Linux 4.19.133
[linux/fpc-iii.git] / fs / cifs / smbdirect.c
blob784628ec4bc40f8f7dfc8ce460668d77ad86f9a0
1 /*
2 * Copyright (C) 2017, Microsoft Corporation.
4 * Author(s): Long Li <longli@microsoft.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 * the GNU General Public License for more details.
16 #include <linux/module.h>
17 #include <linux/highmem.h>
18 #include "smbdirect.h"
19 #include "cifs_debug.h"
20 #include "cifsproto.h"
21 #include "smb2proto.h"
23 static struct smbd_response *get_empty_queue_buffer(
24 struct smbd_connection *info);
25 static struct smbd_response *get_receive_buffer(
26 struct smbd_connection *info);
27 static void put_receive_buffer(
28 struct smbd_connection *info,
29 struct smbd_response *response);
30 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
31 static void destroy_receive_buffers(struct smbd_connection *info);
33 static void put_empty_packet(
34 struct smbd_connection *info, struct smbd_response *response);
35 static void enqueue_reassembly(
36 struct smbd_connection *info,
37 struct smbd_response *response, int data_length);
38 static struct smbd_response *_get_first_reassembly(
39 struct smbd_connection *info);
41 static int smbd_post_recv(
42 struct smbd_connection *info,
43 struct smbd_response *response);
45 static int smbd_post_send_empty(struct smbd_connection *info);
46 static int smbd_post_send_data(
47 struct smbd_connection *info,
48 struct kvec *iov, int n_vec, int remaining_data_length);
49 static int smbd_post_send_page(struct smbd_connection *info,
50 struct page *page, unsigned long offset,
51 size_t size, int remaining_data_length);
53 static void destroy_mr_list(struct smbd_connection *info);
54 static int allocate_mr_list(struct smbd_connection *info);
56 /* SMBD version number */
57 #define SMBD_V1 0x0100
59 /* Port numbers for SMBD transport */
60 #define SMB_PORT 445
61 #define SMBD_PORT 5445
63 /* Address lookup and resolve timeout in ms */
64 #define RDMA_RESOLVE_TIMEOUT 5000
66 /* SMBD negotiation timeout in seconds */
67 #define SMBD_NEGOTIATE_TIMEOUT 120
69 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
70 #define SMBD_MIN_RECEIVE_SIZE 128
71 #define SMBD_MIN_FRAGMENTED_SIZE 131072
74 * Default maximum number of RDMA read/write outstanding on this connection
75 * This value is possibly decreased during QP creation on hardware limit
77 #define SMBD_CM_RESPONDER_RESOURCES 32
79 /* Maximum number of retries on data transfer operations */
80 #define SMBD_CM_RETRY 6
81 /* No need to retry on Receiver Not Ready since SMBD manages credits */
82 #define SMBD_CM_RNR_RETRY 0
85 * User configurable initial values per SMBD transport connection
86 * as defined in [MS-SMBD] 3.1.1.1
87 * Those may change after a SMBD negotiation
89 /* The local peer's maximum number of credits to grant to the peer */
90 int smbd_receive_credit_max = 255;
92 /* The remote peer's credit request of local peer */
93 int smbd_send_credit_target = 255;
95 /* The maximum single message size can be sent to remote peer */
96 int smbd_max_send_size = 1364;
98 /* The maximum fragmented upper-layer payload receive size supported */
99 int smbd_max_fragmented_recv_size = 1024 * 1024;
101 /* The maximum single-message size which can be received */
102 int smbd_max_receive_size = 8192;
104 /* The timeout to initiate send of a keepalive message on idle */
105 int smbd_keep_alive_interval = 120;
108 * User configurable initial values for RDMA transport
109 * The actual values used may be lower and are limited to hardware capabilities
111 /* Default maximum number of SGEs in a RDMA write/read */
112 int smbd_max_frmr_depth = 2048;
114 /* If payload is less than this byte, use RDMA send/recv not read/write */
115 int rdma_readwrite_threshold = 4096;
117 /* Transport logging functions
118 * Logging are defined as classes. They can be OR'ed to define the actual
119 * logging level via module parameter smbd_logging_class
120 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
121 * log_rdma_event()
123 #define LOG_OUTGOING 0x1
124 #define LOG_INCOMING 0x2
125 #define LOG_READ 0x4
126 #define LOG_WRITE 0x8
127 #define LOG_RDMA_SEND 0x10
128 #define LOG_RDMA_RECV 0x20
129 #define LOG_KEEP_ALIVE 0x40
130 #define LOG_RDMA_EVENT 0x80
131 #define LOG_RDMA_MR 0x100
132 static unsigned int smbd_logging_class;
133 module_param(smbd_logging_class, uint, 0644);
134 MODULE_PARM_DESC(smbd_logging_class,
135 "Logging class for SMBD transport 0x0 to 0x100");
137 #define ERR 0x0
138 #define INFO 0x1
139 static unsigned int smbd_logging_level = ERR;
140 module_param(smbd_logging_level, uint, 0644);
141 MODULE_PARM_DESC(smbd_logging_level,
142 "Logging level for SMBD transport, 0 (default): error, 1: info");
144 #define log_rdma(level, class, fmt, args...) \
145 do { \
146 if (level <= smbd_logging_level || class & smbd_logging_class) \
147 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
148 } while (0)
150 #define log_outgoing(level, fmt, args...) \
151 log_rdma(level, LOG_OUTGOING, fmt, ##args)
152 #define log_incoming(level, fmt, args...) \
153 log_rdma(level, LOG_INCOMING, fmt, ##args)
154 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
155 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
156 #define log_rdma_send(level, fmt, args...) \
157 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
158 #define log_rdma_recv(level, fmt, args...) \
159 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
160 #define log_keep_alive(level, fmt, args...) \
161 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
162 #define log_rdma_event(level, fmt, args...) \
163 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
164 #define log_rdma_mr(level, fmt, args...) \
165 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
168 * Destroy the transport and related RDMA and memory resources
169 * Need to go through all the pending counters and make sure on one is using
170 * the transport while it is destroyed
172 static void smbd_destroy_rdma_work(struct work_struct *work)
174 struct smbd_response *response;
175 struct smbd_connection *info =
176 container_of(work, struct smbd_connection, destroy_work);
177 unsigned long flags;
179 log_rdma_event(INFO, "destroying qp\n");
180 ib_drain_qp(info->id->qp);
181 rdma_destroy_qp(info->id);
183 /* Unblock all I/O waiting on the send queue */
184 wake_up_interruptible_all(&info->wait_send_queue);
186 log_rdma_event(INFO, "cancelling idle timer\n");
187 cancel_delayed_work_sync(&info->idle_timer_work);
188 log_rdma_event(INFO, "cancelling send immediate work\n");
189 cancel_delayed_work_sync(&info->send_immediate_work);
191 log_rdma_event(INFO, "wait for all send to finish\n");
192 wait_event(info->wait_smbd_send_pending,
193 info->smbd_send_pending == 0);
195 log_rdma_event(INFO, "wait for all recv to finish\n");
196 wake_up_interruptible(&info->wait_reassembly_queue);
197 wait_event(info->wait_smbd_recv_pending,
198 info->smbd_recv_pending == 0);
200 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
201 wait_event(info->wait_send_pending,
202 atomic_read(&info->send_pending) == 0);
203 wait_event(info->wait_send_payload_pending,
204 atomic_read(&info->send_payload_pending) == 0);
206 log_rdma_event(INFO, "freeing mr list\n");
207 wake_up_interruptible_all(&info->wait_mr);
208 wait_event(info->wait_for_mr_cleanup,
209 atomic_read(&info->mr_used_count) == 0);
210 destroy_mr_list(info);
212 /* It's not posssible for upper layer to get to reassembly */
213 log_rdma_event(INFO, "drain the reassembly queue\n");
214 do {
215 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
216 response = _get_first_reassembly(info);
217 if (response) {
218 list_del(&response->list);
219 spin_unlock_irqrestore(
220 &info->reassembly_queue_lock, flags);
221 put_receive_buffer(info, response);
222 } else
223 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
224 } while (response);
226 info->reassembly_data_length = 0;
228 log_rdma_event(INFO, "free receive buffers\n");
229 wait_event(info->wait_receive_queues,
230 info->count_receive_queue + info->count_empty_packet_queue
231 == info->receive_credit_max);
232 destroy_receive_buffers(info);
234 ib_free_cq(info->send_cq);
235 ib_free_cq(info->recv_cq);
236 ib_dealloc_pd(info->pd);
237 rdma_destroy_id(info->id);
239 /* free mempools */
240 mempool_destroy(info->request_mempool);
241 kmem_cache_destroy(info->request_cache);
243 mempool_destroy(info->response_mempool);
244 kmem_cache_destroy(info->response_cache);
246 info->transport_status = SMBD_DESTROYED;
247 wake_up_all(&info->wait_destroy);
250 static int smbd_process_disconnected(struct smbd_connection *info)
252 schedule_work(&info->destroy_work);
253 return 0;
256 static void smbd_disconnect_rdma_work(struct work_struct *work)
258 struct smbd_connection *info =
259 container_of(work, struct smbd_connection, disconnect_work);
261 if (info->transport_status == SMBD_CONNECTED) {
262 info->transport_status = SMBD_DISCONNECTING;
263 rdma_disconnect(info->id);
267 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
269 queue_work(info->workqueue, &info->disconnect_work);
272 /* Upcall from RDMA CM */
273 static int smbd_conn_upcall(
274 struct rdma_cm_id *id, struct rdma_cm_event *event)
276 struct smbd_connection *info = id->context;
278 log_rdma_event(INFO, "event=%d status=%d\n",
279 event->event, event->status);
281 switch (event->event) {
282 case RDMA_CM_EVENT_ADDR_RESOLVED:
283 case RDMA_CM_EVENT_ROUTE_RESOLVED:
284 info->ri_rc = 0;
285 complete(&info->ri_done);
286 break;
288 case RDMA_CM_EVENT_ADDR_ERROR:
289 info->ri_rc = -EHOSTUNREACH;
290 complete(&info->ri_done);
291 break;
293 case RDMA_CM_EVENT_ROUTE_ERROR:
294 info->ri_rc = -ENETUNREACH;
295 complete(&info->ri_done);
296 break;
298 case RDMA_CM_EVENT_ESTABLISHED:
299 log_rdma_event(INFO, "connected event=%d\n", event->event);
300 info->transport_status = SMBD_CONNECTED;
301 wake_up_interruptible(&info->conn_wait);
302 break;
304 case RDMA_CM_EVENT_CONNECT_ERROR:
305 case RDMA_CM_EVENT_UNREACHABLE:
306 case RDMA_CM_EVENT_REJECTED:
307 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
308 info->transport_status = SMBD_DISCONNECTED;
309 wake_up_interruptible(&info->conn_wait);
310 break;
312 case RDMA_CM_EVENT_DEVICE_REMOVAL:
313 case RDMA_CM_EVENT_DISCONNECTED:
314 /* This happenes when we fail the negotiation */
315 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
316 info->transport_status = SMBD_DISCONNECTED;
317 wake_up(&info->conn_wait);
318 break;
321 info->transport_status = SMBD_DISCONNECTED;
322 smbd_process_disconnected(info);
323 break;
325 default:
326 break;
329 return 0;
332 /* Upcall from RDMA QP */
333 static void
334 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
336 struct smbd_connection *info = context;
338 log_rdma_event(ERR, "%s on device %s info %p\n",
339 ib_event_msg(event->event), event->device->name, info);
341 switch (event->event) {
342 case IB_EVENT_CQ_ERR:
343 case IB_EVENT_QP_FATAL:
344 smbd_disconnect_rdma_connection(info);
346 default:
347 break;
351 static inline void *smbd_request_payload(struct smbd_request *request)
353 return (void *)request->packet;
356 static inline void *smbd_response_payload(struct smbd_response *response)
358 return (void *)response->packet;
361 /* Called when a RDMA send is done */
362 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
364 int i;
365 struct smbd_request *request =
366 container_of(wc->wr_cqe, struct smbd_request, cqe);
368 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
369 request, wc->status);
371 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
372 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
373 wc->status, wc->opcode);
374 smbd_disconnect_rdma_connection(request->info);
377 for (i = 0; i < request->num_sge; i++)
378 ib_dma_unmap_single(request->info->id->device,
379 request->sge[i].addr,
380 request->sge[i].length,
381 DMA_TO_DEVICE);
383 if (request->has_payload) {
384 if (atomic_dec_and_test(&request->info->send_payload_pending))
385 wake_up(&request->info->wait_send_payload_pending);
386 } else {
387 if (atomic_dec_and_test(&request->info->send_pending))
388 wake_up(&request->info->wait_send_pending);
391 mempool_free(request, request->info->request_mempool);
394 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
396 log_rdma_event(INFO, "resp message min_version %u max_version %u "
397 "negotiated_version %u credits_requested %u "
398 "credits_granted %u status %u max_readwrite_size %u "
399 "preferred_send_size %u max_receive_size %u "
400 "max_fragmented_size %u\n",
401 resp->min_version, resp->max_version, resp->negotiated_version,
402 resp->credits_requested, resp->credits_granted, resp->status,
403 resp->max_readwrite_size, resp->preferred_send_size,
404 resp->max_receive_size, resp->max_fragmented_size);
408 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
409 * response, packet_length: the negotiation response message
410 * return value: true if negotiation is a success, false if failed
412 static bool process_negotiation_response(
413 struct smbd_response *response, int packet_length)
415 struct smbd_connection *info = response->info;
416 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
418 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
419 log_rdma_event(ERR,
420 "error: packet_length=%d\n", packet_length);
421 return false;
424 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
425 log_rdma_event(ERR, "error: negotiated_version=%x\n",
426 le16_to_cpu(packet->negotiated_version));
427 return false;
429 info->protocol = le16_to_cpu(packet->negotiated_version);
431 if (packet->credits_requested == 0) {
432 log_rdma_event(ERR, "error: credits_requested==0\n");
433 return false;
435 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
437 if (packet->credits_granted == 0) {
438 log_rdma_event(ERR, "error: credits_granted==0\n");
439 return false;
441 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
443 atomic_set(&info->receive_credits, 0);
445 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
446 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
447 le32_to_cpu(packet->preferred_send_size));
448 return false;
450 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
452 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
453 log_rdma_event(ERR, "error: max_receive_size=%d\n",
454 le32_to_cpu(packet->max_receive_size));
455 return false;
457 info->max_send_size = min_t(int, info->max_send_size,
458 le32_to_cpu(packet->max_receive_size));
460 if (le32_to_cpu(packet->max_fragmented_size) <
461 SMBD_MIN_FRAGMENTED_SIZE) {
462 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
463 le32_to_cpu(packet->max_fragmented_size));
464 return false;
466 info->max_fragmented_send_size =
467 le32_to_cpu(packet->max_fragmented_size);
468 info->rdma_readwrite_threshold =
469 rdma_readwrite_threshold > info->max_fragmented_send_size ?
470 info->max_fragmented_send_size :
471 rdma_readwrite_threshold;
474 info->max_readwrite_size = min_t(u32,
475 le32_to_cpu(packet->max_readwrite_size),
476 info->max_frmr_depth * PAGE_SIZE);
477 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
479 return true;
483 * Check and schedule to send an immediate packet
484 * This is used to extend credtis to remote peer to keep the transport busy
486 static void check_and_send_immediate(struct smbd_connection *info)
488 if (info->transport_status != SMBD_CONNECTED)
489 return;
491 info->send_immediate = true;
494 * Promptly send a packet if our peer is running low on receive
495 * credits
497 if (atomic_read(&info->receive_credits) <
498 info->receive_credit_target - 1)
499 queue_delayed_work(
500 info->workqueue, &info->send_immediate_work, 0);
503 static void smbd_post_send_credits(struct work_struct *work)
505 int ret = 0;
506 int use_receive_queue = 1;
507 int rc;
508 struct smbd_response *response;
509 struct smbd_connection *info =
510 container_of(work, struct smbd_connection,
511 post_send_credits_work);
513 if (info->transport_status != SMBD_CONNECTED) {
514 wake_up(&info->wait_receive_queues);
515 return;
518 if (info->receive_credit_target >
519 atomic_read(&info->receive_credits)) {
520 while (true) {
521 if (use_receive_queue)
522 response = get_receive_buffer(info);
523 else
524 response = get_empty_queue_buffer(info);
525 if (!response) {
526 /* now switch to emtpy packet queue */
527 if (use_receive_queue) {
528 use_receive_queue = 0;
529 continue;
530 } else
531 break;
534 response->type = SMBD_TRANSFER_DATA;
535 response->first_segment = false;
536 rc = smbd_post_recv(info, response);
537 if (rc) {
538 log_rdma_recv(ERR,
539 "post_recv failed rc=%d\n", rc);
540 put_receive_buffer(info, response);
541 break;
544 ret++;
548 spin_lock(&info->lock_new_credits_offered);
549 info->new_credits_offered += ret;
550 spin_unlock(&info->lock_new_credits_offered);
552 atomic_add(ret, &info->receive_credits);
554 /* Check if we can post new receive and grant credits to peer */
555 check_and_send_immediate(info);
558 static void smbd_recv_done_work(struct work_struct *work)
560 struct smbd_connection *info =
561 container_of(work, struct smbd_connection, recv_done_work);
564 * We may have new send credits granted from remote peer
565 * If any sender is blcoked on lack of credets, unblock it
567 if (atomic_read(&info->send_credits))
568 wake_up_interruptible(&info->wait_send_queue);
571 * Check if we need to send something to remote peer to
572 * grant more credits or respond to KEEP_ALIVE packet
574 check_and_send_immediate(info);
577 /* Called from softirq, when recv is done */
578 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
580 struct smbd_data_transfer *data_transfer;
581 struct smbd_response *response =
582 container_of(wc->wr_cqe, struct smbd_response, cqe);
583 struct smbd_connection *info = response->info;
584 int data_length = 0;
586 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
587 "byte_len=%d pkey_index=%x\n",
588 response, response->type, wc->status, wc->opcode,
589 wc->byte_len, wc->pkey_index);
591 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
592 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
593 wc->status, wc->opcode);
594 smbd_disconnect_rdma_connection(info);
595 goto error;
598 ib_dma_sync_single_for_cpu(
599 wc->qp->device,
600 response->sge.addr,
601 response->sge.length,
602 DMA_FROM_DEVICE);
604 switch (response->type) {
605 /* SMBD negotiation response */
606 case SMBD_NEGOTIATE_RESP:
607 dump_smbd_negotiate_resp(smbd_response_payload(response));
608 info->full_packet_received = true;
609 info->negotiate_done =
610 process_negotiation_response(response, wc->byte_len);
611 complete(&info->negotiate_completion);
612 break;
614 /* SMBD data transfer packet */
615 case SMBD_TRANSFER_DATA:
616 data_transfer = smbd_response_payload(response);
617 data_length = le32_to_cpu(data_transfer->data_length);
620 * If this is a packet with data playload place the data in
621 * reassembly queue and wake up the reading thread
623 if (data_length) {
624 if (info->full_packet_received)
625 response->first_segment = true;
627 if (le32_to_cpu(data_transfer->remaining_data_length))
628 info->full_packet_received = false;
629 else
630 info->full_packet_received = true;
632 enqueue_reassembly(
633 info,
634 response,
635 data_length);
636 } else
637 put_empty_packet(info, response);
639 if (data_length)
640 wake_up_interruptible(&info->wait_reassembly_queue);
642 atomic_dec(&info->receive_credits);
643 info->receive_credit_target =
644 le16_to_cpu(data_transfer->credits_requested);
645 atomic_add(le16_to_cpu(data_transfer->credits_granted),
646 &info->send_credits);
648 log_incoming(INFO, "data flags %d data_offset %d "
649 "data_length %d remaining_data_length %d\n",
650 le16_to_cpu(data_transfer->flags),
651 le32_to_cpu(data_transfer->data_offset),
652 le32_to_cpu(data_transfer->data_length),
653 le32_to_cpu(data_transfer->remaining_data_length));
655 /* Send a KEEP_ALIVE response right away if requested */
656 info->keep_alive_requested = KEEP_ALIVE_NONE;
657 if (le16_to_cpu(data_transfer->flags) &
658 SMB_DIRECT_RESPONSE_REQUESTED) {
659 info->keep_alive_requested = KEEP_ALIVE_PENDING;
662 queue_work(info->workqueue, &info->recv_done_work);
663 return;
665 default:
666 log_rdma_recv(ERR,
667 "unexpected response type=%d\n", response->type);
670 error:
671 put_receive_buffer(info, response);
674 static struct rdma_cm_id *smbd_create_id(
675 struct smbd_connection *info,
676 struct sockaddr *dstaddr, int port)
678 struct rdma_cm_id *id;
679 int rc;
680 __be16 *sport;
682 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
683 RDMA_PS_TCP, IB_QPT_RC);
684 if (IS_ERR(id)) {
685 rc = PTR_ERR(id);
686 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
687 return id;
690 if (dstaddr->sa_family == AF_INET6)
691 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
692 else
693 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
695 *sport = htons(port);
697 init_completion(&info->ri_done);
698 info->ri_rc = -ETIMEDOUT;
700 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
701 RDMA_RESOLVE_TIMEOUT);
702 if (rc) {
703 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
704 goto out;
706 wait_for_completion_interruptible_timeout(
707 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
708 rc = info->ri_rc;
709 if (rc) {
710 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
711 goto out;
714 info->ri_rc = -ETIMEDOUT;
715 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
716 if (rc) {
717 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
718 goto out;
720 wait_for_completion_interruptible_timeout(
721 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
722 rc = info->ri_rc;
723 if (rc) {
724 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
725 goto out;
728 return id;
730 out:
731 rdma_destroy_id(id);
732 return ERR_PTR(rc);
736 * Test if FRWR (Fast Registration Work Requests) is supported on the device
737 * This implementation requries FRWR on RDMA read/write
738 * return value: true if it is supported
740 static bool frwr_is_supported(struct ib_device_attr *attrs)
742 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
743 return false;
744 if (attrs->max_fast_reg_page_list_len == 0)
745 return false;
746 return true;
749 static int smbd_ia_open(
750 struct smbd_connection *info,
751 struct sockaddr *dstaddr, int port)
753 int rc;
755 info->id = smbd_create_id(info, dstaddr, port);
756 if (IS_ERR(info->id)) {
757 rc = PTR_ERR(info->id);
758 goto out1;
761 if (!frwr_is_supported(&info->id->device->attrs)) {
762 log_rdma_event(ERR,
763 "Fast Registration Work Requests "
764 "(FRWR) is not supported\n");
765 log_rdma_event(ERR,
766 "Device capability flags = %llx "
767 "max_fast_reg_page_list_len = %u\n",
768 info->id->device->attrs.device_cap_flags,
769 info->id->device->attrs.max_fast_reg_page_list_len);
770 rc = -EPROTONOSUPPORT;
771 goto out2;
773 info->max_frmr_depth = min_t(int,
774 smbd_max_frmr_depth,
775 info->id->device->attrs.max_fast_reg_page_list_len);
776 info->mr_type = IB_MR_TYPE_MEM_REG;
777 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
778 info->mr_type = IB_MR_TYPE_SG_GAPS;
780 info->pd = ib_alloc_pd(info->id->device, 0);
781 if (IS_ERR(info->pd)) {
782 rc = PTR_ERR(info->pd);
783 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
784 goto out2;
787 return 0;
789 out2:
790 rdma_destroy_id(info->id);
791 info->id = NULL;
793 out1:
794 return rc;
798 * Send a negotiation request message to the peer
799 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
800 * After negotiation, the transport is connected and ready for
801 * carrying upper layer SMB payload
803 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
805 struct ib_send_wr send_wr;
806 int rc = -ENOMEM;
807 struct smbd_request *request;
808 struct smbd_negotiate_req *packet;
810 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
811 if (!request)
812 return rc;
814 request->info = info;
816 packet = smbd_request_payload(request);
817 packet->min_version = cpu_to_le16(SMBD_V1);
818 packet->max_version = cpu_to_le16(SMBD_V1);
819 packet->reserved = 0;
820 packet->credits_requested = cpu_to_le16(info->send_credit_target);
821 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
822 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
823 packet->max_fragmented_size =
824 cpu_to_le32(info->max_fragmented_recv_size);
826 request->num_sge = 1;
827 request->sge[0].addr = ib_dma_map_single(
828 info->id->device, (void *)packet,
829 sizeof(*packet), DMA_TO_DEVICE);
830 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
831 rc = -EIO;
832 goto dma_mapping_failed;
835 request->sge[0].length = sizeof(*packet);
836 request->sge[0].lkey = info->pd->local_dma_lkey;
838 ib_dma_sync_single_for_device(
839 info->id->device, request->sge[0].addr,
840 request->sge[0].length, DMA_TO_DEVICE);
842 request->cqe.done = send_done;
844 send_wr.next = NULL;
845 send_wr.wr_cqe = &request->cqe;
846 send_wr.sg_list = request->sge;
847 send_wr.num_sge = request->num_sge;
848 send_wr.opcode = IB_WR_SEND;
849 send_wr.send_flags = IB_SEND_SIGNALED;
851 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
852 request->sge[0].addr,
853 request->sge[0].length, request->sge[0].lkey);
855 request->has_payload = false;
856 atomic_inc(&info->send_pending);
857 rc = ib_post_send(info->id->qp, &send_wr, NULL);
858 if (!rc)
859 return 0;
861 /* if we reach here, post send failed */
862 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
863 atomic_dec(&info->send_pending);
864 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
865 request->sge[0].length, DMA_TO_DEVICE);
867 smbd_disconnect_rdma_connection(info);
869 dma_mapping_failed:
870 mempool_free(request, info->request_mempool);
871 return rc;
875 * Extend the credits to remote peer
876 * This implements [MS-SMBD] 3.1.5.9
877 * The idea is that we should extend credits to remote peer as quickly as
878 * it's allowed, to maintain data flow. We allocate as much receive
879 * buffer as possible, and extend the receive credits to remote peer
880 * return value: the new credtis being granted.
882 static int manage_credits_prior_sending(struct smbd_connection *info)
884 int new_credits;
886 spin_lock(&info->lock_new_credits_offered);
887 new_credits = info->new_credits_offered;
888 info->new_credits_offered = 0;
889 spin_unlock(&info->lock_new_credits_offered);
891 return new_credits;
895 * Check if we need to send a KEEP_ALIVE message
896 * The idle connection timer triggers a KEEP_ALIVE message when expires
897 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
898 * back a response.
899 * return value:
900 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
901 * 0: otherwise
903 static int manage_keep_alive_before_sending(struct smbd_connection *info)
905 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
906 info->keep_alive_requested = KEEP_ALIVE_SENT;
907 return 1;
909 return 0;
913 * Build and prepare the SMBD packet header
914 * This function waits for avaialbe send credits and build a SMBD packet
915 * header. The caller then optional append payload to the packet after
916 * the header
917 * intput values
918 * size: the size of the payload
919 * remaining_data_length: remaining data to send if this is part of a
920 * fragmented packet
921 * output values
922 * request_out: the request allocated from this function
923 * return values: 0 on success, otherwise actual error code returned
925 static int smbd_create_header(struct smbd_connection *info,
926 int size, int remaining_data_length,
927 struct smbd_request **request_out)
929 struct smbd_request *request;
930 struct smbd_data_transfer *packet;
931 int header_length;
932 int rc;
934 /* Wait for send credits. A SMBD packet needs one credit */
935 rc = wait_event_interruptible(info->wait_send_queue,
936 atomic_read(&info->send_credits) > 0 ||
937 info->transport_status != SMBD_CONNECTED);
938 if (rc)
939 return rc;
941 if (info->transport_status != SMBD_CONNECTED) {
942 log_outgoing(ERR, "disconnected not sending\n");
943 return -ENOENT;
945 atomic_dec(&info->send_credits);
947 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
948 if (!request) {
949 rc = -ENOMEM;
950 goto err;
953 request->info = info;
955 /* Fill in the packet header */
956 packet = smbd_request_payload(request);
957 packet->credits_requested = cpu_to_le16(info->send_credit_target);
958 packet->credits_granted =
959 cpu_to_le16(manage_credits_prior_sending(info));
960 info->send_immediate = false;
962 packet->flags = 0;
963 if (manage_keep_alive_before_sending(info))
964 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
966 packet->reserved = 0;
967 if (!size)
968 packet->data_offset = 0;
969 else
970 packet->data_offset = cpu_to_le32(24);
971 packet->data_length = cpu_to_le32(size);
972 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
973 packet->padding = 0;
975 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
976 "data_offset=%d data_length=%d remaining_data_length=%d\n",
977 le16_to_cpu(packet->credits_requested),
978 le16_to_cpu(packet->credits_granted),
979 le32_to_cpu(packet->data_offset),
980 le32_to_cpu(packet->data_length),
981 le32_to_cpu(packet->remaining_data_length));
983 /* Map the packet to DMA */
984 header_length = sizeof(struct smbd_data_transfer);
985 /* If this is a packet without payload, don't send padding */
986 if (!size)
987 header_length = offsetof(struct smbd_data_transfer, padding);
989 request->num_sge = 1;
990 request->sge[0].addr = ib_dma_map_single(info->id->device,
991 (void *)packet,
992 header_length,
993 DMA_BIDIRECTIONAL);
994 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
995 mempool_free(request, info->request_mempool);
996 rc = -EIO;
997 goto err;
1000 request->sge[0].length = header_length;
1001 request->sge[0].lkey = info->pd->local_dma_lkey;
1003 *request_out = request;
1004 return 0;
1006 err:
1007 atomic_inc(&info->send_credits);
1008 return rc;
1011 static void smbd_destroy_header(struct smbd_connection *info,
1012 struct smbd_request *request)
1015 ib_dma_unmap_single(info->id->device,
1016 request->sge[0].addr,
1017 request->sge[0].length,
1018 DMA_TO_DEVICE);
1019 mempool_free(request, info->request_mempool);
1020 atomic_inc(&info->send_credits);
1023 /* Post the send request */
1024 static int smbd_post_send(struct smbd_connection *info,
1025 struct smbd_request *request, bool has_payload)
1027 struct ib_send_wr send_wr;
1028 int rc, i;
1030 for (i = 0; i < request->num_sge; i++) {
1031 log_rdma_send(INFO,
1032 "rdma_request sge[%d] addr=%llu length=%u\n",
1033 i, request->sge[i].addr, request->sge[i].length);
1034 ib_dma_sync_single_for_device(
1035 info->id->device,
1036 request->sge[i].addr,
1037 request->sge[i].length,
1038 DMA_TO_DEVICE);
1041 request->cqe.done = send_done;
1043 send_wr.next = NULL;
1044 send_wr.wr_cqe = &request->cqe;
1045 send_wr.sg_list = request->sge;
1046 send_wr.num_sge = request->num_sge;
1047 send_wr.opcode = IB_WR_SEND;
1048 send_wr.send_flags = IB_SEND_SIGNALED;
1050 if (has_payload) {
1051 request->has_payload = true;
1052 atomic_inc(&info->send_payload_pending);
1053 } else {
1054 request->has_payload = false;
1055 atomic_inc(&info->send_pending);
1058 rc = ib_post_send(info->id->qp, &send_wr, NULL);
1059 if (rc) {
1060 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1061 if (has_payload) {
1062 if (atomic_dec_and_test(&info->send_payload_pending))
1063 wake_up(&info->wait_send_payload_pending);
1064 } else {
1065 if (atomic_dec_and_test(&info->send_pending))
1066 wake_up(&info->wait_send_pending);
1068 smbd_disconnect_rdma_connection(info);
1069 } else
1070 /* Reset timer for idle connection after packet is sent */
1071 mod_delayed_work(info->workqueue, &info->idle_timer_work,
1072 info->keep_alive_interval*HZ);
1074 return rc;
1077 static int smbd_post_send_sgl(struct smbd_connection *info,
1078 struct scatterlist *sgl, int data_length, int remaining_data_length)
1080 int num_sgs;
1081 int i, rc;
1082 struct smbd_request *request;
1083 struct scatterlist *sg;
1085 rc = smbd_create_header(
1086 info, data_length, remaining_data_length, &request);
1087 if (rc)
1088 return rc;
1090 num_sgs = sgl ? sg_nents(sgl) : 0;
1091 for_each_sg(sgl, sg, num_sgs, i) {
1092 request->sge[i+1].addr =
1093 ib_dma_map_page(info->id->device, sg_page(sg),
1094 sg->offset, sg->length, DMA_BIDIRECTIONAL);
1095 if (ib_dma_mapping_error(
1096 info->id->device, request->sge[i+1].addr)) {
1097 rc = -EIO;
1098 request->sge[i+1].addr = 0;
1099 goto dma_mapping_failure;
1101 request->sge[i+1].length = sg->length;
1102 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1103 request->num_sge++;
1106 rc = smbd_post_send(info, request, data_length);
1107 if (!rc)
1108 return 0;
1110 dma_mapping_failure:
1111 for (i = 1; i < request->num_sge; i++)
1112 if (request->sge[i].addr)
1113 ib_dma_unmap_single(info->id->device,
1114 request->sge[i].addr,
1115 request->sge[i].length,
1116 DMA_TO_DEVICE);
1117 smbd_destroy_header(info, request);
1118 return rc;
1122 * Send a page
1123 * page: the page to send
1124 * offset: offset in the page to send
1125 * size: length in the page to send
1126 * remaining_data_length: remaining data to send in this payload
1128 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1129 unsigned long offset, size_t size, int remaining_data_length)
1131 struct scatterlist sgl;
1133 sg_init_table(&sgl, 1);
1134 sg_set_page(&sgl, page, size, offset);
1136 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1140 * Send an empty message
1141 * Empty message is used to extend credits to peer to for keep live
1142 * while there is no upper layer payload to send at the time
1144 static int smbd_post_send_empty(struct smbd_connection *info)
1146 info->count_send_empty++;
1147 return smbd_post_send_sgl(info, NULL, 0, 0);
1151 * Send a data buffer
1152 * iov: the iov array describing the data buffers
1153 * n_vec: number of iov array
1154 * remaining_data_length: remaining data to send following this packet
1155 * in segmented SMBD packet
1157 static int smbd_post_send_data(
1158 struct smbd_connection *info, struct kvec *iov, int n_vec,
1159 int remaining_data_length)
1161 int i;
1162 u32 data_length = 0;
1163 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1165 if (n_vec > SMBDIRECT_MAX_SGE) {
1166 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1167 return -EINVAL;
1170 sg_init_table(sgl, n_vec);
1171 for (i = 0; i < n_vec; i++) {
1172 data_length += iov[i].iov_len;
1173 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1176 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1180 * Post a receive request to the transport
1181 * The remote peer can only send data when a receive request is posted
1182 * The interaction is controlled by send/receive credit system
1184 static int smbd_post_recv(
1185 struct smbd_connection *info, struct smbd_response *response)
1187 struct ib_recv_wr recv_wr;
1188 int rc = -EIO;
1190 response->sge.addr = ib_dma_map_single(
1191 info->id->device, response->packet,
1192 info->max_receive_size, DMA_FROM_DEVICE);
1193 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1194 return rc;
1196 response->sge.length = info->max_receive_size;
1197 response->sge.lkey = info->pd->local_dma_lkey;
1199 response->cqe.done = recv_done;
1201 recv_wr.wr_cqe = &response->cqe;
1202 recv_wr.next = NULL;
1203 recv_wr.sg_list = &response->sge;
1204 recv_wr.num_sge = 1;
1206 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1207 if (rc) {
1208 ib_dma_unmap_single(info->id->device, response->sge.addr,
1209 response->sge.length, DMA_FROM_DEVICE);
1210 smbd_disconnect_rdma_connection(info);
1211 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1214 return rc;
1217 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1218 static int smbd_negotiate(struct smbd_connection *info)
1220 int rc;
1221 struct smbd_response *response = get_receive_buffer(info);
1223 response->type = SMBD_NEGOTIATE_RESP;
1224 rc = smbd_post_recv(info, response);
1225 log_rdma_event(INFO,
1226 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1227 "iov.lkey=%x\n",
1228 rc, response->sge.addr,
1229 response->sge.length, response->sge.lkey);
1230 if (rc)
1231 return rc;
1233 init_completion(&info->negotiate_completion);
1234 info->negotiate_done = false;
1235 rc = smbd_post_send_negotiate_req(info);
1236 if (rc)
1237 return rc;
1239 rc = wait_for_completion_interruptible_timeout(
1240 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1241 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1243 if (info->negotiate_done)
1244 return 0;
1246 if (rc == 0)
1247 rc = -ETIMEDOUT;
1248 else if (rc == -ERESTARTSYS)
1249 rc = -EINTR;
1250 else
1251 rc = -ENOTCONN;
1253 return rc;
1256 static void put_empty_packet(
1257 struct smbd_connection *info, struct smbd_response *response)
1259 spin_lock(&info->empty_packet_queue_lock);
1260 list_add_tail(&response->list, &info->empty_packet_queue);
1261 info->count_empty_packet_queue++;
1262 spin_unlock(&info->empty_packet_queue_lock);
1264 queue_work(info->workqueue, &info->post_send_credits_work);
1268 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1269 * This is a queue for reassembling upper layer payload and present to upper
1270 * layer. All the inncoming payload go to the reassembly queue, regardless of
1271 * if reassembly is required. The uuper layer code reads from the queue for all
1272 * incoming payloads.
1273 * Put a received packet to the reassembly queue
1274 * response: the packet received
1275 * data_length: the size of payload in this packet
1277 static void enqueue_reassembly(
1278 struct smbd_connection *info,
1279 struct smbd_response *response,
1280 int data_length)
1282 spin_lock(&info->reassembly_queue_lock);
1283 list_add_tail(&response->list, &info->reassembly_queue);
1284 info->reassembly_queue_length++;
1286 * Make sure reassembly_data_length is updated after list and
1287 * reassembly_queue_length are updated. On the dequeue side
1288 * reassembly_data_length is checked without a lock to determine
1289 * if reassembly_queue_length and list is up to date
1291 virt_wmb();
1292 info->reassembly_data_length += data_length;
1293 spin_unlock(&info->reassembly_queue_lock);
1294 info->count_reassembly_queue++;
1295 info->count_enqueue_reassembly_queue++;
1299 * Get the first entry at the front of reassembly queue
1300 * Caller is responsible for locking
1301 * return value: the first entry if any, NULL if queue is empty
1303 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1305 struct smbd_response *ret = NULL;
1307 if (!list_empty(&info->reassembly_queue)) {
1308 ret = list_first_entry(
1309 &info->reassembly_queue,
1310 struct smbd_response, list);
1312 return ret;
1315 static struct smbd_response *get_empty_queue_buffer(
1316 struct smbd_connection *info)
1318 struct smbd_response *ret = NULL;
1319 unsigned long flags;
1321 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1322 if (!list_empty(&info->empty_packet_queue)) {
1323 ret = list_first_entry(
1324 &info->empty_packet_queue,
1325 struct smbd_response, list);
1326 list_del(&ret->list);
1327 info->count_empty_packet_queue--;
1329 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1331 return ret;
1335 * Get a receive buffer
1336 * For each remote send, we need to post a receive. The receive buffers are
1337 * pre-allocated in advance.
1338 * return value: the receive buffer, NULL if none is available
1340 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1342 struct smbd_response *ret = NULL;
1343 unsigned long flags;
1345 spin_lock_irqsave(&info->receive_queue_lock, flags);
1346 if (!list_empty(&info->receive_queue)) {
1347 ret = list_first_entry(
1348 &info->receive_queue,
1349 struct smbd_response, list);
1350 list_del(&ret->list);
1351 info->count_receive_queue--;
1352 info->count_get_receive_buffer++;
1354 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1356 return ret;
1360 * Return a receive buffer
1361 * Upon returning of a receive buffer, we can post new receive and extend
1362 * more receive credits to remote peer. This is done immediately after a
1363 * receive buffer is returned.
1365 static void put_receive_buffer(
1366 struct smbd_connection *info, struct smbd_response *response)
1368 unsigned long flags;
1370 ib_dma_unmap_single(info->id->device, response->sge.addr,
1371 response->sge.length, DMA_FROM_DEVICE);
1373 spin_lock_irqsave(&info->receive_queue_lock, flags);
1374 list_add_tail(&response->list, &info->receive_queue);
1375 info->count_receive_queue++;
1376 info->count_put_receive_buffer++;
1377 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1379 queue_work(info->workqueue, &info->post_send_credits_work);
1382 /* Preallocate all receive buffer on transport establishment */
1383 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1385 int i;
1386 struct smbd_response *response;
1388 INIT_LIST_HEAD(&info->reassembly_queue);
1389 spin_lock_init(&info->reassembly_queue_lock);
1390 info->reassembly_data_length = 0;
1391 info->reassembly_queue_length = 0;
1393 INIT_LIST_HEAD(&info->receive_queue);
1394 spin_lock_init(&info->receive_queue_lock);
1395 info->count_receive_queue = 0;
1397 INIT_LIST_HEAD(&info->empty_packet_queue);
1398 spin_lock_init(&info->empty_packet_queue_lock);
1399 info->count_empty_packet_queue = 0;
1401 init_waitqueue_head(&info->wait_receive_queues);
1403 for (i = 0; i < num_buf; i++) {
1404 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1405 if (!response)
1406 goto allocate_failed;
1408 response->info = info;
1409 list_add_tail(&response->list, &info->receive_queue);
1410 info->count_receive_queue++;
1413 return 0;
1415 allocate_failed:
1416 while (!list_empty(&info->receive_queue)) {
1417 response = list_first_entry(
1418 &info->receive_queue,
1419 struct smbd_response, list);
1420 list_del(&response->list);
1421 info->count_receive_queue--;
1423 mempool_free(response, info->response_mempool);
1425 return -ENOMEM;
1428 static void destroy_receive_buffers(struct smbd_connection *info)
1430 struct smbd_response *response;
1432 while ((response = get_receive_buffer(info)))
1433 mempool_free(response, info->response_mempool);
1435 while ((response = get_empty_queue_buffer(info)))
1436 mempool_free(response, info->response_mempool);
1440 * Check and send an immediate or keep alive packet
1441 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1442 * Connection.KeepaliveRequested and Connection.SendImmediate
1443 * The idea is to extend credits to server as soon as it becomes available
1445 static void send_immediate_work(struct work_struct *work)
1447 struct smbd_connection *info = container_of(
1448 work, struct smbd_connection,
1449 send_immediate_work.work);
1451 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1452 info->send_immediate) {
1453 log_keep_alive(INFO, "send an empty message\n");
1454 smbd_post_send_empty(info);
1458 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1459 static void idle_connection_timer(struct work_struct *work)
1461 struct smbd_connection *info = container_of(
1462 work, struct smbd_connection,
1463 idle_timer_work.work);
1465 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1466 log_keep_alive(ERR,
1467 "error status info->keep_alive_requested=%d\n",
1468 info->keep_alive_requested);
1469 smbd_disconnect_rdma_connection(info);
1470 return;
1473 log_keep_alive(INFO, "about to send an empty idle message\n");
1474 smbd_post_send_empty(info);
1476 /* Setup the next idle timeout work */
1477 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1478 info->keep_alive_interval*HZ);
1481 /* Destroy this SMBD connection, called from upper layer */
1482 void smbd_destroy(struct smbd_connection *info)
1484 log_rdma_event(INFO, "destroying rdma session\n");
1486 /* Kick off the disconnection process */
1487 smbd_disconnect_rdma_connection(info);
1489 log_rdma_event(INFO, "wait for transport being destroyed\n");
1490 wait_event(info->wait_destroy,
1491 info->transport_status == SMBD_DESTROYED);
1493 destroy_workqueue(info->workqueue);
1494 log_rdma_event(INFO, "rdma session destroyed\n");
1495 kfree(info);
1499 * Reconnect this SMBD connection, called from upper layer
1500 * return value: 0 on success, or actual error code
1502 int smbd_reconnect(struct TCP_Server_Info *server)
1504 log_rdma_event(INFO, "reconnecting rdma session\n");
1506 if (!server->smbd_conn) {
1507 log_rdma_event(INFO, "rdma session already destroyed\n");
1508 goto create_conn;
1512 * This is possible if transport is disconnected and we haven't received
1513 * notification from RDMA, but upper layer has detected timeout
1515 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1516 log_rdma_event(INFO, "disconnecting transport\n");
1517 smbd_disconnect_rdma_connection(server->smbd_conn);
1520 /* wait until the transport is destroyed */
1521 if (!wait_event_timeout(server->smbd_conn->wait_destroy,
1522 server->smbd_conn->transport_status == SMBD_DESTROYED, 5*HZ))
1523 return -EAGAIN;
1525 destroy_workqueue(server->smbd_conn->workqueue);
1526 kfree(server->smbd_conn);
1528 create_conn:
1529 log_rdma_event(INFO, "creating rdma session\n");
1530 server->smbd_conn = smbd_get_connection(
1531 server, (struct sockaddr *) &server->dstaddr);
1533 if (server->smbd_conn)
1534 cifs_dbg(VFS, "RDMA transport re-established\n");
1536 return server->smbd_conn ? 0 : -ENOENT;
1539 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1541 destroy_receive_buffers(info);
1542 destroy_workqueue(info->workqueue);
1543 mempool_destroy(info->response_mempool);
1544 kmem_cache_destroy(info->response_cache);
1545 mempool_destroy(info->request_mempool);
1546 kmem_cache_destroy(info->request_cache);
1549 #define MAX_NAME_LEN 80
1550 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1552 char name[MAX_NAME_LEN];
1553 int rc;
1555 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1556 info->request_cache =
1557 kmem_cache_create(
1558 name,
1559 sizeof(struct smbd_request) +
1560 sizeof(struct smbd_data_transfer),
1561 0, SLAB_HWCACHE_ALIGN, NULL);
1562 if (!info->request_cache)
1563 return -ENOMEM;
1565 info->request_mempool =
1566 mempool_create(info->send_credit_target, mempool_alloc_slab,
1567 mempool_free_slab, info->request_cache);
1568 if (!info->request_mempool)
1569 goto out1;
1571 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1572 info->response_cache =
1573 kmem_cache_create(
1574 name,
1575 sizeof(struct smbd_response) +
1576 info->max_receive_size,
1577 0, SLAB_HWCACHE_ALIGN, NULL);
1578 if (!info->response_cache)
1579 goto out2;
1581 info->response_mempool =
1582 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1583 mempool_free_slab, info->response_cache);
1584 if (!info->response_mempool)
1585 goto out3;
1587 snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1588 info->workqueue = create_workqueue(name);
1589 if (!info->workqueue)
1590 goto out4;
1592 rc = allocate_receive_buffers(info, info->receive_credit_max);
1593 if (rc) {
1594 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1595 goto out5;
1598 return 0;
1600 out5:
1601 destroy_workqueue(info->workqueue);
1602 out4:
1603 mempool_destroy(info->response_mempool);
1604 out3:
1605 kmem_cache_destroy(info->response_cache);
1606 out2:
1607 mempool_destroy(info->request_mempool);
1608 out1:
1609 kmem_cache_destroy(info->request_cache);
1610 return -ENOMEM;
1613 /* Create a SMBD connection, called by upper layer */
1614 static struct smbd_connection *_smbd_get_connection(
1615 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1617 int rc;
1618 struct smbd_connection *info;
1619 struct rdma_conn_param conn_param;
1620 struct ib_qp_init_attr qp_attr;
1621 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1622 struct ib_port_immutable port_immutable;
1623 u32 ird_ord_hdr[2];
1625 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1626 if (!info)
1627 return NULL;
1629 info->transport_status = SMBD_CONNECTING;
1630 rc = smbd_ia_open(info, dstaddr, port);
1631 if (rc) {
1632 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1633 goto create_id_failed;
1636 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1637 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1638 log_rdma_event(ERR,
1639 "consider lowering send_credit_target = %d. "
1640 "Possible CQE overrun, device "
1641 "reporting max_cpe %d max_qp_wr %d\n",
1642 smbd_send_credit_target,
1643 info->id->device->attrs.max_cqe,
1644 info->id->device->attrs.max_qp_wr);
1645 goto config_failed;
1648 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1649 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1650 log_rdma_event(ERR,
1651 "consider lowering receive_credit_max = %d. "
1652 "Possible CQE overrun, device "
1653 "reporting max_cpe %d max_qp_wr %d\n",
1654 smbd_receive_credit_max,
1655 info->id->device->attrs.max_cqe,
1656 info->id->device->attrs.max_qp_wr);
1657 goto config_failed;
1660 info->receive_credit_max = smbd_receive_credit_max;
1661 info->send_credit_target = smbd_send_credit_target;
1662 info->max_send_size = smbd_max_send_size;
1663 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1664 info->max_receive_size = smbd_max_receive_size;
1665 info->keep_alive_interval = smbd_keep_alive_interval;
1667 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1668 log_rdma_event(ERR,
1669 "warning: device max_send_sge = %d too small\n",
1670 info->id->device->attrs.max_send_sge);
1671 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1673 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1674 log_rdma_event(ERR,
1675 "warning: device max_recv_sge = %d too small\n",
1676 info->id->device->attrs.max_recv_sge);
1677 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1680 info->send_cq = NULL;
1681 info->recv_cq = NULL;
1682 info->send_cq = ib_alloc_cq(info->id->device, info,
1683 info->send_credit_target, 0, IB_POLL_SOFTIRQ);
1684 if (IS_ERR(info->send_cq)) {
1685 info->send_cq = NULL;
1686 goto alloc_cq_failed;
1689 info->recv_cq = ib_alloc_cq(info->id->device, info,
1690 info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
1691 if (IS_ERR(info->recv_cq)) {
1692 info->recv_cq = NULL;
1693 goto alloc_cq_failed;
1696 memset(&qp_attr, 0, sizeof(qp_attr));
1697 qp_attr.event_handler = smbd_qp_async_error_upcall;
1698 qp_attr.qp_context = info;
1699 qp_attr.cap.max_send_wr = info->send_credit_target;
1700 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1701 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1702 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1703 qp_attr.cap.max_inline_data = 0;
1704 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1705 qp_attr.qp_type = IB_QPT_RC;
1706 qp_attr.send_cq = info->send_cq;
1707 qp_attr.recv_cq = info->recv_cq;
1708 qp_attr.port_num = ~0;
1710 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1711 if (rc) {
1712 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1713 goto create_qp_failed;
1716 memset(&conn_param, 0, sizeof(conn_param));
1717 conn_param.initiator_depth = 0;
1719 conn_param.responder_resources =
1720 info->id->device->attrs.max_qp_rd_atom
1721 < SMBD_CM_RESPONDER_RESOURCES ?
1722 info->id->device->attrs.max_qp_rd_atom :
1723 SMBD_CM_RESPONDER_RESOURCES;
1724 info->responder_resources = conn_param.responder_resources;
1725 log_rdma_mr(INFO, "responder_resources=%d\n",
1726 info->responder_resources);
1728 /* Need to send IRD/ORD in private data for iWARP */
1729 info->id->device->get_port_immutable(
1730 info->id->device, info->id->port_num, &port_immutable);
1731 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1732 ird_ord_hdr[0] = info->responder_resources;
1733 ird_ord_hdr[1] = 1;
1734 conn_param.private_data = ird_ord_hdr;
1735 conn_param.private_data_len = sizeof(ird_ord_hdr);
1736 } else {
1737 conn_param.private_data = NULL;
1738 conn_param.private_data_len = 0;
1741 conn_param.retry_count = SMBD_CM_RETRY;
1742 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1743 conn_param.flow_control = 0;
1744 init_waitqueue_head(&info->wait_destroy);
1746 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1747 &addr_in->sin_addr, port);
1749 init_waitqueue_head(&info->conn_wait);
1750 rc = rdma_connect(info->id, &conn_param);
1751 if (rc) {
1752 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1753 goto rdma_connect_failed;
1756 wait_event_interruptible(
1757 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1759 if (info->transport_status != SMBD_CONNECTED) {
1760 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1761 goto rdma_connect_failed;
1764 log_rdma_event(INFO, "rdma_connect connected\n");
1766 rc = allocate_caches_and_workqueue(info);
1767 if (rc) {
1768 log_rdma_event(ERR, "cache allocation failed\n");
1769 goto allocate_cache_failed;
1772 init_waitqueue_head(&info->wait_send_queue);
1773 init_waitqueue_head(&info->wait_reassembly_queue);
1775 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1776 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1777 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1778 info->keep_alive_interval*HZ);
1780 init_waitqueue_head(&info->wait_smbd_send_pending);
1781 info->smbd_send_pending = 0;
1783 init_waitqueue_head(&info->wait_smbd_recv_pending);
1784 info->smbd_recv_pending = 0;
1786 init_waitqueue_head(&info->wait_send_pending);
1787 atomic_set(&info->send_pending, 0);
1789 init_waitqueue_head(&info->wait_send_payload_pending);
1790 atomic_set(&info->send_payload_pending, 0);
1792 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1793 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
1794 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1795 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1796 info->new_credits_offered = 0;
1797 spin_lock_init(&info->lock_new_credits_offered);
1799 rc = smbd_negotiate(info);
1800 if (rc) {
1801 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1802 goto negotiation_failed;
1805 rc = allocate_mr_list(info);
1806 if (rc) {
1807 log_rdma_mr(ERR, "memory registration allocation failed\n");
1808 goto allocate_mr_failed;
1811 return info;
1813 allocate_mr_failed:
1814 /* At this point, need to a full transport shutdown */
1815 smbd_destroy(info);
1816 return NULL;
1818 negotiation_failed:
1819 cancel_delayed_work_sync(&info->idle_timer_work);
1820 destroy_caches_and_workqueue(info);
1821 info->transport_status = SMBD_NEGOTIATE_FAILED;
1822 init_waitqueue_head(&info->conn_wait);
1823 rdma_disconnect(info->id);
1824 wait_event(info->conn_wait,
1825 info->transport_status == SMBD_DISCONNECTED);
1827 allocate_cache_failed:
1828 rdma_connect_failed:
1829 rdma_destroy_qp(info->id);
1831 create_qp_failed:
1832 alloc_cq_failed:
1833 if (info->send_cq)
1834 ib_free_cq(info->send_cq);
1835 if (info->recv_cq)
1836 ib_free_cq(info->recv_cq);
1838 config_failed:
1839 ib_dealloc_pd(info->pd);
1840 rdma_destroy_id(info->id);
1842 create_id_failed:
1843 kfree(info);
1844 return NULL;
1847 struct smbd_connection *smbd_get_connection(
1848 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1850 struct smbd_connection *ret;
1851 int port = SMBD_PORT;
1853 try_again:
1854 ret = _smbd_get_connection(server, dstaddr, port);
1856 /* Try SMB_PORT if SMBD_PORT doesn't work */
1857 if (!ret && port == SMBD_PORT) {
1858 port = SMB_PORT;
1859 goto try_again;
1861 return ret;
1865 * Receive data from receive reassembly queue
1866 * All the incoming data packets are placed in reassembly queue
1867 * buf: the buffer to read data into
1868 * size: the length of data to read
1869 * return value: actual data read
1870 * Note: this implementation copies the data from reassebmly queue to receive
1871 * buffers used by upper layer. This is not the optimal code path. A better way
1872 * to do it is to not have upper layer allocate its receive buffers but rather
1873 * borrow the buffer from reassembly queue, and return it after data is
1874 * consumed. But this will require more changes to upper layer code, and also
1875 * need to consider packet boundaries while they still being reassembled.
1877 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1878 unsigned int size)
1880 struct smbd_response *response;
1881 struct smbd_data_transfer *data_transfer;
1882 int to_copy, to_read, data_read, offset;
1883 u32 data_length, remaining_data_length, data_offset;
1884 int rc;
1886 again:
1887 if (info->transport_status != SMBD_CONNECTED) {
1888 log_read(ERR, "disconnected\n");
1889 return -ENODEV;
1893 * No need to hold the reassembly queue lock all the time as we are
1894 * the only one reading from the front of the queue. The transport
1895 * may add more entries to the back of the queue at the same time
1897 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1898 info->reassembly_data_length);
1899 if (info->reassembly_data_length >= size) {
1900 int queue_length;
1901 int queue_removed = 0;
1904 * Need to make sure reassembly_data_length is read before
1905 * reading reassembly_queue_length and calling
1906 * _get_first_reassembly. This call is lock free
1907 * as we never read at the end of the queue which are being
1908 * updated in SOFTIRQ as more data is received
1910 virt_rmb();
1911 queue_length = info->reassembly_queue_length;
1912 data_read = 0;
1913 to_read = size;
1914 offset = info->first_entry_offset;
1915 while (data_read < size) {
1916 response = _get_first_reassembly(info);
1917 data_transfer = smbd_response_payload(response);
1918 data_length = le32_to_cpu(data_transfer->data_length);
1919 remaining_data_length =
1920 le32_to_cpu(
1921 data_transfer->remaining_data_length);
1922 data_offset = le32_to_cpu(data_transfer->data_offset);
1925 * The upper layer expects RFC1002 length at the
1926 * beginning of the payload. Return it to indicate
1927 * the total length of the packet. This minimize the
1928 * change to upper layer packet processing logic. This
1929 * will be eventually remove when an intermediate
1930 * transport layer is added
1932 if (response->first_segment && size == 4) {
1933 unsigned int rfc1002_len =
1934 data_length + remaining_data_length;
1935 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1936 data_read = 4;
1937 response->first_segment = false;
1938 log_read(INFO, "returning rfc1002 length %d\n",
1939 rfc1002_len);
1940 goto read_rfc1002_done;
1943 to_copy = min_t(int, data_length - offset, to_read);
1944 memcpy(
1945 buf + data_read,
1946 (char *)data_transfer + data_offset + offset,
1947 to_copy);
1949 /* move on to the next buffer? */
1950 if (to_copy == data_length - offset) {
1951 queue_length--;
1953 * No need to lock if we are not at the
1954 * end of the queue
1956 if (queue_length)
1957 list_del(&response->list);
1958 else {
1959 spin_lock_irq(
1960 &info->reassembly_queue_lock);
1961 list_del(&response->list);
1962 spin_unlock_irq(
1963 &info->reassembly_queue_lock);
1965 queue_removed++;
1966 info->count_reassembly_queue--;
1967 info->count_dequeue_reassembly_queue++;
1968 put_receive_buffer(info, response);
1969 offset = 0;
1970 log_read(INFO, "put_receive_buffer offset=0\n");
1971 } else
1972 offset += to_copy;
1974 to_read -= to_copy;
1975 data_read += to_copy;
1977 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1978 "data_transfer_length-offset=%d after that "
1979 "to_read=%d data_read=%d offset=%d\n",
1980 to_copy, data_length - offset,
1981 to_read, data_read, offset);
1984 spin_lock_irq(&info->reassembly_queue_lock);
1985 info->reassembly_data_length -= data_read;
1986 info->reassembly_queue_length -= queue_removed;
1987 spin_unlock_irq(&info->reassembly_queue_lock);
1989 info->first_entry_offset = offset;
1990 log_read(INFO, "returning to thread data_read=%d "
1991 "reassembly_data_length=%d first_entry_offset=%d\n",
1992 data_read, info->reassembly_data_length,
1993 info->first_entry_offset);
1994 read_rfc1002_done:
1995 return data_read;
1998 log_read(INFO, "wait_event on more data\n");
1999 rc = wait_event_interruptible(
2000 info->wait_reassembly_queue,
2001 info->reassembly_data_length >= size ||
2002 info->transport_status != SMBD_CONNECTED);
2003 /* Don't return any data if interrupted */
2004 if (rc)
2005 return -ENODEV;
2007 goto again;
2011 * Receive a page from receive reassembly queue
2012 * page: the page to read data into
2013 * to_read: the length of data to read
2014 * return value: actual data read
2016 static int smbd_recv_page(struct smbd_connection *info,
2017 struct page *page, unsigned int page_offset,
2018 unsigned int to_read)
2020 int ret;
2021 char *to_address;
2022 void *page_address;
2024 /* make sure we have the page ready for read */
2025 ret = wait_event_interruptible(
2026 info->wait_reassembly_queue,
2027 info->reassembly_data_length >= to_read ||
2028 info->transport_status != SMBD_CONNECTED);
2029 if (ret)
2030 return ret;
2032 /* now we can read from reassembly queue and not sleep */
2033 page_address = kmap_atomic(page);
2034 to_address = (char *) page_address + page_offset;
2036 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2037 page, to_address, to_read);
2039 ret = smbd_recv_buf(info, to_address, to_read);
2040 kunmap_atomic(page_address);
2042 return ret;
2046 * Receive data from transport
2047 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2048 * return: total bytes read, or 0. SMB Direct will not do partial read.
2050 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2052 char *buf;
2053 struct page *page;
2054 unsigned int to_read, page_offset;
2055 int rc;
2057 info->smbd_recv_pending++;
2059 switch (msg->msg_iter.type) {
2060 case READ | ITER_KVEC:
2061 buf = msg->msg_iter.kvec->iov_base;
2062 to_read = msg->msg_iter.kvec->iov_len;
2063 rc = smbd_recv_buf(info, buf, to_read);
2064 break;
2066 case READ | ITER_BVEC:
2067 page = msg->msg_iter.bvec->bv_page;
2068 page_offset = msg->msg_iter.bvec->bv_offset;
2069 to_read = msg->msg_iter.bvec->bv_len;
2070 rc = smbd_recv_page(info, page, page_offset, to_read);
2071 break;
2073 default:
2074 /* It's a bug in upper layer to get there */
2075 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2076 msg->msg_iter.type);
2077 rc = -EINVAL;
2080 info->smbd_recv_pending--;
2081 wake_up(&info->wait_smbd_recv_pending);
2083 /* SMBDirect will read it all or nothing */
2084 if (rc > 0)
2085 msg->msg_iter.count = 0;
2086 return rc;
2090 * Send data to transport
2091 * Each rqst is transported as a SMBDirect payload
2092 * rqst: the data to write
2093 * return value: 0 if successfully write, otherwise error code
2095 int smbd_send(struct TCP_Server_Info *server,
2096 int num_rqst, struct smb_rqst *rqst_array)
2098 struct smbd_connection *info = server->smbd_conn;
2099 struct kvec vec;
2100 int nvecs;
2101 int size;
2102 unsigned int buflen, remaining_data_length;
2103 int start, i, j;
2104 int max_iov_size =
2105 info->max_send_size - sizeof(struct smbd_data_transfer);
2106 struct kvec *iov;
2107 int rc;
2108 struct smb_rqst *rqst;
2109 int rqst_idx;
2111 info->smbd_send_pending++;
2112 if (info->transport_status != SMBD_CONNECTED) {
2113 rc = -ENODEV;
2114 goto done;
2118 * Add in the page array if there is one. The caller needs to set
2119 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2120 * ends at page boundary
2122 remaining_data_length = 0;
2123 for (i = 0; i < num_rqst; i++)
2124 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2126 if (remaining_data_length + sizeof(struct smbd_data_transfer) >
2127 info->max_fragmented_send_size) {
2128 log_write(ERR, "payload size %d > max size %d\n",
2129 remaining_data_length, info->max_fragmented_send_size);
2130 rc = -EINVAL;
2131 goto done;
2134 rqst_idx = 0;
2136 next_rqst:
2137 rqst = &rqst_array[rqst_idx];
2138 iov = rqst->rq_iov;
2140 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2141 rqst_idx, smb_rqst_len(server, rqst));
2142 for (i = 0; i < rqst->rq_nvec; i++)
2143 dump_smb(iov[i].iov_base, iov[i].iov_len);
2146 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2147 "rq_tailsz=%d buflen=%lu\n",
2148 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2149 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2151 start = i = 0;
2152 buflen = 0;
2153 while (true) {
2154 buflen += iov[i].iov_len;
2155 if (buflen > max_iov_size) {
2156 if (i > start) {
2157 remaining_data_length -=
2158 (buflen-iov[i].iov_len);
2159 log_write(INFO, "sending iov[] from start=%d "
2160 "i=%d nvecs=%d "
2161 "remaining_data_length=%d\n",
2162 start, i, i-start,
2163 remaining_data_length);
2164 rc = smbd_post_send_data(
2165 info, &iov[start], i-start,
2166 remaining_data_length);
2167 if (rc)
2168 goto done;
2169 } else {
2170 /* iov[start] is too big, break it */
2171 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2172 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2173 " break to %d vectors\n",
2174 start, iov[start].iov_base,
2175 buflen, nvecs);
2176 for (j = 0; j < nvecs; j++) {
2177 vec.iov_base =
2178 (char *)iov[start].iov_base +
2179 j*max_iov_size;
2180 vec.iov_len = max_iov_size;
2181 if (j == nvecs-1)
2182 vec.iov_len =
2183 buflen -
2184 max_iov_size*(nvecs-1);
2185 remaining_data_length -= vec.iov_len;
2186 log_write(INFO,
2187 "sending vec j=%d iov_base=%p"
2188 " iov_len=%zu "
2189 "remaining_data_length=%d\n",
2190 j, vec.iov_base, vec.iov_len,
2191 remaining_data_length);
2192 rc = smbd_post_send_data(
2193 info, &vec, 1,
2194 remaining_data_length);
2195 if (rc)
2196 goto done;
2198 i++;
2199 if (i == rqst->rq_nvec)
2200 break;
2202 start = i;
2203 buflen = 0;
2204 } else {
2205 i++;
2206 if (i == rqst->rq_nvec) {
2207 /* send out all remaining vecs */
2208 remaining_data_length -= buflen;
2209 log_write(INFO,
2210 "sending iov[] from start=%d i=%d "
2211 "nvecs=%d remaining_data_length=%d\n",
2212 start, i, i-start,
2213 remaining_data_length);
2214 rc = smbd_post_send_data(info, &iov[start],
2215 i-start, remaining_data_length);
2216 if (rc)
2217 goto done;
2218 break;
2221 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2224 /* now sending pages if there are any */
2225 for (i = 0; i < rqst->rq_npages; i++) {
2226 unsigned int offset;
2228 rqst_page_get_length(rqst, i, &buflen, &offset);
2229 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2230 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2231 buflen, nvecs);
2232 for (j = 0; j < nvecs; j++) {
2233 size = max_iov_size;
2234 if (j == nvecs-1)
2235 size = buflen - j*max_iov_size;
2236 remaining_data_length -= size;
2237 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2238 " remaining_data_length=%d\n",
2239 i, j*max_iov_size+offset, size,
2240 remaining_data_length);
2241 rc = smbd_post_send_page(
2242 info, rqst->rq_pages[i],
2243 j*max_iov_size + offset,
2244 size, remaining_data_length);
2245 if (rc)
2246 goto done;
2250 rqst_idx++;
2251 if (rqst_idx < num_rqst)
2252 goto next_rqst;
2254 done:
2256 * As an optimization, we don't wait for individual I/O to finish
2257 * before sending the next one.
2258 * Send them all and wait for pending send count to get to 0
2259 * that means all the I/Os have been out and we are good to return
2262 wait_event(info->wait_send_payload_pending,
2263 atomic_read(&info->send_payload_pending) == 0);
2265 info->smbd_send_pending--;
2266 wake_up(&info->wait_smbd_send_pending);
2268 return rc;
2271 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2273 struct smbd_mr *mr;
2274 struct ib_cqe *cqe;
2276 if (wc->status) {
2277 log_rdma_mr(ERR, "status=%d\n", wc->status);
2278 cqe = wc->wr_cqe;
2279 mr = container_of(cqe, struct smbd_mr, cqe);
2280 smbd_disconnect_rdma_connection(mr->conn);
2285 * The work queue function that recovers MRs
2286 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2287 * again. Both calls are slow, so finish them in a workqueue. This will not
2288 * block I/O path.
2289 * There is one workqueue that recovers MRs, there is no need to lock as the
2290 * I/O requests calling smbd_register_mr will never update the links in the
2291 * mr_list.
2293 static void smbd_mr_recovery_work(struct work_struct *work)
2295 struct smbd_connection *info =
2296 container_of(work, struct smbd_connection, mr_recovery_work);
2297 struct smbd_mr *smbdirect_mr;
2298 int rc;
2300 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2301 if (smbdirect_mr->state == MR_INVALIDATED ||
2302 smbdirect_mr->state == MR_ERROR) {
2304 /* recover this MR entry */
2305 rc = ib_dereg_mr(smbdirect_mr->mr);
2306 if (rc) {
2307 log_rdma_mr(ERR,
2308 "ib_dereg_mr failed rc=%x\n",
2309 rc);
2310 smbd_disconnect_rdma_connection(info);
2311 continue;
2314 smbdirect_mr->mr = ib_alloc_mr(
2315 info->pd, info->mr_type,
2316 info->max_frmr_depth);
2317 if (IS_ERR(smbdirect_mr->mr)) {
2318 log_rdma_mr(ERR,
2319 "ib_alloc_mr failed mr_type=%x "
2320 "max_frmr_depth=%x\n",
2321 info->mr_type,
2322 info->max_frmr_depth);
2323 smbd_disconnect_rdma_connection(info);
2324 continue;
2327 if (smbdirect_mr->state == MR_INVALIDATED)
2328 ib_dma_unmap_sg(
2329 info->id->device, smbdirect_mr->sgl,
2330 smbdirect_mr->sgl_count,
2331 smbdirect_mr->dir);
2333 smbdirect_mr->state = MR_READY;
2335 /* smbdirect_mr->state is updated by this function
2336 * and is read and updated by I/O issuing CPUs trying
2337 * to get a MR, the call to atomic_inc_return
2338 * implicates a memory barrier and guarantees this
2339 * value is updated before waking up any calls to
2340 * get_mr() from the I/O issuing CPUs
2342 if (atomic_inc_return(&info->mr_ready_count) == 1)
2343 wake_up_interruptible(&info->wait_mr);
2348 static void destroy_mr_list(struct smbd_connection *info)
2350 struct smbd_mr *mr, *tmp;
2352 cancel_work_sync(&info->mr_recovery_work);
2353 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2354 if (mr->state == MR_INVALIDATED)
2355 ib_dma_unmap_sg(info->id->device, mr->sgl,
2356 mr->sgl_count, mr->dir);
2357 ib_dereg_mr(mr->mr);
2358 kfree(mr->sgl);
2359 kfree(mr);
2364 * Allocate MRs used for RDMA read/write
2365 * The number of MRs will not exceed hardware capability in responder_resources
2366 * All MRs are kept in mr_list. The MR can be recovered after it's used
2367 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2368 * as MRs are used and recovered for I/O, but the list links will not change
2370 static int allocate_mr_list(struct smbd_connection *info)
2372 int i;
2373 struct smbd_mr *smbdirect_mr, *tmp;
2375 INIT_LIST_HEAD(&info->mr_list);
2376 init_waitqueue_head(&info->wait_mr);
2377 spin_lock_init(&info->mr_list_lock);
2378 atomic_set(&info->mr_ready_count, 0);
2379 atomic_set(&info->mr_used_count, 0);
2380 init_waitqueue_head(&info->wait_for_mr_cleanup);
2381 /* Allocate more MRs (2x) than hardware responder_resources */
2382 for (i = 0; i < info->responder_resources * 2; i++) {
2383 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2384 if (!smbdirect_mr)
2385 goto out;
2386 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2387 info->max_frmr_depth);
2388 if (IS_ERR(smbdirect_mr->mr)) {
2389 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2390 "max_frmr_depth=%x\n",
2391 info->mr_type, info->max_frmr_depth);
2392 goto out;
2394 smbdirect_mr->sgl = kcalloc(
2395 info->max_frmr_depth,
2396 sizeof(struct scatterlist),
2397 GFP_KERNEL);
2398 if (!smbdirect_mr->sgl) {
2399 log_rdma_mr(ERR, "failed to allocate sgl\n");
2400 ib_dereg_mr(smbdirect_mr->mr);
2401 goto out;
2403 smbdirect_mr->state = MR_READY;
2404 smbdirect_mr->conn = info;
2406 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2407 atomic_inc(&info->mr_ready_count);
2409 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2410 return 0;
2412 out:
2413 kfree(smbdirect_mr);
2415 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2416 ib_dereg_mr(smbdirect_mr->mr);
2417 kfree(smbdirect_mr->sgl);
2418 kfree(smbdirect_mr);
2420 return -ENOMEM;
2424 * Get a MR from mr_list. This function waits until there is at least one
2425 * MR available in the list. It may access the list while the
2426 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2427 * as they never modify the same places. However, there may be several CPUs
2428 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2429 * protect this situation.
2431 static struct smbd_mr *get_mr(struct smbd_connection *info)
2433 struct smbd_mr *ret;
2434 int rc;
2435 again:
2436 rc = wait_event_interruptible(info->wait_mr,
2437 atomic_read(&info->mr_ready_count) ||
2438 info->transport_status != SMBD_CONNECTED);
2439 if (rc) {
2440 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2441 return NULL;
2444 if (info->transport_status != SMBD_CONNECTED) {
2445 log_rdma_mr(ERR, "info->transport_status=%x\n",
2446 info->transport_status);
2447 return NULL;
2450 spin_lock(&info->mr_list_lock);
2451 list_for_each_entry(ret, &info->mr_list, list) {
2452 if (ret->state == MR_READY) {
2453 ret->state = MR_REGISTERED;
2454 spin_unlock(&info->mr_list_lock);
2455 atomic_dec(&info->mr_ready_count);
2456 atomic_inc(&info->mr_used_count);
2457 return ret;
2461 spin_unlock(&info->mr_list_lock);
2463 * It is possible that we could fail to get MR because other processes may
2464 * try to acquire a MR at the same time. If this is the case, retry it.
2466 goto again;
2470 * Register memory for RDMA read/write
2471 * pages[]: the list of pages to register memory with
2472 * num_pages: the number of pages to register
2473 * tailsz: if non-zero, the bytes to register in the last page
2474 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2475 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2476 * return value: the MR registered, NULL if failed.
2478 struct smbd_mr *smbd_register_mr(
2479 struct smbd_connection *info, struct page *pages[], int num_pages,
2480 int offset, int tailsz, bool writing, bool need_invalidate)
2482 struct smbd_mr *smbdirect_mr;
2483 int rc, i;
2484 enum dma_data_direction dir;
2485 struct ib_reg_wr *reg_wr;
2487 if (num_pages > info->max_frmr_depth) {
2488 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2489 num_pages, info->max_frmr_depth);
2490 return NULL;
2493 smbdirect_mr = get_mr(info);
2494 if (!smbdirect_mr) {
2495 log_rdma_mr(ERR, "get_mr returning NULL\n");
2496 return NULL;
2498 smbdirect_mr->need_invalidate = need_invalidate;
2499 smbdirect_mr->sgl_count = num_pages;
2500 sg_init_table(smbdirect_mr->sgl, num_pages);
2502 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2503 num_pages, offset, tailsz);
2505 if (num_pages == 1) {
2506 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2507 goto skip_multiple_pages;
2510 /* We have at least two pages to register */
2511 sg_set_page(
2512 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2513 i = 1;
2514 while (i < num_pages - 1) {
2515 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2516 i++;
2518 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2519 tailsz ? tailsz : PAGE_SIZE, 0);
2521 skip_multiple_pages:
2522 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2523 smbdirect_mr->dir = dir;
2524 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2525 if (!rc) {
2526 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2527 num_pages, dir, rc);
2528 goto dma_map_error;
2531 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2532 NULL, PAGE_SIZE);
2533 if (rc != num_pages) {
2534 log_rdma_mr(ERR,
2535 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2536 rc, num_pages);
2537 goto map_mr_error;
2540 ib_update_fast_reg_key(smbdirect_mr->mr,
2541 ib_inc_rkey(smbdirect_mr->mr->rkey));
2542 reg_wr = &smbdirect_mr->wr;
2543 reg_wr->wr.opcode = IB_WR_REG_MR;
2544 smbdirect_mr->cqe.done = register_mr_done;
2545 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2546 reg_wr->wr.num_sge = 0;
2547 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2548 reg_wr->mr = smbdirect_mr->mr;
2549 reg_wr->key = smbdirect_mr->mr->rkey;
2550 reg_wr->access = writing ?
2551 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2552 IB_ACCESS_REMOTE_READ;
2555 * There is no need for waiting for complemtion on ib_post_send
2556 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2557 * on the next ib_post_send when we actaully send I/O to remote peer
2559 rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2560 if (!rc)
2561 return smbdirect_mr;
2563 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2564 rc, reg_wr->key);
2566 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2567 map_mr_error:
2568 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2569 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2571 dma_map_error:
2572 smbdirect_mr->state = MR_ERROR;
2573 if (atomic_dec_and_test(&info->mr_used_count))
2574 wake_up(&info->wait_for_mr_cleanup);
2576 smbd_disconnect_rdma_connection(info);
2578 return NULL;
2581 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2583 struct smbd_mr *smbdirect_mr;
2584 struct ib_cqe *cqe;
2586 cqe = wc->wr_cqe;
2587 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2588 smbdirect_mr->state = MR_INVALIDATED;
2589 if (wc->status != IB_WC_SUCCESS) {
2590 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2591 smbdirect_mr->state = MR_ERROR;
2593 complete(&smbdirect_mr->invalidate_done);
2597 * Deregister a MR after I/O is done
2598 * This function may wait if remote invalidation is not used
2599 * and we have to locally invalidate the buffer to prevent data is being
2600 * modified by remote peer after upper layer consumes it
2602 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2604 struct ib_send_wr *wr;
2605 struct smbd_connection *info = smbdirect_mr->conn;
2606 int rc = 0;
2608 if (smbdirect_mr->need_invalidate) {
2609 /* Need to finish local invalidation before returning */
2610 wr = &smbdirect_mr->inv_wr;
2611 wr->opcode = IB_WR_LOCAL_INV;
2612 smbdirect_mr->cqe.done = local_inv_done;
2613 wr->wr_cqe = &smbdirect_mr->cqe;
2614 wr->num_sge = 0;
2615 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2616 wr->send_flags = IB_SEND_SIGNALED;
2618 init_completion(&smbdirect_mr->invalidate_done);
2619 rc = ib_post_send(info->id->qp, wr, NULL);
2620 if (rc) {
2621 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2622 smbd_disconnect_rdma_connection(info);
2623 goto done;
2625 wait_for_completion(&smbdirect_mr->invalidate_done);
2626 smbdirect_mr->need_invalidate = false;
2627 } else
2629 * For remote invalidation, just set it to MR_INVALIDATED
2630 * and defer to mr_recovery_work to recover the MR for next use
2632 smbdirect_mr->state = MR_INVALIDATED;
2635 * Schedule the work to do MR recovery for future I/Os
2636 * MR recovery is slow and we don't want it to block the current I/O
2638 queue_work(info->workqueue, &info->mr_recovery_work);
2640 done:
2641 if (atomic_dec_and_test(&info->mr_used_count))
2642 wake_up(&info->wait_for_mr_cleanup);
2644 return rc;