1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Red Hat. All rights reserved.
6 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
16 #include "btrfs_inode.h"
17 #include "transaction.h"
23 int btrfs_getxattr(struct inode
*inode
, const char *name
,
24 void *buffer
, size_t size
)
26 struct btrfs_dir_item
*di
;
27 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
28 struct btrfs_path
*path
;
29 struct extent_buffer
*leaf
;
31 unsigned long data_ptr
;
33 path
= btrfs_alloc_path();
37 /* lookup the xattr by name */
38 di
= btrfs_lookup_xattr(NULL
, root
, path
, btrfs_ino(BTRFS_I(inode
)),
39 name
, strlen(name
), 0);
43 } else if (IS_ERR(di
)) {
48 leaf
= path
->nodes
[0];
49 /* if size is 0, that means we want the size of the attr */
51 ret
= btrfs_dir_data_len(leaf
, di
);
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf
, di
) > size
) {
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
68 data_ptr
= (unsigned long)((char *)(di
+ 1) +
69 btrfs_dir_name_len(leaf
, di
));
70 read_extent_buffer(leaf
, buffer
, data_ptr
,
71 btrfs_dir_data_len(leaf
, di
));
72 ret
= btrfs_dir_data_len(leaf
, di
);
75 btrfs_free_path(path
);
79 static int do_setxattr(struct btrfs_trans_handle
*trans
,
80 struct inode
*inode
, const char *name
,
81 const void *value
, size_t size
, int flags
)
83 struct btrfs_dir_item
*di
= NULL
;
84 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
85 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
86 struct btrfs_path
*path
;
87 size_t name_len
= strlen(name
);
90 if (name_len
+ size
> BTRFS_MAX_XATTR_SIZE(root
->fs_info
))
93 path
= btrfs_alloc_path();
96 path
->skip_release_on_error
= 1;
99 di
= btrfs_lookup_xattr(trans
, root
, path
,
100 btrfs_ino(BTRFS_I(inode
)), name
, name_len
, -1);
101 if (!di
&& (flags
& XATTR_REPLACE
))
106 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
111 * For a replace we can't just do the insert blindly.
112 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
113 * doesn't exist. If it exists, fall down below to the insert/replace
114 * path - we can't race with a concurrent xattr delete, because the VFS
115 * locks the inode's i_mutex before calling setxattr or removexattr.
117 if (flags
& XATTR_REPLACE
) {
118 ASSERT(inode_is_locked(inode
));
119 di
= btrfs_lookup_xattr(NULL
, root
, path
,
120 btrfs_ino(BTRFS_I(inode
)), name
, name_len
, 0);
127 btrfs_release_path(path
);
131 ret
= btrfs_insert_xattr_item(trans
, root
, path
, btrfs_ino(BTRFS_I(inode
)),
132 name
, name_len
, value
, size
);
133 if (ret
== -EOVERFLOW
) {
135 * We have an existing item in a leaf, split_leaf couldn't
136 * expand it. That item might have or not a dir_item that
137 * matches our target xattr, so lets check.
140 btrfs_assert_tree_locked(path
->nodes
[0]);
141 di
= btrfs_match_dir_item_name(fs_info
, path
, name
, name_len
);
142 if (!di
&& !(flags
& XATTR_REPLACE
)) {
146 } else if (ret
== -EEXIST
) {
148 di
= btrfs_match_dir_item_name(fs_info
, path
, name
, name_len
);
149 ASSERT(di
); /* logic error */
154 if (di
&& (flags
& XATTR_CREATE
)) {
161 * We're doing a replace, and it must be atomic, that is, at
162 * any point in time we have either the old or the new xattr
163 * value in the tree. We don't want readers (getxattr and
164 * listxattrs) to miss a value, this is specially important
167 const int slot
= path
->slots
[0];
168 struct extent_buffer
*leaf
= path
->nodes
[0];
169 const u16 old_data_len
= btrfs_dir_data_len(leaf
, di
);
170 const u32 item_size
= btrfs_item_size_nr(leaf
, slot
);
171 const u32 data_size
= sizeof(*di
) + name_len
+ size
;
172 struct btrfs_item
*item
;
173 unsigned long data_ptr
;
176 if (size
> old_data_len
) {
177 if (btrfs_leaf_free_space(fs_info
, leaf
) <
178 (size
- old_data_len
)) {
184 if (old_data_len
+ name_len
+ sizeof(*di
) == item_size
) {
185 /* No other xattrs packed in the same leaf item. */
186 if (size
> old_data_len
)
187 btrfs_extend_item(fs_info
, path
,
188 size
- old_data_len
);
189 else if (size
< old_data_len
)
190 btrfs_truncate_item(fs_info
, path
,
193 /* There are other xattrs packed in the same item. */
194 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
197 btrfs_extend_item(fs_info
, path
, data_size
);
200 item
= btrfs_item_nr(slot
);
201 ptr
= btrfs_item_ptr(leaf
, slot
, char);
202 ptr
+= btrfs_item_size(leaf
, item
) - data_size
;
203 di
= (struct btrfs_dir_item
*)ptr
;
204 btrfs_set_dir_data_len(leaf
, di
, size
);
205 data_ptr
= ((unsigned long)(di
+ 1)) + name_len
;
206 write_extent_buffer(leaf
, value
, data_ptr
, size
);
207 btrfs_mark_buffer_dirty(leaf
);
210 * Insert, and we had space for the xattr, so path->slots[0] is
211 * where our xattr dir_item is and btrfs_insert_xattr_item()
216 btrfs_free_path(path
);
221 * @value: "" makes the attribute to empty, NULL removes it
223 int btrfs_setxattr(struct btrfs_trans_handle
*trans
,
224 struct inode
*inode
, const char *name
,
225 const void *value
, size_t size
, int flags
)
227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
230 if (btrfs_root_readonly(root
))
234 return do_setxattr(trans
, inode
, name
, value
, size
, flags
);
236 trans
= btrfs_start_transaction(root
, 2);
238 return PTR_ERR(trans
);
240 ret
= do_setxattr(trans
, inode
, name
, value
, size
, flags
);
244 inode_inc_iversion(inode
);
245 inode
->i_ctime
= current_time(inode
);
246 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
247 ret
= btrfs_update_inode(trans
, root
, inode
);
250 btrfs_end_transaction(trans
);
254 ssize_t
btrfs_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
256 struct btrfs_key key
;
257 struct inode
*inode
= d_inode(dentry
);
258 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
259 struct btrfs_path
*path
;
261 size_t total_size
= 0, size_left
= size
;
264 * ok we want all objects associated with this id.
265 * NOTE: we set key.offset = 0; because we want to start with the
266 * first xattr that we find and walk forward
268 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
269 key
.type
= BTRFS_XATTR_ITEM_KEY
;
272 path
= btrfs_alloc_path();
275 path
->reada
= READA_FORWARD
;
277 /* search for our xattrs */
278 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
283 struct extent_buffer
*leaf
;
285 struct btrfs_dir_item
*di
;
286 struct btrfs_key found_key
;
290 leaf
= path
->nodes
[0];
291 slot
= path
->slots
[0];
293 /* this is where we start walking through the path */
294 if (slot
>= btrfs_header_nritems(leaf
)) {
296 * if we've reached the last slot in this leaf we need
297 * to go to the next leaf and reset everything
299 ret
= btrfs_next_leaf(root
, path
);
307 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
309 /* check to make sure this item is what we want */
310 if (found_key
.objectid
!= key
.objectid
)
312 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
314 if (found_key
.type
< BTRFS_XATTR_ITEM_KEY
)
317 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
318 item_size
= btrfs_item_size_nr(leaf
, slot
);
320 while (cur
< item_size
) {
321 u16 name_len
= btrfs_dir_name_len(leaf
, di
);
322 u16 data_len
= btrfs_dir_data_len(leaf
, di
);
323 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
324 unsigned long name_ptr
= (unsigned long)(di
+ 1);
326 total_size
+= name_len
+ 1;
328 * We are just looking for how big our buffer needs to
334 if (!buffer
|| (name_len
+ 1) > size_left
) {
339 read_extent_buffer(leaf
, buffer
, name_ptr
, name_len
);
340 buffer
[name_len
] = '\0';
342 size_left
-= name_len
+ 1;
343 buffer
+= name_len
+ 1;
346 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
354 btrfs_free_path(path
);
359 static int btrfs_xattr_handler_get(const struct xattr_handler
*handler
,
360 struct dentry
*unused
, struct inode
*inode
,
361 const char *name
, void *buffer
, size_t size
)
363 name
= xattr_full_name(handler
, name
);
364 return btrfs_getxattr(inode
, name
, buffer
, size
);
367 static int btrfs_xattr_handler_set(const struct xattr_handler
*handler
,
368 struct dentry
*unused
, struct inode
*inode
,
369 const char *name
, const void *buffer
,
370 size_t size
, int flags
)
372 name
= xattr_full_name(handler
, name
);
373 return btrfs_setxattr(NULL
, inode
, name
, buffer
, size
, flags
);
376 static int btrfs_xattr_handler_set_prop(const struct xattr_handler
*handler
,
377 struct dentry
*unused
, struct inode
*inode
,
378 const char *name
, const void *value
,
379 size_t size
, int flags
)
381 name
= xattr_full_name(handler
, name
);
382 return btrfs_set_prop(inode
, name
, value
, size
, flags
);
385 static const struct xattr_handler btrfs_security_xattr_handler
= {
386 .prefix
= XATTR_SECURITY_PREFIX
,
387 .get
= btrfs_xattr_handler_get
,
388 .set
= btrfs_xattr_handler_set
,
391 static const struct xattr_handler btrfs_trusted_xattr_handler
= {
392 .prefix
= XATTR_TRUSTED_PREFIX
,
393 .get
= btrfs_xattr_handler_get
,
394 .set
= btrfs_xattr_handler_set
,
397 static const struct xattr_handler btrfs_user_xattr_handler
= {
398 .prefix
= XATTR_USER_PREFIX
,
399 .get
= btrfs_xattr_handler_get
,
400 .set
= btrfs_xattr_handler_set
,
403 static const struct xattr_handler btrfs_btrfs_xattr_handler
= {
404 .prefix
= XATTR_BTRFS_PREFIX
,
405 .get
= btrfs_xattr_handler_get
,
406 .set
= btrfs_xattr_handler_set_prop
,
409 const struct xattr_handler
*btrfs_xattr_handlers
[] = {
410 &btrfs_security_xattr_handler
,
411 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
412 &posix_acl_access_xattr_handler
,
413 &posix_acl_default_xattr_handler
,
415 &btrfs_trusted_xattr_handler
,
416 &btrfs_user_xattr_handler
,
417 &btrfs_btrfs_xattr_handler
,
421 static int btrfs_initxattrs(struct inode
*inode
,
422 const struct xattr
*xattr_array
, void *fs_info
)
424 const struct xattr
*xattr
;
425 struct btrfs_trans_handle
*trans
= fs_info
;
426 unsigned int nofs_flag
;
431 * We're holding a transaction handle, so use a NOFS memory allocation
432 * context to avoid deadlock if reclaim happens.
434 nofs_flag
= memalloc_nofs_save();
435 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
436 name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+
437 strlen(xattr
->name
) + 1, GFP_KERNEL
);
442 strcpy(name
, XATTR_SECURITY_PREFIX
);
443 strcpy(name
+ XATTR_SECURITY_PREFIX_LEN
, xattr
->name
);
444 err
= btrfs_setxattr(trans
, inode
, name
, xattr
->value
,
445 xattr
->value_len
, 0);
450 memalloc_nofs_restore(nofs_flag
);
454 int btrfs_xattr_security_init(struct btrfs_trans_handle
*trans
,
455 struct inode
*inode
, struct inode
*dir
,
456 const struct qstr
*qstr
)
458 return security_inode_init_security(inode
, dir
, qstr
,
459 &btrfs_initxattrs
, trans
);