb->s_flags |= SB_RDONLY;
1825 * Setting SB_RDONLY will put the cleaner thread to
1826 * sleep at the next loop if it's already active.
1827 * If it's already asleep, we'll leave unused block
1828 * groups on disk until we're mounted read-write again
1829 * unless we clean them up here.
1831 btrfs_delete_unused_bgs(fs_info);
1833 btrfs_dev_replace_suspend_for_unmount(fs_info);
1834 btrfs_scrub_cancel(fs_info);
1835 btrfs_pause_balance(fs_info);
1837 ret = btrfs_commit_super(fs_info);
1838 if (ret)
1839 goto restore;
1840 } else {
1841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1842 btrfs_err(fs_info,
1843 "Remounting read-write after error is not allowed");
1844 ret = -EINVAL;
1845 goto restore;
1847 if (fs_info->fs_devices->rw_devices == 0) {
1848 ret = -EACCES;
1849 goto restore;
1852 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1853 btrfs_warn(fs_info,
1854 "too many missing devices, writeable remount is not allowed");
1855 ret = -EACCES;
1856 goto restore;
1859 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1860 btrfs_warn(fs_info,
1861 "mount required to replay tree-log, cannot remount read-write");
1862 ret = -EINVAL;
1863 goto restore;
1866 ret = btrfs_cleanup_fs_roots(fs_info);
1867 if (ret)
1868 goto restore;
1870 /* recover relocation */
1871 mutex_lock(&fs_info->cleaner_mutex);
1872 ret = btrfs_recover_relocation(root);
1873 mutex_unlock(&fs_info->cleaner_mutex);
1874 if (ret)
1875 goto restore;
1877 ret = btrfs_resume_balance_async(fs_info);
1878 if (ret)
1879 goto restore;
1881 ret = btrfs_resume_dev_replace_async(fs_info);
1882 if (ret) {
1883 btrfs_warn(fs_info, "failed to resume dev_replace");
1884 goto restore;
1887 btrfs_qgroup_rescan_resume(fs_info);
1889 if (!fs_info->uuid_root) {
1890 btrfs_info(fs_info, "creating UUID tree");
1891 ret = btrfs_create_uuid_tree(fs_info);
1892 if (ret) {
1893 btrfs_warn(fs_info,
1894 "failed to create the UUID tree %d",
1895 ret);
1896 goto restore;
1899 sb->s_flags &= ~SB_RDONLY;
1901 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1903 out:
1904 wake_up_process(fs_info->transaction_kthread);
1905 btrfs_remount_cleanup(fs_info, old_opts);
1906 return 0;
1908 restore:
1909 /* We've hit an error - don't reset SB_RDONLY */
1910 if (sb_rdonly(sb))
1911 old_flags |= SB_RDONLY;
1912 sb->s_flags = old_flags;
1913 fs_info->mount_opt = old_opts;
1914 fs_info->compress_type = old_compress_type;
1915 fs_info->max_inline = old_max_inline;
1916 btrfs_resize_thread_pool(fs_info,
1917 old_thread_pool_size, fs_info->thread_pool_size);
1918 fs_info->metadata_ratio = old_metadata_ratio;
1919 btrfs_remount_cleanup(fs_info, old_opts);
1920 return ret;
1923 /* Used to sort the devices by max_avail(descending sort) */
1924 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1925 const void *dev_info2)
1927 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1928 ((struct btrfs_device_info *)dev_info2)->max_avail)
1929 return -1;
1930 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1931 ((struct btrfs_device_info *)dev_info2)->max_avail)
1932 return 1;
1933 else
1934 return 0;
1938 * sort the devices by max_avail, in which max free extent size of each device
1939 * is stored.(Descending Sort)
1941 static inline void btrfs_descending_sort_devices(
1942 struct btrfs_device_info *devices,
1943 size_t nr_devices)
1945 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1946 btrfs_cmp_device_free_bytes, NULL);
1950 * The helper to calc the free space on the devices that can be used to store
1951 * file data.
1953 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1954 u64 *free_bytes)
1956 struct btrfs_device_info *devices_info;
1957 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1958 struct btrfs_device *device;
1959 u64 skip_space;
1960 u64 type;
1961 u64 avail_space;
1962 u64 min_stripe_size;
1963 int min_stripes = 1, num_stripes = 1;
1964 int i = 0, nr_devices;
1967 * We aren't under the device list lock, so this is racy-ish, but good
1968 * enough for our purposes.
1970 nr_devices = fs_info->fs_devices->open_devices;
1971 if (!nr_devices) {
1972 smp_mb();
1973 nr_devices = fs_info->fs_devices->open_devices;
1974 ASSERT(nr_devices);
1975 if (!nr_devices) {
1976 *free_bytes = 0;
1977 return 0;
1981 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1982 GFP_KERNEL);
1983 if (!devices_info)
1984 return -ENOMEM;
1986 /* calc min stripe number for data space allocation */
1987 type = btrfs_data_alloc_profile(fs_info);
1988 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1989 min_stripes = 2;
1990 num_stripes = nr_devices;
1991 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1992 min_stripes = 2;
1993 num_stripes = 2;
1994 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1995 min_stripes = 4;
1996 num_stripes = 4;
1999 if (type & BTRFS_BLOCK_GROUP_DUP)
2000 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
2001 else
2002 min_stripe_size = BTRFS_STRIPE_LEN;
2004 rcu_read_lock();
2005 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2006 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2007 &device->dev_state) ||
2008 !device->bdev ||
2009 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2010 continue;
2012 if (i >= nr_devices)
2013 break;
2015 avail_space = device->total_bytes - device->bytes_used;
2017 /* align with stripe_len */
2018 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2019 avail_space *= BTRFS_STRIPE_LEN;
2022 * In order to avoid overwriting the superblock on the drive,
2023 * btrfs starts at an offset of at least 1MB when doing chunk
2024 * allocation.
2026 skip_space = SZ_1M;
2029 * we can use the free space in [0, skip_space - 1], subtract
2030 * it from the total.
2032 if (avail_space && avail_space >= skip_space)
2033 avail_space -= skip_space;
2034 else
2035 avail_space = 0;
2037 if (avail_space < min_stripe_size)
2038 continue;
2040 devices_info[i].dev = device;
2041 devices_info[i].max_avail = avail_space;
2043 i++;
2045 rcu_read_unlock();
2047 nr_devices = i;
2049 btrfs_descending_sort_devices(devices_info, nr_devices);
2051 i = nr_devices - 1;
2052 avail_space = 0;
2053 while (nr_devices >= min_stripes) {
2054 if (num_stripes > nr_devices)
2055 num_stripes = nr_devices;
2057 if (devices_info[i].max_avail >= min_stripe_size) {
2058 int j;
2059 u64 alloc_size;
2061 avail_space += devices_info[i].max_avail * num_stripes;
2062 alloc_size = devices_info[i].max_avail;
2063 for (j = i + 1 - num_stripes; j <= i; j++)
2064 devices_info[j].max_avail -= alloc_size;
2066 i--;
2067 nr_devices--;
2070 kfree(devices_info);
2071 *free_bytes = avail_space;
2072 return 0;
2076 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2078 * If there's a redundant raid level at DATA block groups, use the respective
2079 * multiplier to scale the sizes.
2081 * Unused device space usage is based on simulating the chunk allocator
2082 * algorithm that respects the device sizes and order of allocations. This is
2083 * a close approximation of the actual use but there are other factors that may
2084 * change the result (like a new metadata chunk).
2086 * If metadata is exhausted, f_bavail will be 0.
2088 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2090 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2091 struct btrfs_super_block *disk_super = fs_info->super_copy;
2092 struct list_head *head = &fs_info->space_info;
2093 struct btrfs_space_info *found;
2094 u64 total_used = 0;
2095 u64 total_free_data = 0;
2096 u64 total_free_meta = 0;
2097 int bits = dentry->d_sb->s_blocksize_bits;
2098 __be32 *fsid = (__be32 *)fs_info->fsid;
2099 unsigned factor = 1;
2100 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2101 int ret;
2102 u64 thresh = 0;
2103 int mixed = 0;
2105 rcu_read_lock();
2106 list_for_each_entry_rcu(found, head, list) {
2107 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2108 int i;
2110 total_free_data += found->disk_total - found->disk_used;
2111 total_free_data -=
2112 btrfs_account_ro_block_groups_free_space(found);
2114 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2115 if (!list_empty(&found->block_groups[i]))
2116 factor = btrfs_bg_type_to_factor(
2117 btrfs_raid_array[i].bg_flag);
2122 * Metadata in mixed block goup profiles are accounted in data
2124 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2125 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2126 mixed = 1;
2127 else
2128 total_free_meta += found->disk_total -
2129 found->disk_used;
2132 total_used += found->disk_used;
2135 rcu_read_unlock();
2137 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2138 buf->f_blocks >>= bits;
2139 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2141 /* Account global block reserve as used, it's in logical size already */
2142 spin_lock(&block_rsv->lock);
2143 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2144 if (buf->f_bfree >= block_rsv->size >> bits)
2145 buf->f_bfree -= block_rsv->size >> bits;
2146 else
2147 buf->f_bfree = 0;
2148 spin_unlock(&block_rsv->lock);
2150 buf->f_bavail = div_u64(total_free_data, factor);
2151 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2152 if (ret)
2153 return ret;
2154 buf->f_bavail += div_u64(total_free_data, factor);
2155 buf->f_bavail = buf->f_bavail >> bits;
2158 * We calculate the remaining metadata space minus global reserve. If
2159 * this is (supposedly) smaller than zero, there's no space. But this
2160 * does not hold in practice, the exhausted state happens where's still
2161 * some positive delta. So we apply some guesswork and compare the
2162 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2164 * We probably cannot calculate the exact threshold value because this
2165 * depends on the internal reservations requested by various
2166 * operations, so some operations that consume a few metadata will
2167 * succeed even if the Avail is zero. But this is better than the other
2168 * way around.
2170 thresh = SZ_4M;
2173 * We only want to claim there's no available space if we can no longer
2174 * allocate chunks for our metadata profile and our global reserve will
2175 * not fit in the free metadata space. If we aren't ->full then we
2176 * still can allocate chunks and thus are fine using the currently
2177 * calculated f_bavail.
2179 if (!mixed && block_rsv->space_info->full &&
2180 total_free_meta - thresh < block_rsv->size)
2181 buf->f_bavail = 0;
2183 buf->f_type = BTRFS_SUPER_MAGIC;
2184 buf->f_bsize = dentry->d_sb->s_blocksize;
2185 buf->f_namelen = BTRFS_NAME_LEN;
2187 /* We treat it as constant endianness (it doesn't matter _which_)
2188 because we want the fsid to come out the same whether mounted
2189 on a big-endian or little-endian host */
2190 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2191 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2192 /* Mask in the root object ID too, to disambiguate subvols */
2193 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2194 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2196 return 0;
2199 static void btrfs_kill_super(struct super_block *sb)
2201 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2202 kill_anon_super(sb);
2203 free_fs_info(fs_info);
2206 static struct file_system_type btrfs_fs_type = {
2207 .owner = THIS_MODULE,
2208 .name = "btrfs",
2209 .mount = btrfs_mount,
2210 .kill_sb = btrfs_kill_super,
2211 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2214 static struct file_system_type btrfs_root_fs_type = {
2215 .owner = THIS_MODULE,
2216 .name = "btrfs",
2217 .mount = btrfs_mount_root,
2218 .kill_sb = btrfs_kill_super,
2219 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2222 MODULE_ALIAS_FS("btrfs");
2224 static int btrfs_control_open(struct inode *inode, struct file *file)
2227 * The control file's private_data is used to hold the
2228 * transaction when it is started and is used to keep
2229 * track of whether a transaction is already in progress.
2231 file->private_data = NULL;
2232 return 0;
2236 * used by btrfsctl to scan devices when no FS is mounted
2238 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2239 unsigned long arg)
2241 struct btrfs_ioctl_vol_args *vol;
2242 struct btrfs_device *device = NULL;
2243 int ret = -ENOTTY;
2245 if (!capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2248 vol = memdup_user((void __user *)arg, sizeof(*vol));
2249 if (IS_ERR(vol))
2250 return PTR_ERR(vol);
2251 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2253 switch (cmd) {
2254 case BTRFS_IOC_SCAN_DEV:
2255 mutex_lock(&uuid_mutex);
2256 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2257 &btrfs_root_fs_type);
2258 ret = PTR_ERR_OR_ZERO(device);
2259 mutex_unlock(&uuid_mutex);
2260 break;
2261 case BTRFS_IOC_DEVICES_READY:
2262 mutex_lock(&uuid_mutex);
2263 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2264 &btrfs_root_fs_type);
2265 if (IS_ERR(device)) {
2266 mutex_unlock(&uuid_mutex);
2267 ret = PTR_ERR(device);
2268 break;
2270 ret = !(device->fs_devices->num_devices ==
2271 device->fs_devices->total_devices);
2272 mutex_unlock(&uuid_mutex);
2273 break;
2274 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2275 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2276 break;
2279 kfree(vol);
2280 return ret;
2283 static int btrfs_freeze(struct super_block *sb)
2285 struct btrfs_trans_handle *trans;
2286 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2287 struct btrfs_root *root = fs_info->tree_root;
2289 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2291 * We don't need a barrier here, we'll wait for any transaction that
2292 * could be in progress on other threads (and do delayed iputs that
2293 * we want to avoid on a frozen filesystem), or do the commit
2294 * ourselves.
2296 trans = btrfs_attach_transaction_barrier(root);
2297 if (IS_ERR(trans)) {
2298 /* no transaction, don't bother */
2299 if (PTR_ERR(trans) == -ENOENT)
2300 return 0;
2301 return PTR_ERR(trans);
2303 return btrfs_commit_transaction(trans);
2306 static int btrfs_unfreeze(struct super_block *sb)
2308 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2310 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2311 return 0;
2314 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2316 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2317 struct btrfs_fs_devices *cur_devices;
2318 struct btrfs_device *dev, *first_dev = NULL;
2319 struct list_head *head;
2322 * Lightweight locking of the devices. We should not need
2323 * device_list_mutex here as we only read the device data and the list
2324 * is protected by RCU. Even if a device is deleted during the list
2325 * traversals, we'll get valid data, the freeing callback will wait at
2326 * least until until the rcu_read_unlock.
2328 rcu_read_lock();
2329 cur_devices = fs_info->fs_devices;
2330 while (cur_devices) {
2331 head = &cur_devices->devices;
2332 list_for_each_entry_rcu(dev, head, dev_list) {
2333 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2334 continue;
2335 if (!dev->name)
2336 continue;
2337 if (!first_dev || dev->devid < first_dev->devid)
2338 first_dev = dev;
2340 cur_devices = cur_devices->seed;
2343 if (first_dev)
2344 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2345 else
2346 WARN_ON(1);
2347 rcu_read_unlock();
2348 return 0;
2351 static const struct super_operations btrfs_super_ops = {
2352 .drop_inode = btrfs_drop_inode,
2353 .evict_inode = btrfs_evict_inode,
2354 .put_super = btrfs_put_super,
2355 .sync_fs = btrfs_sync_fs,
2356 .show_options = btrfs_show_options,
2357 .show_devname = btrfs_show_devname,
2358 .alloc_inode = btrfs_alloc_inode,
2359 .destroy_inode = btrfs_destroy_inode,
2360 .statfs = btrfs_statfs,
2361 .remount_fs = btrfs_remount,
2362 .freeze_fs = btrfs_freeze,
2363 .unfreeze_fs = btrfs_unfreeze,
2366 static const struct file_operations btrfs_ctl_fops = {
2367 .open = btrfs_control_open,
2368 .unlocked_ioctl = btrfs_control_ioctl,
2369 .compat_ioctl = btrfs_control_ioctl,
2370 .owner = THIS_MODULE,
2371 .llseek = noop_llseek,
2374 static struct miscdevice btrfs_misc = {
2375 .minor = BTRFS_MINOR,
2376 .name = "btrfs-control",
2377 .fops = &btrfs_ctl_fops
2380 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2381 MODULE_ALIAS("devname:btrfs-control");
2383 static int __init btrfs_interface_init(void)
2385 return misc_register(&btrfs_misc);
2388 static __cold void btrfs_interface_exit(void)
2390 misc_deregister(&btrfs_misc);
2393 static void __init btrfs_print_mod_info(void)
2395 static const char options[] = ""
2396 #ifdef CONFIG_BTRFS_DEBUG
2397 ", debug=on"
2398 #endif
2399 #ifdef CONFIG_BTRFS_ASSERT
2400 ", assert=on"
2401 #endif
2402 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2403 ", integrity-checker=on"
2404 #endif
2405 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2406 ", ref-verify=on"
2407 #endif
2409 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2412 static int __init init_btrfs_fs(void)
2414 int err;
2416 btrfs_props_init();
2418 err = btrfs_init_sysfs();
2419 if (err)
2420 return err;
2422 btrfs_init_compress();
2424 err = btrfs_init_cachep();
2425 if (err)
2426 goto free_compress;
2428 err = extent_io_init();
2429 if (err)
2430 goto free_cachep;
2432 err = extent_map_init();
2433 if (err)
2434 goto free_extent_io;
2436 err = ordered_data_init();
2437 if (err)
2438 goto free_extent_map;
2440 err = btrfs_delayed_inode_init();
2441 if (err)
2442 goto free_ordered_data;
2444 err = btrfs_auto_defrag_init();
2445 if (err)
2446 goto free_delayed_inode;
2448 err = btrfs_delayed_ref_init();
2449 if (err)
2450 goto free_auto_defrag;
2452 err = btrfs_prelim_ref_init();
2453 if (err)
2454 goto free_delayed_ref;
2456 err = btrfs_end_io_wq_init();
2457 if (err)
2458 goto free_prelim_ref;
2460 err = btrfs_interface_init();
2461 if (err)
2462 goto free_end_io_wq;
2464 btrfs_init_lockdep();
2466 btrfs_print_mod_info();
2468 err = btrfs_run_sanity_tests();
2469 if (err)
2470 goto unregister_ioctl;
2472 err = register_filesystem(&btrfs_fs_type);
2473 if (err)
2474 goto unregister_ioctl;
2476 return 0;
2478 unregister_ioctl:
2479 btrfs_interface_exit();
2480 free_end_io_wq:
2481 btrfs_end_io_wq_exit();
2482 free_prelim_ref:
2483 btrfs_prelim_ref_exit();
2484 free_delayed_ref:
2485 btrfs_delayed_ref_exit();
2486 free_auto_defrag:
2487 btrfs_auto_defrag_exit();
2488 free_delayed_inode:
2489 btrfs_delayed_inode_exit();
2490 free_ordered_data:
2491 ordered_data_exit();
2492 free_extent_map:
2493 extent_map_exit();
2494 free_extent_io:
2495 extent_io_exit();
2496 free_cachep:
2497 btrfs_destroy_cachep();
2498 free_compress:
2499 btrfs_exit_compress();
2500 btrfs_exit_sysfs();
2502 return err;
2505 static void __exit exit_btrfs_fs(void)
2507 btrfs_destroy_cachep();
2508 btrfs_delayed_ref_exit();
2509 btrfs_auto_defrag_exit();
2510 btrfs_delayed_inode_exit();
2511 btrfs_prelim_ref_exit();
2512 ordered_data_exit();
2513 extent_map_exit();
2514 extent_io_exit();
2515 btrfs_interface_exit();
2516 btrfs_end_io_wq_exit();
2517 unregister_filesystem(&btrfs_fs_type);
2518 btrfs_exit_sysfs();
2519 btrfs_cleanup_fs_uuids();
2520 btrfs_exit_compress();
2523 late_initcall(init_btrfs_fs);
2524 module_exit(exit_btrfs_fs)
2526 MODULE_LICENSE("GPL");