Linux 4.19.133
[linux/fpc-iii.git] / fs / crypto / crypto.c
blobc83ddff3ff4ac4a647fb1f4c29ee34dc8f5fb8c1
1 /*
2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
56 queue_work(fscrypt_read_workqueue, work);
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
60 /**
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
67 * If there's a bounce page in the context, this frees that.
69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
71 unsigned long flags;
73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 ctx->w.bounce_page = NULL;
77 ctx->w.control_page = NULL;
78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
86 EXPORT_SYMBOL(fscrypt_release_ctx);
88 /**
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
91 * @gfp_flags: The gfp flag for memory allocation
93 * Allocates and initializes an encryption context.
95 * Return: An allocated and initialized encryption context on success; error
96 * value or NULL otherwise.
98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
100 struct fscrypt_ctx *ctx = NULL;
101 struct fscrypt_info *ci = inode->i_crypt_info;
102 unsigned long flags;
104 if (ci == NULL)
105 return ERR_PTR(-ENOKEY);
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
117 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 struct fscrypt_ctx, free_list);
120 if (ctx)
121 list_del(&ctx->free_list);
122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 if (!ctx) {
124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 if (!ctx)
126 return ERR_PTR(-ENOMEM);
127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 } else {
129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 return ctx;
134 EXPORT_SYMBOL(fscrypt_get_ctx);
136 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
137 u64 lblk_num, struct page *src_page,
138 struct page *dest_page, unsigned int len,
139 unsigned int offs, gfp_t gfp_flags)
141 struct {
142 __le64 index;
143 u8 padding[FS_IV_SIZE - sizeof(__le64)];
144 } iv;
145 struct skcipher_request *req = NULL;
146 DECLARE_CRYPTO_WAIT(wait);
147 struct scatterlist dst, src;
148 struct fscrypt_info *ci = inode->i_crypt_info;
149 struct crypto_skcipher *tfm = ci->ci_ctfm;
150 int res = 0;
152 if (WARN_ON_ONCE(len <= 0))
153 return -EINVAL;
154 if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
155 return -EINVAL;
157 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
158 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
159 iv.index = cpu_to_le64(lblk_num);
160 memset(iv.padding, 0, sizeof(iv.padding));
162 if (ci->ci_essiv_tfm != NULL) {
163 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
164 (u8 *)&iv);
167 req = skcipher_request_alloc(tfm, gfp_flags);
168 if (!req)
169 return -ENOMEM;
171 skcipher_request_set_callback(
172 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173 crypto_req_done, &wait);
175 sg_init_table(&dst, 1);
176 sg_set_page(&dst, dest_page, len, offs);
177 sg_init_table(&src, 1);
178 sg_set_page(&src, src_page, len, offs);
179 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
180 if (rw == FS_DECRYPT)
181 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
182 else
183 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
184 skcipher_request_free(req);
185 if (res) {
186 fscrypt_err(inode->i_sb,
187 "%scryption failed for inode %lu, block %llu: %d",
188 (rw == FS_DECRYPT ? "de" : "en"),
189 inode->i_ino, lblk_num, res);
190 return res;
192 return 0;
195 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
196 gfp_t gfp_flags)
198 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
199 if (ctx->w.bounce_page == NULL)
200 return ERR_PTR(-ENOMEM);
201 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
202 return ctx->w.bounce_page;
206 * fscypt_encrypt_page() - Encrypts a page
207 * @inode: The inode for which the encryption should take place
208 * @page: The page to encrypt. Must be locked for bounce-page
209 * encryption.
210 * @len: Length of data to encrypt in @page and encrypted
211 * data in returned page.
212 * @offs: Offset of data within @page and returned
213 * page holding encrypted data.
214 * @lblk_num: Logical block number. This must be unique for multiple
215 * calls with same inode, except when overwriting
216 * previously written data.
217 * @gfp_flags: The gfp flag for memory allocation
219 * Encrypts @page using the ctx encryption context. Performs encryption
220 * either in-place or into a newly allocated bounce page.
221 * Called on the page write path.
223 * Bounce page allocation is the default.
224 * In this case, the contents of @page are encrypted and stored in an
225 * allocated bounce page. @page has to be locked and the caller must call
226 * fscrypt_restore_control_page() on the returned ciphertext page to
227 * release the bounce buffer and the encryption context.
229 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
230 * fscrypt_operations. Here, the input-page is returned with its content
231 * encrypted.
233 * Return: A page with the encrypted content on success. Else, an
234 * error value or NULL.
236 struct page *fscrypt_encrypt_page(const struct inode *inode,
237 struct page *page,
238 unsigned int len,
239 unsigned int offs,
240 u64 lblk_num, gfp_t gfp_flags)
243 struct fscrypt_ctx *ctx;
244 struct page *ciphertext_page = page;
245 int err;
247 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
248 /* with inplace-encryption we just encrypt the page */
249 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
250 ciphertext_page, len, offs,
251 gfp_flags);
252 if (err)
253 return ERR_PTR(err);
255 return ciphertext_page;
258 if (WARN_ON_ONCE(!PageLocked(page)))
259 return ERR_PTR(-EINVAL);
261 ctx = fscrypt_get_ctx(inode, gfp_flags);
262 if (IS_ERR(ctx))
263 return (struct page *)ctx;
265 /* The encryption operation will require a bounce page. */
266 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
267 if (IS_ERR(ciphertext_page))
268 goto errout;
270 ctx->w.control_page = page;
271 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
272 page, ciphertext_page, len, offs,
273 gfp_flags);
274 if (err) {
275 ciphertext_page = ERR_PTR(err);
276 goto errout;
278 SetPagePrivate(ciphertext_page);
279 set_page_private(ciphertext_page, (unsigned long)ctx);
280 lock_page(ciphertext_page);
281 return ciphertext_page;
283 errout:
284 fscrypt_release_ctx(ctx);
285 return ciphertext_page;
287 EXPORT_SYMBOL(fscrypt_encrypt_page);
290 * fscrypt_decrypt_page() - Decrypts a page in-place
291 * @inode: The corresponding inode for the page to decrypt.
292 * @page: The page to decrypt. Must be locked in case
293 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
294 * @len: Number of bytes in @page to be decrypted.
295 * @offs: Start of data in @page.
296 * @lblk_num: Logical block number.
298 * Decrypts page in-place using the ctx encryption context.
300 * Called from the read completion callback.
302 * Return: Zero on success, non-zero otherwise.
304 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
305 unsigned int len, unsigned int offs, u64 lblk_num)
307 if (WARN_ON_ONCE(!PageLocked(page) &&
308 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
309 return -EINVAL;
311 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
312 len, offs, GFP_NOFS);
314 EXPORT_SYMBOL(fscrypt_decrypt_page);
317 * Validate dentries for encrypted directories to make sure we aren't
318 * potentially caching stale data after a key has been added or
319 * removed.
321 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
323 struct dentry *dir;
324 int dir_has_key, cached_with_key;
326 if (flags & LOOKUP_RCU)
327 return -ECHILD;
329 dir = dget_parent(dentry);
330 if (!IS_ENCRYPTED(d_inode(dir))) {
331 dput(dir);
332 return 0;
335 spin_lock(&dentry->d_lock);
336 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
337 spin_unlock(&dentry->d_lock);
338 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
339 dput(dir);
342 * If the dentry was cached without the key, and it is a
343 * negative dentry, it might be a valid name. We can't check
344 * if the key has since been made available due to locking
345 * reasons, so we fail the validation so ext4_lookup() can do
346 * this check.
348 * We also fail the validation if the dentry was created with
349 * the key present, but we no longer have the key, or vice versa.
351 if ((!cached_with_key && d_is_negative(dentry)) ||
352 (!cached_with_key && dir_has_key) ||
353 (cached_with_key && !dir_has_key))
354 return 0;
355 return 1;
358 const struct dentry_operations fscrypt_d_ops = {
359 .d_revalidate = fscrypt_d_revalidate,
362 void fscrypt_restore_control_page(struct page *page)
364 struct fscrypt_ctx *ctx;
366 ctx = (struct fscrypt_ctx *)page_private(page);
367 set_page_private(page, (unsigned long)NULL);
368 ClearPagePrivate(page);
369 unlock_page(page);
370 fscrypt_release_ctx(ctx);
372 EXPORT_SYMBOL(fscrypt_restore_control_page);
374 static void fscrypt_destroy(void)
376 struct fscrypt_ctx *pos, *n;
378 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
379 kmem_cache_free(fscrypt_ctx_cachep, pos);
380 INIT_LIST_HEAD(&fscrypt_free_ctxs);
381 mempool_destroy(fscrypt_bounce_page_pool);
382 fscrypt_bounce_page_pool = NULL;
386 * fscrypt_initialize() - allocate major buffers for fs encryption.
387 * @cop_flags: fscrypt operations flags
389 * We only call this when we start accessing encrypted files, since it
390 * results in memory getting allocated that wouldn't otherwise be used.
392 * Return: Zero on success, non-zero otherwise.
394 int fscrypt_initialize(unsigned int cop_flags)
396 int i, res = -ENOMEM;
398 /* No need to allocate a bounce page pool if this FS won't use it. */
399 if (cop_flags & FS_CFLG_OWN_PAGES)
400 return 0;
402 mutex_lock(&fscrypt_init_mutex);
403 if (fscrypt_bounce_page_pool)
404 goto already_initialized;
406 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
407 struct fscrypt_ctx *ctx;
409 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
410 if (!ctx)
411 goto fail;
412 list_add(&ctx->free_list, &fscrypt_free_ctxs);
415 fscrypt_bounce_page_pool =
416 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
417 if (!fscrypt_bounce_page_pool)
418 goto fail;
420 already_initialized:
421 mutex_unlock(&fscrypt_init_mutex);
422 return 0;
423 fail:
424 fscrypt_destroy();
425 mutex_unlock(&fscrypt_init_mutex);
426 return res;
429 void fscrypt_msg(struct super_block *sb, const char *level,
430 const char *fmt, ...)
432 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
433 DEFAULT_RATELIMIT_BURST);
434 struct va_format vaf;
435 va_list args;
437 if (!__ratelimit(&rs))
438 return;
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 if (sb)
444 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
445 else
446 printk("%sfscrypt: %pV\n", level, &vaf);
447 va_end(args);
451 * fscrypt_init() - Set up for fs encryption.
453 static int __init fscrypt_init(void)
456 * Use an unbound workqueue to allow bios to be decrypted in parallel
457 * even when they happen to complete on the same CPU. This sacrifices
458 * locality, but it's worthwhile since decryption is CPU-intensive.
460 * Also use a high-priority workqueue to prioritize decryption work,
461 * which blocks reads from completing, over regular application tasks.
463 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
464 WQ_UNBOUND | WQ_HIGHPRI,
465 num_online_cpus());
466 if (!fscrypt_read_workqueue)
467 goto fail;
469 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
470 if (!fscrypt_ctx_cachep)
471 goto fail_free_queue;
473 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
474 if (!fscrypt_info_cachep)
475 goto fail_free_ctx;
477 return 0;
479 fail_free_ctx:
480 kmem_cache_destroy(fscrypt_ctx_cachep);
481 fail_free_queue:
482 destroy_workqueue(fscrypt_read_workqueue);
483 fail:
484 return -ENOMEM;
486 module_init(fscrypt_init)
489 * fscrypt_exit() - Shutdown the fs encryption system
491 static void __exit fscrypt_exit(void)
493 fscrypt_destroy();
495 if (fscrypt_read_workqueue)
496 destroy_workqueue(fscrypt_read_workqueue);
497 kmem_cache_destroy(fscrypt_ctx_cachep);
498 kmem_cache_destroy(fscrypt_info_cachep);
500 fscrypt_essiv_cleanup();
502 module_exit(fscrypt_exit);
504 MODULE_LICENSE("GPL");