Linux 4.19.133
[linux/fpc-iii.git] / fs / btrfs / volumes.c
blobb9ce42877e46ba1d35b3e973e16a8b0a86e45b07
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 [BTRFS_RAID_RAID10] = {
33 .sub_stripes = 2,
34 .dev_stripes = 1,
35 .devs_max = 0, /* 0 == as many as possible */
36 .devs_min = 4,
37 .tolerated_failures = 1,
38 .devs_increment = 2,
39 .ncopies = 2,
40 .raid_name = "raid10",
41 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
42 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44 [BTRFS_RAID_RAID1] = {
45 .sub_stripes = 1,
46 .dev_stripes = 1,
47 .devs_max = 2,
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .raid_name = "raid1",
53 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
54 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
56 [BTRFS_RAID_DUP] = {
57 .sub_stripes = 1,
58 .dev_stripes = 2,
59 .devs_max = 1,
60 .devs_min = 1,
61 .tolerated_failures = 0,
62 .devs_increment = 1,
63 .ncopies = 2,
64 .raid_name = "dup",
65 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
66 .mindev_error = 0,
68 [BTRFS_RAID_RAID0] = {
69 .sub_stripes = 1,
70 .dev_stripes = 1,
71 .devs_max = 0,
72 .devs_min = 2,
73 .tolerated_failures = 0,
74 .devs_increment = 1,
75 .ncopies = 1,
76 .raid_name = "raid0",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
78 .mindev_error = 0,
80 [BTRFS_RAID_SINGLE] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 1,
84 .devs_min = 1,
85 .tolerated_failures = 0,
86 .devs_increment = 1,
87 .ncopies = 1,
88 .raid_name = "single",
89 .bg_flag = 0,
90 .mindev_error = 0,
92 [BTRFS_RAID_RAID5] = {
93 .sub_stripes = 1,
94 .dev_stripes = 1,
95 .devs_max = 0,
96 .devs_min = 2,
97 .tolerated_failures = 1,
98 .devs_increment = 1,
99 .ncopies = 1,
100 .raid_name = "raid5",
101 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
102 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
104 [BTRFS_RAID_RAID6] = {
105 .sub_stripes = 1,
106 .dev_stripes = 1,
107 .devs_max = 0,
108 .devs_min = 3,
109 .tolerated_failures = 2,
110 .devs_increment = 1,
111 .ncopies = 1,
112 .raid_name = "raid6",
113 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
114 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
118 const char *get_raid_name(enum btrfs_raid_types type)
120 if (type >= BTRFS_NR_RAID_TYPES)
121 return NULL;
123 return btrfs_raid_array[type].raid_name;
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133 enum btrfs_map_op op,
134 u64 logical, u64 *length,
135 struct btrfs_bio **bbio_ret,
136 int mirror_num, int need_raid_map);
139 * Device locking
140 * ==============
142 * There are several mutexes that protect manipulation of devices and low-level
143 * structures like chunks but not block groups, extents or files
145 * uuid_mutex (global lock)
146 * ------------------------
147 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149 * device) or requested by the device= mount option
151 * the mutex can be very coarse and can cover long-running operations
153 * protects: updates to fs_devices counters like missing devices, rw devices,
154 * seeding, structure cloning, openning/closing devices at mount/umount time
156 * global::fs_devs - add, remove, updates to the global list
158 * does not protect: manipulation of the fs_devices::devices list!
160 * btrfs_device::name - renames (write side), read is RCU
162 * fs_devices::device_list_mutex (per-fs, with RCU)
163 * ------------------------------------------------
164 * protects updates to fs_devices::devices, ie. adding and deleting
166 * simple list traversal with read-only actions can be done with RCU protection
168 * may be used to exclude some operations from running concurrently without any
169 * modifications to the list (see write_all_supers)
171 * balance_mutex
172 * -------------
173 * protects balance structures (status, state) and context accessed from
174 * several places (internally, ioctl)
176 * chunk_mutex
177 * -----------
178 * protects chunks, adding or removing during allocation, trim or when a new
179 * device is added/removed
181 * cleaner_mutex
182 * -------------
183 * a big lock that is held by the cleaner thread and prevents running subvolume
184 * cleaning together with relocation or delayed iputs
187 * Lock nesting
188 * ============
190 * uuid_mutex
191 * volume_mutex
192 * device_list_mutex
193 * chunk_mutex
194 * balance_mutex
197 * Exclusive operations, BTRFS_FS_EXCL_OP
198 * ======================================
200 * Maintains the exclusivity of the following operations that apply to the
201 * whole filesystem and cannot run in parallel.
203 * - Balance (*)
204 * - Device add
205 * - Device remove
206 * - Device replace (*)
207 * - Resize
209 * The device operations (as above) can be in one of the following states:
211 * - Running state
212 * - Paused state
213 * - Completed state
215 * Only device operations marked with (*) can go into the Paused state for the
216 * following reasons:
218 * - ioctl (only Balance can be Paused through ioctl)
219 * - filesystem remounted as read-only
220 * - filesystem unmounted and mounted as read-only
221 * - system power-cycle and filesystem mounted as read-only
222 * - filesystem or device errors leading to forced read-only
224 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226 * A device operation in Paused or Running state can be canceled or resumed
227 * either by ioctl (Balance only) or when remounted as read-write.
228 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229 * completed.
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
236 return &fs_uuids;
240 * alloc_fs_devices - allocate struct btrfs_fs_devices
241 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
243 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244 * The returned struct is not linked onto any lists and can be destroyed with
245 * kfree() right away.
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
249 struct btrfs_fs_devices *fs_devs;
251 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252 if (!fs_devs)
253 return ERR_PTR(-ENOMEM);
255 mutex_init(&fs_devs->device_list_mutex);
257 INIT_LIST_HEAD(&fs_devs->devices);
258 INIT_LIST_HEAD(&fs_devs->resized_devices);
259 INIT_LIST_HEAD(&fs_devs->alloc_list);
260 INIT_LIST_HEAD(&fs_devs->fs_list);
261 if (fsid)
262 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
264 return fs_devs;
267 void btrfs_free_device(struct btrfs_device *device)
269 rcu_string_free(device->name);
270 bio_put(device->flush_bio);
271 kfree(device);
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
276 struct btrfs_device *device;
277 WARN_ON(fs_devices->opened);
278 while (!list_empty(&fs_devices->devices)) {
279 device = list_entry(fs_devices->devices.next,
280 struct btrfs_device, dev_list);
281 list_del(&device->dev_list);
282 btrfs_free_device(device);
284 kfree(fs_devices);
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288 enum kobject_action action)
290 int ret;
292 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293 if (ret)
294 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295 action,
296 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297 &disk_to_dev(bdev->bd_disk)->kobj);
300 void __exit btrfs_cleanup_fs_uuids(void)
302 struct btrfs_fs_devices *fs_devices;
304 while (!list_empty(&fs_uuids)) {
305 fs_devices = list_entry(fs_uuids.next,
306 struct btrfs_fs_devices, fs_list);
307 list_del(&fs_devices->fs_list);
308 free_fs_devices(fs_devices);
313 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314 * Returned struct is not linked onto any lists and must be destroyed using
315 * btrfs_free_device.
317 static struct btrfs_device *__alloc_device(void)
319 struct btrfs_device *dev;
321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 if (!dev)
323 return ERR_PTR(-ENOMEM);
326 * Preallocate a bio that's always going to be used for flushing device
327 * barriers and matches the device lifespan
329 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330 if (!dev->flush_bio) {
331 kfree(dev);
332 return ERR_PTR(-ENOMEM);
335 INIT_LIST_HEAD(&dev->dev_list);
336 INIT_LIST_HEAD(&dev->dev_alloc_list);
337 INIT_LIST_HEAD(&dev->resized_list);
339 spin_lock_init(&dev->io_lock);
341 atomic_set(&dev->reada_in_flight, 0);
342 atomic_set(&dev->dev_stats_ccnt, 0);
343 btrfs_device_data_ordered_init(dev);
344 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
347 return dev;
350 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
352 struct btrfs_fs_devices *fs_devices;
354 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
355 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
356 return fs_devices;
358 return NULL;
361 static int
362 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
363 int flush, struct block_device **bdev,
364 struct buffer_head **bh)
366 int ret;
368 *bdev = blkdev_get_by_path(device_path, flags, holder);
370 if (IS_ERR(*bdev)) {
371 ret = PTR_ERR(*bdev);
372 goto error;
375 if (flush)
376 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
377 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
378 if (ret) {
379 blkdev_put(*bdev, flags);
380 goto error;
382 invalidate_bdev(*bdev);
383 *bh = btrfs_read_dev_super(*bdev);
384 if (IS_ERR(*bh)) {
385 ret = PTR_ERR(*bh);
386 blkdev_put(*bdev, flags);
387 goto error;
390 return 0;
392 error:
393 *bdev = NULL;
394 *bh = NULL;
395 return ret;
398 static void requeue_list(struct btrfs_pending_bios *pending_bios,
399 struct bio *head, struct bio *tail)
402 struct bio *old_head;
404 old_head = pending_bios->head;
405 pending_bios->head = head;
406 if (pending_bios->tail)
407 tail->bi_next = old_head;
408 else
409 pending_bios->tail = tail;
413 * we try to collect pending bios for a device so we don't get a large
414 * number of procs sending bios down to the same device. This greatly
415 * improves the schedulers ability to collect and merge the bios.
417 * But, it also turns into a long list of bios to process and that is sure
418 * to eventually make the worker thread block. The solution here is to
419 * make some progress and then put this work struct back at the end of
420 * the list if the block device is congested. This way, multiple devices
421 * can make progress from a single worker thread.
423 static noinline void run_scheduled_bios(struct btrfs_device *device)
425 struct btrfs_fs_info *fs_info = device->fs_info;
426 struct bio *pending;
427 struct backing_dev_info *bdi;
428 struct btrfs_pending_bios *pending_bios;
429 struct bio *tail;
430 struct bio *cur;
431 int again = 0;
432 unsigned long num_run;
433 unsigned long batch_run = 0;
434 unsigned long last_waited = 0;
435 int force_reg = 0;
436 int sync_pending = 0;
437 struct blk_plug plug;
440 * this function runs all the bios we've collected for
441 * a particular device. We don't want to wander off to
442 * another device without first sending all of these down.
443 * So, setup a plug here and finish it off before we return
445 blk_start_plug(&plug);
447 bdi = device->bdev->bd_bdi;
449 loop:
450 spin_lock(&device->io_lock);
452 loop_lock:
453 num_run = 0;
455 /* take all the bios off the list at once and process them
456 * later on (without the lock held). But, remember the
457 * tail and other pointers so the bios can be properly reinserted
458 * into the list if we hit congestion
460 if (!force_reg && device->pending_sync_bios.head) {
461 pending_bios = &device->pending_sync_bios;
462 force_reg = 1;
463 } else {
464 pending_bios = &device->pending_bios;
465 force_reg = 0;
468 pending = pending_bios->head;
469 tail = pending_bios->tail;
470 WARN_ON(pending && !tail);
473 * if pending was null this time around, no bios need processing
474 * at all and we can stop. Otherwise it'll loop back up again
475 * and do an additional check so no bios are missed.
477 * device->running_pending is used to synchronize with the
478 * schedule_bio code.
480 if (device->pending_sync_bios.head == NULL &&
481 device->pending_bios.head == NULL) {
482 again = 0;
483 device->running_pending = 0;
484 } else {
485 again = 1;
486 device->running_pending = 1;
489 pending_bios->head = NULL;
490 pending_bios->tail = NULL;
492 spin_unlock(&device->io_lock);
494 while (pending) {
496 rmb();
497 /* we want to work on both lists, but do more bios on the
498 * sync list than the regular list
500 if ((num_run > 32 &&
501 pending_bios != &device->pending_sync_bios &&
502 device->pending_sync_bios.head) ||
503 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
504 device->pending_bios.head)) {
505 spin_lock(&device->io_lock);
506 requeue_list(pending_bios, pending, tail);
507 goto loop_lock;
510 cur = pending;
511 pending = pending->bi_next;
512 cur->bi_next = NULL;
514 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
517 * if we're doing the sync list, record that our
518 * plug has some sync requests on it
520 * If we're doing the regular list and there are
521 * sync requests sitting around, unplug before
522 * we add more
524 if (pending_bios == &device->pending_sync_bios) {
525 sync_pending = 1;
526 } else if (sync_pending) {
527 blk_finish_plug(&plug);
528 blk_start_plug(&plug);
529 sync_pending = 0;
532 btrfsic_submit_bio(cur);
533 num_run++;
534 batch_run++;
536 cond_resched();
539 * we made progress, there is more work to do and the bdi
540 * is now congested. Back off and let other work structs
541 * run instead
543 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
544 fs_info->fs_devices->open_devices > 1) {
545 struct io_context *ioc;
547 ioc = current->io_context;
550 * the main goal here is that we don't want to
551 * block if we're going to be able to submit
552 * more requests without blocking.
554 * This code does two great things, it pokes into
555 * the elevator code from a filesystem _and_
556 * it makes assumptions about how batching works.
558 if (ioc && ioc->nr_batch_requests > 0 &&
559 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
560 (last_waited == 0 ||
561 ioc->last_waited == last_waited)) {
563 * we want to go through our batch of
564 * requests and stop. So, we copy out
565 * the ioc->last_waited time and test
566 * against it before looping
568 last_waited = ioc->last_waited;
569 cond_resched();
570 continue;
572 spin_lock(&device->io_lock);
573 requeue_list(pending_bios, pending, tail);
574 device->running_pending = 1;
576 spin_unlock(&device->io_lock);
577 btrfs_queue_work(fs_info->submit_workers,
578 &device->work);
579 goto done;
583 cond_resched();
584 if (again)
585 goto loop;
587 spin_lock(&device->io_lock);
588 if (device->pending_bios.head || device->pending_sync_bios.head)
589 goto loop_lock;
590 spin_unlock(&device->io_lock);
592 done:
593 blk_finish_plug(&plug);
596 static void pending_bios_fn(struct btrfs_work *work)
598 struct btrfs_device *device;
600 device = container_of(work, struct btrfs_device, work);
601 run_scheduled_bios(device);
605 * Search and remove all stale (devices which are not mounted) devices.
606 * When both inputs are NULL, it will search and release all stale devices.
607 * path: Optional. When provided will it release all unmounted devices
608 * matching this path only.
609 * skip_dev: Optional. Will skip this device when searching for the stale
610 * devices.
612 static void btrfs_free_stale_devices(const char *path,
613 struct btrfs_device *skip_device)
615 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
616 struct btrfs_device *device, *tmp_device;
618 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
619 mutex_lock(&fs_devices->device_list_mutex);
620 if (fs_devices->opened) {
621 mutex_unlock(&fs_devices->device_list_mutex);
622 continue;
625 list_for_each_entry_safe(device, tmp_device,
626 &fs_devices->devices, dev_list) {
627 int not_found = 0;
629 if (skip_device && skip_device == device)
630 continue;
631 if (path && !device->name)
632 continue;
634 rcu_read_lock();
635 if (path)
636 not_found = strcmp(rcu_str_deref(device->name),
637 path);
638 rcu_read_unlock();
639 if (not_found)
640 continue;
642 /* delete the stale device */
643 fs_devices->num_devices--;
644 list_del(&device->dev_list);
645 btrfs_free_device(device);
647 if (fs_devices->num_devices == 0)
648 break;
650 mutex_unlock(&fs_devices->device_list_mutex);
651 if (fs_devices->num_devices == 0) {
652 btrfs_sysfs_remove_fsid(fs_devices);
653 list_del(&fs_devices->fs_list);
654 free_fs_devices(fs_devices);
659 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
660 struct btrfs_device *device, fmode_t flags,
661 void *holder)
663 struct request_queue *q;
664 struct block_device *bdev;
665 struct buffer_head *bh;
666 struct btrfs_super_block *disk_super;
667 u64 devid;
668 int ret;
670 if (device->bdev)
671 return -EINVAL;
672 if (!device->name)
673 return -EINVAL;
675 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
676 &bdev, &bh);
677 if (ret)
678 return ret;
680 disk_super = (struct btrfs_super_block *)bh->b_data;
681 devid = btrfs_stack_device_id(&disk_super->dev_item);
682 if (devid != device->devid)
683 goto error_brelse;
685 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
686 goto error_brelse;
688 device->generation = btrfs_super_generation(disk_super);
690 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
691 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
692 fs_devices->seeding = 1;
693 } else {
694 if (bdev_read_only(bdev))
695 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
696 else
697 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
700 q = bdev_get_queue(bdev);
701 if (!blk_queue_nonrot(q))
702 fs_devices->rotating = 1;
704 device->bdev = bdev;
705 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
706 device->mode = flags;
708 fs_devices->open_devices++;
709 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710 device->devid != BTRFS_DEV_REPLACE_DEVID) {
711 fs_devices->rw_devices++;
712 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
714 brelse(bh);
716 return 0;
718 error_brelse:
719 brelse(bh);
720 blkdev_put(bdev, flags);
722 return -EINVAL;
726 * Add new device to list of registered devices
728 * Returns:
729 * device pointer which was just added or updated when successful
730 * error pointer when failed
732 static noinline struct btrfs_device *device_list_add(const char *path,
733 struct btrfs_super_block *disk_super,
734 bool *new_device_added)
736 struct btrfs_device *device;
737 struct btrfs_fs_devices *fs_devices;
738 struct rcu_string *name;
739 u64 found_transid = btrfs_super_generation(disk_super);
740 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
742 fs_devices = find_fsid(disk_super->fsid);
743 if (!fs_devices) {
744 fs_devices = alloc_fs_devices(disk_super->fsid);
745 if (IS_ERR(fs_devices))
746 return ERR_CAST(fs_devices);
748 mutex_lock(&fs_devices->device_list_mutex);
749 list_add(&fs_devices->fs_list, &fs_uuids);
751 device = NULL;
752 } else {
753 mutex_lock(&fs_devices->device_list_mutex);
754 device = btrfs_find_device(fs_devices, devid,
755 disk_super->dev_item.uuid, NULL, false);
758 if (!device) {
759 if (fs_devices->opened) {
760 mutex_unlock(&fs_devices->device_list_mutex);
761 return ERR_PTR(-EBUSY);
764 device = btrfs_alloc_device(NULL, &devid,
765 disk_super->dev_item.uuid);
766 if (IS_ERR(device)) {
767 mutex_unlock(&fs_devices->device_list_mutex);
768 /* we can safely leave the fs_devices entry around */
769 return device;
772 name = rcu_string_strdup(path, GFP_NOFS);
773 if (!name) {
774 btrfs_free_device(device);
775 mutex_unlock(&fs_devices->device_list_mutex);
776 return ERR_PTR(-ENOMEM);
778 rcu_assign_pointer(device->name, name);
780 list_add_rcu(&device->dev_list, &fs_devices->devices);
781 fs_devices->num_devices++;
783 device->fs_devices = fs_devices;
784 *new_device_added = true;
786 if (disk_super->label[0])
787 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
788 disk_super->label, devid, found_transid, path);
789 else
790 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
791 disk_super->fsid, devid, found_transid, path);
793 } else if (!device->name || strcmp(device->name->str, path)) {
795 * When FS is already mounted.
796 * 1. If you are here and if the device->name is NULL that
797 * means this device was missing at time of FS mount.
798 * 2. If you are here and if the device->name is different
799 * from 'path' that means either
800 * a. The same device disappeared and reappeared with
801 * different name. or
802 * b. The missing-disk-which-was-replaced, has
803 * reappeared now.
805 * We must allow 1 and 2a above. But 2b would be a spurious
806 * and unintentional.
808 * Further in case of 1 and 2a above, the disk at 'path'
809 * would have missed some transaction when it was away and
810 * in case of 2a the stale bdev has to be updated as well.
811 * 2b must not be allowed at all time.
815 * For now, we do allow update to btrfs_fs_device through the
816 * btrfs dev scan cli after FS has been mounted. We're still
817 * tracking a problem where systems fail mount by subvolume id
818 * when we reject replacement on a mounted FS.
820 if (!fs_devices->opened && found_transid < device->generation) {
822 * That is if the FS is _not_ mounted and if you
823 * are here, that means there is more than one
824 * disk with same uuid and devid.We keep the one
825 * with larger generation number or the last-in if
826 * generation are equal.
828 mutex_unlock(&fs_devices->device_list_mutex);
829 return ERR_PTR(-EEXIST);
833 * We are going to replace the device path for a given devid,
834 * make sure it's the same device if the device is mounted
836 if (device->bdev) {
837 struct block_device *path_bdev;
839 path_bdev = lookup_bdev(path);
840 if (IS_ERR(path_bdev)) {
841 mutex_unlock(&fs_devices->device_list_mutex);
842 return ERR_CAST(path_bdev);
845 if (device->bdev != path_bdev) {
846 bdput(path_bdev);
847 mutex_unlock(&fs_devices->device_list_mutex);
848 btrfs_warn_in_rcu(device->fs_info,
849 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
850 disk_super->fsid, devid,
851 rcu_str_deref(device->name), path);
852 return ERR_PTR(-EEXIST);
854 bdput(path_bdev);
855 btrfs_info_in_rcu(device->fs_info,
856 "device fsid %pU devid %llu moved old:%s new:%s",
857 disk_super->fsid, devid,
858 rcu_str_deref(device->name), path);
861 name = rcu_string_strdup(path, GFP_NOFS);
862 if (!name) {
863 mutex_unlock(&fs_devices->device_list_mutex);
864 return ERR_PTR(-ENOMEM);
866 rcu_string_free(device->name);
867 rcu_assign_pointer(device->name, name);
868 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
869 fs_devices->missing_devices--;
870 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
875 * Unmount does not free the btrfs_device struct but would zero
876 * generation along with most of the other members. So just update
877 * it back. We need it to pick the disk with largest generation
878 * (as above).
880 if (!fs_devices->opened)
881 device->generation = found_transid;
883 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
885 mutex_unlock(&fs_devices->device_list_mutex);
886 return device;
889 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
891 struct btrfs_fs_devices *fs_devices;
892 struct btrfs_device *device;
893 struct btrfs_device *orig_dev;
895 fs_devices = alloc_fs_devices(orig->fsid);
896 if (IS_ERR(fs_devices))
897 return fs_devices;
899 mutex_lock(&orig->device_list_mutex);
900 fs_devices->total_devices = orig->total_devices;
902 /* We have held the volume lock, it is safe to get the devices. */
903 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
904 struct rcu_string *name;
906 device = btrfs_alloc_device(NULL, &orig_dev->devid,
907 orig_dev->uuid);
908 if (IS_ERR(device))
909 goto error;
912 * This is ok to do without rcu read locked because we hold the
913 * uuid mutex so nothing we touch in here is going to disappear.
915 if (orig_dev->name) {
916 name = rcu_string_strdup(orig_dev->name->str,
917 GFP_KERNEL);
918 if (!name) {
919 btrfs_free_device(device);
920 goto error;
922 rcu_assign_pointer(device->name, name);
925 list_add(&device->dev_list, &fs_devices->devices);
926 device->fs_devices = fs_devices;
927 fs_devices->num_devices++;
929 mutex_unlock(&orig->device_list_mutex);
930 return fs_devices;
931 error:
932 mutex_unlock(&orig->device_list_mutex);
933 free_fs_devices(fs_devices);
934 return ERR_PTR(-ENOMEM);
938 * After we have read the system tree and know devids belonging to
939 * this filesystem, remove the device which does not belong there.
941 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
943 struct btrfs_device *device, *next;
944 struct btrfs_device *latest_dev = NULL;
946 mutex_lock(&uuid_mutex);
947 again:
948 /* This is the initialized path, it is safe to release the devices. */
949 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
950 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
951 &device->dev_state)) {
952 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
953 &device->dev_state) &&
954 !test_bit(BTRFS_DEV_STATE_MISSING,
955 &device->dev_state) &&
956 (!latest_dev ||
957 device->generation > latest_dev->generation)) {
958 latest_dev = device;
960 continue;
963 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
965 * In the first step, keep the device which has
966 * the correct fsid and the devid that is used
967 * for the dev_replace procedure.
968 * In the second step, the dev_replace state is
969 * read from the device tree and it is known
970 * whether the procedure is really active or
971 * not, which means whether this device is
972 * used or whether it should be removed.
974 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
975 &device->dev_state)) {
976 continue;
979 if (device->bdev) {
980 blkdev_put(device->bdev, device->mode);
981 device->bdev = NULL;
982 fs_devices->open_devices--;
984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
985 list_del_init(&device->dev_alloc_list);
986 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
987 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
988 &device->dev_state))
989 fs_devices->rw_devices--;
991 list_del_init(&device->dev_list);
992 fs_devices->num_devices--;
993 btrfs_free_device(device);
996 if (fs_devices->seed) {
997 fs_devices = fs_devices->seed;
998 goto again;
1001 fs_devices->latest_bdev = latest_dev->bdev;
1003 mutex_unlock(&uuid_mutex);
1006 static void free_device_rcu(struct rcu_head *head)
1008 struct btrfs_device *device;
1010 device = container_of(head, struct btrfs_device, rcu);
1011 btrfs_free_device(device);
1014 static void btrfs_close_bdev(struct btrfs_device *device)
1016 if (!device->bdev)
1017 return;
1019 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1020 sync_blockdev(device->bdev);
1021 invalidate_bdev(device->bdev);
1024 blkdev_put(device->bdev, device->mode);
1027 static void btrfs_close_one_device(struct btrfs_device *device)
1029 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1030 struct btrfs_device *new_device;
1031 struct rcu_string *name;
1033 if (device->bdev)
1034 fs_devices->open_devices--;
1036 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1037 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1038 list_del_init(&device->dev_alloc_list);
1039 fs_devices->rw_devices--;
1042 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1043 fs_devices->missing_devices--;
1045 btrfs_close_bdev(device);
1047 new_device = btrfs_alloc_device(NULL, &device->devid,
1048 device->uuid);
1049 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1051 /* Safe because we are under uuid_mutex */
1052 if (device->name) {
1053 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1054 BUG_ON(!name); /* -ENOMEM */
1055 rcu_assign_pointer(new_device->name, name);
1058 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1059 new_device->fs_devices = device->fs_devices;
1061 call_rcu(&device->rcu, free_device_rcu);
1064 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1066 struct btrfs_device *device, *tmp;
1068 if (--fs_devices->opened > 0)
1069 return 0;
1071 mutex_lock(&fs_devices->device_list_mutex);
1072 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1073 btrfs_close_one_device(device);
1075 mutex_unlock(&fs_devices->device_list_mutex);
1077 WARN_ON(fs_devices->open_devices);
1078 WARN_ON(fs_devices->rw_devices);
1079 fs_devices->opened = 0;
1080 fs_devices->seeding = 0;
1082 return 0;
1085 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1087 struct btrfs_fs_devices *seed_devices = NULL;
1088 int ret;
1090 mutex_lock(&uuid_mutex);
1091 ret = close_fs_devices(fs_devices);
1092 if (!fs_devices->opened) {
1093 seed_devices = fs_devices->seed;
1094 fs_devices->seed = NULL;
1096 mutex_unlock(&uuid_mutex);
1098 while (seed_devices) {
1099 fs_devices = seed_devices;
1100 seed_devices = fs_devices->seed;
1101 close_fs_devices(fs_devices);
1102 free_fs_devices(fs_devices);
1104 return ret;
1107 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1108 fmode_t flags, void *holder)
1110 struct btrfs_device *device;
1111 struct btrfs_device *latest_dev = NULL;
1112 int ret = 0;
1114 flags |= FMODE_EXCL;
1116 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1117 /* Just open everything we can; ignore failures here */
1118 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1119 continue;
1121 if (!latest_dev ||
1122 device->generation > latest_dev->generation)
1123 latest_dev = device;
1125 if (fs_devices->open_devices == 0) {
1126 ret = -EINVAL;
1127 goto out;
1129 fs_devices->opened = 1;
1130 fs_devices->latest_bdev = latest_dev->bdev;
1131 fs_devices->total_rw_bytes = 0;
1132 out:
1133 return ret;
1136 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1138 struct btrfs_device *dev1, *dev2;
1140 dev1 = list_entry(a, struct btrfs_device, dev_list);
1141 dev2 = list_entry(b, struct btrfs_device, dev_list);
1143 if (dev1->devid < dev2->devid)
1144 return -1;
1145 else if (dev1->devid > dev2->devid)
1146 return 1;
1147 return 0;
1150 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1151 fmode_t flags, void *holder)
1153 int ret;
1155 lockdep_assert_held(&uuid_mutex);
1157 mutex_lock(&fs_devices->device_list_mutex);
1158 if (fs_devices->opened) {
1159 fs_devices->opened++;
1160 ret = 0;
1161 } else {
1162 list_sort(NULL, &fs_devices->devices, devid_cmp);
1163 ret = open_fs_devices(fs_devices, flags, holder);
1165 mutex_unlock(&fs_devices->device_list_mutex);
1167 return ret;
1170 static void btrfs_release_disk_super(struct page *page)
1172 kunmap(page);
1173 put_page(page);
1176 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1177 struct page **page,
1178 struct btrfs_super_block **disk_super)
1180 void *p;
1181 pgoff_t index;
1183 /* make sure our super fits in the device */
1184 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1185 return 1;
1187 /* make sure our super fits in the page */
1188 if (sizeof(**disk_super) > PAGE_SIZE)
1189 return 1;
1191 /* make sure our super doesn't straddle pages on disk */
1192 index = bytenr >> PAGE_SHIFT;
1193 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1194 return 1;
1196 /* pull in the page with our super */
1197 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1198 index, GFP_KERNEL);
1200 if (IS_ERR_OR_NULL(*page))
1201 return 1;
1203 p = kmap(*page);
1205 /* align our pointer to the offset of the super block */
1206 *disk_super = p + (bytenr & ~PAGE_MASK);
1208 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1209 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1210 btrfs_release_disk_super(*page);
1211 return 1;
1214 if ((*disk_super)->label[0] &&
1215 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1216 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1218 return 0;
1222 * Look for a btrfs signature on a device. This may be called out of the mount path
1223 * and we are not allowed to call set_blocksize during the scan. The superblock
1224 * is read via pagecache
1226 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1227 void *holder)
1229 struct btrfs_super_block *disk_super;
1230 bool new_device_added = false;
1231 struct btrfs_device *device = NULL;
1232 struct block_device *bdev;
1233 struct page *page;
1234 u64 bytenr;
1236 lockdep_assert_held(&uuid_mutex);
1239 * we would like to check all the supers, but that would make
1240 * a btrfs mount succeed after a mkfs from a different FS.
1241 * So, we need to add a special mount option to scan for
1242 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1244 bytenr = btrfs_sb_offset(0);
1245 flags |= FMODE_EXCL;
1247 bdev = blkdev_get_by_path(path, flags, holder);
1248 if (IS_ERR(bdev))
1249 return ERR_CAST(bdev);
1251 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1252 device = ERR_PTR(-EINVAL);
1253 goto error_bdev_put;
1256 device = device_list_add(path, disk_super, &new_device_added);
1257 if (!IS_ERR(device)) {
1258 if (new_device_added)
1259 btrfs_free_stale_devices(path, device);
1262 btrfs_release_disk_super(page);
1264 error_bdev_put:
1265 blkdev_put(bdev, flags);
1267 return device;
1270 static int contains_pending_extent(struct btrfs_transaction *transaction,
1271 struct btrfs_device *device,
1272 u64 *start, u64 len)
1274 struct btrfs_fs_info *fs_info = device->fs_info;
1275 struct extent_map *em;
1276 struct list_head *search_list = &fs_info->pinned_chunks;
1277 int ret = 0;
1278 u64 physical_start = *start;
1280 if (transaction)
1281 search_list = &transaction->pending_chunks;
1282 again:
1283 list_for_each_entry(em, search_list, list) {
1284 struct map_lookup *map;
1285 int i;
1287 map = em->map_lookup;
1288 for (i = 0; i < map->num_stripes; i++) {
1289 u64 end;
1291 if (map->stripes[i].dev != device)
1292 continue;
1293 if (map->stripes[i].physical >= physical_start + len ||
1294 map->stripes[i].physical + em->orig_block_len <=
1295 physical_start)
1296 continue;
1298 * Make sure that while processing the pinned list we do
1299 * not override our *start with a lower value, because
1300 * we can have pinned chunks that fall within this
1301 * device hole and that have lower physical addresses
1302 * than the pending chunks we processed before. If we
1303 * do not take this special care we can end up getting
1304 * 2 pending chunks that start at the same physical
1305 * device offsets because the end offset of a pinned
1306 * chunk can be equal to the start offset of some
1307 * pending chunk.
1309 end = map->stripes[i].physical + em->orig_block_len;
1310 if (end > *start) {
1311 *start = end;
1312 ret = 1;
1316 if (search_list != &fs_info->pinned_chunks) {
1317 search_list = &fs_info->pinned_chunks;
1318 goto again;
1321 return ret;
1326 * find_free_dev_extent_start - find free space in the specified device
1327 * @device: the device which we search the free space in
1328 * @num_bytes: the size of the free space that we need
1329 * @search_start: the position from which to begin the search
1330 * @start: store the start of the free space.
1331 * @len: the size of the free space. that we find, or the size
1332 * of the max free space if we don't find suitable free space
1334 * this uses a pretty simple search, the expectation is that it is
1335 * called very infrequently and that a given device has a small number
1336 * of extents
1338 * @start is used to store the start of the free space if we find. But if we
1339 * don't find suitable free space, it will be used to store the start position
1340 * of the max free space.
1342 * @len is used to store the size of the free space that we find.
1343 * But if we don't find suitable free space, it is used to store the size of
1344 * the max free space.
1346 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1347 struct btrfs_device *device, u64 num_bytes,
1348 u64 search_start, u64 *start, u64 *len)
1350 struct btrfs_fs_info *fs_info = device->fs_info;
1351 struct btrfs_root *root = fs_info->dev_root;
1352 struct btrfs_key key;
1353 struct btrfs_dev_extent *dev_extent;
1354 struct btrfs_path *path;
1355 u64 hole_size;
1356 u64 max_hole_start;
1357 u64 max_hole_size;
1358 u64 extent_end;
1359 u64 search_end = device->total_bytes;
1360 int ret;
1361 int slot;
1362 struct extent_buffer *l;
1365 * We don't want to overwrite the superblock on the drive nor any area
1366 * used by the boot loader (grub for example), so we make sure to start
1367 * at an offset of at least 1MB.
1369 search_start = max_t(u64, search_start, SZ_1M);
1371 path = btrfs_alloc_path();
1372 if (!path)
1373 return -ENOMEM;
1375 max_hole_start = search_start;
1376 max_hole_size = 0;
1378 again:
1379 if (search_start >= search_end ||
1380 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1381 ret = -ENOSPC;
1382 goto out;
1385 path->reada = READA_FORWARD;
1386 path->search_commit_root = 1;
1387 path->skip_locking = 1;
1389 key.objectid = device->devid;
1390 key.offset = search_start;
1391 key.type = BTRFS_DEV_EXTENT_KEY;
1393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1394 if (ret < 0)
1395 goto out;
1396 if (ret > 0) {
1397 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1398 if (ret < 0)
1399 goto out;
1402 while (1) {
1403 l = path->nodes[0];
1404 slot = path->slots[0];
1405 if (slot >= btrfs_header_nritems(l)) {
1406 ret = btrfs_next_leaf(root, path);
1407 if (ret == 0)
1408 continue;
1409 if (ret < 0)
1410 goto out;
1412 break;
1414 btrfs_item_key_to_cpu(l, &key, slot);
1416 if (key.objectid < device->devid)
1417 goto next;
1419 if (key.objectid > device->devid)
1420 break;
1422 if (key.type != BTRFS_DEV_EXTENT_KEY)
1423 goto next;
1425 if (key.offset > search_start) {
1426 hole_size = key.offset - search_start;
1429 * Have to check before we set max_hole_start, otherwise
1430 * we could end up sending back this offset anyway.
1432 if (contains_pending_extent(transaction, device,
1433 &search_start,
1434 hole_size)) {
1435 if (key.offset >= search_start) {
1436 hole_size = key.offset - search_start;
1437 } else {
1438 WARN_ON_ONCE(1);
1439 hole_size = 0;
1443 if (hole_size > max_hole_size) {
1444 max_hole_start = search_start;
1445 max_hole_size = hole_size;
1449 * If this free space is greater than which we need,
1450 * it must be the max free space that we have found
1451 * until now, so max_hole_start must point to the start
1452 * of this free space and the length of this free space
1453 * is stored in max_hole_size. Thus, we return
1454 * max_hole_start and max_hole_size and go back to the
1455 * caller.
1457 if (hole_size >= num_bytes) {
1458 ret = 0;
1459 goto out;
1463 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1464 extent_end = key.offset + btrfs_dev_extent_length(l,
1465 dev_extent);
1466 if (extent_end > search_start)
1467 search_start = extent_end;
1468 next:
1469 path->slots[0]++;
1470 cond_resched();
1474 * At this point, search_start should be the end of
1475 * allocated dev extents, and when shrinking the device,
1476 * search_end may be smaller than search_start.
1478 if (search_end > search_start) {
1479 hole_size = search_end - search_start;
1481 if (contains_pending_extent(transaction, device, &search_start,
1482 hole_size)) {
1483 btrfs_release_path(path);
1484 goto again;
1487 if (hole_size > max_hole_size) {
1488 max_hole_start = search_start;
1489 max_hole_size = hole_size;
1493 /* See above. */
1494 if (max_hole_size < num_bytes)
1495 ret = -ENOSPC;
1496 else
1497 ret = 0;
1499 out:
1500 btrfs_free_path(path);
1501 *start = max_hole_start;
1502 if (len)
1503 *len = max_hole_size;
1504 return ret;
1507 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1508 struct btrfs_device *device, u64 num_bytes,
1509 u64 *start, u64 *len)
1511 /* FIXME use last free of some kind */
1512 return find_free_dev_extent_start(trans->transaction, device,
1513 num_bytes, 0, start, len);
1516 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1517 struct btrfs_device *device,
1518 u64 start, u64 *dev_extent_len)
1520 struct btrfs_fs_info *fs_info = device->fs_info;
1521 struct btrfs_root *root = fs_info->dev_root;
1522 int ret;
1523 struct btrfs_path *path;
1524 struct btrfs_key key;
1525 struct btrfs_key found_key;
1526 struct extent_buffer *leaf = NULL;
1527 struct btrfs_dev_extent *extent = NULL;
1529 path = btrfs_alloc_path();
1530 if (!path)
1531 return -ENOMEM;
1533 key.objectid = device->devid;
1534 key.offset = start;
1535 key.type = BTRFS_DEV_EXTENT_KEY;
1536 again:
1537 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1538 if (ret > 0) {
1539 ret = btrfs_previous_item(root, path, key.objectid,
1540 BTRFS_DEV_EXTENT_KEY);
1541 if (ret)
1542 goto out;
1543 leaf = path->nodes[0];
1544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 BUG_ON(found_key.offset > start || found_key.offset +
1548 btrfs_dev_extent_length(leaf, extent) < start);
1549 key = found_key;
1550 btrfs_release_path(path);
1551 goto again;
1552 } else if (ret == 0) {
1553 leaf = path->nodes[0];
1554 extent = btrfs_item_ptr(leaf, path->slots[0],
1555 struct btrfs_dev_extent);
1556 } else {
1557 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1558 goto out;
1561 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1563 ret = btrfs_del_item(trans, root, path);
1564 if (ret) {
1565 btrfs_handle_fs_error(fs_info, ret,
1566 "Failed to remove dev extent item");
1567 } else {
1568 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1570 out:
1571 btrfs_free_path(path);
1572 return ret;
1575 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1576 struct btrfs_device *device,
1577 u64 chunk_offset, u64 start, u64 num_bytes)
1579 int ret;
1580 struct btrfs_path *path;
1581 struct btrfs_fs_info *fs_info = device->fs_info;
1582 struct btrfs_root *root = fs_info->dev_root;
1583 struct btrfs_dev_extent *extent;
1584 struct extent_buffer *leaf;
1585 struct btrfs_key key;
1587 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1588 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1593 key.objectid = device->devid;
1594 key.offset = start;
1595 key.type = BTRFS_DEV_EXTENT_KEY;
1596 ret = btrfs_insert_empty_item(trans, root, path, &key,
1597 sizeof(*extent));
1598 if (ret)
1599 goto out;
1601 leaf = path->nodes[0];
1602 extent = btrfs_item_ptr(leaf, path->slots[0],
1603 struct btrfs_dev_extent);
1604 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1605 BTRFS_CHUNK_TREE_OBJECTID);
1606 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1607 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1608 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1610 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1611 btrfs_mark_buffer_dirty(leaf);
1612 out:
1613 btrfs_free_path(path);
1614 return ret;
1617 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1619 struct extent_map_tree *em_tree;
1620 struct extent_map *em;
1621 struct rb_node *n;
1622 u64 ret = 0;
1624 em_tree = &fs_info->mapping_tree.map_tree;
1625 read_lock(&em_tree->lock);
1626 n = rb_last(&em_tree->map);
1627 if (n) {
1628 em = rb_entry(n, struct extent_map, rb_node);
1629 ret = em->start + em->len;
1631 read_unlock(&em_tree->lock);
1633 return ret;
1636 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1637 u64 *devid_ret)
1639 int ret;
1640 struct btrfs_key key;
1641 struct btrfs_key found_key;
1642 struct btrfs_path *path;
1644 path = btrfs_alloc_path();
1645 if (!path)
1646 return -ENOMEM;
1648 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1649 key.type = BTRFS_DEV_ITEM_KEY;
1650 key.offset = (u64)-1;
1652 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1653 if (ret < 0)
1654 goto error;
1656 BUG_ON(ret == 0); /* Corruption */
1658 ret = btrfs_previous_item(fs_info->chunk_root, path,
1659 BTRFS_DEV_ITEMS_OBJECTID,
1660 BTRFS_DEV_ITEM_KEY);
1661 if (ret) {
1662 *devid_ret = 1;
1663 } else {
1664 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1665 path->slots[0]);
1666 *devid_ret = found_key.offset + 1;
1668 ret = 0;
1669 error:
1670 btrfs_free_path(path);
1671 return ret;
1675 * the device information is stored in the chunk root
1676 * the btrfs_device struct should be fully filled in
1678 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1679 struct btrfs_device *device)
1681 int ret;
1682 struct btrfs_path *path;
1683 struct btrfs_dev_item *dev_item;
1684 struct extent_buffer *leaf;
1685 struct btrfs_key key;
1686 unsigned long ptr;
1688 path = btrfs_alloc_path();
1689 if (!path)
1690 return -ENOMEM;
1692 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1693 key.type = BTRFS_DEV_ITEM_KEY;
1694 key.offset = device->devid;
1696 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1697 &key, sizeof(*dev_item));
1698 if (ret)
1699 goto out;
1701 leaf = path->nodes[0];
1702 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1704 btrfs_set_device_id(leaf, dev_item, device->devid);
1705 btrfs_set_device_generation(leaf, dev_item, 0);
1706 btrfs_set_device_type(leaf, dev_item, device->type);
1707 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1708 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1709 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1710 btrfs_set_device_total_bytes(leaf, dev_item,
1711 btrfs_device_get_disk_total_bytes(device));
1712 btrfs_set_device_bytes_used(leaf, dev_item,
1713 btrfs_device_get_bytes_used(device));
1714 btrfs_set_device_group(leaf, dev_item, 0);
1715 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1716 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1717 btrfs_set_device_start_offset(leaf, dev_item, 0);
1719 ptr = btrfs_device_uuid(dev_item);
1720 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1721 ptr = btrfs_device_fsid(dev_item);
1722 write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1723 btrfs_mark_buffer_dirty(leaf);
1725 ret = 0;
1726 out:
1727 btrfs_free_path(path);
1728 return ret;
1732 * Function to update ctime/mtime for a given device path.
1733 * Mainly used for ctime/mtime based probe like libblkid.
1735 static void update_dev_time(const char *path_name)
1737 struct file *filp;
1739 filp = filp_open(path_name, O_RDWR, 0);
1740 if (IS_ERR(filp))
1741 return;
1742 file_update_time(filp);
1743 filp_close(filp, NULL);
1746 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1747 struct btrfs_device *device)
1749 struct btrfs_root *root = fs_info->chunk_root;
1750 int ret;
1751 struct btrfs_path *path;
1752 struct btrfs_key key;
1753 struct btrfs_trans_handle *trans;
1755 path = btrfs_alloc_path();
1756 if (!path)
1757 return -ENOMEM;
1759 trans = btrfs_start_transaction(root, 0);
1760 if (IS_ERR(trans)) {
1761 btrfs_free_path(path);
1762 return PTR_ERR(trans);
1764 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1765 key.type = BTRFS_DEV_ITEM_KEY;
1766 key.offset = device->devid;
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 if (ret) {
1770 if (ret > 0)
1771 ret = -ENOENT;
1772 btrfs_abort_transaction(trans, ret);
1773 btrfs_end_transaction(trans);
1774 goto out;
1777 ret = btrfs_del_item(trans, root, path);
1778 if (ret) {
1779 btrfs_abort_transaction(trans, ret);
1780 btrfs_end_transaction(trans);
1783 out:
1784 btrfs_free_path(path);
1785 if (!ret)
1786 ret = btrfs_commit_transaction(trans);
1787 return ret;
1791 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1792 * filesystem. It's up to the caller to adjust that number regarding eg. device
1793 * replace.
1795 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1796 u64 num_devices)
1798 u64 all_avail;
1799 unsigned seq;
1800 int i;
1802 do {
1803 seq = read_seqbegin(&fs_info->profiles_lock);
1805 all_avail = fs_info->avail_data_alloc_bits |
1806 fs_info->avail_system_alloc_bits |
1807 fs_info->avail_metadata_alloc_bits;
1808 } while (read_seqretry(&fs_info->profiles_lock, seq));
1810 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1811 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1812 continue;
1814 if (num_devices < btrfs_raid_array[i].devs_min) {
1815 int ret = btrfs_raid_array[i].mindev_error;
1817 if (ret)
1818 return ret;
1822 return 0;
1825 static struct btrfs_device * btrfs_find_next_active_device(
1826 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1828 struct btrfs_device *next_device;
1830 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1831 if (next_device != device &&
1832 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1833 && next_device->bdev)
1834 return next_device;
1837 return NULL;
1841 * Helper function to check if the given device is part of s_bdev / latest_bdev
1842 * and replace it with the provided or the next active device, in the context
1843 * where this function called, there should be always be another device (or
1844 * this_dev) which is active.
1846 void btrfs_assign_next_active_device(struct btrfs_device *device,
1847 struct btrfs_device *this_dev)
1849 struct btrfs_fs_info *fs_info = device->fs_info;
1850 struct btrfs_device *next_device;
1852 if (this_dev)
1853 next_device = this_dev;
1854 else
1855 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1856 device);
1857 ASSERT(next_device);
1859 if (fs_info->sb->s_bdev &&
1860 (fs_info->sb->s_bdev == device->bdev))
1861 fs_info->sb->s_bdev = next_device->bdev;
1863 if (fs_info->fs_devices->latest_bdev == device->bdev)
1864 fs_info->fs_devices->latest_bdev = next_device->bdev;
1867 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1868 u64 devid)
1870 struct btrfs_device *device;
1871 struct btrfs_fs_devices *cur_devices;
1872 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1873 u64 num_devices;
1874 int ret = 0;
1876 mutex_lock(&uuid_mutex);
1878 num_devices = fs_devices->num_devices;
1879 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1880 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1881 WARN_ON(num_devices < 1);
1882 num_devices--;
1884 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1886 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1887 if (ret)
1888 goto out;
1890 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1891 &device);
1892 if (ret)
1893 goto out;
1895 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1896 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1897 goto out;
1900 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1901 fs_info->fs_devices->rw_devices == 1) {
1902 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1903 goto out;
1906 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1907 mutex_lock(&fs_info->chunk_mutex);
1908 list_del_init(&device->dev_alloc_list);
1909 device->fs_devices->rw_devices--;
1910 mutex_unlock(&fs_info->chunk_mutex);
1913 mutex_unlock(&uuid_mutex);
1914 ret = btrfs_shrink_device(device, 0);
1915 mutex_lock(&uuid_mutex);
1916 if (ret)
1917 goto error_undo;
1920 * TODO: the superblock still includes this device in its num_devices
1921 * counter although write_all_supers() is not locked out. This
1922 * could give a filesystem state which requires a degraded mount.
1924 ret = btrfs_rm_dev_item(fs_info, device);
1925 if (ret)
1926 goto error_undo;
1928 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1929 btrfs_scrub_cancel_dev(fs_info, device);
1932 * the device list mutex makes sure that we don't change
1933 * the device list while someone else is writing out all
1934 * the device supers. Whoever is writing all supers, should
1935 * lock the device list mutex before getting the number of
1936 * devices in the super block (super_copy). Conversely,
1937 * whoever updates the number of devices in the super block
1938 * (super_copy) should hold the device list mutex.
1942 * In normal cases the cur_devices == fs_devices. But in case
1943 * of deleting a seed device, the cur_devices should point to
1944 * its own fs_devices listed under the fs_devices->seed.
1946 cur_devices = device->fs_devices;
1947 mutex_lock(&fs_devices->device_list_mutex);
1948 list_del_rcu(&device->dev_list);
1950 cur_devices->num_devices--;
1951 cur_devices->total_devices--;
1952 /* Update total_devices of the parent fs_devices if it's seed */
1953 if (cur_devices != fs_devices)
1954 fs_devices->total_devices--;
1956 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1957 cur_devices->missing_devices--;
1959 btrfs_assign_next_active_device(device, NULL);
1961 if (device->bdev) {
1962 cur_devices->open_devices--;
1963 /* remove sysfs entry */
1964 btrfs_sysfs_rm_device_link(fs_devices, device);
1967 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1968 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1969 mutex_unlock(&fs_devices->device_list_mutex);
1972 * at this point, the device is zero sized and detached from
1973 * the devices list. All that's left is to zero out the old
1974 * supers and free the device.
1976 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1977 btrfs_scratch_superblocks(device->bdev, device->name->str);
1979 btrfs_close_bdev(device);
1980 call_rcu(&device->rcu, free_device_rcu);
1982 if (cur_devices->open_devices == 0) {
1983 while (fs_devices) {
1984 if (fs_devices->seed == cur_devices) {
1985 fs_devices->seed = cur_devices->seed;
1986 break;
1988 fs_devices = fs_devices->seed;
1990 cur_devices->seed = NULL;
1991 close_fs_devices(cur_devices);
1992 free_fs_devices(cur_devices);
1995 out:
1996 mutex_unlock(&uuid_mutex);
1997 return ret;
1999 error_undo:
2000 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2001 mutex_lock(&fs_info->chunk_mutex);
2002 list_add(&device->dev_alloc_list,
2003 &fs_devices->alloc_list);
2004 device->fs_devices->rw_devices++;
2005 mutex_unlock(&fs_info->chunk_mutex);
2007 goto out;
2010 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2012 struct btrfs_fs_devices *fs_devices;
2014 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2017 * in case of fs with no seed, srcdev->fs_devices will point
2018 * to fs_devices of fs_info. However when the dev being replaced is
2019 * a seed dev it will point to the seed's local fs_devices. In short
2020 * srcdev will have its correct fs_devices in both the cases.
2022 fs_devices = srcdev->fs_devices;
2024 list_del_rcu(&srcdev->dev_list);
2025 list_del(&srcdev->dev_alloc_list);
2026 fs_devices->num_devices--;
2027 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2028 fs_devices->missing_devices--;
2030 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2031 fs_devices->rw_devices--;
2033 if (srcdev->bdev)
2034 fs_devices->open_devices--;
2037 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2038 struct btrfs_device *srcdev)
2040 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2042 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2043 /* zero out the old super if it is writable */
2044 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2047 btrfs_close_bdev(srcdev);
2048 call_rcu(&srcdev->rcu, free_device_rcu);
2050 /* if this is no devs we rather delete the fs_devices */
2051 if (!fs_devices->num_devices) {
2052 struct btrfs_fs_devices *tmp_fs_devices;
2055 * On a mounted FS, num_devices can't be zero unless it's a
2056 * seed. In case of a seed device being replaced, the replace
2057 * target added to the sprout FS, so there will be no more
2058 * device left under the seed FS.
2060 ASSERT(fs_devices->seeding);
2062 tmp_fs_devices = fs_info->fs_devices;
2063 while (tmp_fs_devices) {
2064 if (tmp_fs_devices->seed == fs_devices) {
2065 tmp_fs_devices->seed = fs_devices->seed;
2066 break;
2068 tmp_fs_devices = tmp_fs_devices->seed;
2070 fs_devices->seed = NULL;
2071 close_fs_devices(fs_devices);
2072 free_fs_devices(fs_devices);
2076 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2078 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2080 WARN_ON(!tgtdev);
2081 mutex_lock(&fs_devices->device_list_mutex);
2083 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2085 if (tgtdev->bdev)
2086 fs_devices->open_devices--;
2088 fs_devices->num_devices--;
2090 btrfs_assign_next_active_device(tgtdev, NULL);
2092 list_del_rcu(&tgtdev->dev_list);
2094 mutex_unlock(&fs_devices->device_list_mutex);
2097 * The update_dev_time() with in btrfs_scratch_superblocks()
2098 * may lead to a call to btrfs_show_devname() which will try
2099 * to hold device_list_mutex. And here this device
2100 * is already out of device list, so we don't have to hold
2101 * the device_list_mutex lock.
2103 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2105 btrfs_close_bdev(tgtdev);
2106 call_rcu(&tgtdev->rcu, free_device_rcu);
2109 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2110 const char *device_path,
2111 struct btrfs_device **device)
2113 int ret = 0;
2114 struct btrfs_super_block *disk_super;
2115 u64 devid;
2116 u8 *dev_uuid;
2117 struct block_device *bdev;
2118 struct buffer_head *bh;
2120 *device = NULL;
2121 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2122 fs_info->bdev_holder, 0, &bdev, &bh);
2123 if (ret)
2124 return ret;
2125 disk_super = (struct btrfs_super_block *)bh->b_data;
2126 devid = btrfs_stack_device_id(&disk_super->dev_item);
2127 dev_uuid = disk_super->dev_item.uuid;
2128 *device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2129 disk_super->fsid, true);
2130 brelse(bh);
2131 if (!*device)
2132 ret = -ENOENT;
2133 blkdev_put(bdev, FMODE_READ);
2134 return ret;
2137 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2138 const char *device_path,
2139 struct btrfs_device **device)
2141 *device = NULL;
2142 if (strcmp(device_path, "missing") == 0) {
2143 struct list_head *devices;
2144 struct btrfs_device *tmp;
2146 devices = &fs_info->fs_devices->devices;
2147 list_for_each_entry(tmp, devices, dev_list) {
2148 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2149 &tmp->dev_state) && !tmp->bdev) {
2150 *device = tmp;
2151 break;
2155 if (!*device)
2156 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2158 return 0;
2159 } else {
2160 return btrfs_find_device_by_path(fs_info, device_path, device);
2165 * Lookup a device given by device id, or the path if the id is 0.
2167 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2168 const char *devpath,
2169 struct btrfs_device **device)
2171 int ret;
2173 if (devid) {
2174 ret = 0;
2175 *device = btrfs_find_device(fs_info->fs_devices, devid,
2176 NULL, NULL, true);
2177 if (!*device)
2178 ret = -ENOENT;
2179 } else {
2180 if (!devpath || !devpath[0])
2181 return -EINVAL;
2183 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2184 device);
2186 return ret;
2190 * does all the dirty work required for changing file system's UUID.
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195 struct btrfs_fs_devices *old_devices;
2196 struct btrfs_fs_devices *seed_devices;
2197 struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 struct btrfs_device *device;
2199 u64 super_flags;
2201 lockdep_assert_held(&uuid_mutex);
2202 if (!fs_devices->seeding)
2203 return -EINVAL;
2205 seed_devices = alloc_fs_devices(NULL);
2206 if (IS_ERR(seed_devices))
2207 return PTR_ERR(seed_devices);
2209 old_devices = clone_fs_devices(fs_devices);
2210 if (IS_ERR(old_devices)) {
2211 kfree(seed_devices);
2212 return PTR_ERR(old_devices);
2215 list_add(&old_devices->fs_list, &fs_uuids);
2217 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 seed_devices->opened = 1;
2219 INIT_LIST_HEAD(&seed_devices->devices);
2220 INIT_LIST_HEAD(&seed_devices->alloc_list);
2221 mutex_init(&seed_devices->device_list_mutex);
2223 mutex_lock(&fs_devices->device_list_mutex);
2224 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 synchronize_rcu);
2226 list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 device->fs_devices = seed_devices;
2229 mutex_lock(&fs_info->chunk_mutex);
2230 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231 mutex_unlock(&fs_info->chunk_mutex);
2233 fs_devices->seeding = 0;
2234 fs_devices->num_devices = 0;
2235 fs_devices->open_devices = 0;
2236 fs_devices->missing_devices = 0;
2237 fs_devices->rotating = 0;
2238 fs_devices->seed = seed_devices;
2240 generate_random_uuid(fs_devices->fsid);
2241 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243 mutex_unlock(&fs_devices->device_list_mutex);
2245 super_flags = btrfs_super_flags(disk_super) &
2246 ~BTRFS_SUPER_FLAG_SEEDING;
2247 btrfs_set_super_flags(disk_super, super_flags);
2249 return 0;
2253 * Store the expected generation for seed devices in device items.
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256 struct btrfs_fs_info *fs_info)
2258 struct btrfs_root *root = fs_info->chunk_root;
2259 struct btrfs_path *path;
2260 struct extent_buffer *leaf;
2261 struct btrfs_dev_item *dev_item;
2262 struct btrfs_device *device;
2263 struct btrfs_key key;
2264 u8 fs_uuid[BTRFS_FSID_SIZE];
2265 u8 dev_uuid[BTRFS_UUID_SIZE];
2266 u64 devid;
2267 int ret;
2269 path = btrfs_alloc_path();
2270 if (!path)
2271 return -ENOMEM;
2273 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 key.offset = 0;
2275 key.type = BTRFS_DEV_ITEM_KEY;
2277 while (1) {
2278 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 if (ret < 0)
2280 goto error;
2282 leaf = path->nodes[0];
2283 next_slot:
2284 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 ret = btrfs_next_leaf(root, path);
2286 if (ret > 0)
2287 break;
2288 if (ret < 0)
2289 goto error;
2290 leaf = path->nodes[0];
2291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292 btrfs_release_path(path);
2293 continue;
2296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 key.type != BTRFS_DEV_ITEM_KEY)
2299 break;
2301 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_dev_item);
2303 devid = btrfs_device_id(leaf, dev_item);
2304 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305 BTRFS_UUID_SIZE);
2306 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307 BTRFS_FSID_SIZE);
2308 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2309 fs_uuid, true);
2310 BUG_ON(!device); /* Logic error */
2312 if (device->fs_devices->seeding) {
2313 btrfs_set_device_generation(leaf, dev_item,
2314 device->generation);
2315 btrfs_mark_buffer_dirty(leaf);
2318 path->slots[0]++;
2319 goto next_slot;
2321 ret = 0;
2322 error:
2323 btrfs_free_path(path);
2324 return ret;
2327 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2329 struct btrfs_root *root = fs_info->dev_root;
2330 struct request_queue *q;
2331 struct btrfs_trans_handle *trans;
2332 struct btrfs_device *device;
2333 struct block_device *bdev;
2334 struct super_block *sb = fs_info->sb;
2335 struct rcu_string *name;
2336 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2337 u64 orig_super_total_bytes;
2338 u64 orig_super_num_devices;
2339 int seeding_dev = 0;
2340 int ret = 0;
2341 bool unlocked = false;
2343 if (sb_rdonly(sb) && !fs_devices->seeding)
2344 return -EROFS;
2346 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2347 fs_info->bdev_holder);
2348 if (IS_ERR(bdev))
2349 return PTR_ERR(bdev);
2351 if (fs_devices->seeding) {
2352 seeding_dev = 1;
2353 down_write(&sb->s_umount);
2354 mutex_lock(&uuid_mutex);
2357 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2359 mutex_lock(&fs_devices->device_list_mutex);
2360 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2361 if (device->bdev == bdev) {
2362 ret = -EEXIST;
2363 mutex_unlock(
2364 &fs_devices->device_list_mutex);
2365 goto error;
2368 mutex_unlock(&fs_devices->device_list_mutex);
2370 device = btrfs_alloc_device(fs_info, NULL, NULL);
2371 if (IS_ERR(device)) {
2372 /* we can safely leave the fs_devices entry around */
2373 ret = PTR_ERR(device);
2374 goto error;
2377 name = rcu_string_strdup(device_path, GFP_KERNEL);
2378 if (!name) {
2379 ret = -ENOMEM;
2380 goto error_free_device;
2382 rcu_assign_pointer(device->name, name);
2384 trans = btrfs_start_transaction(root, 0);
2385 if (IS_ERR(trans)) {
2386 ret = PTR_ERR(trans);
2387 goto error_free_device;
2390 q = bdev_get_queue(bdev);
2391 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2392 device->generation = trans->transid;
2393 device->io_width = fs_info->sectorsize;
2394 device->io_align = fs_info->sectorsize;
2395 device->sector_size = fs_info->sectorsize;
2396 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2397 fs_info->sectorsize);
2398 device->disk_total_bytes = device->total_bytes;
2399 device->commit_total_bytes = device->total_bytes;
2400 device->fs_info = fs_info;
2401 device->bdev = bdev;
2402 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2403 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2404 device->mode = FMODE_EXCL;
2405 device->dev_stats_valid = 1;
2406 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2408 if (seeding_dev) {
2409 sb->s_flags &= ~SB_RDONLY;
2410 ret = btrfs_prepare_sprout(fs_info);
2411 if (ret) {
2412 btrfs_abort_transaction(trans, ret);
2413 goto error_trans;
2417 device->fs_devices = fs_devices;
2419 mutex_lock(&fs_devices->device_list_mutex);
2420 mutex_lock(&fs_info->chunk_mutex);
2421 list_add_rcu(&device->dev_list, &fs_devices->devices);
2422 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2423 fs_devices->num_devices++;
2424 fs_devices->open_devices++;
2425 fs_devices->rw_devices++;
2426 fs_devices->total_devices++;
2427 fs_devices->total_rw_bytes += device->total_bytes;
2429 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2431 if (!blk_queue_nonrot(q))
2432 fs_devices->rotating = 1;
2434 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2435 btrfs_set_super_total_bytes(fs_info->super_copy,
2436 round_down(orig_super_total_bytes + device->total_bytes,
2437 fs_info->sectorsize));
2439 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2440 btrfs_set_super_num_devices(fs_info->super_copy,
2441 orig_super_num_devices + 1);
2443 /* add sysfs device entry */
2444 btrfs_sysfs_add_device_link(fs_devices, device);
2447 * we've got more storage, clear any full flags on the space
2448 * infos
2450 btrfs_clear_space_info_full(fs_info);
2452 mutex_unlock(&fs_info->chunk_mutex);
2453 mutex_unlock(&fs_devices->device_list_mutex);
2455 if (seeding_dev) {
2456 mutex_lock(&fs_info->chunk_mutex);
2457 ret = init_first_rw_device(trans, fs_info);
2458 mutex_unlock(&fs_info->chunk_mutex);
2459 if (ret) {
2460 btrfs_abort_transaction(trans, ret);
2461 goto error_sysfs;
2465 ret = btrfs_add_dev_item(trans, device);
2466 if (ret) {
2467 btrfs_abort_transaction(trans, ret);
2468 goto error_sysfs;
2471 if (seeding_dev) {
2472 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2474 ret = btrfs_finish_sprout(trans, fs_info);
2475 if (ret) {
2476 btrfs_abort_transaction(trans, ret);
2477 goto error_sysfs;
2480 /* Sprouting would change fsid of the mounted root,
2481 * so rename the fsid on the sysfs
2483 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2484 fs_info->fsid);
2485 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2486 btrfs_warn(fs_info,
2487 "sysfs: failed to create fsid for sprout");
2490 ret = btrfs_commit_transaction(trans);
2492 if (seeding_dev) {
2493 mutex_unlock(&uuid_mutex);
2494 up_write(&sb->s_umount);
2495 unlocked = true;
2497 if (ret) /* transaction commit */
2498 return ret;
2500 ret = btrfs_relocate_sys_chunks(fs_info);
2501 if (ret < 0)
2502 btrfs_handle_fs_error(fs_info, ret,
2503 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2504 trans = btrfs_attach_transaction(root);
2505 if (IS_ERR(trans)) {
2506 if (PTR_ERR(trans) == -ENOENT)
2507 return 0;
2508 ret = PTR_ERR(trans);
2509 trans = NULL;
2510 goto error_sysfs;
2512 ret = btrfs_commit_transaction(trans);
2515 /* Update ctime/mtime for libblkid */
2516 update_dev_time(device_path);
2517 return ret;
2519 error_sysfs:
2520 btrfs_sysfs_rm_device_link(fs_devices, device);
2521 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2522 mutex_lock(&fs_info->chunk_mutex);
2523 list_del_rcu(&device->dev_list);
2524 list_del(&device->dev_alloc_list);
2525 fs_info->fs_devices->num_devices--;
2526 fs_info->fs_devices->open_devices--;
2527 fs_info->fs_devices->rw_devices--;
2528 fs_info->fs_devices->total_devices--;
2529 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2530 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2531 btrfs_set_super_total_bytes(fs_info->super_copy,
2532 orig_super_total_bytes);
2533 btrfs_set_super_num_devices(fs_info->super_copy,
2534 orig_super_num_devices);
2535 mutex_unlock(&fs_info->chunk_mutex);
2536 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2537 error_trans:
2538 if (seeding_dev)
2539 sb->s_flags |= SB_RDONLY;
2540 if (trans)
2541 btrfs_end_transaction(trans);
2542 error_free_device:
2543 btrfs_free_device(device);
2544 error:
2545 blkdev_put(bdev, FMODE_EXCL);
2546 if (seeding_dev && !unlocked) {
2547 mutex_unlock(&uuid_mutex);
2548 up_write(&sb->s_umount);
2550 return ret;
2553 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2554 struct btrfs_device *device)
2556 int ret;
2557 struct btrfs_path *path;
2558 struct btrfs_root *root = device->fs_info->chunk_root;
2559 struct btrfs_dev_item *dev_item;
2560 struct extent_buffer *leaf;
2561 struct btrfs_key key;
2563 path = btrfs_alloc_path();
2564 if (!path)
2565 return -ENOMEM;
2567 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2568 key.type = BTRFS_DEV_ITEM_KEY;
2569 key.offset = device->devid;
2571 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2572 if (ret < 0)
2573 goto out;
2575 if (ret > 0) {
2576 ret = -ENOENT;
2577 goto out;
2580 leaf = path->nodes[0];
2581 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2583 btrfs_set_device_id(leaf, dev_item, device->devid);
2584 btrfs_set_device_type(leaf, dev_item, device->type);
2585 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2586 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2587 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2588 btrfs_set_device_total_bytes(leaf, dev_item,
2589 btrfs_device_get_disk_total_bytes(device));
2590 btrfs_set_device_bytes_used(leaf, dev_item,
2591 btrfs_device_get_bytes_used(device));
2592 btrfs_mark_buffer_dirty(leaf);
2594 out:
2595 btrfs_free_path(path);
2596 return ret;
2599 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2600 struct btrfs_device *device, u64 new_size)
2602 struct btrfs_fs_info *fs_info = device->fs_info;
2603 struct btrfs_super_block *super_copy = fs_info->super_copy;
2604 struct btrfs_fs_devices *fs_devices;
2605 u64 old_total;
2606 u64 diff;
2608 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2609 return -EACCES;
2611 new_size = round_down(new_size, fs_info->sectorsize);
2613 mutex_lock(&fs_info->chunk_mutex);
2614 old_total = btrfs_super_total_bytes(super_copy);
2615 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2617 if (new_size <= device->total_bytes ||
2618 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2619 mutex_unlock(&fs_info->chunk_mutex);
2620 return -EINVAL;
2623 fs_devices = fs_info->fs_devices;
2625 btrfs_set_super_total_bytes(super_copy,
2626 round_down(old_total + diff, fs_info->sectorsize));
2627 device->fs_devices->total_rw_bytes += diff;
2629 btrfs_device_set_total_bytes(device, new_size);
2630 btrfs_device_set_disk_total_bytes(device, new_size);
2631 btrfs_clear_space_info_full(device->fs_info);
2632 if (list_empty(&device->resized_list))
2633 list_add_tail(&device->resized_list,
2634 &fs_devices->resized_devices);
2635 mutex_unlock(&fs_info->chunk_mutex);
2637 return btrfs_update_device(trans, device);
2640 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2642 struct btrfs_fs_info *fs_info = trans->fs_info;
2643 struct btrfs_root *root = fs_info->chunk_root;
2644 int ret;
2645 struct btrfs_path *path;
2646 struct btrfs_key key;
2648 path = btrfs_alloc_path();
2649 if (!path)
2650 return -ENOMEM;
2652 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2653 key.offset = chunk_offset;
2654 key.type = BTRFS_CHUNK_ITEM_KEY;
2656 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2657 if (ret < 0)
2658 goto out;
2659 else if (ret > 0) { /* Logic error or corruption */
2660 btrfs_handle_fs_error(fs_info, -ENOENT,
2661 "Failed lookup while freeing chunk.");
2662 ret = -ENOENT;
2663 goto out;
2666 ret = btrfs_del_item(trans, root, path);
2667 if (ret < 0)
2668 btrfs_handle_fs_error(fs_info, ret,
2669 "Failed to delete chunk item.");
2670 out:
2671 btrfs_free_path(path);
2672 return ret;
2675 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2677 struct btrfs_super_block *super_copy = fs_info->super_copy;
2678 struct btrfs_disk_key *disk_key;
2679 struct btrfs_chunk *chunk;
2680 u8 *ptr;
2681 int ret = 0;
2682 u32 num_stripes;
2683 u32 array_size;
2684 u32 len = 0;
2685 u32 cur;
2686 struct btrfs_key key;
2688 mutex_lock(&fs_info->chunk_mutex);
2689 array_size = btrfs_super_sys_array_size(super_copy);
2691 ptr = super_copy->sys_chunk_array;
2692 cur = 0;
2694 while (cur < array_size) {
2695 disk_key = (struct btrfs_disk_key *)ptr;
2696 btrfs_disk_key_to_cpu(&key, disk_key);
2698 len = sizeof(*disk_key);
2700 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2701 chunk = (struct btrfs_chunk *)(ptr + len);
2702 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2703 len += btrfs_chunk_item_size(num_stripes);
2704 } else {
2705 ret = -EIO;
2706 break;
2708 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2709 key.offset == chunk_offset) {
2710 memmove(ptr, ptr + len, array_size - (cur + len));
2711 array_size -= len;
2712 btrfs_set_super_sys_array_size(super_copy, array_size);
2713 } else {
2714 ptr += len;
2715 cur += len;
2718 mutex_unlock(&fs_info->chunk_mutex);
2719 return ret;
2722 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2723 u64 logical, u64 length)
2725 struct extent_map_tree *em_tree;
2726 struct extent_map *em;
2728 em_tree = &fs_info->mapping_tree.map_tree;
2729 read_lock(&em_tree->lock);
2730 em = lookup_extent_mapping(em_tree, logical, length);
2731 read_unlock(&em_tree->lock);
2733 if (!em) {
2734 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2735 logical, length);
2736 return ERR_PTR(-EINVAL);
2739 if (em->start > logical || em->start + em->len < logical) {
2740 btrfs_crit(fs_info,
2741 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2742 logical, length, em->start, em->start + em->len);
2743 free_extent_map(em);
2744 return ERR_PTR(-EINVAL);
2747 /* callers are responsible for dropping em's ref. */
2748 return em;
2751 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2753 struct btrfs_fs_info *fs_info = trans->fs_info;
2754 struct extent_map *em;
2755 struct map_lookup *map;
2756 u64 dev_extent_len = 0;
2757 int i, ret = 0;
2758 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2760 em = get_chunk_map(fs_info, chunk_offset, 1);
2761 if (IS_ERR(em)) {
2763 * This is a logic error, but we don't want to just rely on the
2764 * user having built with ASSERT enabled, so if ASSERT doesn't
2765 * do anything we still error out.
2767 ASSERT(0);
2768 return PTR_ERR(em);
2770 map = em->map_lookup;
2771 mutex_lock(&fs_info->chunk_mutex);
2772 check_system_chunk(trans, map->type);
2773 mutex_unlock(&fs_info->chunk_mutex);
2776 * Take the device list mutex to prevent races with the final phase of
2777 * a device replace operation that replaces the device object associated
2778 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2780 mutex_lock(&fs_devices->device_list_mutex);
2781 for (i = 0; i < map->num_stripes; i++) {
2782 struct btrfs_device *device = map->stripes[i].dev;
2783 ret = btrfs_free_dev_extent(trans, device,
2784 map->stripes[i].physical,
2785 &dev_extent_len);
2786 if (ret) {
2787 mutex_unlock(&fs_devices->device_list_mutex);
2788 btrfs_abort_transaction(trans, ret);
2789 goto out;
2792 if (device->bytes_used > 0) {
2793 mutex_lock(&fs_info->chunk_mutex);
2794 btrfs_device_set_bytes_used(device,
2795 device->bytes_used - dev_extent_len);
2796 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2797 btrfs_clear_space_info_full(fs_info);
2798 mutex_unlock(&fs_info->chunk_mutex);
2801 if (map->stripes[i].dev) {
2802 ret = btrfs_update_device(trans, map->stripes[i].dev);
2803 if (ret) {
2804 mutex_unlock(&fs_devices->device_list_mutex);
2805 btrfs_abort_transaction(trans, ret);
2806 goto out;
2810 mutex_unlock(&fs_devices->device_list_mutex);
2812 ret = btrfs_free_chunk(trans, chunk_offset);
2813 if (ret) {
2814 btrfs_abort_transaction(trans, ret);
2815 goto out;
2818 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2820 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2821 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2822 if (ret) {
2823 btrfs_abort_transaction(trans, ret);
2824 goto out;
2828 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2829 if (ret) {
2830 btrfs_abort_transaction(trans, ret);
2831 goto out;
2834 out:
2835 /* once for us */
2836 free_extent_map(em);
2837 return ret;
2840 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2842 struct btrfs_root *root = fs_info->chunk_root;
2843 struct btrfs_trans_handle *trans;
2844 int ret;
2847 * Prevent races with automatic removal of unused block groups.
2848 * After we relocate and before we remove the chunk with offset
2849 * chunk_offset, automatic removal of the block group can kick in,
2850 * resulting in a failure when calling btrfs_remove_chunk() below.
2852 * Make sure to acquire this mutex before doing a tree search (dev
2853 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2854 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2855 * we release the path used to search the chunk/dev tree and before
2856 * the current task acquires this mutex and calls us.
2858 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2860 ret = btrfs_can_relocate(fs_info, chunk_offset);
2861 if (ret)
2862 return -ENOSPC;
2864 /* step one, relocate all the extents inside this chunk */
2865 btrfs_scrub_pause(fs_info);
2866 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2867 btrfs_scrub_continue(fs_info);
2868 if (ret)
2869 return ret;
2872 * We add the kobjects here (and after forcing data chunk creation)
2873 * since relocation is the only place we'll create chunks of a new
2874 * type at runtime. The only place where we'll remove the last
2875 * chunk of a type is the call immediately below this one. Even
2876 * so, we're protected against races with the cleaner thread since
2877 * we're covered by the delete_unused_bgs_mutex.
2879 btrfs_add_raid_kobjects(fs_info);
2881 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2882 chunk_offset);
2883 if (IS_ERR(trans)) {
2884 ret = PTR_ERR(trans);
2885 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2886 return ret;
2890 * step two, delete the device extents and the
2891 * chunk tree entries
2893 ret = btrfs_remove_chunk(trans, chunk_offset);
2894 btrfs_end_transaction(trans);
2895 return ret;
2898 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2900 struct btrfs_root *chunk_root = fs_info->chunk_root;
2901 struct btrfs_path *path;
2902 struct extent_buffer *leaf;
2903 struct btrfs_chunk *chunk;
2904 struct btrfs_key key;
2905 struct btrfs_key found_key;
2906 u64 chunk_type;
2907 bool retried = false;
2908 int failed = 0;
2909 int ret;
2911 path = btrfs_alloc_path();
2912 if (!path)
2913 return -ENOMEM;
2915 again:
2916 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2917 key.offset = (u64)-1;
2918 key.type = BTRFS_CHUNK_ITEM_KEY;
2920 while (1) {
2921 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2922 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2923 if (ret < 0) {
2924 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2925 goto error;
2927 BUG_ON(ret == 0); /* Corruption */
2929 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2930 key.type);
2931 if (ret)
2932 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2933 if (ret < 0)
2934 goto error;
2935 if (ret > 0)
2936 break;
2938 leaf = path->nodes[0];
2939 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2941 chunk = btrfs_item_ptr(leaf, path->slots[0],
2942 struct btrfs_chunk);
2943 chunk_type = btrfs_chunk_type(leaf, chunk);
2944 btrfs_release_path(path);
2946 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2947 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2948 if (ret == -ENOSPC)
2949 failed++;
2950 else
2951 BUG_ON(ret);
2953 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2955 if (found_key.offset == 0)
2956 break;
2957 key.offset = found_key.offset - 1;
2959 ret = 0;
2960 if (failed && !retried) {
2961 failed = 0;
2962 retried = true;
2963 goto again;
2964 } else if (WARN_ON(failed && retried)) {
2965 ret = -ENOSPC;
2967 error:
2968 btrfs_free_path(path);
2969 return ret;
2973 * return 1 : allocate a data chunk successfully,
2974 * return <0: errors during allocating a data chunk,
2975 * return 0 : no need to allocate a data chunk.
2977 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2978 u64 chunk_offset)
2980 struct btrfs_block_group_cache *cache;
2981 u64 bytes_used;
2982 u64 chunk_type;
2984 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2985 ASSERT(cache);
2986 chunk_type = cache->flags;
2987 btrfs_put_block_group(cache);
2989 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2990 spin_lock(&fs_info->data_sinfo->lock);
2991 bytes_used = fs_info->data_sinfo->bytes_used;
2992 spin_unlock(&fs_info->data_sinfo->lock);
2994 if (!bytes_used) {
2995 struct btrfs_trans_handle *trans;
2996 int ret;
2998 trans = btrfs_join_transaction(fs_info->tree_root);
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
3002 ret = btrfs_force_chunk_alloc(trans,
3003 BTRFS_BLOCK_GROUP_DATA);
3004 btrfs_end_transaction(trans);
3005 if (ret < 0)
3006 return ret;
3008 btrfs_add_raid_kobjects(fs_info);
3010 return 1;
3013 return 0;
3016 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3017 struct btrfs_balance_control *bctl)
3019 struct btrfs_root *root = fs_info->tree_root;
3020 struct btrfs_trans_handle *trans;
3021 struct btrfs_balance_item *item;
3022 struct btrfs_disk_balance_args disk_bargs;
3023 struct btrfs_path *path;
3024 struct extent_buffer *leaf;
3025 struct btrfs_key key;
3026 int ret, err;
3028 path = btrfs_alloc_path();
3029 if (!path)
3030 return -ENOMEM;
3032 trans = btrfs_start_transaction(root, 0);
3033 if (IS_ERR(trans)) {
3034 btrfs_free_path(path);
3035 return PTR_ERR(trans);
3038 key.objectid = BTRFS_BALANCE_OBJECTID;
3039 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3040 key.offset = 0;
3042 ret = btrfs_insert_empty_item(trans, root, path, &key,
3043 sizeof(*item));
3044 if (ret)
3045 goto out;
3047 leaf = path->nodes[0];
3048 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3050 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3052 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3053 btrfs_set_balance_data(leaf, item, &disk_bargs);
3054 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3055 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3056 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3057 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3059 btrfs_set_balance_flags(leaf, item, bctl->flags);
3061 btrfs_mark_buffer_dirty(leaf);
3062 out:
3063 btrfs_free_path(path);
3064 err = btrfs_commit_transaction(trans);
3065 if (err && !ret)
3066 ret = err;
3067 return ret;
3070 static int del_balance_item(struct btrfs_fs_info *fs_info)
3072 struct btrfs_root *root = fs_info->tree_root;
3073 struct btrfs_trans_handle *trans;
3074 struct btrfs_path *path;
3075 struct btrfs_key key;
3076 int ret, err;
3078 path = btrfs_alloc_path();
3079 if (!path)
3080 return -ENOMEM;
3082 trans = btrfs_start_transaction(root, 0);
3083 if (IS_ERR(trans)) {
3084 btrfs_free_path(path);
3085 return PTR_ERR(trans);
3088 key.objectid = BTRFS_BALANCE_OBJECTID;
3089 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3090 key.offset = 0;
3092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3093 if (ret < 0)
3094 goto out;
3095 if (ret > 0) {
3096 ret = -ENOENT;
3097 goto out;
3100 ret = btrfs_del_item(trans, root, path);
3101 out:
3102 btrfs_free_path(path);
3103 err = btrfs_commit_transaction(trans);
3104 if (err && !ret)
3105 ret = err;
3106 return ret;
3110 * This is a heuristic used to reduce the number of chunks balanced on
3111 * resume after balance was interrupted.
3113 static void update_balance_args(struct btrfs_balance_control *bctl)
3116 * Turn on soft mode for chunk types that were being converted.
3118 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3119 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3120 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3121 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3122 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3123 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 * Turn on usage filter if is not already used. The idea is
3127 * that chunks that we have already balanced should be
3128 * reasonably full. Don't do it for chunks that are being
3129 * converted - that will keep us from relocating unconverted
3130 * (albeit full) chunks.
3132 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3133 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3134 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3135 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3136 bctl->data.usage = 90;
3138 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3139 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3140 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3141 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3142 bctl->sys.usage = 90;
3144 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3145 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3146 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 bctl->meta.usage = 90;
3153 * Clear the balance status in fs_info and delete the balance item from disk.
3155 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3157 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3158 int ret;
3160 BUG_ON(!fs_info->balance_ctl);
3162 spin_lock(&fs_info->balance_lock);
3163 fs_info->balance_ctl = NULL;
3164 spin_unlock(&fs_info->balance_lock);
3166 kfree(bctl);
3167 ret = del_balance_item(fs_info);
3168 if (ret)
3169 btrfs_handle_fs_error(fs_info, ret, NULL);
3173 * Balance filters. Return 1 if chunk should be filtered out
3174 * (should not be balanced).
3176 static int chunk_profiles_filter(u64 chunk_type,
3177 struct btrfs_balance_args *bargs)
3179 chunk_type = chunk_to_extended(chunk_type) &
3180 BTRFS_EXTENDED_PROFILE_MASK;
3182 if (bargs->profiles & chunk_type)
3183 return 0;
3185 return 1;
3188 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3189 struct btrfs_balance_args *bargs)
3191 struct btrfs_block_group_cache *cache;
3192 u64 chunk_used;
3193 u64 user_thresh_min;
3194 u64 user_thresh_max;
3195 int ret = 1;
3197 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3198 chunk_used = btrfs_block_group_used(&cache->item);
3200 if (bargs->usage_min == 0)
3201 user_thresh_min = 0;
3202 else
3203 user_thresh_min = div_factor_fine(cache->key.offset,
3204 bargs->usage_min);
3206 if (bargs->usage_max == 0)
3207 user_thresh_max = 1;
3208 else if (bargs->usage_max > 100)
3209 user_thresh_max = cache->key.offset;
3210 else
3211 user_thresh_max = div_factor_fine(cache->key.offset,
3212 bargs->usage_max);
3214 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3215 ret = 0;
3217 btrfs_put_block_group(cache);
3218 return ret;
3221 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3222 u64 chunk_offset, struct btrfs_balance_args *bargs)
3224 struct btrfs_block_group_cache *cache;
3225 u64 chunk_used, user_thresh;
3226 int ret = 1;
3228 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3229 chunk_used = btrfs_block_group_used(&cache->item);
3231 if (bargs->usage_min == 0)
3232 user_thresh = 1;
3233 else if (bargs->usage > 100)
3234 user_thresh = cache->key.offset;
3235 else
3236 user_thresh = div_factor_fine(cache->key.offset,
3237 bargs->usage);
3239 if (chunk_used < user_thresh)
3240 ret = 0;
3242 btrfs_put_block_group(cache);
3243 return ret;
3246 static int chunk_devid_filter(struct extent_buffer *leaf,
3247 struct btrfs_chunk *chunk,
3248 struct btrfs_balance_args *bargs)
3250 struct btrfs_stripe *stripe;
3251 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3252 int i;
3254 for (i = 0; i < num_stripes; i++) {
3255 stripe = btrfs_stripe_nr(chunk, i);
3256 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3257 return 0;
3260 return 1;
3263 /* [pstart, pend) */
3264 static int chunk_drange_filter(struct extent_buffer *leaf,
3265 struct btrfs_chunk *chunk,
3266 struct btrfs_balance_args *bargs)
3268 struct btrfs_stripe *stripe;
3269 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3270 u64 stripe_offset;
3271 u64 stripe_length;
3272 int factor;
3273 int i;
3275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3276 return 0;
3278 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3279 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3280 factor = num_stripes / 2;
3281 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3282 factor = num_stripes - 1;
3283 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3284 factor = num_stripes - 2;
3285 } else {
3286 factor = num_stripes;
3289 for (i = 0; i < num_stripes; i++) {
3290 stripe = btrfs_stripe_nr(chunk, i);
3291 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3292 continue;
3294 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3295 stripe_length = btrfs_chunk_length(leaf, chunk);
3296 stripe_length = div_u64(stripe_length, factor);
3298 if (stripe_offset < bargs->pend &&
3299 stripe_offset + stripe_length > bargs->pstart)
3300 return 0;
3303 return 1;
3306 /* [vstart, vend) */
3307 static int chunk_vrange_filter(struct extent_buffer *leaf,
3308 struct btrfs_chunk *chunk,
3309 u64 chunk_offset,
3310 struct btrfs_balance_args *bargs)
3312 if (chunk_offset < bargs->vend &&
3313 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3314 /* at least part of the chunk is inside this vrange */
3315 return 0;
3317 return 1;
3320 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3321 struct btrfs_chunk *chunk,
3322 struct btrfs_balance_args *bargs)
3324 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3326 if (bargs->stripes_min <= num_stripes
3327 && num_stripes <= bargs->stripes_max)
3328 return 0;
3330 return 1;
3333 static int chunk_soft_convert_filter(u64 chunk_type,
3334 struct btrfs_balance_args *bargs)
3336 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3337 return 0;
3339 chunk_type = chunk_to_extended(chunk_type) &
3340 BTRFS_EXTENDED_PROFILE_MASK;
3342 if (bargs->target == chunk_type)
3343 return 1;
3345 return 0;
3348 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3349 struct extent_buffer *leaf,
3350 struct btrfs_chunk *chunk, u64 chunk_offset)
3352 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3353 struct btrfs_balance_args *bargs = NULL;
3354 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 /* type filter */
3357 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3358 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3359 return 0;
3362 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3363 bargs = &bctl->data;
3364 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3365 bargs = &bctl->sys;
3366 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3367 bargs = &bctl->meta;
3369 /* profiles filter */
3370 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3371 chunk_profiles_filter(chunk_type, bargs)) {
3372 return 0;
3375 /* usage filter */
3376 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3377 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3378 return 0;
3379 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3380 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3381 return 0;
3384 /* devid filter */
3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3386 chunk_devid_filter(leaf, chunk, bargs)) {
3387 return 0;
3390 /* drange filter, makes sense only with devid filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3392 chunk_drange_filter(leaf, chunk, bargs)) {
3393 return 0;
3396 /* vrange filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3398 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3399 return 0;
3402 /* stripes filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3404 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3405 return 0;
3408 /* soft profile changing mode */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3410 chunk_soft_convert_filter(chunk_type, bargs)) {
3411 return 0;
3415 * limited by count, must be the last filter
3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3418 if (bargs->limit == 0)
3419 return 0;
3420 else
3421 bargs->limit--;
3422 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3424 * Same logic as the 'limit' filter; the minimum cannot be
3425 * determined here because we do not have the global information
3426 * about the count of all chunks that satisfy the filters.
3428 if (bargs->limit_max == 0)
3429 return 0;
3430 else
3431 bargs->limit_max--;
3434 return 1;
3437 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3439 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3440 struct btrfs_root *chunk_root = fs_info->chunk_root;
3441 struct btrfs_root *dev_root = fs_info->dev_root;
3442 struct list_head *devices;
3443 struct btrfs_device *device;
3444 u64 old_size;
3445 u64 size_to_free;
3446 u64 chunk_type;
3447 struct btrfs_chunk *chunk;
3448 struct btrfs_path *path = NULL;
3449 struct btrfs_key key;
3450 struct btrfs_key found_key;
3451 struct btrfs_trans_handle *trans;
3452 struct extent_buffer *leaf;
3453 int slot;
3454 int ret;
3455 int enospc_errors = 0;
3456 bool counting = true;
3457 /* The single value limit and min/max limits use the same bytes in the */
3458 u64 limit_data = bctl->data.limit;
3459 u64 limit_meta = bctl->meta.limit;
3460 u64 limit_sys = bctl->sys.limit;
3461 u32 count_data = 0;
3462 u32 count_meta = 0;
3463 u32 count_sys = 0;
3464 int chunk_reserved = 0;
3466 /* step one make some room on all the devices */
3467 devices = &fs_info->fs_devices->devices;
3468 list_for_each_entry(device, devices, dev_list) {
3469 old_size = btrfs_device_get_total_bytes(device);
3470 size_to_free = div_factor(old_size, 1);
3471 size_to_free = min_t(u64, size_to_free, SZ_1M);
3472 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3473 btrfs_device_get_total_bytes(device) -
3474 btrfs_device_get_bytes_used(device) > size_to_free ||
3475 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3476 continue;
3478 ret = btrfs_shrink_device(device, old_size - size_to_free);
3479 if (ret == -ENOSPC)
3480 break;
3481 if (ret) {
3482 /* btrfs_shrink_device never returns ret > 0 */
3483 WARN_ON(ret > 0);
3484 goto error;
3487 trans = btrfs_start_transaction(dev_root, 0);
3488 if (IS_ERR(trans)) {
3489 ret = PTR_ERR(trans);
3490 btrfs_info_in_rcu(fs_info,
3491 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3492 rcu_str_deref(device->name), ret,
3493 old_size, old_size - size_to_free);
3494 goto error;
3497 ret = btrfs_grow_device(trans, device, old_size);
3498 if (ret) {
3499 btrfs_end_transaction(trans);
3500 /* btrfs_grow_device never returns ret > 0 */
3501 WARN_ON(ret > 0);
3502 btrfs_info_in_rcu(fs_info,
3503 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3504 rcu_str_deref(device->name), ret,
3505 old_size, old_size - size_to_free);
3506 goto error;
3509 btrfs_end_transaction(trans);
3512 /* step two, relocate all the chunks */
3513 path = btrfs_alloc_path();
3514 if (!path) {
3515 ret = -ENOMEM;
3516 goto error;
3519 /* zero out stat counters */
3520 spin_lock(&fs_info->balance_lock);
3521 memset(&bctl->stat, 0, sizeof(bctl->stat));
3522 spin_unlock(&fs_info->balance_lock);
3523 again:
3524 if (!counting) {
3526 * The single value limit and min/max limits use the same bytes
3527 * in the
3529 bctl->data.limit = limit_data;
3530 bctl->meta.limit = limit_meta;
3531 bctl->sys.limit = limit_sys;
3533 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3534 key.offset = (u64)-1;
3535 key.type = BTRFS_CHUNK_ITEM_KEY;
3537 while (1) {
3538 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3539 atomic_read(&fs_info->balance_cancel_req)) {
3540 ret = -ECANCELED;
3541 goto error;
3544 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3545 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3546 if (ret < 0) {
3547 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3548 goto error;
3552 * this shouldn't happen, it means the last relocate
3553 * failed
3555 if (ret == 0)
3556 BUG(); /* FIXME break ? */
3558 ret = btrfs_previous_item(chunk_root, path, 0,
3559 BTRFS_CHUNK_ITEM_KEY);
3560 if (ret) {
3561 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3562 ret = 0;
3563 break;
3566 leaf = path->nodes[0];
3567 slot = path->slots[0];
3568 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3570 if (found_key.objectid != key.objectid) {
3571 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3572 break;
3575 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3576 chunk_type = btrfs_chunk_type(leaf, chunk);
3578 if (!counting) {
3579 spin_lock(&fs_info->balance_lock);
3580 bctl->stat.considered++;
3581 spin_unlock(&fs_info->balance_lock);
3584 ret = should_balance_chunk(fs_info, leaf, chunk,
3585 found_key.offset);
3587 btrfs_release_path(path);
3588 if (!ret) {
3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590 goto loop;
3593 if (counting) {
3594 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3595 spin_lock(&fs_info->balance_lock);
3596 bctl->stat.expected++;
3597 spin_unlock(&fs_info->balance_lock);
3599 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3600 count_data++;
3601 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3602 count_sys++;
3603 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3604 count_meta++;
3606 goto loop;
3610 * Apply limit_min filter, no need to check if the LIMITS
3611 * filter is used, limit_min is 0 by default
3613 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3614 count_data < bctl->data.limit_min)
3615 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3616 count_meta < bctl->meta.limit_min)
3617 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3618 count_sys < bctl->sys.limit_min)) {
3619 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620 goto loop;
3623 if (!chunk_reserved) {
3625 * We may be relocating the only data chunk we have,
3626 * which could potentially end up with losing data's
3627 * raid profile, so lets allocate an empty one in
3628 * advance.
3630 ret = btrfs_may_alloc_data_chunk(fs_info,
3631 found_key.offset);
3632 if (ret < 0) {
3633 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3634 goto error;
3635 } else if (ret == 1) {
3636 chunk_reserved = 1;
3640 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3641 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3642 if (ret && ret != -ENOSPC)
3643 goto error;
3644 if (ret == -ENOSPC) {
3645 enospc_errors++;
3646 } else {
3647 spin_lock(&fs_info->balance_lock);
3648 bctl->stat.completed++;
3649 spin_unlock(&fs_info->balance_lock);
3651 loop:
3652 if (found_key.offset == 0)
3653 break;
3654 key.offset = found_key.offset - 1;
3657 if (counting) {
3658 btrfs_release_path(path);
3659 counting = false;
3660 goto again;
3662 error:
3663 btrfs_free_path(path);
3664 if (enospc_errors) {
3665 btrfs_info(fs_info, "%d enospc errors during balance",
3666 enospc_errors);
3667 if (!ret)
3668 ret = -ENOSPC;
3671 return ret;
3675 * alloc_profile_is_valid - see if a given profile is valid and reduced
3676 * @flags: profile to validate
3677 * @extended: if true @flags is treated as an extended profile
3679 static int alloc_profile_is_valid(u64 flags, int extended)
3681 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3682 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3684 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3686 /* 1) check that all other bits are zeroed */
3687 if (flags & ~mask)
3688 return 0;
3690 /* 2) see if profile is reduced */
3691 if (flags == 0)
3692 return !extended; /* "0" is valid for usual profiles */
3694 /* true if exactly one bit set */
3695 return (flags & (flags - 1)) == 0;
3698 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3700 /* cancel requested || normal exit path */
3701 return atomic_read(&fs_info->balance_cancel_req) ||
3702 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3703 atomic_read(&fs_info->balance_cancel_req) == 0);
3706 /* Non-zero return value signifies invalidity */
3707 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3708 u64 allowed)
3710 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3711 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3712 (bctl_arg->target & ~allowed)));
3716 * Should be called with balance mutexe held
3718 int btrfs_balance(struct btrfs_fs_info *fs_info,
3719 struct btrfs_balance_control *bctl,
3720 struct btrfs_ioctl_balance_args *bargs)
3722 u64 meta_target, data_target;
3723 u64 allowed;
3724 int mixed = 0;
3725 int ret;
3726 u64 num_devices;
3727 unsigned seq;
3728 bool reducing_integrity;
3730 if (btrfs_fs_closing(fs_info) ||
3731 atomic_read(&fs_info->balance_pause_req) ||
3732 atomic_read(&fs_info->balance_cancel_req)) {
3733 ret = -EINVAL;
3734 goto out;
3737 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3738 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3739 mixed = 1;
3742 * In case of mixed groups both data and meta should be picked,
3743 * and identical options should be given for both of them.
3745 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3746 if (mixed && (bctl->flags & allowed)) {
3747 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3748 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3749 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3750 btrfs_err(fs_info,
3751 "balance: mixed groups data and metadata options must be the same");
3752 ret = -EINVAL;
3753 goto out;
3757 num_devices = fs_info->fs_devices->num_devices;
3758 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3759 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3760 BUG_ON(num_devices < 1);
3761 num_devices--;
3763 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3764 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3765 if (num_devices > 1)
3766 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3767 if (num_devices > 2)
3768 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3769 if (num_devices > 3)
3770 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3771 BTRFS_BLOCK_GROUP_RAID6);
3772 if (validate_convert_profile(&bctl->data, allowed)) {
3773 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3775 btrfs_err(fs_info,
3776 "balance: invalid convert data profile %s",
3777 get_raid_name(index));
3778 ret = -EINVAL;
3779 goto out;
3781 if (validate_convert_profile(&bctl->meta, allowed)) {
3782 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3784 btrfs_err(fs_info,
3785 "balance: invalid convert metadata profile %s",
3786 get_raid_name(index));
3787 ret = -EINVAL;
3788 goto out;
3790 if (validate_convert_profile(&bctl->sys, allowed)) {
3791 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3793 btrfs_err(fs_info,
3794 "balance: invalid convert system profile %s",
3795 get_raid_name(index));
3796 ret = -EINVAL;
3797 goto out;
3800 /* allow to reduce meta or sys integrity only if force set */
3801 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3802 BTRFS_BLOCK_GROUP_RAID10 |
3803 BTRFS_BLOCK_GROUP_RAID5 |
3804 BTRFS_BLOCK_GROUP_RAID6;
3805 do {
3806 seq = read_seqbegin(&fs_info->profiles_lock);
3808 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3809 (fs_info->avail_system_alloc_bits & allowed) &&
3810 !(bctl->sys.target & allowed)) ||
3811 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3812 (fs_info->avail_metadata_alloc_bits & allowed) &&
3813 !(bctl->meta.target & allowed)))
3814 reducing_integrity = true;
3815 else
3816 reducing_integrity = false;
3818 /* if we're not converting, the target field is uninitialized */
3819 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3820 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3821 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3822 bctl->data.target : fs_info->avail_data_alloc_bits;
3823 } while (read_seqretry(&fs_info->profiles_lock, seq));
3825 if (reducing_integrity) {
3826 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3827 btrfs_info(fs_info,
3828 "balance: force reducing metadata integrity");
3829 } else {
3830 btrfs_err(fs_info,
3831 "balance: reduces metadata integrity, use --force if you want this");
3832 ret = -EINVAL;
3833 goto out;
3837 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3838 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3839 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3840 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3842 btrfs_warn(fs_info,
3843 "balance: metadata profile %s has lower redundancy than data profile %s",
3844 get_raid_name(meta_index), get_raid_name(data_index));
3847 ret = insert_balance_item(fs_info, bctl);
3848 if (ret && ret != -EEXIST)
3849 goto out;
3851 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3852 BUG_ON(ret == -EEXIST);
3853 BUG_ON(fs_info->balance_ctl);
3854 spin_lock(&fs_info->balance_lock);
3855 fs_info->balance_ctl = bctl;
3856 spin_unlock(&fs_info->balance_lock);
3857 } else {
3858 BUG_ON(ret != -EEXIST);
3859 spin_lock(&fs_info->balance_lock);
3860 update_balance_args(bctl);
3861 spin_unlock(&fs_info->balance_lock);
3864 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3865 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3866 mutex_unlock(&fs_info->balance_mutex);
3868 ret = __btrfs_balance(fs_info);
3870 mutex_lock(&fs_info->balance_mutex);
3871 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3873 if (bargs) {
3874 memset(bargs, 0, sizeof(*bargs));
3875 btrfs_update_ioctl_balance_args(fs_info, bargs);
3878 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3879 balance_need_close(fs_info)) {
3880 reset_balance_state(fs_info);
3881 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3884 wake_up(&fs_info->balance_wait_q);
3886 return ret;
3887 out:
3888 if (bctl->flags & BTRFS_BALANCE_RESUME)
3889 reset_balance_state(fs_info);
3890 else
3891 kfree(bctl);
3892 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3894 return ret;
3897 static int balance_kthread(void *data)
3899 struct btrfs_fs_info *fs_info = data;
3900 int ret = 0;
3902 mutex_lock(&fs_info->balance_mutex);
3903 if (fs_info->balance_ctl) {
3904 btrfs_info(fs_info, "balance: resuming");
3905 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3907 mutex_unlock(&fs_info->balance_mutex);
3909 return ret;
3912 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3914 struct task_struct *tsk;
3916 mutex_lock(&fs_info->balance_mutex);
3917 if (!fs_info->balance_ctl) {
3918 mutex_unlock(&fs_info->balance_mutex);
3919 return 0;
3921 mutex_unlock(&fs_info->balance_mutex);
3923 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3924 btrfs_info(fs_info, "balance: resume skipped");
3925 return 0;
3929 * A ro->rw remount sequence should continue with the paused balance
3930 * regardless of who pauses it, system or the user as of now, so set
3931 * the resume flag.
3933 spin_lock(&fs_info->balance_lock);
3934 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3935 spin_unlock(&fs_info->balance_lock);
3937 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3938 return PTR_ERR_OR_ZERO(tsk);
3941 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3943 struct btrfs_balance_control *bctl;
3944 struct btrfs_balance_item *item;
3945 struct btrfs_disk_balance_args disk_bargs;
3946 struct btrfs_path *path;
3947 struct extent_buffer *leaf;
3948 struct btrfs_key key;
3949 int ret;
3951 path = btrfs_alloc_path();
3952 if (!path)
3953 return -ENOMEM;
3955 key.objectid = BTRFS_BALANCE_OBJECTID;
3956 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3957 key.offset = 0;
3959 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3960 if (ret < 0)
3961 goto out;
3962 if (ret > 0) { /* ret = -ENOENT; */
3963 ret = 0;
3964 goto out;
3967 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3968 if (!bctl) {
3969 ret = -ENOMEM;
3970 goto out;
3973 leaf = path->nodes[0];
3974 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3976 bctl->flags = btrfs_balance_flags(leaf, item);
3977 bctl->flags |= BTRFS_BALANCE_RESUME;
3979 btrfs_balance_data(leaf, item, &disk_bargs);
3980 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3981 btrfs_balance_meta(leaf, item, &disk_bargs);
3982 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3983 btrfs_balance_sys(leaf, item, &disk_bargs);
3984 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3987 * This should never happen, as the paused balance state is recovered
3988 * during mount without any chance of other exclusive ops to collide.
3990 * This gives the exclusive op status to balance and keeps in paused
3991 * state until user intervention (cancel or umount). If the ownership
3992 * cannot be assigned, show a message but do not fail. The balance
3993 * is in a paused state and must have fs_info::balance_ctl properly
3994 * set up.
3996 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3997 btrfs_warn(fs_info,
3998 "balance: cannot set exclusive op status, resume manually");
4000 mutex_lock(&fs_info->balance_mutex);
4001 BUG_ON(fs_info->balance_ctl);
4002 spin_lock(&fs_info->balance_lock);
4003 fs_info->balance_ctl = bctl;
4004 spin_unlock(&fs_info->balance_lock);
4005 mutex_unlock(&fs_info->balance_mutex);
4006 out:
4007 btrfs_free_path(path);
4008 return ret;
4011 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4013 int ret = 0;
4015 mutex_lock(&fs_info->balance_mutex);
4016 if (!fs_info->balance_ctl) {
4017 mutex_unlock(&fs_info->balance_mutex);
4018 return -ENOTCONN;
4021 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4022 atomic_inc(&fs_info->balance_pause_req);
4023 mutex_unlock(&fs_info->balance_mutex);
4025 wait_event(fs_info->balance_wait_q,
4026 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4028 mutex_lock(&fs_info->balance_mutex);
4029 /* we are good with balance_ctl ripped off from under us */
4030 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4031 atomic_dec(&fs_info->balance_pause_req);
4032 } else {
4033 ret = -ENOTCONN;
4036 mutex_unlock(&fs_info->balance_mutex);
4037 return ret;
4040 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4042 mutex_lock(&fs_info->balance_mutex);
4043 if (!fs_info->balance_ctl) {
4044 mutex_unlock(&fs_info->balance_mutex);
4045 return -ENOTCONN;
4049 * A paused balance with the item stored on disk can be resumed at
4050 * mount time if the mount is read-write. Otherwise it's still paused
4051 * and we must not allow cancelling as it deletes the item.
4053 if (sb_rdonly(fs_info->sb)) {
4054 mutex_unlock(&fs_info->balance_mutex);
4055 return -EROFS;
4058 atomic_inc(&fs_info->balance_cancel_req);
4060 * if we are running just wait and return, balance item is
4061 * deleted in btrfs_balance in this case
4063 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4064 mutex_unlock(&fs_info->balance_mutex);
4065 wait_event(fs_info->balance_wait_q,
4066 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4067 mutex_lock(&fs_info->balance_mutex);
4068 } else {
4069 mutex_unlock(&fs_info->balance_mutex);
4071 * Lock released to allow other waiters to continue, we'll
4072 * reexamine the status again.
4074 mutex_lock(&fs_info->balance_mutex);
4076 if (fs_info->balance_ctl) {
4077 reset_balance_state(fs_info);
4078 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4079 btrfs_info(fs_info, "balance: canceled");
4083 BUG_ON(fs_info->balance_ctl ||
4084 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4085 atomic_dec(&fs_info->balance_cancel_req);
4086 mutex_unlock(&fs_info->balance_mutex);
4087 return 0;
4090 static int btrfs_uuid_scan_kthread(void *data)
4092 struct btrfs_fs_info *fs_info = data;
4093 struct btrfs_root *root = fs_info->tree_root;
4094 struct btrfs_key key;
4095 struct btrfs_path *path = NULL;
4096 int ret = 0;
4097 struct extent_buffer *eb;
4098 int slot;
4099 struct btrfs_root_item root_item;
4100 u32 item_size;
4101 struct btrfs_trans_handle *trans = NULL;
4103 path = btrfs_alloc_path();
4104 if (!path) {
4105 ret = -ENOMEM;
4106 goto out;
4109 key.objectid = 0;
4110 key.type = BTRFS_ROOT_ITEM_KEY;
4111 key.offset = 0;
4113 while (1) {
4114 ret = btrfs_search_forward(root, &key, path,
4115 BTRFS_OLDEST_GENERATION);
4116 if (ret) {
4117 if (ret > 0)
4118 ret = 0;
4119 break;
4122 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4123 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4124 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4125 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4126 goto skip;
4128 eb = path->nodes[0];
4129 slot = path->slots[0];
4130 item_size = btrfs_item_size_nr(eb, slot);
4131 if (item_size < sizeof(root_item))
4132 goto skip;
4134 read_extent_buffer(eb, &root_item,
4135 btrfs_item_ptr_offset(eb, slot),
4136 (int)sizeof(root_item));
4137 if (btrfs_root_refs(&root_item) == 0)
4138 goto skip;
4140 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4141 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4142 if (trans)
4143 goto update_tree;
4145 btrfs_release_path(path);
4147 * 1 - subvol uuid item
4148 * 1 - received_subvol uuid item
4150 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4151 if (IS_ERR(trans)) {
4152 ret = PTR_ERR(trans);
4153 break;
4155 continue;
4156 } else {
4157 goto skip;
4159 update_tree:
4160 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4161 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4162 BTRFS_UUID_KEY_SUBVOL,
4163 key.objectid);
4164 if (ret < 0) {
4165 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4166 ret);
4167 break;
4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 ret = btrfs_uuid_tree_add(trans,
4173 root_item.received_uuid,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 key.objectid);
4176 if (ret < 0) {
4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178 ret);
4179 break;
4183 skip:
4184 if (trans) {
4185 ret = btrfs_end_transaction(trans);
4186 trans = NULL;
4187 if (ret)
4188 break;
4191 btrfs_release_path(path);
4192 if (key.offset < (u64)-1) {
4193 key.offset++;
4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 key.offset = 0;
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 } else if (key.objectid < (u64)-1) {
4198 key.offset = 0;
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4200 key.objectid++;
4201 } else {
4202 break;
4204 cond_resched();
4207 out:
4208 btrfs_free_path(path);
4209 if (trans && !IS_ERR(trans))
4210 btrfs_end_transaction(trans);
4211 if (ret)
4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4213 else
4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215 up(&fs_info->uuid_tree_rescan_sem);
4216 return 0;
4220 * Callback for btrfs_uuid_tree_iterate().
4221 * returns:
4222 * 0 check succeeded, the entry is not outdated.
4223 * < 0 if an error occurred.
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 u8 *uuid, u8 type, u64 subid)
4229 struct btrfs_key key;
4230 int ret = 0;
4231 struct btrfs_root *subvol_root;
4233 if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 goto out;
4237 key.objectid = subid;
4238 key.type = BTRFS_ROOT_ITEM_KEY;
4239 key.offset = (u64)-1;
4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 if (IS_ERR(subvol_root)) {
4242 ret = PTR_ERR(subvol_root);
4243 if (ret == -ENOENT)
4244 ret = 1;
4245 goto out;
4248 switch (type) {
4249 case BTRFS_UUID_KEY_SUBVOL:
4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 ret = 1;
4252 break;
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 BTRFS_UUID_SIZE))
4256 ret = 1;
4257 break;
4260 out:
4261 return ret;
4264 static int btrfs_uuid_rescan_kthread(void *data)
4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 int ret;
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 if (ret < 0) {
4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277 up(&fs_info->uuid_tree_rescan_sem);
4278 return ret;
4280 return btrfs_uuid_scan_kthread(data);
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4285 struct btrfs_trans_handle *trans;
4286 struct btrfs_root *tree_root = fs_info->tree_root;
4287 struct btrfs_root *uuid_root;
4288 struct task_struct *task;
4289 int ret;
4292 * 1 - root node
4293 * 1 - root item
4295 trans = btrfs_start_transaction(tree_root, 2);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4299 uuid_root = btrfs_create_tree(trans, fs_info,
4300 BTRFS_UUID_TREE_OBJECTID);
4301 if (IS_ERR(uuid_root)) {
4302 ret = PTR_ERR(uuid_root);
4303 btrfs_abort_transaction(trans, ret);
4304 btrfs_end_transaction(trans);
4305 return ret;
4308 fs_info->uuid_root = uuid_root;
4310 ret = btrfs_commit_transaction(trans);
4311 if (ret)
4312 return ret;
4314 down(&fs_info->uuid_tree_rescan_sem);
4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 if (IS_ERR(task)) {
4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 btrfs_warn(fs_info, "failed to start uuid_scan task");
4319 up(&fs_info->uuid_tree_rescan_sem);
4320 return PTR_ERR(task);
4323 return 0;
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4328 struct task_struct *task;
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 if (IS_ERR(task)) {
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4339 return 0;
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4349 struct btrfs_fs_info *fs_info = device->fs_info;
4350 struct btrfs_root *root = fs_info->dev_root;
4351 struct btrfs_trans_handle *trans;
4352 struct btrfs_dev_extent *dev_extent = NULL;
4353 struct btrfs_path *path;
4354 u64 length;
4355 u64 chunk_offset;
4356 int ret;
4357 int slot;
4358 int failed = 0;
4359 bool retried = false;
4360 bool checked_pending_chunks = false;
4361 struct extent_buffer *l;
4362 struct btrfs_key key;
4363 struct btrfs_super_block *super_copy = fs_info->super_copy;
4364 u64 old_total = btrfs_super_total_bytes(super_copy);
4365 u64 old_size = btrfs_device_get_total_bytes(device);
4366 u64 diff;
4368 new_size = round_down(new_size, fs_info->sectorsize);
4369 diff = round_down(old_size - new_size, fs_info->sectorsize);
4371 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4372 return -EINVAL;
4374 path = btrfs_alloc_path();
4375 if (!path)
4376 return -ENOMEM;
4378 path->reada = READA_BACK;
4380 mutex_lock(&fs_info->chunk_mutex);
4382 btrfs_device_set_total_bytes(device, new_size);
4383 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4384 device->fs_devices->total_rw_bytes -= diff;
4385 atomic64_sub(diff, &fs_info->free_chunk_space);
4387 mutex_unlock(&fs_info->chunk_mutex);
4389 again:
4390 key.objectid = device->devid;
4391 key.offset = (u64)-1;
4392 key.type = BTRFS_DEV_EXTENT_KEY;
4394 do {
4395 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4397 if (ret < 0) {
4398 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399 goto done;
4402 ret = btrfs_previous_item(root, path, 0, key.type);
4403 if (ret)
4404 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405 if (ret < 0)
4406 goto done;
4407 if (ret) {
4408 ret = 0;
4409 btrfs_release_path(path);
4410 break;
4413 l = path->nodes[0];
4414 slot = path->slots[0];
4415 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4417 if (key.objectid != device->devid) {
4418 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4419 btrfs_release_path(path);
4420 break;
4423 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4424 length = btrfs_dev_extent_length(l, dev_extent);
4426 if (key.offset + length <= new_size) {
4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 btrfs_release_path(path);
4429 break;
4432 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4433 btrfs_release_path(path);
4436 * We may be relocating the only data chunk we have,
4437 * which could potentially end up with losing data's
4438 * raid profile, so lets allocate an empty one in
4439 * advance.
4441 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4442 if (ret < 0) {
4443 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4444 goto done;
4447 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4448 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4449 if (ret && ret != -ENOSPC)
4450 goto done;
4451 if (ret == -ENOSPC)
4452 failed++;
4453 } while (key.offset-- > 0);
4455 if (failed && !retried) {
4456 failed = 0;
4457 retried = true;
4458 goto again;
4459 } else if (failed && retried) {
4460 ret = -ENOSPC;
4461 goto done;
4464 /* Shrinking succeeded, else we would be at "done". */
4465 trans = btrfs_start_transaction(root, 0);
4466 if (IS_ERR(trans)) {
4467 ret = PTR_ERR(trans);
4468 goto done;
4471 mutex_lock(&fs_info->chunk_mutex);
4474 * We checked in the above loop all device extents that were already in
4475 * the device tree. However before we have updated the device's
4476 * total_bytes to the new size, we might have had chunk allocations that
4477 * have not complete yet (new block groups attached to transaction
4478 * handles), and therefore their device extents were not yet in the
4479 * device tree and we missed them in the loop above. So if we have any
4480 * pending chunk using a device extent that overlaps the device range
4481 * that we can not use anymore, commit the current transaction and
4482 * repeat the search on the device tree - this way we guarantee we will
4483 * not have chunks using device extents that end beyond 'new_size'.
4485 if (!checked_pending_chunks) {
4486 u64 start = new_size;
4487 u64 len = old_size - new_size;
4489 if (contains_pending_extent(trans->transaction, device,
4490 &start, len)) {
4491 mutex_unlock(&fs_info->chunk_mutex);
4492 checked_pending_chunks = true;
4493 failed = 0;
4494 retried = false;
4495 ret = btrfs_commit_transaction(trans);
4496 if (ret)
4497 goto done;
4498 goto again;
4502 btrfs_device_set_disk_total_bytes(device, new_size);
4503 if (list_empty(&device->resized_list))
4504 list_add_tail(&device->resized_list,
4505 &fs_info->fs_devices->resized_devices);
4507 WARN_ON(diff > old_total);
4508 btrfs_set_super_total_bytes(super_copy,
4509 round_down(old_total - diff, fs_info->sectorsize));
4510 mutex_unlock(&fs_info->chunk_mutex);
4512 /* Now btrfs_update_device() will change the on-disk size. */
4513 ret = btrfs_update_device(trans, device);
4514 if (ret < 0) {
4515 btrfs_abort_transaction(trans, ret);
4516 btrfs_end_transaction(trans);
4517 } else {
4518 ret = btrfs_commit_transaction(trans);
4520 done:
4521 btrfs_free_path(path);
4522 if (ret) {
4523 mutex_lock(&fs_info->chunk_mutex);
4524 btrfs_device_set_total_bytes(device, old_size);
4525 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4526 device->fs_devices->total_rw_bytes += diff;
4527 atomic64_add(diff, &fs_info->free_chunk_space);
4528 mutex_unlock(&fs_info->chunk_mutex);
4530 return ret;
4533 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4534 struct btrfs_key *key,
4535 struct btrfs_chunk *chunk, int item_size)
4537 struct btrfs_super_block *super_copy = fs_info->super_copy;
4538 struct btrfs_disk_key disk_key;
4539 u32 array_size;
4540 u8 *ptr;
4542 mutex_lock(&fs_info->chunk_mutex);
4543 array_size = btrfs_super_sys_array_size(super_copy);
4544 if (array_size + item_size + sizeof(disk_key)
4545 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4546 mutex_unlock(&fs_info->chunk_mutex);
4547 return -EFBIG;
4550 ptr = super_copy->sys_chunk_array + array_size;
4551 btrfs_cpu_key_to_disk(&disk_key, key);
4552 memcpy(ptr, &disk_key, sizeof(disk_key));
4553 ptr += sizeof(disk_key);
4554 memcpy(ptr, chunk, item_size);
4555 item_size += sizeof(disk_key);
4556 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4557 mutex_unlock(&fs_info->chunk_mutex);
4559 return 0;
4563 * sort the devices in descending order by max_avail, total_avail
4565 static int btrfs_cmp_device_info(const void *a, const void *b)
4567 const struct btrfs_device_info *di_a = a;
4568 const struct btrfs_device_info *di_b = b;
4570 if (di_a->max_avail > di_b->max_avail)
4571 return -1;
4572 if (di_a->max_avail < di_b->max_avail)
4573 return 1;
4574 if (di_a->total_avail > di_b->total_avail)
4575 return -1;
4576 if (di_a->total_avail < di_b->total_avail)
4577 return 1;
4578 return 0;
4581 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4583 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4584 return;
4586 btrfs_set_fs_incompat(info, RAID56);
4589 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4590 - sizeof(struct btrfs_chunk)) \
4591 / sizeof(struct btrfs_stripe) + 1)
4593 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4594 - 2 * sizeof(struct btrfs_disk_key) \
4595 - 2 * sizeof(struct btrfs_chunk)) \
4596 / sizeof(struct btrfs_stripe) + 1)
4598 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4599 u64 start, u64 type)
4601 struct btrfs_fs_info *info = trans->fs_info;
4602 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4603 struct btrfs_device *device;
4604 struct map_lookup *map = NULL;
4605 struct extent_map_tree *em_tree;
4606 struct extent_map *em;
4607 struct btrfs_device_info *devices_info = NULL;
4608 u64 total_avail;
4609 int num_stripes; /* total number of stripes to allocate */
4610 int data_stripes; /* number of stripes that count for
4611 block group size */
4612 int sub_stripes; /* sub_stripes info for map */
4613 int dev_stripes; /* stripes per dev */
4614 int devs_max; /* max devs to use */
4615 int devs_min; /* min devs needed */
4616 int devs_increment; /* ndevs has to be a multiple of this */
4617 int ncopies; /* how many copies to data has */
4618 int ret;
4619 u64 max_stripe_size;
4620 u64 max_chunk_size;
4621 u64 stripe_size;
4622 u64 num_bytes;
4623 int ndevs;
4624 int i;
4625 int j;
4626 int index;
4628 BUG_ON(!alloc_profile_is_valid(type, 0));
4630 if (list_empty(&fs_devices->alloc_list)) {
4631 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4632 btrfs_debug(info, "%s: no writable device", __func__);
4633 return -ENOSPC;
4636 index = btrfs_bg_flags_to_raid_index(type);
4638 sub_stripes = btrfs_raid_array[index].sub_stripes;
4639 dev_stripes = btrfs_raid_array[index].dev_stripes;
4640 devs_max = btrfs_raid_array[index].devs_max;
4641 devs_min = btrfs_raid_array[index].devs_min;
4642 devs_increment = btrfs_raid_array[index].devs_increment;
4643 ncopies = btrfs_raid_array[index].ncopies;
4645 if (type & BTRFS_BLOCK_GROUP_DATA) {
4646 max_stripe_size = SZ_1G;
4647 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4648 if (!devs_max)
4649 devs_max = BTRFS_MAX_DEVS(info);
4650 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4651 /* for larger filesystems, use larger metadata chunks */
4652 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4653 max_stripe_size = SZ_1G;
4654 else
4655 max_stripe_size = SZ_256M;
4656 max_chunk_size = max_stripe_size;
4657 if (!devs_max)
4658 devs_max = BTRFS_MAX_DEVS(info);
4659 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4660 max_stripe_size = SZ_32M;
4661 max_chunk_size = 2 * max_stripe_size;
4662 if (!devs_max)
4663 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4664 } else {
4665 btrfs_err(info, "invalid chunk type 0x%llx requested",
4666 type);
4667 BUG_ON(1);
4670 /* we don't want a chunk larger than 10% of writeable space */
4671 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4672 max_chunk_size);
4674 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4675 GFP_NOFS);
4676 if (!devices_info)
4677 return -ENOMEM;
4680 * in the first pass through the devices list, we gather information
4681 * about the available holes on each device.
4683 ndevs = 0;
4684 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4685 u64 max_avail;
4686 u64 dev_offset;
4688 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4689 WARN(1, KERN_ERR
4690 "BTRFS: read-only device in alloc_list\n");
4691 continue;
4694 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4695 &device->dev_state) ||
4696 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4697 continue;
4699 if (device->total_bytes > device->bytes_used)
4700 total_avail = device->total_bytes - device->bytes_used;
4701 else
4702 total_avail = 0;
4704 /* If there is no space on this device, skip it. */
4705 if (total_avail == 0)
4706 continue;
4708 ret = find_free_dev_extent(trans, device,
4709 max_stripe_size * dev_stripes,
4710 &dev_offset, &max_avail);
4711 if (ret && ret != -ENOSPC)
4712 goto error;
4714 if (ret == 0)
4715 max_avail = max_stripe_size * dev_stripes;
4717 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4718 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4719 btrfs_debug(info,
4720 "%s: devid %llu has no free space, have=%llu want=%u",
4721 __func__, device->devid, max_avail,
4722 BTRFS_STRIPE_LEN * dev_stripes);
4723 continue;
4726 if (ndevs == fs_devices->rw_devices) {
4727 WARN(1, "%s: found more than %llu devices\n",
4728 __func__, fs_devices->rw_devices);
4729 break;
4731 devices_info[ndevs].dev_offset = dev_offset;
4732 devices_info[ndevs].max_avail = max_avail;
4733 devices_info[ndevs].total_avail = total_avail;
4734 devices_info[ndevs].dev = device;
4735 ++ndevs;
4739 * now sort the devices by hole size / available space
4741 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4742 btrfs_cmp_device_info, NULL);
4744 /* round down to number of usable stripes */
4745 ndevs = round_down(ndevs, devs_increment);
4747 if (ndevs < devs_min) {
4748 ret = -ENOSPC;
4749 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4750 btrfs_debug(info,
4751 "%s: not enough devices with free space: have=%d minimum required=%d",
4752 __func__, ndevs, devs_min);
4754 goto error;
4757 ndevs = min(ndevs, devs_max);
4760 * The primary goal is to maximize the number of stripes, so use as
4761 * many devices as possible, even if the stripes are not maximum sized.
4763 * The DUP profile stores more than one stripe per device, the
4764 * max_avail is the total size so we have to adjust.
4766 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4767 num_stripes = ndevs * dev_stripes;
4770 * this will have to be fixed for RAID1 and RAID10 over
4771 * more drives
4773 data_stripes = num_stripes / ncopies;
4775 if (type & BTRFS_BLOCK_GROUP_RAID5)
4776 data_stripes = num_stripes - 1;
4778 if (type & BTRFS_BLOCK_GROUP_RAID6)
4779 data_stripes = num_stripes - 2;
4782 * Use the number of data stripes to figure out how big this chunk
4783 * is really going to be in terms of logical address space,
4784 * and compare that answer with the max chunk size. If it's higher,
4785 * we try to reduce stripe_size.
4787 if (stripe_size * data_stripes > max_chunk_size) {
4789 * Reduce stripe_size, round it up to a 16MB boundary again and
4790 * then use it, unless it ends up being even bigger than the
4791 * previous value we had already.
4793 stripe_size = min(round_up(div_u64(max_chunk_size,
4794 data_stripes), SZ_16M),
4795 stripe_size);
4798 /* align to BTRFS_STRIPE_LEN */
4799 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4801 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4802 if (!map) {
4803 ret = -ENOMEM;
4804 goto error;
4806 map->num_stripes = num_stripes;
4808 for (i = 0; i < ndevs; ++i) {
4809 for (j = 0; j < dev_stripes; ++j) {
4810 int s = i * dev_stripes + j;
4811 map->stripes[s].dev = devices_info[i].dev;
4812 map->stripes[s].physical = devices_info[i].dev_offset +
4813 j * stripe_size;
4816 map->stripe_len = BTRFS_STRIPE_LEN;
4817 map->io_align = BTRFS_STRIPE_LEN;
4818 map->io_width = BTRFS_STRIPE_LEN;
4819 map->type = type;
4820 map->sub_stripes = sub_stripes;
4822 num_bytes = stripe_size * data_stripes;
4824 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4826 em = alloc_extent_map();
4827 if (!em) {
4828 kfree(map);
4829 ret = -ENOMEM;
4830 goto error;
4832 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4833 em->map_lookup = map;
4834 em->start = start;
4835 em->len = num_bytes;
4836 em->block_start = 0;
4837 em->block_len = em->len;
4838 em->orig_block_len = stripe_size;
4840 em_tree = &info->mapping_tree.map_tree;
4841 write_lock(&em_tree->lock);
4842 ret = add_extent_mapping(em_tree, em, 0);
4843 if (ret) {
4844 write_unlock(&em_tree->lock);
4845 free_extent_map(em);
4846 goto error;
4849 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4850 refcount_inc(&em->refs);
4851 write_unlock(&em_tree->lock);
4853 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4854 if (ret)
4855 goto error_del_extent;
4857 for (i = 0; i < map->num_stripes; i++) {
4858 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4859 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4860 map->stripes[i].dev->has_pending_chunks = true;
4863 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4865 free_extent_map(em);
4866 check_raid56_incompat_flag(info, type);
4868 kfree(devices_info);
4869 return 0;
4871 error_del_extent:
4872 write_lock(&em_tree->lock);
4873 remove_extent_mapping(em_tree, em);
4874 write_unlock(&em_tree->lock);
4876 /* One for our allocation */
4877 free_extent_map(em);
4878 /* One for the tree reference */
4879 free_extent_map(em);
4880 /* One for the pending_chunks list reference */
4881 free_extent_map(em);
4882 error:
4883 kfree(devices_info);
4884 return ret;
4887 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4888 u64 chunk_offset, u64 chunk_size)
4890 struct btrfs_fs_info *fs_info = trans->fs_info;
4891 struct btrfs_root *extent_root = fs_info->extent_root;
4892 struct btrfs_root *chunk_root = fs_info->chunk_root;
4893 struct btrfs_key key;
4894 struct btrfs_device *device;
4895 struct btrfs_chunk *chunk;
4896 struct btrfs_stripe *stripe;
4897 struct extent_map *em;
4898 struct map_lookup *map;
4899 size_t item_size;
4900 u64 dev_offset;
4901 u64 stripe_size;
4902 int i = 0;
4903 int ret = 0;
4905 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4906 if (IS_ERR(em))
4907 return PTR_ERR(em);
4909 map = em->map_lookup;
4910 item_size = btrfs_chunk_item_size(map->num_stripes);
4911 stripe_size = em->orig_block_len;
4913 chunk = kzalloc(item_size, GFP_NOFS);
4914 if (!chunk) {
4915 ret = -ENOMEM;
4916 goto out;
4920 * Take the device list mutex to prevent races with the final phase of
4921 * a device replace operation that replaces the device object associated
4922 * with the map's stripes, because the device object's id can change
4923 * at any time during that final phase of the device replace operation
4924 * (dev-replace.c:btrfs_dev_replace_finishing()).
4926 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4927 for (i = 0; i < map->num_stripes; i++) {
4928 device = map->stripes[i].dev;
4929 dev_offset = map->stripes[i].physical;
4931 ret = btrfs_update_device(trans, device);
4932 if (ret)
4933 break;
4934 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4935 dev_offset, stripe_size);
4936 if (ret)
4937 break;
4939 if (ret) {
4940 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4941 goto out;
4944 stripe = &chunk->stripe;
4945 for (i = 0; i < map->num_stripes; i++) {
4946 device = map->stripes[i].dev;
4947 dev_offset = map->stripes[i].physical;
4949 btrfs_set_stack_stripe_devid(stripe, device->devid);
4950 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4951 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4952 stripe++;
4954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4956 btrfs_set_stack_chunk_length(chunk, chunk_size);
4957 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4958 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4959 btrfs_set_stack_chunk_type(chunk, map->type);
4960 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4961 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4962 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4963 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4964 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4967 key.type = BTRFS_CHUNK_ITEM_KEY;
4968 key.offset = chunk_offset;
4970 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4971 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4973 * TODO: Cleanup of inserted chunk root in case of
4974 * failure.
4976 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4979 out:
4980 kfree(chunk);
4981 free_extent_map(em);
4982 return ret;
4986 * Chunk allocation falls into two parts. The first part does works
4987 * that make the new allocated chunk useable, but not do any operation
4988 * that modifies the chunk tree. The second part does the works that
4989 * require modifying the chunk tree. This division is important for the
4990 * bootstrap process of adding storage to a seed btrfs.
4992 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4994 u64 chunk_offset;
4996 lockdep_assert_held(&trans->fs_info->chunk_mutex);
4997 chunk_offset = find_next_chunk(trans->fs_info);
4998 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5001 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5002 struct btrfs_fs_info *fs_info)
5004 u64 chunk_offset;
5005 u64 sys_chunk_offset;
5006 u64 alloc_profile;
5007 int ret;
5009 chunk_offset = find_next_chunk(fs_info);
5010 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5011 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5012 if (ret)
5013 return ret;
5015 sys_chunk_offset = find_next_chunk(fs_info);
5016 alloc_profile = btrfs_system_alloc_profile(fs_info);
5017 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5018 return ret;
5021 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5023 int max_errors;
5025 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5026 BTRFS_BLOCK_GROUP_RAID10 |
5027 BTRFS_BLOCK_GROUP_RAID5)) {
5028 max_errors = 1;
5029 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5030 max_errors = 2;
5031 } else {
5032 max_errors = 0;
5035 return max_errors;
5038 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5040 struct extent_map *em;
5041 struct map_lookup *map;
5042 int readonly = 0;
5043 int miss_ndevs = 0;
5044 int i;
5046 em = get_chunk_map(fs_info, chunk_offset, 1);
5047 if (IS_ERR(em))
5048 return 1;
5050 map = em->map_lookup;
5051 for (i = 0; i < map->num_stripes; i++) {
5052 if (test_bit(BTRFS_DEV_STATE_MISSING,
5053 &map->stripes[i].dev->dev_state)) {
5054 miss_ndevs++;
5055 continue;
5057 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5058 &map->stripes[i].dev->dev_state)) {
5059 readonly = 1;
5060 goto end;
5065 * If the number of missing devices is larger than max errors,
5066 * we can not write the data into that chunk successfully, so
5067 * set it readonly.
5069 if (miss_ndevs > btrfs_chunk_max_errors(map))
5070 readonly = 1;
5071 end:
5072 free_extent_map(em);
5073 return readonly;
5076 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5078 extent_map_tree_init(&tree->map_tree);
5081 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5083 struct extent_map *em;
5085 while (1) {
5086 write_lock(&tree->map_tree.lock);
5087 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5088 if (em)
5089 remove_extent_mapping(&tree->map_tree, em);
5090 write_unlock(&tree->map_tree.lock);
5091 if (!em)
5092 break;
5093 /* once for us */
5094 free_extent_map(em);
5095 /* once for the tree */
5096 free_extent_map(em);
5100 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5102 struct extent_map *em;
5103 struct map_lookup *map;
5104 int ret;
5106 em = get_chunk_map(fs_info, logical, len);
5107 if (IS_ERR(em))
5109 * We could return errors for these cases, but that could get
5110 * ugly and we'd probably do the same thing which is just not do
5111 * anything else and exit, so return 1 so the callers don't try
5112 * to use other copies.
5114 return 1;
5116 map = em->map_lookup;
5117 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5118 ret = map->num_stripes;
5119 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5120 ret = map->sub_stripes;
5121 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5122 ret = 2;
5123 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5125 * There could be two corrupted data stripes, we need
5126 * to loop retry in order to rebuild the correct data.
5128 * Fail a stripe at a time on every retry except the
5129 * stripe under reconstruction.
5131 ret = map->num_stripes;
5132 else
5133 ret = 1;
5134 free_extent_map(em);
5136 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5137 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5138 fs_info->dev_replace.tgtdev)
5139 ret++;
5140 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5142 return ret;
5145 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5146 u64 logical)
5148 struct extent_map *em;
5149 struct map_lookup *map;
5150 unsigned long len = fs_info->sectorsize;
5152 em = get_chunk_map(fs_info, logical, len);
5154 if (!WARN_ON(IS_ERR(em))) {
5155 map = em->map_lookup;
5156 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5157 len = map->stripe_len * nr_data_stripes(map);
5158 free_extent_map(em);
5160 return len;
5163 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5165 struct extent_map *em;
5166 struct map_lookup *map;
5167 int ret = 0;
5169 em = get_chunk_map(fs_info, logical, len);
5171 if(!WARN_ON(IS_ERR(em))) {
5172 map = em->map_lookup;
5173 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5174 ret = 1;
5175 free_extent_map(em);
5177 return ret;
5180 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5181 struct map_lookup *map, int first,
5182 int dev_replace_is_ongoing)
5184 int i;
5185 int num_stripes;
5186 int preferred_mirror;
5187 int tolerance;
5188 struct btrfs_device *srcdev;
5190 ASSERT((map->type &
5191 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5193 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5194 num_stripes = map->sub_stripes;
5195 else
5196 num_stripes = map->num_stripes;
5198 preferred_mirror = first + current->pid % num_stripes;
5200 if (dev_replace_is_ongoing &&
5201 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5202 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5203 srcdev = fs_info->dev_replace.srcdev;
5204 else
5205 srcdev = NULL;
5208 * try to avoid the drive that is the source drive for a
5209 * dev-replace procedure, only choose it if no other non-missing
5210 * mirror is available
5212 for (tolerance = 0; tolerance < 2; tolerance++) {
5213 if (map->stripes[preferred_mirror].dev->bdev &&
5214 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5215 return preferred_mirror;
5216 for (i = first; i < first + num_stripes; i++) {
5217 if (map->stripes[i].dev->bdev &&
5218 (tolerance || map->stripes[i].dev != srcdev))
5219 return i;
5223 /* we couldn't find one that doesn't fail. Just return something
5224 * and the io error handling code will clean up eventually
5226 return preferred_mirror;
5229 static inline int parity_smaller(u64 a, u64 b)
5231 return a > b;
5234 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5235 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5237 struct btrfs_bio_stripe s;
5238 int i;
5239 u64 l;
5240 int again = 1;
5242 while (again) {
5243 again = 0;
5244 for (i = 0; i < num_stripes - 1; i++) {
5245 if (parity_smaller(bbio->raid_map[i],
5246 bbio->raid_map[i+1])) {
5247 s = bbio->stripes[i];
5248 l = bbio->raid_map[i];
5249 bbio->stripes[i] = bbio->stripes[i+1];
5250 bbio->raid_map[i] = bbio->raid_map[i+1];
5251 bbio->stripes[i+1] = s;
5252 bbio->raid_map[i+1] = l;
5254 again = 1;
5260 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5262 struct btrfs_bio *bbio = kzalloc(
5263 /* the size of the btrfs_bio */
5264 sizeof(struct btrfs_bio) +
5265 /* plus the variable array for the stripes */
5266 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5267 /* plus the variable array for the tgt dev */
5268 sizeof(int) * (real_stripes) +
5270 * plus the raid_map, which includes both the tgt dev
5271 * and the stripes
5273 sizeof(u64) * (total_stripes),
5274 GFP_NOFS|__GFP_NOFAIL);
5276 atomic_set(&bbio->error, 0);
5277 refcount_set(&bbio->refs, 1);
5279 return bbio;
5282 void btrfs_get_bbio(struct btrfs_bio *bbio)
5284 WARN_ON(!refcount_read(&bbio->refs));
5285 refcount_inc(&bbio->refs);
5288 void btrfs_put_bbio(struct btrfs_bio *bbio)
5290 if (!bbio)
5291 return;
5292 if (refcount_dec_and_test(&bbio->refs))
5293 kfree(bbio);
5296 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5298 * Please note that, discard won't be sent to target device of device
5299 * replace.
5301 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5302 u64 logical, u64 length,
5303 struct btrfs_bio **bbio_ret)
5305 struct extent_map *em;
5306 struct map_lookup *map;
5307 struct btrfs_bio *bbio;
5308 u64 offset;
5309 u64 stripe_nr;
5310 u64 stripe_nr_end;
5311 u64 stripe_end_offset;
5312 u64 stripe_cnt;
5313 u64 stripe_len;
5314 u64 stripe_offset;
5315 u64 num_stripes;
5316 u32 stripe_index;
5317 u32 factor = 0;
5318 u32 sub_stripes = 0;
5319 u64 stripes_per_dev = 0;
5320 u32 remaining_stripes = 0;
5321 u32 last_stripe = 0;
5322 int ret = 0;
5323 int i;
5325 /* discard always return a bbio */
5326 ASSERT(bbio_ret);
5328 em = get_chunk_map(fs_info, logical, length);
5329 if (IS_ERR(em))
5330 return PTR_ERR(em);
5332 map = em->map_lookup;
5333 /* we don't discard raid56 yet */
5334 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5335 ret = -EOPNOTSUPP;
5336 goto out;
5339 offset = logical - em->start;
5340 length = min_t(u64, em->len - offset, length);
5342 stripe_len = map->stripe_len;
5344 * stripe_nr counts the total number of stripes we have to stride
5345 * to get to this block
5347 stripe_nr = div64_u64(offset, stripe_len);
5349 /* stripe_offset is the offset of this block in its stripe */
5350 stripe_offset = offset - stripe_nr * stripe_len;
5352 stripe_nr_end = round_up(offset + length, map->stripe_len);
5353 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5354 stripe_cnt = stripe_nr_end - stripe_nr;
5355 stripe_end_offset = stripe_nr_end * map->stripe_len -
5356 (offset + length);
5358 * after this, stripe_nr is the number of stripes on this
5359 * device we have to walk to find the data, and stripe_index is
5360 * the number of our device in the stripe array
5362 num_stripes = 1;
5363 stripe_index = 0;
5364 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5365 BTRFS_BLOCK_GROUP_RAID10)) {
5366 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5367 sub_stripes = 1;
5368 else
5369 sub_stripes = map->sub_stripes;
5371 factor = map->num_stripes / sub_stripes;
5372 num_stripes = min_t(u64, map->num_stripes,
5373 sub_stripes * stripe_cnt);
5374 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5375 stripe_index *= sub_stripes;
5376 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5377 &remaining_stripes);
5378 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5379 last_stripe *= sub_stripes;
5380 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5381 BTRFS_BLOCK_GROUP_DUP)) {
5382 num_stripes = map->num_stripes;
5383 } else {
5384 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5385 &stripe_index);
5388 bbio = alloc_btrfs_bio(num_stripes, 0);
5389 if (!bbio) {
5390 ret = -ENOMEM;
5391 goto out;
5394 for (i = 0; i < num_stripes; i++) {
5395 bbio->stripes[i].physical =
5396 map->stripes[stripe_index].physical +
5397 stripe_offset + stripe_nr * map->stripe_len;
5398 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5400 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5401 BTRFS_BLOCK_GROUP_RAID10)) {
5402 bbio->stripes[i].length = stripes_per_dev *
5403 map->stripe_len;
5405 if (i / sub_stripes < remaining_stripes)
5406 bbio->stripes[i].length +=
5407 map->stripe_len;
5410 * Special for the first stripe and
5411 * the last stripe:
5413 * |-------|...|-------|
5414 * |----------|
5415 * off end_off
5417 if (i < sub_stripes)
5418 bbio->stripes[i].length -=
5419 stripe_offset;
5421 if (stripe_index >= last_stripe &&
5422 stripe_index <= (last_stripe +
5423 sub_stripes - 1))
5424 bbio->stripes[i].length -=
5425 stripe_end_offset;
5427 if (i == sub_stripes - 1)
5428 stripe_offset = 0;
5429 } else {
5430 bbio->stripes[i].length = length;
5433 stripe_index++;
5434 if (stripe_index == map->num_stripes) {
5435 stripe_index = 0;
5436 stripe_nr++;
5440 *bbio_ret = bbio;
5441 bbio->map_type = map->type;
5442 bbio->num_stripes = num_stripes;
5443 out:
5444 free_extent_map(em);
5445 return ret;
5449 * In dev-replace case, for repair case (that's the only case where the mirror
5450 * is selected explicitly when calling btrfs_map_block), blocks left of the
5451 * left cursor can also be read from the target drive.
5453 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5454 * array of stripes.
5455 * For READ, it also needs to be supported using the same mirror number.
5457 * If the requested block is not left of the left cursor, EIO is returned. This
5458 * can happen because btrfs_num_copies() returns one more in the dev-replace
5459 * case.
5461 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5462 u64 logical, u64 length,
5463 u64 srcdev_devid, int *mirror_num,
5464 u64 *physical)
5466 struct btrfs_bio *bbio = NULL;
5467 int num_stripes;
5468 int index_srcdev = 0;
5469 int found = 0;
5470 u64 physical_of_found = 0;
5471 int i;
5472 int ret = 0;
5474 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5475 logical, &length, &bbio, 0, 0);
5476 if (ret) {
5477 ASSERT(bbio == NULL);
5478 return ret;
5481 num_stripes = bbio->num_stripes;
5482 if (*mirror_num > num_stripes) {
5484 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5485 * that means that the requested area is not left of the left
5486 * cursor
5488 btrfs_put_bbio(bbio);
5489 return -EIO;
5493 * process the rest of the function using the mirror_num of the source
5494 * drive. Therefore look it up first. At the end, patch the device
5495 * pointer to the one of the target drive.
5497 for (i = 0; i < num_stripes; i++) {
5498 if (bbio->stripes[i].dev->devid != srcdev_devid)
5499 continue;
5502 * In case of DUP, in order to keep it simple, only add the
5503 * mirror with the lowest physical address
5505 if (found &&
5506 physical_of_found <= bbio->stripes[i].physical)
5507 continue;
5509 index_srcdev = i;
5510 found = 1;
5511 physical_of_found = bbio->stripes[i].physical;
5514 btrfs_put_bbio(bbio);
5516 ASSERT(found);
5517 if (!found)
5518 return -EIO;
5520 *mirror_num = index_srcdev + 1;
5521 *physical = physical_of_found;
5522 return ret;
5525 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5526 struct btrfs_bio **bbio_ret,
5527 struct btrfs_dev_replace *dev_replace,
5528 int *num_stripes_ret, int *max_errors_ret)
5530 struct btrfs_bio *bbio = *bbio_ret;
5531 u64 srcdev_devid = dev_replace->srcdev->devid;
5532 int tgtdev_indexes = 0;
5533 int num_stripes = *num_stripes_ret;
5534 int max_errors = *max_errors_ret;
5535 int i;
5537 if (op == BTRFS_MAP_WRITE) {
5538 int index_where_to_add;
5541 * duplicate the write operations while the dev replace
5542 * procedure is running. Since the copying of the old disk to
5543 * the new disk takes place at run time while the filesystem is
5544 * mounted writable, the regular write operations to the old
5545 * disk have to be duplicated to go to the new disk as well.
5547 * Note that device->missing is handled by the caller, and that
5548 * the write to the old disk is already set up in the stripes
5549 * array.
5551 index_where_to_add = num_stripes;
5552 for (i = 0; i < num_stripes; i++) {
5553 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5554 /* write to new disk, too */
5555 struct btrfs_bio_stripe *new =
5556 bbio->stripes + index_where_to_add;
5557 struct btrfs_bio_stripe *old =
5558 bbio->stripes + i;
5560 new->physical = old->physical;
5561 new->length = old->length;
5562 new->dev = dev_replace->tgtdev;
5563 bbio->tgtdev_map[i] = index_where_to_add;
5564 index_where_to_add++;
5565 max_errors++;
5566 tgtdev_indexes++;
5569 num_stripes = index_where_to_add;
5570 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5571 int index_srcdev = 0;
5572 int found = 0;
5573 u64 physical_of_found = 0;
5576 * During the dev-replace procedure, the target drive can also
5577 * be used to read data in case it is needed to repair a corrupt
5578 * block elsewhere. This is possible if the requested area is
5579 * left of the left cursor. In this area, the target drive is a
5580 * full copy of the source drive.
5582 for (i = 0; i < num_stripes; i++) {
5583 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5585 * In case of DUP, in order to keep it simple,
5586 * only add the mirror with the lowest physical
5587 * address
5589 if (found &&
5590 physical_of_found <=
5591 bbio->stripes[i].physical)
5592 continue;
5593 index_srcdev = i;
5594 found = 1;
5595 physical_of_found = bbio->stripes[i].physical;
5598 if (found) {
5599 struct btrfs_bio_stripe *tgtdev_stripe =
5600 bbio->stripes + num_stripes;
5602 tgtdev_stripe->physical = physical_of_found;
5603 tgtdev_stripe->length =
5604 bbio->stripes[index_srcdev].length;
5605 tgtdev_stripe->dev = dev_replace->tgtdev;
5606 bbio->tgtdev_map[index_srcdev] = num_stripes;
5608 tgtdev_indexes++;
5609 num_stripes++;
5613 *num_stripes_ret = num_stripes;
5614 *max_errors_ret = max_errors;
5615 bbio->num_tgtdevs = tgtdev_indexes;
5616 *bbio_ret = bbio;
5619 static bool need_full_stripe(enum btrfs_map_op op)
5621 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5624 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5625 enum btrfs_map_op op,
5626 u64 logical, u64 *length,
5627 struct btrfs_bio **bbio_ret,
5628 int mirror_num, int need_raid_map)
5630 struct extent_map *em;
5631 struct map_lookup *map;
5632 u64 offset;
5633 u64 stripe_offset;
5634 u64 stripe_nr;
5635 u64 stripe_len;
5636 u32 stripe_index;
5637 int i;
5638 int ret = 0;
5639 int num_stripes;
5640 int max_errors = 0;
5641 int tgtdev_indexes = 0;
5642 struct btrfs_bio *bbio = NULL;
5643 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5644 int dev_replace_is_ongoing = 0;
5645 int num_alloc_stripes;
5646 int patch_the_first_stripe_for_dev_replace = 0;
5647 u64 physical_to_patch_in_first_stripe = 0;
5648 u64 raid56_full_stripe_start = (u64)-1;
5650 if (op == BTRFS_MAP_DISCARD)
5651 return __btrfs_map_block_for_discard(fs_info, logical,
5652 *length, bbio_ret);
5654 em = get_chunk_map(fs_info, logical, *length);
5655 if (IS_ERR(em))
5656 return PTR_ERR(em);
5658 map = em->map_lookup;
5659 offset = logical - em->start;
5661 stripe_len = map->stripe_len;
5662 stripe_nr = offset;
5664 * stripe_nr counts the total number of stripes we have to stride
5665 * to get to this block
5667 stripe_nr = div64_u64(stripe_nr, stripe_len);
5669 stripe_offset = stripe_nr * stripe_len;
5670 if (offset < stripe_offset) {
5671 btrfs_crit(fs_info,
5672 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5673 stripe_offset, offset, em->start, logical,
5674 stripe_len);
5675 free_extent_map(em);
5676 return -EINVAL;
5679 /* stripe_offset is the offset of this block in its stripe*/
5680 stripe_offset = offset - stripe_offset;
5682 /* if we're here for raid56, we need to know the stripe aligned start */
5683 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5684 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5685 raid56_full_stripe_start = offset;
5687 /* allow a write of a full stripe, but make sure we don't
5688 * allow straddling of stripes
5690 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5691 full_stripe_len);
5692 raid56_full_stripe_start *= full_stripe_len;
5695 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5696 u64 max_len;
5697 /* For writes to RAID[56], allow a full stripeset across all disks.
5698 For other RAID types and for RAID[56] reads, just allow a single
5699 stripe (on a single disk). */
5700 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5701 (op == BTRFS_MAP_WRITE)) {
5702 max_len = stripe_len * nr_data_stripes(map) -
5703 (offset - raid56_full_stripe_start);
5704 } else {
5705 /* we limit the length of each bio to what fits in a stripe */
5706 max_len = stripe_len - stripe_offset;
5708 *length = min_t(u64, em->len - offset, max_len);
5709 } else {
5710 *length = em->len - offset;
5713 /* This is for when we're called from btrfs_merge_bio_hook() and all
5714 it cares about is the length */
5715 if (!bbio_ret)
5716 goto out;
5718 btrfs_dev_replace_read_lock(dev_replace);
5719 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5720 if (!dev_replace_is_ongoing)
5721 btrfs_dev_replace_read_unlock(dev_replace);
5722 else
5723 btrfs_dev_replace_set_lock_blocking(dev_replace);
5725 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5726 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5727 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5728 dev_replace->srcdev->devid,
5729 &mirror_num,
5730 &physical_to_patch_in_first_stripe);
5731 if (ret)
5732 goto out;
5733 else
5734 patch_the_first_stripe_for_dev_replace = 1;
5735 } else if (mirror_num > map->num_stripes) {
5736 mirror_num = 0;
5739 num_stripes = 1;
5740 stripe_index = 0;
5741 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5742 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5743 &stripe_index);
5744 if (!need_full_stripe(op))
5745 mirror_num = 1;
5746 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5747 if (need_full_stripe(op))
5748 num_stripes = map->num_stripes;
5749 else if (mirror_num)
5750 stripe_index = mirror_num - 1;
5751 else {
5752 stripe_index = find_live_mirror(fs_info, map, 0,
5753 dev_replace_is_ongoing);
5754 mirror_num = stripe_index + 1;
5757 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5758 if (need_full_stripe(op)) {
5759 num_stripes = map->num_stripes;
5760 } else if (mirror_num) {
5761 stripe_index = mirror_num - 1;
5762 } else {
5763 mirror_num = 1;
5766 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5767 u32 factor = map->num_stripes / map->sub_stripes;
5769 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5770 stripe_index *= map->sub_stripes;
5772 if (need_full_stripe(op))
5773 num_stripes = map->sub_stripes;
5774 else if (mirror_num)
5775 stripe_index += mirror_num - 1;
5776 else {
5777 int old_stripe_index = stripe_index;
5778 stripe_index = find_live_mirror(fs_info, map,
5779 stripe_index,
5780 dev_replace_is_ongoing);
5781 mirror_num = stripe_index - old_stripe_index + 1;
5784 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5785 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5786 /* push stripe_nr back to the start of the full stripe */
5787 stripe_nr = div64_u64(raid56_full_stripe_start,
5788 stripe_len * nr_data_stripes(map));
5790 /* RAID[56] write or recovery. Return all stripes */
5791 num_stripes = map->num_stripes;
5792 max_errors = nr_parity_stripes(map);
5794 *length = map->stripe_len;
5795 stripe_index = 0;
5796 stripe_offset = 0;
5797 } else {
5799 * Mirror #0 or #1 means the original data block.
5800 * Mirror #2 is RAID5 parity block.
5801 * Mirror #3 is RAID6 Q block.
5803 stripe_nr = div_u64_rem(stripe_nr,
5804 nr_data_stripes(map), &stripe_index);
5805 if (mirror_num > 1)
5806 stripe_index = nr_data_stripes(map) +
5807 mirror_num - 2;
5809 /* We distribute the parity blocks across stripes */
5810 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5811 &stripe_index);
5812 if (!need_full_stripe(op) && mirror_num <= 1)
5813 mirror_num = 1;
5815 } else {
5817 * after this, stripe_nr is the number of stripes on this
5818 * device we have to walk to find the data, and stripe_index is
5819 * the number of our device in the stripe array
5821 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5822 &stripe_index);
5823 mirror_num = stripe_index + 1;
5825 if (stripe_index >= map->num_stripes) {
5826 btrfs_crit(fs_info,
5827 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5828 stripe_index, map->num_stripes);
5829 ret = -EINVAL;
5830 goto out;
5833 num_alloc_stripes = num_stripes;
5834 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5835 if (op == BTRFS_MAP_WRITE)
5836 num_alloc_stripes <<= 1;
5837 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5838 num_alloc_stripes++;
5839 tgtdev_indexes = num_stripes;
5842 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5843 if (!bbio) {
5844 ret = -ENOMEM;
5845 goto out;
5847 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5848 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5850 /* build raid_map */
5851 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5852 (need_full_stripe(op) || mirror_num > 1)) {
5853 u64 tmp;
5854 unsigned rot;
5856 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5857 sizeof(struct btrfs_bio_stripe) *
5858 num_alloc_stripes +
5859 sizeof(int) * tgtdev_indexes);
5861 /* Work out the disk rotation on this stripe-set */
5862 div_u64_rem(stripe_nr, num_stripes, &rot);
5864 /* Fill in the logical address of each stripe */
5865 tmp = stripe_nr * nr_data_stripes(map);
5866 for (i = 0; i < nr_data_stripes(map); i++)
5867 bbio->raid_map[(i+rot) % num_stripes] =
5868 em->start + (tmp + i) * map->stripe_len;
5870 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5871 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5872 bbio->raid_map[(i+rot+1) % num_stripes] =
5873 RAID6_Q_STRIPE;
5877 for (i = 0; i < num_stripes; i++) {
5878 bbio->stripes[i].physical =
5879 map->stripes[stripe_index].physical +
5880 stripe_offset +
5881 stripe_nr * map->stripe_len;
5882 bbio->stripes[i].dev =
5883 map->stripes[stripe_index].dev;
5884 stripe_index++;
5887 if (need_full_stripe(op))
5888 max_errors = btrfs_chunk_max_errors(map);
5890 if (bbio->raid_map)
5891 sort_parity_stripes(bbio, num_stripes);
5893 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5894 need_full_stripe(op)) {
5895 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5896 &max_errors);
5899 *bbio_ret = bbio;
5900 bbio->map_type = map->type;
5901 bbio->num_stripes = num_stripes;
5902 bbio->max_errors = max_errors;
5903 bbio->mirror_num = mirror_num;
5906 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5907 * mirror_num == num_stripes + 1 && dev_replace target drive is
5908 * available as a mirror
5910 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5911 WARN_ON(num_stripes > 1);
5912 bbio->stripes[0].dev = dev_replace->tgtdev;
5913 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5914 bbio->mirror_num = map->num_stripes + 1;
5916 out:
5917 if (dev_replace_is_ongoing) {
5918 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5919 btrfs_dev_replace_read_unlock(dev_replace);
5921 free_extent_map(em);
5922 return ret;
5925 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5926 u64 logical, u64 *length,
5927 struct btrfs_bio **bbio_ret, int mirror_num)
5929 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5930 mirror_num, 0);
5933 /* For Scrub/replace */
5934 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5935 u64 logical, u64 *length,
5936 struct btrfs_bio **bbio_ret)
5938 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5941 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5942 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5944 struct extent_map *em;
5945 struct map_lookup *map;
5946 u64 *buf;
5947 u64 bytenr;
5948 u64 length;
5949 u64 stripe_nr;
5950 u64 rmap_len;
5951 int i, j, nr = 0;
5953 em = get_chunk_map(fs_info, chunk_start, 1);
5954 if (IS_ERR(em))
5955 return -EIO;
5957 map = em->map_lookup;
5958 length = em->len;
5959 rmap_len = map->stripe_len;
5961 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5962 length = div_u64(length, map->num_stripes / map->sub_stripes);
5963 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5964 length = div_u64(length, map->num_stripes);
5965 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5966 length = div_u64(length, nr_data_stripes(map));
5967 rmap_len = map->stripe_len * nr_data_stripes(map);
5970 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5971 BUG_ON(!buf); /* -ENOMEM */
5973 for (i = 0; i < map->num_stripes; i++) {
5974 if (map->stripes[i].physical > physical ||
5975 map->stripes[i].physical + length <= physical)
5976 continue;
5978 stripe_nr = physical - map->stripes[i].physical;
5979 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5981 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5982 stripe_nr = stripe_nr * map->num_stripes + i;
5983 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5984 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5985 stripe_nr = stripe_nr * map->num_stripes + i;
5986 } /* else if RAID[56], multiply by nr_data_stripes().
5987 * Alternatively, just use rmap_len below instead of
5988 * map->stripe_len */
5990 bytenr = chunk_start + stripe_nr * rmap_len;
5991 WARN_ON(nr >= map->num_stripes);
5992 for (j = 0; j < nr; j++) {
5993 if (buf[j] == bytenr)
5994 break;
5996 if (j == nr) {
5997 WARN_ON(nr >= map->num_stripes);
5998 buf[nr++] = bytenr;
6002 *logical = buf;
6003 *naddrs = nr;
6004 *stripe_len = rmap_len;
6006 free_extent_map(em);
6007 return 0;
6010 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6012 bio->bi_private = bbio->private;
6013 bio->bi_end_io = bbio->end_io;
6014 bio_endio(bio);
6016 btrfs_put_bbio(bbio);
6019 static void btrfs_end_bio(struct bio *bio)
6021 struct btrfs_bio *bbio = bio->bi_private;
6022 int is_orig_bio = 0;
6024 if (bio->bi_status) {
6025 atomic_inc(&bbio->error);
6026 if (bio->bi_status == BLK_STS_IOERR ||
6027 bio->bi_status == BLK_STS_TARGET) {
6028 unsigned int stripe_index =
6029 btrfs_io_bio(bio)->stripe_index;
6030 struct btrfs_device *dev;
6032 BUG_ON(stripe_index >= bbio->num_stripes);
6033 dev = bbio->stripes[stripe_index].dev;
6034 if (dev->bdev) {
6035 if (bio_op(bio) == REQ_OP_WRITE)
6036 btrfs_dev_stat_inc_and_print(dev,
6037 BTRFS_DEV_STAT_WRITE_ERRS);
6038 else if (!(bio->bi_opf & REQ_RAHEAD))
6039 btrfs_dev_stat_inc_and_print(dev,
6040 BTRFS_DEV_STAT_READ_ERRS);
6041 if (bio->bi_opf & REQ_PREFLUSH)
6042 btrfs_dev_stat_inc_and_print(dev,
6043 BTRFS_DEV_STAT_FLUSH_ERRS);
6048 if (bio == bbio->orig_bio)
6049 is_orig_bio = 1;
6051 btrfs_bio_counter_dec(bbio->fs_info);
6053 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6054 if (!is_orig_bio) {
6055 bio_put(bio);
6056 bio = bbio->orig_bio;
6059 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6060 /* only send an error to the higher layers if it is
6061 * beyond the tolerance of the btrfs bio
6063 if (atomic_read(&bbio->error) > bbio->max_errors) {
6064 bio->bi_status = BLK_STS_IOERR;
6065 } else {
6067 * this bio is actually up to date, we didn't
6068 * go over the max number of errors
6070 bio->bi_status = BLK_STS_OK;
6073 btrfs_end_bbio(bbio, bio);
6074 } else if (!is_orig_bio) {
6075 bio_put(bio);
6080 * see run_scheduled_bios for a description of why bios are collected for
6081 * async submit.
6083 * This will add one bio to the pending list for a device and make sure
6084 * the work struct is scheduled.
6086 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6087 struct bio *bio)
6089 struct btrfs_fs_info *fs_info = device->fs_info;
6090 int should_queue = 1;
6091 struct btrfs_pending_bios *pending_bios;
6093 /* don't bother with additional async steps for reads, right now */
6094 if (bio_op(bio) == REQ_OP_READ) {
6095 btrfsic_submit_bio(bio);
6096 return;
6099 WARN_ON(bio->bi_next);
6100 bio->bi_next = NULL;
6102 spin_lock(&device->io_lock);
6103 if (op_is_sync(bio->bi_opf))
6104 pending_bios = &device->pending_sync_bios;
6105 else
6106 pending_bios = &device->pending_bios;
6108 if (pending_bios->tail)
6109 pending_bios->tail->bi_next = bio;
6111 pending_bios->tail = bio;
6112 if (!pending_bios->head)
6113 pending_bios->head = bio;
6114 if (device->running_pending)
6115 should_queue = 0;
6117 spin_unlock(&device->io_lock);
6119 if (should_queue)
6120 btrfs_queue_work(fs_info->submit_workers, &device->work);
6123 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6124 u64 physical, int dev_nr, int async)
6126 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6127 struct btrfs_fs_info *fs_info = bbio->fs_info;
6129 bio->bi_private = bbio;
6130 btrfs_io_bio(bio)->stripe_index = dev_nr;
6131 bio->bi_end_io = btrfs_end_bio;
6132 bio->bi_iter.bi_sector = physical >> 9;
6133 btrfs_debug_in_rcu(fs_info,
6134 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6135 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6136 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6137 bio->bi_iter.bi_size);
6138 bio_set_dev(bio, dev->bdev);
6140 btrfs_bio_counter_inc_noblocked(fs_info);
6142 if (async)
6143 btrfs_schedule_bio(dev, bio);
6144 else
6145 btrfsic_submit_bio(bio);
6148 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6150 atomic_inc(&bbio->error);
6151 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6152 /* Should be the original bio. */
6153 WARN_ON(bio != bbio->orig_bio);
6155 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6156 bio->bi_iter.bi_sector = logical >> 9;
6157 if (atomic_read(&bbio->error) > bbio->max_errors)
6158 bio->bi_status = BLK_STS_IOERR;
6159 else
6160 bio->bi_status = BLK_STS_OK;
6161 btrfs_end_bbio(bbio, bio);
6165 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6166 int mirror_num, int async_submit)
6168 struct btrfs_device *dev;
6169 struct bio *first_bio = bio;
6170 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6171 u64 length = 0;
6172 u64 map_length;
6173 int ret;
6174 int dev_nr;
6175 int total_devs;
6176 struct btrfs_bio *bbio = NULL;
6178 length = bio->bi_iter.bi_size;
6179 map_length = length;
6181 btrfs_bio_counter_inc_blocked(fs_info);
6182 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6183 &map_length, &bbio, mirror_num, 1);
6184 if (ret) {
6185 btrfs_bio_counter_dec(fs_info);
6186 return errno_to_blk_status(ret);
6189 total_devs = bbio->num_stripes;
6190 bbio->orig_bio = first_bio;
6191 bbio->private = first_bio->bi_private;
6192 bbio->end_io = first_bio->bi_end_io;
6193 bbio->fs_info = fs_info;
6194 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6196 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6197 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6198 /* In this case, map_length has been set to the length of
6199 a single stripe; not the whole write */
6200 if (bio_op(bio) == REQ_OP_WRITE) {
6201 ret = raid56_parity_write(fs_info, bio, bbio,
6202 map_length);
6203 } else {
6204 ret = raid56_parity_recover(fs_info, bio, bbio,
6205 map_length, mirror_num, 1);
6208 btrfs_bio_counter_dec(fs_info);
6209 return errno_to_blk_status(ret);
6212 if (map_length < length) {
6213 btrfs_crit(fs_info,
6214 "mapping failed logical %llu bio len %llu len %llu",
6215 logical, length, map_length);
6216 BUG();
6219 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6220 dev = bbio->stripes[dev_nr].dev;
6221 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6222 &dev->dev_state) ||
6223 (bio_op(first_bio) == REQ_OP_WRITE &&
6224 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6225 bbio_error(bbio, first_bio, logical);
6226 continue;
6229 if (dev_nr < total_devs - 1)
6230 bio = btrfs_bio_clone(first_bio);
6231 else
6232 bio = first_bio;
6234 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6235 dev_nr, async_submit);
6237 btrfs_bio_counter_dec(fs_info);
6238 return BLK_STS_OK;
6242 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6243 * return NULL.
6245 * If devid and uuid are both specified, the match must be exact, otherwise
6246 * only devid is used.
6248 * If @seed is true, traverse through the seed devices.
6250 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6251 u64 devid, u8 *uuid, u8 *fsid,
6252 bool seed)
6254 struct btrfs_device *device;
6256 while (fs_devices) {
6257 if (!fsid ||
6258 !memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6259 list_for_each_entry(device, &fs_devices->devices,
6260 dev_list) {
6261 if (device->devid == devid &&
6262 (!uuid || memcmp(device->uuid, uuid,
6263 BTRFS_UUID_SIZE) == 0))
6264 return device;
6267 if (seed)
6268 fs_devices = fs_devices->seed;
6269 else
6270 return NULL;
6272 return NULL;
6275 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6276 u64 devid, u8 *dev_uuid)
6278 struct btrfs_device *device;
6280 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6281 if (IS_ERR(device))
6282 return device;
6284 list_add(&device->dev_list, &fs_devices->devices);
6285 device->fs_devices = fs_devices;
6286 fs_devices->num_devices++;
6288 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6289 fs_devices->missing_devices++;
6291 return device;
6295 * btrfs_alloc_device - allocate struct btrfs_device
6296 * @fs_info: used only for generating a new devid, can be NULL if
6297 * devid is provided (i.e. @devid != NULL).
6298 * @devid: a pointer to devid for this device. If NULL a new devid
6299 * is generated.
6300 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6301 * is generated.
6303 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6304 * on error. Returned struct is not linked onto any lists and must be
6305 * destroyed with btrfs_free_device.
6307 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6308 const u64 *devid,
6309 const u8 *uuid)
6311 struct btrfs_device *dev;
6312 u64 tmp;
6314 if (WARN_ON(!devid && !fs_info))
6315 return ERR_PTR(-EINVAL);
6317 dev = __alloc_device();
6318 if (IS_ERR(dev))
6319 return dev;
6321 if (devid)
6322 tmp = *devid;
6323 else {
6324 int ret;
6326 ret = find_next_devid(fs_info, &tmp);
6327 if (ret) {
6328 btrfs_free_device(dev);
6329 return ERR_PTR(ret);
6332 dev->devid = tmp;
6334 if (uuid)
6335 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6336 else
6337 generate_random_uuid(dev->uuid);
6339 btrfs_init_work(&dev->work, btrfs_submit_helper,
6340 pending_bios_fn, NULL, NULL);
6342 return dev;
6345 /* Return -EIO if any error, otherwise return 0. */
6346 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6347 struct extent_buffer *leaf,
6348 struct btrfs_chunk *chunk, u64 logical)
6350 u64 length;
6351 u64 stripe_len;
6352 u16 num_stripes;
6353 u16 sub_stripes;
6354 u64 type;
6355 u64 features;
6356 bool mixed = false;
6358 length = btrfs_chunk_length(leaf, chunk);
6359 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6360 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6361 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6362 type = btrfs_chunk_type(leaf, chunk);
6364 if (!num_stripes) {
6365 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6366 num_stripes);
6367 return -EIO;
6369 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6370 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6371 return -EIO;
6373 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6374 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6375 btrfs_chunk_sector_size(leaf, chunk));
6376 return -EIO;
6378 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6379 btrfs_err(fs_info, "invalid chunk length %llu", length);
6380 return -EIO;
6382 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6383 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6384 stripe_len);
6385 return -EIO;
6387 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6388 type) {
6389 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6390 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6391 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6392 btrfs_chunk_type(leaf, chunk));
6393 return -EIO;
6396 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6397 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6398 return -EIO;
6401 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6402 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6403 btrfs_err(fs_info,
6404 "system chunk with data or metadata type: 0x%llx", type);
6405 return -EIO;
6408 features = btrfs_super_incompat_flags(fs_info->super_copy);
6409 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6410 mixed = true;
6412 if (!mixed) {
6413 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6414 (type & BTRFS_BLOCK_GROUP_DATA)) {
6415 btrfs_err(fs_info,
6416 "mixed chunk type in non-mixed mode: 0x%llx", type);
6417 return -EIO;
6421 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6422 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6423 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6424 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6425 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6426 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6427 num_stripes != 1)) {
6428 btrfs_err(fs_info,
6429 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6430 num_stripes, sub_stripes,
6431 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6432 return -EIO;
6435 return 0;
6438 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6439 u64 devid, u8 *uuid, bool error)
6441 if (error)
6442 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6443 devid, uuid);
6444 else
6445 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6446 devid, uuid);
6449 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6450 struct extent_buffer *leaf,
6451 struct btrfs_chunk *chunk)
6453 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6454 struct map_lookup *map;
6455 struct extent_map *em;
6456 u64 logical;
6457 u64 length;
6458 u64 devid;
6459 u8 uuid[BTRFS_UUID_SIZE];
6460 int num_stripes;
6461 int ret;
6462 int i;
6464 logical = key->offset;
6465 length = btrfs_chunk_length(leaf, chunk);
6466 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6468 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6469 if (ret)
6470 return ret;
6472 read_lock(&map_tree->map_tree.lock);
6473 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6474 read_unlock(&map_tree->map_tree.lock);
6476 /* already mapped? */
6477 if (em && em->start <= logical && em->start + em->len > logical) {
6478 free_extent_map(em);
6479 return 0;
6480 } else if (em) {
6481 free_extent_map(em);
6484 em = alloc_extent_map();
6485 if (!em)
6486 return -ENOMEM;
6487 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6488 if (!map) {
6489 free_extent_map(em);
6490 return -ENOMEM;
6493 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6494 em->map_lookup = map;
6495 em->start = logical;
6496 em->len = length;
6497 em->orig_start = 0;
6498 em->block_start = 0;
6499 em->block_len = em->len;
6501 map->num_stripes = num_stripes;
6502 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6503 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6504 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6505 map->type = btrfs_chunk_type(leaf, chunk);
6506 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6507 map->verified_stripes = 0;
6508 for (i = 0; i < num_stripes; i++) {
6509 map->stripes[i].physical =
6510 btrfs_stripe_offset_nr(leaf, chunk, i);
6511 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6512 read_extent_buffer(leaf, uuid, (unsigned long)
6513 btrfs_stripe_dev_uuid_nr(chunk, i),
6514 BTRFS_UUID_SIZE);
6515 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6516 devid, uuid, NULL, true);
6517 if (!map->stripes[i].dev &&
6518 !btrfs_test_opt(fs_info, DEGRADED)) {
6519 free_extent_map(em);
6520 btrfs_report_missing_device(fs_info, devid, uuid, true);
6521 return -ENOENT;
6523 if (!map->stripes[i].dev) {
6524 map->stripes[i].dev =
6525 add_missing_dev(fs_info->fs_devices, devid,
6526 uuid);
6527 if (IS_ERR(map->stripes[i].dev)) {
6528 free_extent_map(em);
6529 btrfs_err(fs_info,
6530 "failed to init missing dev %llu: %ld",
6531 devid, PTR_ERR(map->stripes[i].dev));
6532 return PTR_ERR(map->stripes[i].dev);
6534 btrfs_report_missing_device(fs_info, devid, uuid, false);
6536 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6537 &(map->stripes[i].dev->dev_state));
6541 write_lock(&map_tree->map_tree.lock);
6542 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6543 write_unlock(&map_tree->map_tree.lock);
6544 if (ret < 0) {
6545 btrfs_err(fs_info,
6546 "failed to add chunk map, start=%llu len=%llu: %d",
6547 em->start, em->len, ret);
6549 free_extent_map(em);
6551 return ret;
6554 static void fill_device_from_item(struct extent_buffer *leaf,
6555 struct btrfs_dev_item *dev_item,
6556 struct btrfs_device *device)
6558 unsigned long ptr;
6560 device->devid = btrfs_device_id(leaf, dev_item);
6561 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6562 device->total_bytes = device->disk_total_bytes;
6563 device->commit_total_bytes = device->disk_total_bytes;
6564 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6565 device->commit_bytes_used = device->bytes_used;
6566 device->type = btrfs_device_type(leaf, dev_item);
6567 device->io_align = btrfs_device_io_align(leaf, dev_item);
6568 device->io_width = btrfs_device_io_width(leaf, dev_item);
6569 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6570 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6571 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6573 ptr = btrfs_device_uuid(dev_item);
6574 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6577 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6578 u8 *fsid)
6580 struct btrfs_fs_devices *fs_devices;
6581 int ret;
6583 lockdep_assert_held(&uuid_mutex);
6584 ASSERT(fsid);
6586 fs_devices = fs_info->fs_devices->seed;
6587 while (fs_devices) {
6588 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6589 return fs_devices;
6591 fs_devices = fs_devices->seed;
6594 fs_devices = find_fsid(fsid);
6595 if (!fs_devices) {
6596 if (!btrfs_test_opt(fs_info, DEGRADED))
6597 return ERR_PTR(-ENOENT);
6599 fs_devices = alloc_fs_devices(fsid);
6600 if (IS_ERR(fs_devices))
6601 return fs_devices;
6603 fs_devices->seeding = 1;
6604 fs_devices->opened = 1;
6605 return fs_devices;
6608 fs_devices = clone_fs_devices(fs_devices);
6609 if (IS_ERR(fs_devices))
6610 return fs_devices;
6612 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6613 if (ret) {
6614 free_fs_devices(fs_devices);
6615 fs_devices = ERR_PTR(ret);
6616 goto out;
6619 if (!fs_devices->seeding) {
6620 close_fs_devices(fs_devices);
6621 free_fs_devices(fs_devices);
6622 fs_devices = ERR_PTR(-EINVAL);
6623 goto out;
6626 fs_devices->seed = fs_info->fs_devices->seed;
6627 fs_info->fs_devices->seed = fs_devices;
6628 out:
6629 return fs_devices;
6632 static int read_one_dev(struct btrfs_fs_info *fs_info,
6633 struct extent_buffer *leaf,
6634 struct btrfs_dev_item *dev_item)
6636 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6637 struct btrfs_device *device;
6638 u64 devid;
6639 int ret;
6640 u8 fs_uuid[BTRFS_FSID_SIZE];
6641 u8 dev_uuid[BTRFS_UUID_SIZE];
6643 devid = btrfs_device_id(leaf, dev_item);
6644 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6645 BTRFS_UUID_SIZE);
6646 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6647 BTRFS_FSID_SIZE);
6649 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6650 fs_devices = open_seed_devices(fs_info, fs_uuid);
6651 if (IS_ERR(fs_devices))
6652 return PTR_ERR(fs_devices);
6655 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6656 fs_uuid, true);
6657 if (!device) {
6658 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6659 btrfs_report_missing_device(fs_info, devid,
6660 dev_uuid, true);
6661 return -ENOENT;
6664 device = add_missing_dev(fs_devices, devid, dev_uuid);
6665 if (IS_ERR(device)) {
6666 btrfs_err(fs_info,
6667 "failed to add missing dev %llu: %ld",
6668 devid, PTR_ERR(device));
6669 return PTR_ERR(device);
6671 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6672 } else {
6673 if (!device->bdev) {
6674 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6675 btrfs_report_missing_device(fs_info,
6676 devid, dev_uuid, true);
6677 return -ENOENT;
6679 btrfs_report_missing_device(fs_info, devid,
6680 dev_uuid, false);
6683 if (!device->bdev &&
6684 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6686 * this happens when a device that was properly setup
6687 * in the device info lists suddenly goes bad.
6688 * device->bdev is NULL, and so we have to set
6689 * device->missing to one here
6691 device->fs_devices->missing_devices++;
6692 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6695 /* Move the device to its own fs_devices */
6696 if (device->fs_devices != fs_devices) {
6697 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6698 &device->dev_state));
6700 list_move(&device->dev_list, &fs_devices->devices);
6701 device->fs_devices->num_devices--;
6702 fs_devices->num_devices++;
6704 device->fs_devices->missing_devices--;
6705 fs_devices->missing_devices++;
6707 device->fs_devices = fs_devices;
6711 if (device->fs_devices != fs_info->fs_devices) {
6712 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6713 if (device->generation !=
6714 btrfs_device_generation(leaf, dev_item))
6715 return -EINVAL;
6718 fill_device_from_item(leaf, dev_item, device);
6719 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6720 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6721 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6722 device->fs_devices->total_rw_bytes += device->total_bytes;
6723 atomic64_add(device->total_bytes - device->bytes_used,
6724 &fs_info->free_chunk_space);
6726 ret = 0;
6727 return ret;
6730 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6732 struct btrfs_root *root = fs_info->tree_root;
6733 struct btrfs_super_block *super_copy = fs_info->super_copy;
6734 struct extent_buffer *sb;
6735 struct btrfs_disk_key *disk_key;
6736 struct btrfs_chunk *chunk;
6737 u8 *array_ptr;
6738 unsigned long sb_array_offset;
6739 int ret = 0;
6740 u32 num_stripes;
6741 u32 array_size;
6742 u32 len = 0;
6743 u32 cur_offset;
6744 u64 type;
6745 struct btrfs_key key;
6747 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6749 * This will create extent buffer of nodesize, superblock size is
6750 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6751 * overallocate but we can keep it as-is, only the first page is used.
6753 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6754 if (IS_ERR(sb))
6755 return PTR_ERR(sb);
6756 set_extent_buffer_uptodate(sb);
6757 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6759 * The sb extent buffer is artificial and just used to read the system array.
6760 * set_extent_buffer_uptodate() call does not properly mark all it's
6761 * pages up-to-date when the page is larger: extent does not cover the
6762 * whole page and consequently check_page_uptodate does not find all
6763 * the page's extents up-to-date (the hole beyond sb),
6764 * write_extent_buffer then triggers a WARN_ON.
6766 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6767 * but sb spans only this function. Add an explicit SetPageUptodate call
6768 * to silence the warning eg. on PowerPC 64.
6770 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6771 SetPageUptodate(sb->pages[0]);
6773 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6774 array_size = btrfs_super_sys_array_size(super_copy);
6776 array_ptr = super_copy->sys_chunk_array;
6777 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6778 cur_offset = 0;
6780 while (cur_offset < array_size) {
6781 disk_key = (struct btrfs_disk_key *)array_ptr;
6782 len = sizeof(*disk_key);
6783 if (cur_offset + len > array_size)
6784 goto out_short_read;
6786 btrfs_disk_key_to_cpu(&key, disk_key);
6788 array_ptr += len;
6789 sb_array_offset += len;
6790 cur_offset += len;
6792 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6793 chunk = (struct btrfs_chunk *)sb_array_offset;
6795 * At least one btrfs_chunk with one stripe must be
6796 * present, exact stripe count check comes afterwards
6798 len = btrfs_chunk_item_size(1);
6799 if (cur_offset + len > array_size)
6800 goto out_short_read;
6802 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6803 if (!num_stripes) {
6804 btrfs_err(fs_info,
6805 "invalid number of stripes %u in sys_array at offset %u",
6806 num_stripes, cur_offset);
6807 ret = -EIO;
6808 break;
6811 type = btrfs_chunk_type(sb, chunk);
6812 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6813 btrfs_err(fs_info,
6814 "invalid chunk type %llu in sys_array at offset %u",
6815 type, cur_offset);
6816 ret = -EIO;
6817 break;
6820 len = btrfs_chunk_item_size(num_stripes);
6821 if (cur_offset + len > array_size)
6822 goto out_short_read;
6824 ret = read_one_chunk(fs_info, &key, sb, chunk);
6825 if (ret)
6826 break;
6827 } else {
6828 btrfs_err(fs_info,
6829 "unexpected item type %u in sys_array at offset %u",
6830 (u32)key.type, cur_offset);
6831 ret = -EIO;
6832 break;
6834 array_ptr += len;
6835 sb_array_offset += len;
6836 cur_offset += len;
6838 clear_extent_buffer_uptodate(sb);
6839 free_extent_buffer_stale(sb);
6840 return ret;
6842 out_short_read:
6843 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6844 len, cur_offset);
6845 clear_extent_buffer_uptodate(sb);
6846 free_extent_buffer_stale(sb);
6847 return -EIO;
6851 * Check if all chunks in the fs are OK for read-write degraded mount
6853 * If the @failing_dev is specified, it's accounted as missing.
6855 * Return true if all chunks meet the minimal RW mount requirements.
6856 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6858 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6859 struct btrfs_device *failing_dev)
6861 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6862 struct extent_map *em;
6863 u64 next_start = 0;
6864 bool ret = true;
6866 read_lock(&map_tree->map_tree.lock);
6867 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6868 read_unlock(&map_tree->map_tree.lock);
6869 /* No chunk at all? Return false anyway */
6870 if (!em) {
6871 ret = false;
6872 goto out;
6874 while (em) {
6875 struct map_lookup *map;
6876 int missing = 0;
6877 int max_tolerated;
6878 int i;
6880 map = em->map_lookup;
6881 max_tolerated =
6882 btrfs_get_num_tolerated_disk_barrier_failures(
6883 map->type);
6884 for (i = 0; i < map->num_stripes; i++) {
6885 struct btrfs_device *dev = map->stripes[i].dev;
6887 if (!dev || !dev->bdev ||
6888 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6889 dev->last_flush_error)
6890 missing++;
6891 else if (failing_dev && failing_dev == dev)
6892 missing++;
6894 if (missing > max_tolerated) {
6895 if (!failing_dev)
6896 btrfs_warn(fs_info,
6897 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6898 em->start, missing, max_tolerated);
6899 free_extent_map(em);
6900 ret = false;
6901 goto out;
6903 next_start = extent_map_end(em);
6904 free_extent_map(em);
6906 read_lock(&map_tree->map_tree.lock);
6907 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6908 (u64)(-1) - next_start);
6909 read_unlock(&map_tree->map_tree.lock);
6911 out:
6912 return ret;
6915 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6917 struct btrfs_root *root = fs_info->chunk_root;
6918 struct btrfs_path *path;
6919 struct extent_buffer *leaf;
6920 struct btrfs_key key;
6921 struct btrfs_key found_key;
6922 int ret;
6923 int slot;
6924 u64 total_dev = 0;
6926 path = btrfs_alloc_path();
6927 if (!path)
6928 return -ENOMEM;
6931 * uuid_mutex is needed only if we are mounting a sprout FS
6932 * otherwise we don't need it.
6934 mutex_lock(&uuid_mutex);
6935 mutex_lock(&fs_info->chunk_mutex);
6938 * Read all device items, and then all the chunk items. All
6939 * device items are found before any chunk item (their object id
6940 * is smaller than the lowest possible object id for a chunk
6941 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6943 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6944 key.offset = 0;
6945 key.type = 0;
6946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6947 if (ret < 0)
6948 goto error;
6949 while (1) {
6950 leaf = path->nodes[0];
6951 slot = path->slots[0];
6952 if (slot >= btrfs_header_nritems(leaf)) {
6953 ret = btrfs_next_leaf(root, path);
6954 if (ret == 0)
6955 continue;
6956 if (ret < 0)
6957 goto error;
6958 break;
6960 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6961 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6962 struct btrfs_dev_item *dev_item;
6963 dev_item = btrfs_item_ptr(leaf, slot,
6964 struct btrfs_dev_item);
6965 ret = read_one_dev(fs_info, leaf, dev_item);
6966 if (ret)
6967 goto error;
6968 total_dev++;
6969 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6970 struct btrfs_chunk *chunk;
6971 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6972 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6973 if (ret)
6974 goto error;
6976 path->slots[0]++;
6980 * After loading chunk tree, we've got all device information,
6981 * do another round of validation checks.
6983 if (total_dev != fs_info->fs_devices->total_devices) {
6984 btrfs_err(fs_info,
6985 "super_num_devices %llu mismatch with num_devices %llu found here",
6986 btrfs_super_num_devices(fs_info->super_copy),
6987 total_dev);
6988 ret = -EINVAL;
6989 goto error;
6991 if (btrfs_super_total_bytes(fs_info->super_copy) <
6992 fs_info->fs_devices->total_rw_bytes) {
6993 btrfs_err(fs_info,
6994 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6995 btrfs_super_total_bytes(fs_info->super_copy),
6996 fs_info->fs_devices->total_rw_bytes);
6997 ret = -EINVAL;
6998 goto error;
7000 ret = 0;
7001 error:
7002 mutex_unlock(&fs_info->chunk_mutex);
7003 mutex_unlock(&uuid_mutex);
7005 btrfs_free_path(path);
7006 return ret;
7009 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7011 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7012 struct btrfs_device *device;
7014 while (fs_devices) {
7015 mutex_lock(&fs_devices->device_list_mutex);
7016 list_for_each_entry(device, &fs_devices->devices, dev_list)
7017 device->fs_info = fs_info;
7018 mutex_unlock(&fs_devices->device_list_mutex);
7020 fs_devices = fs_devices->seed;
7024 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7026 int i;
7028 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7029 btrfs_dev_stat_reset(dev, i);
7032 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7034 struct btrfs_key key;
7035 struct btrfs_key found_key;
7036 struct btrfs_root *dev_root = fs_info->dev_root;
7037 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7038 struct extent_buffer *eb;
7039 int slot;
7040 int ret = 0;
7041 struct btrfs_device *device;
7042 struct btrfs_path *path = NULL;
7043 int i;
7045 path = btrfs_alloc_path();
7046 if (!path) {
7047 ret = -ENOMEM;
7048 goto out;
7051 mutex_lock(&fs_devices->device_list_mutex);
7052 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7053 int item_size;
7054 struct btrfs_dev_stats_item *ptr;
7056 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7057 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7058 key.offset = device->devid;
7059 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7060 if (ret) {
7061 __btrfs_reset_dev_stats(device);
7062 device->dev_stats_valid = 1;
7063 btrfs_release_path(path);
7064 continue;
7066 slot = path->slots[0];
7067 eb = path->nodes[0];
7068 btrfs_item_key_to_cpu(eb, &found_key, slot);
7069 item_size = btrfs_item_size_nr(eb, slot);
7071 ptr = btrfs_item_ptr(eb, slot,
7072 struct btrfs_dev_stats_item);
7074 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7075 if (item_size >= (1 + i) * sizeof(__le64))
7076 btrfs_dev_stat_set(device, i,
7077 btrfs_dev_stats_value(eb, ptr, i));
7078 else
7079 btrfs_dev_stat_reset(device, i);
7082 device->dev_stats_valid = 1;
7083 btrfs_dev_stat_print_on_load(device);
7084 btrfs_release_path(path);
7086 mutex_unlock(&fs_devices->device_list_mutex);
7088 out:
7089 btrfs_free_path(path);
7090 return ret < 0 ? ret : 0;
7093 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7094 struct btrfs_device *device)
7096 struct btrfs_fs_info *fs_info = trans->fs_info;
7097 struct btrfs_root *dev_root = fs_info->dev_root;
7098 struct btrfs_path *path;
7099 struct btrfs_key key;
7100 struct extent_buffer *eb;
7101 struct btrfs_dev_stats_item *ptr;
7102 int ret;
7103 int i;
7105 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7106 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7107 key.offset = device->devid;
7109 path = btrfs_alloc_path();
7110 if (!path)
7111 return -ENOMEM;
7112 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7113 if (ret < 0) {
7114 btrfs_warn_in_rcu(fs_info,
7115 "error %d while searching for dev_stats item for device %s",
7116 ret, rcu_str_deref(device->name));
7117 goto out;
7120 if (ret == 0 &&
7121 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7122 /* need to delete old one and insert a new one */
7123 ret = btrfs_del_item(trans, dev_root, path);
7124 if (ret != 0) {
7125 btrfs_warn_in_rcu(fs_info,
7126 "delete too small dev_stats item for device %s failed %d",
7127 rcu_str_deref(device->name), ret);
7128 goto out;
7130 ret = 1;
7133 if (ret == 1) {
7134 /* need to insert a new item */
7135 btrfs_release_path(path);
7136 ret = btrfs_insert_empty_item(trans, dev_root, path,
7137 &key, sizeof(*ptr));
7138 if (ret < 0) {
7139 btrfs_warn_in_rcu(fs_info,
7140 "insert dev_stats item for device %s failed %d",
7141 rcu_str_deref(device->name), ret);
7142 goto out;
7146 eb = path->nodes[0];
7147 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7148 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7149 btrfs_set_dev_stats_value(eb, ptr, i,
7150 btrfs_dev_stat_read(device, i));
7151 btrfs_mark_buffer_dirty(eb);
7153 out:
7154 btrfs_free_path(path);
7155 return ret;
7159 * called from commit_transaction. Writes all changed device stats to disk.
7161 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7162 struct btrfs_fs_info *fs_info)
7164 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165 struct btrfs_device *device;
7166 int stats_cnt;
7167 int ret = 0;
7169 mutex_lock(&fs_devices->device_list_mutex);
7170 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7171 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7172 if (!device->dev_stats_valid || stats_cnt == 0)
7173 continue;
7177 * There is a LOAD-LOAD control dependency between the value of
7178 * dev_stats_ccnt and updating the on-disk values which requires
7179 * reading the in-memory counters. Such control dependencies
7180 * require explicit read memory barriers.
7182 * This memory barriers pairs with smp_mb__before_atomic in
7183 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7184 * barrier implied by atomic_xchg in
7185 * btrfs_dev_stats_read_and_reset
7187 smp_rmb();
7189 ret = update_dev_stat_item(trans, device);
7190 if (!ret)
7191 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7193 mutex_unlock(&fs_devices->device_list_mutex);
7195 return ret;
7198 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7200 btrfs_dev_stat_inc(dev, index);
7201 btrfs_dev_stat_print_on_error(dev);
7204 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7206 if (!dev->dev_stats_valid)
7207 return;
7208 btrfs_err_rl_in_rcu(dev->fs_info,
7209 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7210 rcu_str_deref(dev->name),
7211 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7212 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7213 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7214 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7215 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7218 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7220 int i;
7222 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7223 if (btrfs_dev_stat_read(dev, i) != 0)
7224 break;
7225 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7226 return; /* all values == 0, suppress message */
7228 btrfs_info_in_rcu(dev->fs_info,
7229 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7230 rcu_str_deref(dev->name),
7231 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7232 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7233 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7234 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7235 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7238 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7239 struct btrfs_ioctl_get_dev_stats *stats)
7241 struct btrfs_device *dev;
7242 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7243 int i;
7245 mutex_lock(&fs_devices->device_list_mutex);
7246 dev = btrfs_find_device(fs_info->fs_devices, stats->devid,
7247 NULL, NULL, true);
7248 mutex_unlock(&fs_devices->device_list_mutex);
7250 if (!dev) {
7251 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7252 return -ENODEV;
7253 } else if (!dev->dev_stats_valid) {
7254 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7255 return -ENODEV;
7256 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7257 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7258 if (stats->nr_items > i)
7259 stats->values[i] =
7260 btrfs_dev_stat_read_and_reset(dev, i);
7261 else
7262 btrfs_dev_stat_reset(dev, i);
7264 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7265 current->comm, task_pid_nr(current));
7266 } else {
7267 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7268 if (stats->nr_items > i)
7269 stats->values[i] = btrfs_dev_stat_read(dev, i);
7271 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7272 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7273 return 0;
7276 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7278 struct buffer_head *bh;
7279 struct btrfs_super_block *disk_super;
7280 int copy_num;
7282 if (!bdev)
7283 return;
7285 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7286 copy_num++) {
7288 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7289 continue;
7291 disk_super = (struct btrfs_super_block *)bh->b_data;
7293 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7294 set_buffer_dirty(bh);
7295 sync_dirty_buffer(bh);
7296 brelse(bh);
7299 /* Notify udev that device has changed */
7300 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7302 /* Update ctime/mtime for device path for libblkid */
7303 update_dev_time(device_path);
7307 * Update the size of all devices, which is used for writing out the
7308 * super blocks.
7310 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7312 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7313 struct btrfs_device *curr, *next;
7315 if (list_empty(&fs_devices->resized_devices))
7316 return;
7318 mutex_lock(&fs_devices->device_list_mutex);
7319 mutex_lock(&fs_info->chunk_mutex);
7320 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7321 resized_list) {
7322 list_del_init(&curr->resized_list);
7323 curr->commit_total_bytes = curr->disk_total_bytes;
7325 mutex_unlock(&fs_info->chunk_mutex);
7326 mutex_unlock(&fs_devices->device_list_mutex);
7329 /* Must be invoked during the transaction commit */
7330 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7332 struct btrfs_fs_info *fs_info = trans->fs_info;
7333 struct extent_map *em;
7334 struct map_lookup *map;
7335 struct btrfs_device *dev;
7336 int i;
7338 if (list_empty(&trans->pending_chunks))
7339 return;
7341 /* In order to kick the device replace finish process */
7342 mutex_lock(&fs_info->chunk_mutex);
7343 list_for_each_entry(em, &trans->pending_chunks, list) {
7344 map = em->map_lookup;
7346 for (i = 0; i < map->num_stripes; i++) {
7347 dev = map->stripes[i].dev;
7348 dev->commit_bytes_used = dev->bytes_used;
7349 dev->has_pending_chunks = false;
7352 mutex_unlock(&fs_info->chunk_mutex);
7355 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7357 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7358 while (fs_devices) {
7359 fs_devices->fs_info = fs_info;
7360 fs_devices = fs_devices->seed;
7364 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7366 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7367 while (fs_devices) {
7368 fs_devices->fs_info = NULL;
7369 fs_devices = fs_devices->seed;
7374 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7376 int btrfs_bg_type_to_factor(u64 flags)
7378 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7379 BTRFS_BLOCK_GROUP_RAID10))
7380 return 2;
7381 return 1;
7385 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7387 int index = btrfs_bg_flags_to_raid_index(type);
7388 int ncopies = btrfs_raid_array[index].ncopies;
7389 int data_stripes;
7391 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7392 case BTRFS_BLOCK_GROUP_RAID5:
7393 data_stripes = num_stripes - 1;
7394 break;
7395 case BTRFS_BLOCK_GROUP_RAID6:
7396 data_stripes = num_stripes - 2;
7397 break;
7398 default:
7399 data_stripes = num_stripes / ncopies;
7400 break;
7402 return div_u64(chunk_len, data_stripes);
7405 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7406 u64 chunk_offset, u64 devid,
7407 u64 physical_offset, u64 physical_len)
7409 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7410 struct extent_map *em;
7411 struct map_lookup *map;
7412 struct btrfs_device *dev;
7413 u64 stripe_len;
7414 bool found = false;
7415 int ret = 0;
7416 int i;
7418 read_lock(&em_tree->lock);
7419 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7420 read_unlock(&em_tree->lock);
7422 if (!em) {
7423 btrfs_err(fs_info,
7424 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7425 physical_offset, devid);
7426 ret = -EUCLEAN;
7427 goto out;
7430 map = em->map_lookup;
7431 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7432 if (physical_len != stripe_len) {
7433 btrfs_err(fs_info,
7434 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7435 physical_offset, devid, em->start, physical_len,
7436 stripe_len);
7437 ret = -EUCLEAN;
7438 goto out;
7441 for (i = 0; i < map->num_stripes; i++) {
7442 if (map->stripes[i].dev->devid == devid &&
7443 map->stripes[i].physical == physical_offset) {
7444 found = true;
7445 if (map->verified_stripes >= map->num_stripes) {
7446 btrfs_err(fs_info,
7447 "too many dev extents for chunk %llu found",
7448 em->start);
7449 ret = -EUCLEAN;
7450 goto out;
7452 map->verified_stripes++;
7453 break;
7456 if (!found) {
7457 btrfs_err(fs_info,
7458 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7459 physical_offset, devid);
7460 ret = -EUCLEAN;
7463 /* Make sure no dev extent is beyond device bondary */
7464 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7465 if (!dev) {
7466 btrfs_err(fs_info, "failed to find devid %llu", devid);
7467 ret = -EUCLEAN;
7468 goto out;
7471 /* It's possible this device is a dummy for seed device */
7472 if (dev->disk_total_bytes == 0) {
7473 dev = btrfs_find_device(fs_info->fs_devices->seed, devid,
7474 NULL, NULL, false);
7475 if (!dev) {
7476 btrfs_err(fs_info, "failed to find seed devid %llu",
7477 devid);
7478 ret = -EUCLEAN;
7479 goto out;
7483 if (physical_offset + physical_len > dev->disk_total_bytes) {
7484 btrfs_err(fs_info,
7485 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7486 devid, physical_offset, physical_len,
7487 dev->disk_total_bytes);
7488 ret = -EUCLEAN;
7489 goto out;
7491 out:
7492 free_extent_map(em);
7493 return ret;
7496 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7498 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7499 struct extent_map *em;
7500 struct rb_node *node;
7501 int ret = 0;
7503 read_lock(&em_tree->lock);
7504 for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7505 em = rb_entry(node, struct extent_map, rb_node);
7506 if (em->map_lookup->num_stripes !=
7507 em->map_lookup->verified_stripes) {
7508 btrfs_err(fs_info,
7509 "chunk %llu has missing dev extent, have %d expect %d",
7510 em->start, em->map_lookup->verified_stripes,
7511 em->map_lookup->num_stripes);
7512 ret = -EUCLEAN;
7513 goto out;
7516 out:
7517 read_unlock(&em_tree->lock);
7518 return ret;
7522 * Ensure that all dev extents are mapped to correct chunk, otherwise
7523 * later chunk allocation/free would cause unexpected behavior.
7525 * NOTE: This will iterate through the whole device tree, which should be of
7526 * the same size level as the chunk tree. This slightly increases mount time.
7528 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7530 struct btrfs_path *path;
7531 struct btrfs_root *root = fs_info->dev_root;
7532 struct btrfs_key key;
7533 u64 prev_devid = 0;
7534 u64 prev_dev_ext_end = 0;
7535 int ret = 0;
7537 key.objectid = 1;
7538 key.type = BTRFS_DEV_EXTENT_KEY;
7539 key.offset = 0;
7541 path = btrfs_alloc_path();
7542 if (!path)
7543 return -ENOMEM;
7545 path->reada = READA_FORWARD;
7546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7547 if (ret < 0)
7548 goto out;
7550 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7551 ret = btrfs_next_item(root, path);
7552 if (ret < 0)
7553 goto out;
7554 /* No dev extents at all? Not good */
7555 if (ret > 0) {
7556 ret = -EUCLEAN;
7557 goto out;
7560 while (1) {
7561 struct extent_buffer *leaf = path->nodes[0];
7562 struct btrfs_dev_extent *dext;
7563 int slot = path->slots[0];
7564 u64 chunk_offset;
7565 u64 physical_offset;
7566 u64 physical_len;
7567 u64 devid;
7569 btrfs_item_key_to_cpu(leaf, &key, slot);
7570 if (key.type != BTRFS_DEV_EXTENT_KEY)
7571 break;
7572 devid = key.objectid;
7573 physical_offset = key.offset;
7575 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7576 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7577 physical_len = btrfs_dev_extent_length(leaf, dext);
7579 /* Check if this dev extent overlaps with the previous one */
7580 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7581 btrfs_err(fs_info,
7582 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7583 devid, physical_offset, prev_dev_ext_end);
7584 ret = -EUCLEAN;
7585 goto out;
7588 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7589 physical_offset, physical_len);
7590 if (ret < 0)
7591 goto out;
7592 prev_devid = devid;
7593 prev_dev_ext_end = physical_offset + physical_len;
7595 ret = btrfs_next_item(root, path);
7596 if (ret < 0)
7597 goto out;
7598 if (ret > 0) {
7599 ret = 0;
7600 break;
7604 /* Ensure all chunks have corresponding dev extents */
7605 ret = verify_chunk_dev_extent_mapping(fs_info);
7606 out:
7607 btrfs_free_path(path);
7608 return ret;