Linux 4.19.133
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob8829d89eb4afffe5a8cd2c7bda4b7ff5746f78a9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
23 #define BTRFS_ROOT_TRANS_TAG 0
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN |
32 __TRANS_JOIN_NOSTART),
33 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
34 __TRANS_ATTACH |
35 __TRANS_JOIN |
36 __TRANS_JOIN_NOLOCK |
37 __TRANS_JOIN_NOSTART),
38 [TRANS_STATE_COMPLETED] = (__TRANS_START |
39 __TRANS_ATTACH |
40 __TRANS_JOIN |
41 __TRANS_JOIN_NOLOCK |
42 __TRANS_JOIN_NOSTART),
45 void btrfs_put_transaction(struct btrfs_transaction *transaction)
47 WARN_ON(refcount_read(&transaction->use_count) == 0);
48 if (refcount_dec_and_test(&transaction->use_count)) {
49 BUG_ON(!list_empty(&transaction->list));
50 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
51 if (transaction->delayed_refs.pending_csums)
52 btrfs_err(transaction->fs_info,
53 "pending csums is %llu",
54 transaction->delayed_refs.pending_csums);
55 while (!list_empty(&transaction->pending_chunks)) {
56 struct extent_map *em;
58 em = list_first_entry(&transaction->pending_chunks,
59 struct extent_map, list);
60 list_del_init(&em->list);
61 free_extent_map(em);
64 * If any block groups are found in ->deleted_bgs then it's
65 * because the transaction was aborted and a commit did not
66 * happen (things failed before writing the new superblock
67 * and calling btrfs_finish_extent_commit()), so we can not
68 * discard the physical locations of the block groups.
70 while (!list_empty(&transaction->deleted_bgs)) {
71 struct btrfs_block_group_cache *cache;
73 cache = list_first_entry(&transaction->deleted_bgs,
74 struct btrfs_block_group_cache,
75 bg_list);
76 list_del_init(&cache->bg_list);
77 btrfs_put_block_group_trimming(cache);
78 btrfs_put_block_group(cache);
80 kfree(transaction);
84 static void clear_btree_io_tree(struct extent_io_tree *tree)
86 spin_lock(&tree->lock);
88 * Do a single barrier for the waitqueue_active check here, the state
89 * of the waitqueue should not change once clear_btree_io_tree is
90 * called.
92 smp_mb();
93 while (!RB_EMPTY_ROOT(&tree->state)) {
94 struct rb_node *node;
95 struct extent_state *state;
97 node = rb_first(&tree->state);
98 state = rb_entry(node, struct extent_state, rb_node);
99 rb_erase(&state->rb_node, &tree->state);
100 RB_CLEAR_NODE(&state->rb_node);
102 * btree io trees aren't supposed to have tasks waiting for
103 * changes in the flags of extent states ever.
105 ASSERT(!waitqueue_active(&state->wq));
106 free_extent_state(state);
108 cond_resched_lock(&tree->lock);
110 spin_unlock(&tree->lock);
113 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
115 struct btrfs_fs_info *fs_info = trans->fs_info;
116 struct btrfs_root *root, *tmp;
118 down_write(&fs_info->commit_root_sem);
119 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
120 dirty_list) {
121 list_del_init(&root->dirty_list);
122 free_extent_buffer(root->commit_root);
123 root->commit_root = btrfs_root_node(root);
124 if (is_fstree(root->objectid))
125 btrfs_unpin_free_ino(root);
126 clear_btree_io_tree(&root->dirty_log_pages);
129 /* We can free old roots now. */
130 spin_lock(&trans->dropped_roots_lock);
131 while (!list_empty(&trans->dropped_roots)) {
132 root = list_first_entry(&trans->dropped_roots,
133 struct btrfs_root, root_list);
134 list_del_init(&root->root_list);
135 spin_unlock(&trans->dropped_roots_lock);
136 btrfs_drop_and_free_fs_root(fs_info, root);
137 spin_lock(&trans->dropped_roots_lock);
139 spin_unlock(&trans->dropped_roots_lock);
140 up_write(&fs_info->commit_root_sem);
143 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
144 unsigned int type)
146 if (type & TRANS_EXTWRITERS)
147 atomic_inc(&trans->num_extwriters);
150 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
151 unsigned int type)
153 if (type & TRANS_EXTWRITERS)
154 atomic_dec(&trans->num_extwriters);
157 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
158 unsigned int type)
160 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
163 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
165 return atomic_read(&trans->num_extwriters);
169 * either allocate a new transaction or hop into the existing one
171 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
172 unsigned int type)
174 struct btrfs_transaction *cur_trans;
176 spin_lock(&fs_info->trans_lock);
177 loop:
178 /* The file system has been taken offline. No new transactions. */
179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 return -EROFS;
184 cur_trans = fs_info->running_transaction;
185 if (cur_trans) {
186 if (cur_trans->aborted) {
187 spin_unlock(&fs_info->trans_lock);
188 return cur_trans->aborted;
190 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
191 spin_unlock(&fs_info->trans_lock);
192 return -EBUSY;
194 refcount_inc(&cur_trans->use_count);
195 atomic_inc(&cur_trans->num_writers);
196 extwriter_counter_inc(cur_trans, type);
197 spin_unlock(&fs_info->trans_lock);
198 return 0;
200 spin_unlock(&fs_info->trans_lock);
203 * If we are ATTACH, we just want to catch the current transaction,
204 * and commit it. If there is no transaction, just return ENOENT.
206 if (type == TRANS_ATTACH)
207 return -ENOENT;
210 * JOIN_NOLOCK only happens during the transaction commit, so
211 * it is impossible that ->running_transaction is NULL
213 BUG_ON(type == TRANS_JOIN_NOLOCK);
215 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
216 if (!cur_trans)
217 return -ENOMEM;
219 spin_lock(&fs_info->trans_lock);
220 if (fs_info->running_transaction) {
222 * someone started a transaction after we unlocked. Make sure
223 * to redo the checks above
225 kfree(cur_trans);
226 goto loop;
227 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
228 spin_unlock(&fs_info->trans_lock);
229 kfree(cur_trans);
230 return -EROFS;
233 cur_trans->fs_info = fs_info;
234 atomic_set(&cur_trans->num_writers, 1);
235 extwriter_counter_init(cur_trans, type);
236 init_waitqueue_head(&cur_trans->writer_wait);
237 init_waitqueue_head(&cur_trans->commit_wait);
238 init_waitqueue_head(&cur_trans->pending_wait);
239 cur_trans->state = TRANS_STATE_RUNNING;
241 * One for this trans handle, one so it will live on until we
242 * commit the transaction.
244 refcount_set(&cur_trans->use_count, 2);
245 atomic_set(&cur_trans->pending_ordered, 0);
246 cur_trans->flags = 0;
247 cur_trans->start_time = ktime_get_seconds();
249 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
251 cur_trans->delayed_refs.href_root = RB_ROOT;
252 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
253 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
256 * although the tree mod log is per file system and not per transaction,
257 * the log must never go across transaction boundaries.
259 smp_mb();
260 if (!list_empty(&fs_info->tree_mod_seq_list))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
262 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
263 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
264 atomic64_set(&fs_info->tree_mod_seq, 0);
266 spin_lock_init(&cur_trans->delayed_refs.lock);
268 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
269 INIT_LIST_HEAD(&cur_trans->pending_chunks);
270 INIT_LIST_HEAD(&cur_trans->switch_commits);
271 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
272 INIT_LIST_HEAD(&cur_trans->io_bgs);
273 INIT_LIST_HEAD(&cur_trans->dropped_roots);
274 mutex_init(&cur_trans->cache_write_mutex);
275 cur_trans->num_dirty_bgs = 0;
276 spin_lock_init(&cur_trans->dirty_bgs_lock);
277 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
278 spin_lock_init(&cur_trans->dropped_roots_lock);
279 list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 extent_io_tree_init(&cur_trans->dirty_pages,
281 fs_info->btree_inode);
282 fs_info->generation++;
283 cur_trans->transid = fs_info->generation;
284 fs_info->running_transaction = cur_trans;
285 cur_trans->aborted = 0;
286 spin_unlock(&fs_info->trans_lock);
288 return 0;
292 * this does all the record keeping required to make sure that a reference
293 * counted root is properly recorded in a given transaction. This is required
294 * to make sure the old root from before we joined the transaction is deleted
295 * when the transaction commits
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 struct btrfs_root *root,
299 int force)
301 struct btrfs_fs_info *fs_info = root->fs_info;
303 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
304 root->last_trans < trans->transid) || force) {
305 WARN_ON(root == fs_info->extent_root);
306 WARN_ON(!force && root->commit_root != root->node);
309 * see below for IN_TRANS_SETUP usage rules
310 * we have the reloc mutex held now, so there
311 * is only one writer in this function
313 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
315 /* make sure readers find IN_TRANS_SETUP before
316 * they find our root->last_trans update
318 smp_wmb();
320 spin_lock(&fs_info->fs_roots_radix_lock);
321 if (root->last_trans == trans->transid && !force) {
322 spin_unlock(&fs_info->fs_roots_radix_lock);
323 return 0;
325 radix_tree_tag_set(&fs_info->fs_roots_radix,
326 (unsigned long)root->root_key.objectid,
327 BTRFS_ROOT_TRANS_TAG);
328 spin_unlock(&fs_info->fs_roots_radix_lock);
329 root->last_trans = trans->transid;
331 /* this is pretty tricky. We don't want to
332 * take the relocation lock in btrfs_record_root_in_trans
333 * unless we're really doing the first setup for this root in
334 * this transaction.
336 * Normally we'd use root->last_trans as a flag to decide
337 * if we want to take the expensive mutex.
339 * But, we have to set root->last_trans before we
340 * init the relocation root, otherwise, we trip over warnings
341 * in ctree.c. The solution used here is to flag ourselves
342 * with root IN_TRANS_SETUP. When this is 1, we're still
343 * fixing up the reloc trees and everyone must wait.
345 * When this is zero, they can trust root->last_trans and fly
346 * through btrfs_record_root_in_trans without having to take the
347 * lock. smp_wmb() makes sure that all the writes above are
348 * done before we pop in the zero below
350 btrfs_init_reloc_root(trans, root);
351 smp_mb__before_atomic();
352 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
354 return 0;
358 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
359 struct btrfs_root *root)
361 struct btrfs_fs_info *fs_info = root->fs_info;
362 struct btrfs_transaction *cur_trans = trans->transaction;
364 /* Add ourselves to the transaction dropped list */
365 spin_lock(&cur_trans->dropped_roots_lock);
366 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
367 spin_unlock(&cur_trans->dropped_roots_lock);
369 /* Make sure we don't try to update the root at commit time */
370 spin_lock(&fs_info->fs_roots_radix_lock);
371 radix_tree_tag_clear(&fs_info->fs_roots_radix,
372 (unsigned long)root->root_key.objectid,
373 BTRFS_ROOT_TRANS_TAG);
374 spin_unlock(&fs_info->fs_roots_radix_lock);
377 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
378 struct btrfs_root *root)
380 struct btrfs_fs_info *fs_info = root->fs_info;
382 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
383 return 0;
386 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
387 * and barriers
389 smp_rmb();
390 if (root->last_trans == trans->transid &&
391 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
392 return 0;
394 mutex_lock(&fs_info->reloc_mutex);
395 record_root_in_trans(trans, root, 0);
396 mutex_unlock(&fs_info->reloc_mutex);
398 return 0;
401 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
403 return (trans->state >= TRANS_STATE_BLOCKED &&
404 trans->state < TRANS_STATE_UNBLOCKED &&
405 !trans->aborted);
408 /* wait for commit against the current transaction to become unblocked
409 * when this is done, it is safe to start a new transaction, but the current
410 * transaction might not be fully on disk.
412 static void wait_current_trans(struct btrfs_fs_info *fs_info)
414 struct btrfs_transaction *cur_trans;
416 spin_lock(&fs_info->trans_lock);
417 cur_trans = fs_info->running_transaction;
418 if (cur_trans && is_transaction_blocked(cur_trans)) {
419 refcount_inc(&cur_trans->use_count);
420 spin_unlock(&fs_info->trans_lock);
422 wait_event(fs_info->transaction_wait,
423 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
424 cur_trans->aborted);
425 btrfs_put_transaction(cur_trans);
426 } else {
427 spin_unlock(&fs_info->trans_lock);
431 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
433 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
434 return 0;
436 if (type == TRANS_START)
437 return 1;
439 return 0;
442 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
444 struct btrfs_fs_info *fs_info = root->fs_info;
446 if (!fs_info->reloc_ctl ||
447 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
449 root->reloc_root)
450 return false;
452 return true;
455 static struct btrfs_trans_handle *
456 start_transaction(struct btrfs_root *root, unsigned int num_items,
457 unsigned int type, enum btrfs_reserve_flush_enum flush,
458 bool enforce_qgroups)
460 struct btrfs_fs_info *fs_info = root->fs_info;
462 struct btrfs_trans_handle *h;
463 struct btrfs_transaction *cur_trans;
464 u64 num_bytes = 0;
465 u64 qgroup_reserved = 0;
466 bool reloc_reserved = false;
467 int ret;
469 /* Send isn't supposed to start transactions. */
470 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
472 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
473 return ERR_PTR(-EROFS);
475 if (current->journal_info) {
476 WARN_ON(type & TRANS_EXTWRITERS);
477 h = current->journal_info;
478 refcount_inc(&h->use_count);
479 WARN_ON(refcount_read(&h->use_count) > 2);
480 h->orig_rsv = h->block_rsv;
481 h->block_rsv = NULL;
482 goto got_it;
486 * Do the reservation before we join the transaction so we can do all
487 * the appropriate flushing if need be.
489 if (num_items && root != fs_info->chunk_root) {
490 qgroup_reserved = num_items * fs_info->nodesize;
491 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
492 enforce_qgroups);
493 if (ret)
494 return ERR_PTR(ret);
496 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
498 * Do the reservation for the relocation root creation
500 if (need_reserve_reloc_root(root)) {
501 num_bytes += fs_info->nodesize;
502 reloc_reserved = true;
505 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
506 num_bytes, flush);
507 if (ret)
508 goto reserve_fail;
510 again:
511 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
512 if (!h) {
513 ret = -ENOMEM;
514 goto alloc_fail;
518 * If we are JOIN_NOLOCK we're already committing a transaction and
519 * waiting on this guy, so we don't need to do the sb_start_intwrite
520 * because we're already holding a ref. We need this because we could
521 * have raced in and did an fsync() on a file which can kick a commit
522 * and then we deadlock with somebody doing a freeze.
524 * If we are ATTACH, it means we just want to catch the current
525 * transaction and commit it, so we needn't do sb_start_intwrite().
527 if (type & __TRANS_FREEZABLE)
528 sb_start_intwrite(fs_info->sb);
530 if (may_wait_transaction(fs_info, type))
531 wait_current_trans(fs_info);
533 do {
534 ret = join_transaction(fs_info, type);
535 if (ret == -EBUSY) {
536 wait_current_trans(fs_info);
537 if (unlikely(type == TRANS_ATTACH ||
538 type == TRANS_JOIN_NOSTART))
539 ret = -ENOENT;
541 } while (ret == -EBUSY);
543 if (ret < 0)
544 goto join_fail;
546 cur_trans = fs_info->running_transaction;
548 h->transid = cur_trans->transid;
549 h->transaction = cur_trans;
550 h->root = root;
551 refcount_set(&h->use_count, 1);
552 h->fs_info = root->fs_info;
554 h->type = type;
555 h->can_flush_pending_bgs = true;
556 INIT_LIST_HEAD(&h->new_bgs);
558 smp_mb();
559 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
560 may_wait_transaction(fs_info, type)) {
561 current->journal_info = h;
562 btrfs_commit_transaction(h);
563 goto again;
566 if (num_bytes) {
567 trace_btrfs_space_reservation(fs_info, "transaction",
568 h->transid, num_bytes, 1);
569 h->block_rsv = &fs_info->trans_block_rsv;
570 h->bytes_reserved = num_bytes;
571 h->reloc_reserved = reloc_reserved;
574 got_it:
575 if (!current->journal_info)
576 current->journal_info = h;
579 * btrfs_record_root_in_trans() needs to alloc new extents, and may
580 * call btrfs_join_transaction() while we're also starting a
581 * transaction.
583 * Thus it need to be called after current->journal_info initialized,
584 * or we can deadlock.
586 btrfs_record_root_in_trans(h, root);
588 return h;
590 join_fail:
591 if (type & __TRANS_FREEZABLE)
592 sb_end_intwrite(fs_info->sb);
593 kmem_cache_free(btrfs_trans_handle_cachep, h);
594 alloc_fail:
595 if (num_bytes)
596 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
597 num_bytes);
598 reserve_fail:
599 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
600 return ERR_PTR(ret);
603 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
604 unsigned int num_items)
606 return start_transaction(root, num_items, TRANS_START,
607 BTRFS_RESERVE_FLUSH_ALL, true);
610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 struct btrfs_root *root,
612 unsigned int num_items,
613 int min_factor)
615 struct btrfs_fs_info *fs_info = root->fs_info;
616 struct btrfs_trans_handle *trans;
617 u64 num_bytes;
618 int ret;
621 * We have two callers: unlink and block group removal. The
622 * former should succeed even if we will temporarily exceed
623 * quota and the latter operates on the extent root so
624 * qgroup enforcement is ignored anyway.
626 trans = start_transaction(root, num_items, TRANS_START,
627 BTRFS_RESERVE_FLUSH_ALL, false);
628 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
629 return trans;
631 trans = btrfs_start_transaction(root, 0);
632 if (IS_ERR(trans))
633 return trans;
635 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
636 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
637 num_bytes, min_factor);
638 if (ret) {
639 btrfs_end_transaction(trans);
640 return ERR_PTR(ret);
643 trans->block_rsv = &fs_info->trans_block_rsv;
644 trans->bytes_reserved = num_bytes;
645 trace_btrfs_space_reservation(fs_info, "transaction",
646 trans->transid, num_bytes, 1);
648 return trans;
651 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
653 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
654 true);
657 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
659 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
660 BTRFS_RESERVE_NO_FLUSH, true);
664 * Similar to regular join but it never starts a transaction when none is
665 * running or after waiting for the current one to finish.
667 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
669 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
670 BTRFS_RESERVE_NO_FLUSH, true);
674 * btrfs_attach_transaction() - catch the running transaction
676 * It is used when we want to commit the current the transaction, but
677 * don't want to start a new one.
679 * Note: If this function return -ENOENT, it just means there is no
680 * running transaction. But it is possible that the inactive transaction
681 * is still in the memory, not fully on disk. If you hope there is no
682 * inactive transaction in the fs when -ENOENT is returned, you should
683 * invoke
684 * btrfs_attach_transaction_barrier()
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
688 return start_transaction(root, 0, TRANS_ATTACH,
689 BTRFS_RESERVE_NO_FLUSH, true);
693 * btrfs_attach_transaction_barrier() - catch the running transaction
695 * It is similar to the above function, the differentia is this one
696 * will wait for all the inactive transactions until they fully
697 * complete.
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
702 struct btrfs_trans_handle *trans;
704 trans = start_transaction(root, 0, TRANS_ATTACH,
705 BTRFS_RESERVE_NO_FLUSH, true);
706 if (trans == ERR_PTR(-ENOENT))
707 btrfs_wait_for_commit(root->fs_info, 0);
709 return trans;
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_transaction *commit)
715 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
718 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
720 struct btrfs_transaction *cur_trans = NULL, *t;
721 int ret = 0;
723 if (transid) {
724 if (transid <= fs_info->last_trans_committed)
725 goto out;
727 /* find specified transaction */
728 spin_lock(&fs_info->trans_lock);
729 list_for_each_entry(t, &fs_info->trans_list, list) {
730 if (t->transid == transid) {
731 cur_trans = t;
732 refcount_inc(&cur_trans->use_count);
733 ret = 0;
734 break;
736 if (t->transid > transid) {
737 ret = 0;
738 break;
741 spin_unlock(&fs_info->trans_lock);
744 * The specified transaction doesn't exist, or we
745 * raced with btrfs_commit_transaction
747 if (!cur_trans) {
748 if (transid > fs_info->last_trans_committed)
749 ret = -EINVAL;
750 goto out;
752 } else {
753 /* find newest transaction that is committing | committed */
754 spin_lock(&fs_info->trans_lock);
755 list_for_each_entry_reverse(t, &fs_info->trans_list,
756 list) {
757 if (t->state >= TRANS_STATE_COMMIT_START) {
758 if (t->state == TRANS_STATE_COMPLETED)
759 break;
760 cur_trans = t;
761 refcount_inc(&cur_trans->use_count);
762 break;
765 spin_unlock(&fs_info->trans_lock);
766 if (!cur_trans)
767 goto out; /* nothing committing|committed */
770 wait_for_commit(cur_trans);
771 btrfs_put_transaction(cur_trans);
772 out:
773 return ret;
776 void btrfs_throttle(struct btrfs_fs_info *fs_info)
778 wait_current_trans(fs_info);
781 static int should_end_transaction(struct btrfs_trans_handle *trans)
783 struct btrfs_fs_info *fs_info = trans->fs_info;
785 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
786 return 1;
788 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
791 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
793 struct btrfs_transaction *cur_trans = trans->transaction;
794 int updates;
795 int err;
797 smp_mb();
798 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
799 cur_trans->delayed_refs.flushing)
800 return 1;
802 updates = trans->delayed_ref_updates;
803 trans->delayed_ref_updates = 0;
804 if (updates) {
805 err = btrfs_run_delayed_refs(trans, updates * 2);
806 if (err) /* Error code will also eval true */
807 return err;
810 return should_end_transaction(trans);
813 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
816 struct btrfs_fs_info *fs_info = trans->fs_info;
818 if (!trans->block_rsv) {
819 ASSERT(!trans->bytes_reserved);
820 return;
823 if (!trans->bytes_reserved)
824 return;
826 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
827 trace_btrfs_space_reservation(fs_info, "transaction",
828 trans->transid, trans->bytes_reserved, 0);
829 btrfs_block_rsv_release(fs_info, trans->block_rsv,
830 trans->bytes_reserved);
831 trans->bytes_reserved = 0;
834 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
835 int throttle)
837 struct btrfs_fs_info *info = trans->fs_info;
838 struct btrfs_transaction *cur_trans = trans->transaction;
839 u64 transid = trans->transid;
840 unsigned long cur = trans->delayed_ref_updates;
841 int lock = (trans->type != TRANS_JOIN_NOLOCK);
842 int err = 0;
843 int must_run_delayed_refs = 0;
845 if (refcount_read(&trans->use_count) > 1) {
846 refcount_dec(&trans->use_count);
847 trans->block_rsv = trans->orig_rsv;
848 return 0;
851 btrfs_trans_release_metadata(trans);
852 trans->block_rsv = NULL;
854 if (!list_empty(&trans->new_bgs))
855 btrfs_create_pending_block_groups(trans);
857 trans->delayed_ref_updates = 0;
858 if (!trans->sync) {
859 must_run_delayed_refs =
860 btrfs_should_throttle_delayed_refs(trans, info);
861 cur = max_t(unsigned long, cur, 32);
864 * don't make the caller wait if they are from a NOLOCK
865 * or ATTACH transaction, it will deadlock with commit
867 if (must_run_delayed_refs == 1 &&
868 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
869 must_run_delayed_refs = 2;
872 btrfs_trans_release_metadata(trans);
873 trans->block_rsv = NULL;
875 if (!list_empty(&trans->new_bgs))
876 btrfs_create_pending_block_groups(trans);
878 btrfs_trans_release_chunk_metadata(trans);
880 if (lock && should_end_transaction(trans) &&
881 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
882 spin_lock(&info->trans_lock);
883 if (cur_trans->state == TRANS_STATE_RUNNING)
884 cur_trans->state = TRANS_STATE_BLOCKED;
885 spin_unlock(&info->trans_lock);
888 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
889 if (throttle)
890 return btrfs_commit_transaction(trans);
891 else
892 wake_up_process(info->transaction_kthread);
895 if (trans->type & __TRANS_FREEZABLE)
896 sb_end_intwrite(info->sb);
898 WARN_ON(cur_trans != info->running_transaction);
899 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
900 atomic_dec(&cur_trans->num_writers);
901 extwriter_counter_dec(cur_trans, trans->type);
903 cond_wake_up(&cur_trans->writer_wait);
904 btrfs_put_transaction(cur_trans);
906 if (current->journal_info == trans)
907 current->journal_info = NULL;
909 if (throttle)
910 btrfs_run_delayed_iputs(info);
912 if (trans->aborted ||
913 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
914 wake_up_process(info->transaction_kthread);
915 err = -EIO;
918 kmem_cache_free(btrfs_trans_handle_cachep, trans);
919 if (must_run_delayed_refs) {
920 btrfs_async_run_delayed_refs(info, cur, transid,
921 must_run_delayed_refs == 1);
923 return err;
926 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
928 return __btrfs_end_transaction(trans, 0);
931 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
933 return __btrfs_end_transaction(trans, 1);
937 * when btree blocks are allocated, they have some corresponding bits set for
938 * them in one of two extent_io trees. This is used to make sure all of
939 * those extents are sent to disk but does not wait on them
941 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
942 struct extent_io_tree *dirty_pages, int mark)
944 int err = 0;
945 int werr = 0;
946 struct address_space *mapping = fs_info->btree_inode->i_mapping;
947 struct extent_state *cached_state = NULL;
948 u64 start = 0;
949 u64 end;
951 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
952 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
953 mark, &cached_state)) {
954 bool wait_writeback = false;
956 err = convert_extent_bit(dirty_pages, start, end,
957 EXTENT_NEED_WAIT,
958 mark, &cached_state);
960 * convert_extent_bit can return -ENOMEM, which is most of the
961 * time a temporary error. So when it happens, ignore the error
962 * and wait for writeback of this range to finish - because we
963 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
964 * to __btrfs_wait_marked_extents() would not know that
965 * writeback for this range started and therefore wouldn't
966 * wait for it to finish - we don't want to commit a
967 * superblock that points to btree nodes/leafs for which
968 * writeback hasn't finished yet (and without errors).
969 * We cleanup any entries left in the io tree when committing
970 * the transaction (through clear_btree_io_tree()).
972 if (err == -ENOMEM) {
973 err = 0;
974 wait_writeback = true;
976 if (!err)
977 err = filemap_fdatawrite_range(mapping, start, end);
978 if (err)
979 werr = err;
980 else if (wait_writeback)
981 werr = filemap_fdatawait_range(mapping, start, end);
982 free_extent_state(cached_state);
983 cached_state = NULL;
984 cond_resched();
985 start = end + 1;
987 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
988 return werr;
992 * when btree blocks are allocated, they have some corresponding bits set for
993 * them in one of two extent_io trees. This is used to make sure all of
994 * those extents are on disk for transaction or log commit. We wait
995 * on all the pages and clear them from the dirty pages state tree
997 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
998 struct extent_io_tree *dirty_pages)
1000 int err = 0;
1001 int werr = 0;
1002 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1003 struct extent_state *cached_state = NULL;
1004 u64 start = 0;
1005 u64 end;
1007 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1008 EXTENT_NEED_WAIT, &cached_state)) {
1010 * Ignore -ENOMEM errors returned by clear_extent_bit().
1011 * When committing the transaction, we'll remove any entries
1012 * left in the io tree. For a log commit, we don't remove them
1013 * after committing the log because the tree can be accessed
1014 * concurrently - we do it only at transaction commit time when
1015 * it's safe to do it (through clear_btree_io_tree()).
1017 err = clear_extent_bit(dirty_pages, start, end,
1018 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1019 if (err == -ENOMEM)
1020 err = 0;
1021 if (!err)
1022 err = filemap_fdatawait_range(mapping, start, end);
1023 if (err)
1024 werr = err;
1025 free_extent_state(cached_state);
1026 cached_state = NULL;
1027 cond_resched();
1028 start = end + 1;
1030 if (err)
1031 werr = err;
1032 return werr;
1035 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1036 struct extent_io_tree *dirty_pages)
1038 bool errors = false;
1039 int err;
1041 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1042 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1043 errors = true;
1045 if (errors && !err)
1046 err = -EIO;
1047 return err;
1050 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1052 struct btrfs_fs_info *fs_info = log_root->fs_info;
1053 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1054 bool errors = false;
1055 int err;
1057 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1059 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1060 if ((mark & EXTENT_DIRTY) &&
1061 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1062 errors = true;
1064 if ((mark & EXTENT_NEW) &&
1065 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1066 errors = true;
1068 if (errors && !err)
1069 err = -EIO;
1070 return err;
1074 * When btree blocks are allocated the corresponding extents are marked dirty.
1075 * This function ensures such extents are persisted on disk for transaction or
1076 * log commit.
1078 * @trans: transaction whose dirty pages we'd like to write
1080 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1082 int ret;
1083 int ret2;
1084 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1085 struct btrfs_fs_info *fs_info = trans->fs_info;
1086 struct blk_plug plug;
1088 blk_start_plug(&plug);
1089 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1090 blk_finish_plug(&plug);
1091 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1093 clear_btree_io_tree(&trans->transaction->dirty_pages);
1095 if (ret)
1096 return ret;
1097 else if (ret2)
1098 return ret2;
1099 else
1100 return 0;
1104 * this is used to update the root pointer in the tree of tree roots.
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1108 * allocation tree.
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1113 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root)
1116 int ret;
1117 u64 old_root_bytenr;
1118 u64 old_root_used;
1119 struct btrfs_fs_info *fs_info = root->fs_info;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
1122 old_root_used = btrfs_root_used(&root->root_item);
1124 while (1) {
1125 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1126 if (old_root_bytenr == root->node->start &&
1127 old_root_used == btrfs_root_used(&root->root_item))
1128 break;
1130 btrfs_set_root_node(&root->root_item, root->node);
1131 ret = btrfs_update_root(trans, tree_root,
1132 &root->root_key,
1133 &root->root_item);
1134 if (ret)
1135 return ret;
1137 old_root_used = btrfs_root_used(&root->root_item);
1140 return 0;
1144 * update all the cowonly tree roots on disk
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1150 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1152 struct btrfs_fs_info *fs_info = trans->fs_info;
1153 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1154 struct list_head *io_bgs = &trans->transaction->io_bgs;
1155 struct list_head *next;
1156 struct extent_buffer *eb;
1157 int ret;
1159 eb = btrfs_lock_root_node(fs_info->tree_root);
1160 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161 0, &eb);
1162 btrfs_tree_unlock(eb);
1163 free_extent_buffer(eb);
1165 if (ret)
1166 return ret;
1168 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1172 ret = btrfs_run_dev_stats(trans, fs_info);
1173 if (ret)
1174 return ret;
1175 ret = btrfs_run_dev_replace(trans, fs_info);
1176 if (ret)
1177 return ret;
1178 ret = btrfs_run_qgroups(trans);
1179 if (ret)
1180 return ret;
1182 ret = btrfs_setup_space_cache(trans, fs_info);
1183 if (ret)
1184 return ret;
1186 /* run_qgroups might have added some more refs */
1187 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1188 if (ret)
1189 return ret;
1190 again:
1191 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1192 struct btrfs_root *root;
1193 next = fs_info->dirty_cowonly_roots.next;
1194 list_del_init(next);
1195 root = list_entry(next, struct btrfs_root, dirty_list);
1196 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1198 if (root != fs_info->extent_root)
1199 list_add_tail(&root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 ret = update_cowonly_root(trans, root);
1202 if (ret)
1203 return ret;
1204 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1205 if (ret)
1206 return ret;
1209 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1210 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1218 if (!list_empty(&fs_info->dirty_cowonly_roots))
1219 goto again;
1221 list_add_tail(&fs_info->extent_root->dirty_list,
1222 &trans->transaction->switch_commits);
1223 btrfs_after_dev_replace_commit(fs_info);
1225 return 0;
1229 * dead roots are old snapshots that need to be deleted. This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1231 * be deleted
1233 void btrfs_add_dead_root(struct btrfs_root *root)
1235 struct btrfs_fs_info *fs_info = root->fs_info;
1237 spin_lock(&fs_info->trans_lock);
1238 if (list_empty(&root->root_list))
1239 list_add_tail(&root->root_list, &fs_info->dead_roots);
1240 spin_unlock(&fs_info->trans_lock);
1244 * update all the cowonly tree roots on disk
1246 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1248 struct btrfs_fs_info *fs_info = trans->fs_info;
1249 struct btrfs_root *gang[8];
1250 int i;
1251 int ret;
1252 int err = 0;
1254 spin_lock(&fs_info->fs_roots_radix_lock);
1255 while (1) {
1256 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1257 (void **)gang, 0,
1258 ARRAY_SIZE(gang),
1259 BTRFS_ROOT_TRANS_TAG);
1260 if (ret == 0)
1261 break;
1262 for (i = 0; i < ret; i++) {
1263 struct btrfs_root *root = gang[i];
1264 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1265 (unsigned long)root->root_key.objectid,
1266 BTRFS_ROOT_TRANS_TAG);
1267 spin_unlock(&fs_info->fs_roots_radix_lock);
1269 btrfs_free_log(trans, root);
1270 btrfs_update_reloc_root(trans, root);
1272 btrfs_save_ino_cache(root, trans);
1274 /* see comments in should_cow_block() */
1275 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1276 smp_mb__after_atomic();
1278 if (root->commit_root != root->node) {
1279 list_add_tail(&root->dirty_list,
1280 &trans->transaction->switch_commits);
1281 btrfs_set_root_node(&root->root_item,
1282 root->node);
1285 err = btrfs_update_root(trans, fs_info->tree_root,
1286 &root->root_key,
1287 &root->root_item);
1288 spin_lock(&fs_info->fs_roots_radix_lock);
1289 if (err)
1290 break;
1291 btrfs_qgroup_free_meta_all_pertrans(root);
1294 spin_unlock(&fs_info->fs_roots_radix_lock);
1295 return err;
1299 * defrag a given btree.
1300 * Every leaf in the btree is read and defragged.
1302 int btrfs_defrag_root(struct btrfs_root *root)
1304 struct btrfs_fs_info *info = root->fs_info;
1305 struct btrfs_trans_handle *trans;
1306 int ret;
1308 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1309 return 0;
1311 while (1) {
1312 trans = btrfs_start_transaction(root, 0);
1313 if (IS_ERR(trans))
1314 return PTR_ERR(trans);
1316 ret = btrfs_defrag_leaves(trans, root);
1318 btrfs_end_transaction(trans);
1319 btrfs_btree_balance_dirty(info);
1320 cond_resched();
1322 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1323 break;
1325 if (btrfs_defrag_cancelled(info)) {
1326 btrfs_debug(info, "defrag_root cancelled");
1327 ret = -EAGAIN;
1328 break;
1331 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1332 return ret;
1336 * Do all special snapshot related qgroup dirty hack.
1338 * Will do all needed qgroup inherit and dirty hack like switch commit
1339 * roots inside one transaction and write all btree into disk, to make
1340 * qgroup works.
1342 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1343 struct btrfs_root *src,
1344 struct btrfs_root *parent,
1345 struct btrfs_qgroup_inherit *inherit,
1346 u64 dst_objectid)
1348 struct btrfs_fs_info *fs_info = src->fs_info;
1349 int ret;
1352 * Save some performance in the case that qgroups are not
1353 * enabled. If this check races with the ioctl, rescan will
1354 * kick in anyway.
1356 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1357 return 0;
1360 * Ensure dirty @src will be commited. Or, after comming
1361 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1362 * recorded root will never be updated again, causing an outdated root
1363 * item.
1365 record_root_in_trans(trans, src, 1);
1368 * We are going to commit transaction, see btrfs_commit_transaction()
1369 * comment for reason locking tree_log_mutex
1371 mutex_lock(&fs_info->tree_log_mutex);
1373 ret = commit_fs_roots(trans);
1374 if (ret)
1375 goto out;
1376 ret = btrfs_qgroup_account_extents(trans);
1377 if (ret < 0)
1378 goto out;
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1382 inherit);
1383 if (ret < 0)
1384 goto out;
1387 * Now we do a simplified commit transaction, which will:
1388 * 1) commit all subvolume and extent tree
1389 * To ensure all subvolume and extent tree have a valid
1390 * commit_root to accounting later insert_dir_item()
1391 * 2) write all btree blocks onto disk
1392 * This is to make sure later btree modification will be cowed
1393 * Or commit_root can be populated and cause wrong qgroup numbers
1394 * In this simplified commit, we don't really care about other trees
1395 * like chunk and root tree, as they won't affect qgroup.
1396 * And we don't write super to avoid half committed status.
1398 ret = commit_cowonly_roots(trans);
1399 if (ret)
1400 goto out;
1401 switch_commit_roots(trans->transaction);
1402 ret = btrfs_write_and_wait_transaction(trans);
1403 if (ret)
1404 btrfs_handle_fs_error(fs_info, ret,
1405 "Error while writing out transaction for qgroup");
1407 out:
1408 mutex_unlock(&fs_info->tree_log_mutex);
1411 * Force parent root to be updated, as we recorded it before so its
1412 * last_trans == cur_transid.
1413 * Or it won't be committed again onto disk after later
1414 * insert_dir_item()
1416 if (!ret)
1417 record_root_in_trans(trans, parent, 1);
1418 return ret;
1422 * new snapshots need to be created at a very specific time in the
1423 * transaction commit. This does the actual creation.
1425 * Note:
1426 * If the error which may affect the commitment of the current transaction
1427 * happens, we should return the error number. If the error which just affect
1428 * the creation of the pending snapshots, just return 0.
1430 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1431 struct btrfs_pending_snapshot *pending)
1434 struct btrfs_fs_info *fs_info = trans->fs_info;
1435 struct btrfs_key key;
1436 struct btrfs_root_item *new_root_item;
1437 struct btrfs_root *tree_root = fs_info->tree_root;
1438 struct btrfs_root *root = pending->root;
1439 struct btrfs_root *parent_root;
1440 struct btrfs_block_rsv *rsv;
1441 struct inode *parent_inode;
1442 struct btrfs_path *path;
1443 struct btrfs_dir_item *dir_item;
1444 struct dentry *dentry;
1445 struct extent_buffer *tmp;
1446 struct extent_buffer *old;
1447 struct timespec64 cur_time;
1448 int ret = 0;
1449 u64 to_reserve = 0;
1450 u64 index = 0;
1451 u64 objectid;
1452 u64 root_flags;
1453 uuid_le new_uuid;
1455 ASSERT(pending->path);
1456 path = pending->path;
1458 ASSERT(pending->root_item);
1459 new_root_item = pending->root_item;
1461 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1462 if (pending->error)
1463 goto no_free_objectid;
1466 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467 * accounted by later btrfs_qgroup_inherit().
1469 btrfs_set_skip_qgroup(trans, objectid);
1471 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1473 if (to_reserve > 0) {
1474 pending->error = btrfs_block_rsv_add(root,
1475 &pending->block_rsv,
1476 to_reserve,
1477 BTRFS_RESERVE_NO_FLUSH);
1478 if (pending->error)
1479 goto clear_skip_qgroup;
1482 key.objectid = objectid;
1483 key.offset = (u64)-1;
1484 key.type = BTRFS_ROOT_ITEM_KEY;
1486 rsv = trans->block_rsv;
1487 trans->block_rsv = &pending->block_rsv;
1488 trans->bytes_reserved = trans->block_rsv->reserved;
1489 trace_btrfs_space_reservation(fs_info, "transaction",
1490 trans->transid,
1491 trans->bytes_reserved, 1);
1492 dentry = pending->dentry;
1493 parent_inode = pending->dir;
1494 parent_root = BTRFS_I(parent_inode)->root;
1495 record_root_in_trans(trans, parent_root, 0);
1497 cur_time = current_time(parent_inode);
1500 * insert the directory item
1502 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1503 BUG_ON(ret); /* -ENOMEM */
1505 /* check if there is a file/dir which has the same name. */
1506 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1507 btrfs_ino(BTRFS_I(parent_inode)),
1508 dentry->d_name.name,
1509 dentry->d_name.len, 0);
1510 if (dir_item != NULL && !IS_ERR(dir_item)) {
1511 pending->error = -EEXIST;
1512 goto dir_item_existed;
1513 } else if (IS_ERR(dir_item)) {
1514 ret = PTR_ERR(dir_item);
1515 btrfs_abort_transaction(trans, ret);
1516 goto fail;
1518 btrfs_release_path(path);
1521 * pull in the delayed directory update
1522 * and the delayed inode item
1523 * otherwise we corrupt the FS during
1524 * snapshot
1526 ret = btrfs_run_delayed_items(trans);
1527 if (ret) { /* Transaction aborted */
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1532 record_root_in_trans(trans, root, 0);
1533 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1534 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1535 btrfs_check_and_init_root_item(new_root_item);
1537 root_flags = btrfs_root_flags(new_root_item);
1538 if (pending->readonly)
1539 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1540 else
1541 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1542 btrfs_set_root_flags(new_root_item, root_flags);
1544 btrfs_set_root_generation_v2(new_root_item,
1545 trans->transid);
1546 uuid_le_gen(&new_uuid);
1547 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1548 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1549 BTRFS_UUID_SIZE);
1550 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1551 memset(new_root_item->received_uuid, 0,
1552 sizeof(new_root_item->received_uuid));
1553 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1554 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1555 btrfs_set_root_stransid(new_root_item, 0);
1556 btrfs_set_root_rtransid(new_root_item, 0);
1558 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1559 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1560 btrfs_set_root_otransid(new_root_item, trans->transid);
1562 old = btrfs_lock_root_node(root);
1563 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1564 if (ret) {
1565 btrfs_tree_unlock(old);
1566 free_extent_buffer(old);
1567 btrfs_abort_transaction(trans, ret);
1568 goto fail;
1571 btrfs_set_lock_blocking(old);
1573 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1574 /* clean up in any case */
1575 btrfs_tree_unlock(old);
1576 free_extent_buffer(old);
1577 if (ret) {
1578 btrfs_abort_transaction(trans, ret);
1579 goto fail;
1581 /* see comments in should_cow_block() */
1582 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1583 smp_wmb();
1585 btrfs_set_root_node(new_root_item, tmp);
1586 /* record when the snapshot was created in key.offset */
1587 key.offset = trans->transid;
1588 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1589 btrfs_tree_unlock(tmp);
1590 free_extent_buffer(tmp);
1591 if (ret) {
1592 btrfs_abort_transaction(trans, ret);
1593 goto fail;
1597 * insert root back/forward references
1599 ret = btrfs_add_root_ref(trans, objectid,
1600 parent_root->root_key.objectid,
1601 btrfs_ino(BTRFS_I(parent_inode)), index,
1602 dentry->d_name.name, dentry->d_name.len);
1603 if (ret) {
1604 btrfs_abort_transaction(trans, ret);
1605 goto fail;
1608 key.offset = (u64)-1;
1609 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1610 if (IS_ERR(pending->snap)) {
1611 ret = PTR_ERR(pending->snap);
1612 btrfs_abort_transaction(trans, ret);
1613 goto fail;
1616 ret = btrfs_reloc_post_snapshot(trans, pending);
1617 if (ret) {
1618 btrfs_abort_transaction(trans, ret);
1619 goto fail;
1622 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1623 if (ret) {
1624 btrfs_abort_transaction(trans, ret);
1625 goto fail;
1629 * Do special qgroup accounting for snapshot, as we do some qgroup
1630 * snapshot hack to do fast snapshot.
1631 * To co-operate with that hack, we do hack again.
1632 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1634 ret = qgroup_account_snapshot(trans, root, parent_root,
1635 pending->inherit, objectid);
1636 if (ret < 0)
1637 goto fail;
1639 ret = btrfs_insert_dir_item(trans, parent_root,
1640 dentry->d_name.name, dentry->d_name.len,
1641 BTRFS_I(parent_inode), &key,
1642 BTRFS_FT_DIR, index);
1643 /* We have check then name at the beginning, so it is impossible. */
1644 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1650 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1651 dentry->d_name.len * 2);
1652 parent_inode->i_mtime = parent_inode->i_ctime =
1653 current_time(parent_inode);
1654 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, ret);
1657 goto fail;
1659 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1660 objectid);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1665 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1666 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1667 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1668 objectid);
1669 if (ret && ret != -EEXIST) {
1670 btrfs_abort_transaction(trans, ret);
1671 goto fail;
1675 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1676 if (ret) {
1677 btrfs_abort_transaction(trans, ret);
1678 goto fail;
1681 fail:
1682 pending->error = ret;
1683 dir_item_existed:
1684 trans->block_rsv = rsv;
1685 trans->bytes_reserved = 0;
1686 clear_skip_qgroup:
1687 btrfs_clear_skip_qgroup(trans);
1688 no_free_objectid:
1689 kfree(new_root_item);
1690 pending->root_item = NULL;
1691 btrfs_free_path(path);
1692 pending->path = NULL;
1694 return ret;
1698 * create all the snapshots we've scheduled for creation
1700 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1702 struct btrfs_pending_snapshot *pending, *next;
1703 struct list_head *head = &trans->transaction->pending_snapshots;
1704 int ret = 0;
1706 list_for_each_entry_safe(pending, next, head, list) {
1707 list_del(&pending->list);
1708 ret = create_pending_snapshot(trans, pending);
1709 if (ret)
1710 break;
1712 return ret;
1715 static void update_super_roots(struct btrfs_fs_info *fs_info)
1717 struct btrfs_root_item *root_item;
1718 struct btrfs_super_block *super;
1720 super = fs_info->super_copy;
1722 root_item = &fs_info->chunk_root->root_item;
1723 super->chunk_root = root_item->bytenr;
1724 super->chunk_root_generation = root_item->generation;
1725 super->chunk_root_level = root_item->level;
1727 root_item = &fs_info->tree_root->root_item;
1728 super->root = root_item->bytenr;
1729 super->generation = root_item->generation;
1730 super->root_level = root_item->level;
1731 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1732 super->cache_generation = root_item->generation;
1733 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1734 super->uuid_tree_generation = root_item->generation;
1737 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1739 struct btrfs_transaction *trans;
1740 int ret = 0;
1742 spin_lock(&info->trans_lock);
1743 trans = info->running_transaction;
1744 if (trans)
1745 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1746 spin_unlock(&info->trans_lock);
1747 return ret;
1750 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1752 struct btrfs_transaction *trans;
1753 int ret = 0;
1755 spin_lock(&info->trans_lock);
1756 trans = info->running_transaction;
1757 if (trans)
1758 ret = is_transaction_blocked(trans);
1759 spin_unlock(&info->trans_lock);
1760 return ret;
1764 * wait for the current transaction commit to start and block subsequent
1765 * transaction joins
1767 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1768 struct btrfs_transaction *trans)
1770 wait_event(fs_info->transaction_blocked_wait,
1771 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1775 * wait for the current transaction to start and then become unblocked.
1776 * caller holds ref.
1778 static void wait_current_trans_commit_start_and_unblock(
1779 struct btrfs_fs_info *fs_info,
1780 struct btrfs_transaction *trans)
1782 wait_event(fs_info->transaction_wait,
1783 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1787 * commit transactions asynchronously. once btrfs_commit_transaction_async
1788 * returns, any subsequent transaction will not be allowed to join.
1790 struct btrfs_async_commit {
1791 struct btrfs_trans_handle *newtrans;
1792 struct work_struct work;
1795 static void do_async_commit(struct work_struct *work)
1797 struct btrfs_async_commit *ac =
1798 container_of(work, struct btrfs_async_commit, work);
1801 * We've got freeze protection passed with the transaction.
1802 * Tell lockdep about it.
1804 if (ac->newtrans->type & __TRANS_FREEZABLE)
1805 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1807 current->journal_info = ac->newtrans;
1809 btrfs_commit_transaction(ac->newtrans);
1810 kfree(ac);
1813 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1814 int wait_for_unblock)
1816 struct btrfs_fs_info *fs_info = trans->fs_info;
1817 struct btrfs_async_commit *ac;
1818 struct btrfs_transaction *cur_trans;
1820 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1821 if (!ac)
1822 return -ENOMEM;
1824 INIT_WORK(&ac->work, do_async_commit);
1825 ac->newtrans = btrfs_join_transaction(trans->root);
1826 if (IS_ERR(ac->newtrans)) {
1827 int err = PTR_ERR(ac->newtrans);
1828 kfree(ac);
1829 return err;
1832 /* take transaction reference */
1833 cur_trans = trans->transaction;
1834 refcount_inc(&cur_trans->use_count);
1836 btrfs_end_transaction(trans);
1839 * Tell lockdep we've released the freeze rwsem, since the
1840 * async commit thread will be the one to unlock it.
1842 if (ac->newtrans->type & __TRANS_FREEZABLE)
1843 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1845 schedule_work(&ac->work);
1847 /* wait for transaction to start and unblock */
1848 if (wait_for_unblock)
1849 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1850 else
1851 wait_current_trans_commit_start(fs_info, cur_trans);
1853 if (current->journal_info == trans)
1854 current->journal_info = NULL;
1856 btrfs_put_transaction(cur_trans);
1857 return 0;
1861 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1863 struct btrfs_fs_info *fs_info = trans->fs_info;
1864 struct btrfs_transaction *cur_trans = trans->transaction;
1865 DEFINE_WAIT(wait);
1867 WARN_ON(refcount_read(&trans->use_count) > 1);
1869 btrfs_abort_transaction(trans, err);
1871 spin_lock(&fs_info->trans_lock);
1874 * If the transaction is removed from the list, it means this
1875 * transaction has been committed successfully, so it is impossible
1876 * to call the cleanup function.
1878 BUG_ON(list_empty(&cur_trans->list));
1880 list_del_init(&cur_trans->list);
1881 if (cur_trans == fs_info->running_transaction) {
1882 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1883 spin_unlock(&fs_info->trans_lock);
1884 wait_event(cur_trans->writer_wait,
1885 atomic_read(&cur_trans->num_writers) == 1);
1887 spin_lock(&fs_info->trans_lock);
1889 spin_unlock(&fs_info->trans_lock);
1891 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1893 spin_lock(&fs_info->trans_lock);
1894 if (cur_trans == fs_info->running_transaction)
1895 fs_info->running_transaction = NULL;
1896 spin_unlock(&fs_info->trans_lock);
1898 if (trans->type & __TRANS_FREEZABLE)
1899 sb_end_intwrite(fs_info->sb);
1900 btrfs_put_transaction(cur_trans);
1901 btrfs_put_transaction(cur_trans);
1903 trace_btrfs_transaction_commit(trans->root);
1905 if (current->journal_info == trans)
1906 current->journal_info = NULL;
1907 btrfs_scrub_cancel(fs_info);
1909 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1912 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1915 * We use writeback_inodes_sb here because if we used
1916 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1917 * Currently are holding the fs freeze lock, if we do an async flush
1918 * we'll do btrfs_join_transaction() and deadlock because we need to
1919 * wait for the fs freeze lock. Using the direct flushing we benefit
1920 * from already being in a transaction and our join_transaction doesn't
1921 * have to re-take the fs freeze lock.
1923 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1924 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1925 return 0;
1928 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1930 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1931 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1934 static inline void
1935 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1937 wait_event(cur_trans->pending_wait,
1938 atomic_read(&cur_trans->pending_ordered) == 0);
1941 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1943 struct btrfs_fs_info *fs_info = trans->fs_info;
1944 struct btrfs_transaction *cur_trans = trans->transaction;
1945 struct btrfs_transaction *prev_trans = NULL;
1946 int ret;
1949 * Some places just start a transaction to commit it. We need to make
1950 * sure that if this commit fails that the abort code actually marks the
1951 * transaction as failed, so set trans->dirty to make the abort code do
1952 * the right thing.
1954 trans->dirty = true;
1956 /* Stop the commit early if ->aborted is set */
1957 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1958 ret = cur_trans->aborted;
1959 btrfs_end_transaction(trans);
1960 return ret;
1963 btrfs_trans_release_metadata(trans);
1964 trans->block_rsv = NULL;
1966 /* make a pass through all the delayed refs we have so far
1967 * any runnings procs may add more while we are here
1969 ret = btrfs_run_delayed_refs(trans, 0);
1970 if (ret) {
1971 btrfs_end_transaction(trans);
1972 return ret;
1975 cur_trans = trans->transaction;
1978 * set the flushing flag so procs in this transaction have to
1979 * start sending their work down.
1981 cur_trans->delayed_refs.flushing = 1;
1982 smp_wmb();
1984 if (!list_empty(&trans->new_bgs))
1985 btrfs_create_pending_block_groups(trans);
1987 ret = btrfs_run_delayed_refs(trans, 0);
1988 if (ret) {
1989 btrfs_end_transaction(trans);
1990 return ret;
1993 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1994 int run_it = 0;
1996 /* this mutex is also taken before trying to set
1997 * block groups readonly. We need to make sure
1998 * that nobody has set a block group readonly
1999 * after a extents from that block group have been
2000 * allocated for cache files. btrfs_set_block_group_ro
2001 * will wait for the transaction to commit if it
2002 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2004 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2005 * only one process starts all the block group IO. It wouldn't
2006 * hurt to have more than one go through, but there's no
2007 * real advantage to it either.
2009 mutex_lock(&fs_info->ro_block_group_mutex);
2010 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2011 &cur_trans->flags))
2012 run_it = 1;
2013 mutex_unlock(&fs_info->ro_block_group_mutex);
2015 if (run_it) {
2016 ret = btrfs_start_dirty_block_groups(trans);
2017 if (ret) {
2018 btrfs_end_transaction(trans);
2019 return ret;
2024 spin_lock(&fs_info->trans_lock);
2025 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2026 spin_unlock(&fs_info->trans_lock);
2027 refcount_inc(&cur_trans->use_count);
2028 ret = btrfs_end_transaction(trans);
2030 wait_for_commit(cur_trans);
2032 if (unlikely(cur_trans->aborted))
2033 ret = cur_trans->aborted;
2035 btrfs_put_transaction(cur_trans);
2037 return ret;
2040 cur_trans->state = TRANS_STATE_COMMIT_START;
2041 wake_up(&fs_info->transaction_blocked_wait);
2043 if (cur_trans->list.prev != &fs_info->trans_list) {
2044 prev_trans = list_entry(cur_trans->list.prev,
2045 struct btrfs_transaction, list);
2046 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2047 refcount_inc(&prev_trans->use_count);
2048 spin_unlock(&fs_info->trans_lock);
2050 wait_for_commit(prev_trans);
2051 ret = prev_trans->aborted;
2053 btrfs_put_transaction(prev_trans);
2054 if (ret)
2055 goto cleanup_transaction;
2056 } else {
2057 spin_unlock(&fs_info->trans_lock);
2059 } else {
2060 spin_unlock(&fs_info->trans_lock);
2062 * The previous transaction was aborted and was already removed
2063 * from the list of transactions at fs_info->trans_list. So we
2064 * abort to prevent writing a new superblock that reflects a
2065 * corrupt state (pointing to trees with unwritten nodes/leafs).
2067 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2068 ret = -EROFS;
2069 goto cleanup_transaction;
2073 extwriter_counter_dec(cur_trans, trans->type);
2075 ret = btrfs_start_delalloc_flush(fs_info);
2076 if (ret)
2077 goto cleanup_transaction;
2079 ret = btrfs_run_delayed_items(trans);
2080 if (ret)
2081 goto cleanup_transaction;
2083 wait_event(cur_trans->writer_wait,
2084 extwriter_counter_read(cur_trans) == 0);
2086 /* some pending stuffs might be added after the previous flush. */
2087 ret = btrfs_run_delayed_items(trans);
2088 if (ret)
2089 goto cleanup_transaction;
2091 btrfs_wait_delalloc_flush(fs_info);
2093 btrfs_wait_pending_ordered(cur_trans);
2095 btrfs_scrub_pause(fs_info);
2097 * Ok now we need to make sure to block out any other joins while we
2098 * commit the transaction. We could have started a join before setting
2099 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2101 spin_lock(&fs_info->trans_lock);
2102 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2103 spin_unlock(&fs_info->trans_lock);
2104 wait_event(cur_trans->writer_wait,
2105 atomic_read(&cur_trans->num_writers) == 1);
2107 /* ->aborted might be set after the previous check, so check it */
2108 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2109 ret = cur_trans->aborted;
2110 goto scrub_continue;
2113 * the reloc mutex makes sure that we stop
2114 * the balancing code from coming in and moving
2115 * extents around in the middle of the commit
2117 mutex_lock(&fs_info->reloc_mutex);
2120 * We needn't worry about the delayed items because we will
2121 * deal with them in create_pending_snapshot(), which is the
2122 * core function of the snapshot creation.
2124 ret = create_pending_snapshots(trans);
2125 if (ret) {
2126 mutex_unlock(&fs_info->reloc_mutex);
2127 goto scrub_continue;
2131 * We insert the dir indexes of the snapshots and update the inode
2132 * of the snapshots' parents after the snapshot creation, so there
2133 * are some delayed items which are not dealt with. Now deal with
2134 * them.
2136 * We needn't worry that this operation will corrupt the snapshots,
2137 * because all the tree which are snapshoted will be forced to COW
2138 * the nodes and leaves.
2140 ret = btrfs_run_delayed_items(trans);
2141 if (ret) {
2142 mutex_unlock(&fs_info->reloc_mutex);
2143 goto scrub_continue;
2146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2147 if (ret) {
2148 mutex_unlock(&fs_info->reloc_mutex);
2149 goto scrub_continue;
2153 * make sure none of the code above managed to slip in a
2154 * delayed item
2156 btrfs_assert_delayed_root_empty(fs_info);
2158 WARN_ON(cur_trans != trans->transaction);
2160 /* btrfs_commit_tree_roots is responsible for getting the
2161 * various roots consistent with each other. Every pointer
2162 * in the tree of tree roots has to point to the most up to date
2163 * root for every subvolume and other tree. So, we have to keep
2164 * the tree logging code from jumping in and changing any
2165 * of the trees.
2167 * At this point in the commit, there can't be any tree-log
2168 * writers, but a little lower down we drop the trans mutex
2169 * and let new people in. By holding the tree_log_mutex
2170 * from now until after the super is written, we avoid races
2171 * with the tree-log code.
2173 mutex_lock(&fs_info->tree_log_mutex);
2175 ret = commit_fs_roots(trans);
2176 if (ret) {
2177 mutex_unlock(&fs_info->tree_log_mutex);
2178 mutex_unlock(&fs_info->reloc_mutex);
2179 goto scrub_continue;
2183 * Since the transaction is done, we can apply the pending changes
2184 * before the next transaction.
2186 btrfs_apply_pending_changes(fs_info);
2188 /* commit_fs_roots gets rid of all the tree log roots, it is now
2189 * safe to free the root of tree log roots
2191 btrfs_free_log_root_tree(trans, fs_info);
2194 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2195 * new delayed refs. Must handle them or qgroup can be wrong.
2197 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2198 if (ret) {
2199 mutex_unlock(&fs_info->tree_log_mutex);
2200 mutex_unlock(&fs_info->reloc_mutex);
2201 goto scrub_continue;
2205 * Since fs roots are all committed, we can get a quite accurate
2206 * new_roots. So let's do quota accounting.
2208 ret = btrfs_qgroup_account_extents(trans);
2209 if (ret < 0) {
2210 mutex_unlock(&fs_info->tree_log_mutex);
2211 mutex_unlock(&fs_info->reloc_mutex);
2212 goto scrub_continue;
2215 ret = commit_cowonly_roots(trans);
2216 if (ret) {
2217 mutex_unlock(&fs_info->tree_log_mutex);
2218 mutex_unlock(&fs_info->reloc_mutex);
2219 goto scrub_continue;
2223 * The tasks which save the space cache and inode cache may also
2224 * update ->aborted, check it.
2226 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2227 ret = cur_trans->aborted;
2228 mutex_unlock(&fs_info->tree_log_mutex);
2229 mutex_unlock(&fs_info->reloc_mutex);
2230 goto scrub_continue;
2233 btrfs_prepare_extent_commit(fs_info);
2235 cur_trans = fs_info->running_transaction;
2237 btrfs_set_root_node(&fs_info->tree_root->root_item,
2238 fs_info->tree_root->node);
2239 list_add_tail(&fs_info->tree_root->dirty_list,
2240 &cur_trans->switch_commits);
2242 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2243 fs_info->chunk_root->node);
2244 list_add_tail(&fs_info->chunk_root->dirty_list,
2245 &cur_trans->switch_commits);
2247 switch_commit_roots(cur_trans);
2249 ASSERT(list_empty(&cur_trans->dirty_bgs));
2250 ASSERT(list_empty(&cur_trans->io_bgs));
2251 update_super_roots(fs_info);
2253 btrfs_set_super_log_root(fs_info->super_copy, 0);
2254 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2255 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2256 sizeof(*fs_info->super_copy));
2258 btrfs_update_commit_device_size(fs_info);
2259 btrfs_update_commit_device_bytes_used(cur_trans);
2261 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2262 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2264 btrfs_trans_release_chunk_metadata(trans);
2266 spin_lock(&fs_info->trans_lock);
2267 cur_trans->state = TRANS_STATE_UNBLOCKED;
2268 fs_info->running_transaction = NULL;
2269 spin_unlock(&fs_info->trans_lock);
2270 mutex_unlock(&fs_info->reloc_mutex);
2272 wake_up(&fs_info->transaction_wait);
2274 ret = btrfs_write_and_wait_transaction(trans);
2275 if (ret) {
2276 btrfs_handle_fs_error(fs_info, ret,
2277 "Error while writing out transaction");
2278 mutex_unlock(&fs_info->tree_log_mutex);
2279 goto scrub_continue;
2282 ret = write_all_supers(fs_info, 0);
2284 * the super is written, we can safely allow the tree-loggers
2285 * to go about their business
2287 mutex_unlock(&fs_info->tree_log_mutex);
2288 if (ret)
2289 goto scrub_continue;
2291 btrfs_finish_extent_commit(trans);
2293 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2294 btrfs_clear_space_info_full(fs_info);
2296 fs_info->last_trans_committed = cur_trans->transid;
2298 * We needn't acquire the lock here because there is no other task
2299 * which can change it.
2301 cur_trans->state = TRANS_STATE_COMPLETED;
2302 wake_up(&cur_trans->commit_wait);
2303 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2305 spin_lock(&fs_info->trans_lock);
2306 list_del_init(&cur_trans->list);
2307 spin_unlock(&fs_info->trans_lock);
2309 btrfs_put_transaction(cur_trans);
2310 btrfs_put_transaction(cur_trans);
2312 if (trans->type & __TRANS_FREEZABLE)
2313 sb_end_intwrite(fs_info->sb);
2315 trace_btrfs_transaction_commit(trans->root);
2317 btrfs_scrub_continue(fs_info);
2319 if (current->journal_info == trans)
2320 current->journal_info = NULL;
2322 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2324 return ret;
2326 scrub_continue:
2327 btrfs_scrub_continue(fs_info);
2328 cleanup_transaction:
2329 btrfs_trans_release_metadata(trans);
2330 btrfs_trans_release_chunk_metadata(trans);
2331 trans->block_rsv = NULL;
2332 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2333 if (current->journal_info == trans)
2334 current->journal_info = NULL;
2335 cleanup_transaction(trans, ret);
2337 return ret;
2341 * return < 0 if error
2342 * 0 if there are no more dead_roots at the time of call
2343 * 1 there are more to be processed, call me again
2345 * The return value indicates there are certainly more snapshots to delete, but
2346 * if there comes a new one during processing, it may return 0. We don't mind,
2347 * because btrfs_commit_super will poke cleaner thread and it will process it a
2348 * few seconds later.
2350 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2352 int ret;
2353 struct btrfs_fs_info *fs_info = root->fs_info;
2355 spin_lock(&fs_info->trans_lock);
2356 if (list_empty(&fs_info->dead_roots)) {
2357 spin_unlock(&fs_info->trans_lock);
2358 return 0;
2360 root = list_first_entry(&fs_info->dead_roots,
2361 struct btrfs_root, root_list);
2362 list_del_init(&root->root_list);
2363 spin_unlock(&fs_info->trans_lock);
2365 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2367 btrfs_kill_all_delayed_nodes(root);
2369 if (btrfs_header_backref_rev(root->node) <
2370 BTRFS_MIXED_BACKREF_REV)
2371 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2372 else
2373 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2375 return (ret < 0) ? 0 : 1;
2378 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2380 unsigned long prev;
2381 unsigned long bit;
2383 prev = xchg(&fs_info->pending_changes, 0);
2384 if (!prev)
2385 return;
2387 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2388 if (prev & bit)
2389 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2390 prev &= ~bit;
2392 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2393 if (prev & bit)
2394 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2395 prev &= ~bit;
2397 bit = 1 << BTRFS_PENDING_COMMIT;
2398 if (prev & bit)
2399 btrfs_debug(fs_info, "pending commit done");
2400 prev &= ~bit;
2402 if (prev)
2403 btrfs_warn(fs_info,
2404 "unknown pending changes left 0x%lx, ignoring", prev);