Linux 4.19.133
[linux/fpc-iii.git] / fs / ext4 / ialloc.c
blob8876eaad10f6850bca4aef99a2725d4ad0f35288
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
57 int i;
59 if (start_bit >= end_bit)
60 return;
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
75 unlock_buffer(bh);
76 put_bh(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
87 if (buffer_verified(bh))
88 return 0;
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 return -EFSCORRUPTED;
92 ext4_lock_group(sb, block_group);
93 if (buffer_verified(bh))
94 goto verified;
95 blk = ext4_inode_bitmap(sb, desc);
96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 EXT4_INODES_PER_GROUP(sb) / 8)) {
98 ext4_unlock_group(sb, block_group);
99 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
100 "inode_bitmap = %llu", block_group, blk);
101 ext4_mark_group_bitmap_corrupted(sb, block_group,
102 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
103 return -EFSBADCRC;
105 set_buffer_verified(bh);
106 verified:
107 ext4_unlock_group(sb, block_group);
108 return 0;
112 * Read the inode allocation bitmap for a given block_group, reading
113 * into the specified slot in the superblock's bitmap cache.
115 * Return buffer_head of bitmap on success or NULL.
117 static struct buffer_head *
118 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120 struct ext4_group_desc *desc;
121 struct ext4_sb_info *sbi = EXT4_SB(sb);
122 struct buffer_head *bh = NULL;
123 ext4_fsblk_t bitmap_blk;
124 int err;
126 desc = ext4_get_group_desc(sb, block_group, NULL);
127 if (!desc)
128 return ERR_PTR(-EFSCORRUPTED);
130 bitmap_blk = ext4_inode_bitmap(sb, desc);
131 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
132 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
133 ext4_error(sb, "Invalid inode bitmap blk %llu in "
134 "block_group %u", bitmap_blk, block_group);
135 ext4_mark_group_bitmap_corrupted(sb, block_group,
136 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
137 return ERR_PTR(-EFSCORRUPTED);
139 bh = sb_getblk(sb, bitmap_blk);
140 if (unlikely(!bh)) {
141 ext4_warning(sb, "Cannot read inode bitmap - "
142 "block_group = %u, inode_bitmap = %llu",
143 block_group, bitmap_blk);
144 return ERR_PTR(-ENOMEM);
146 if (bitmap_uptodate(bh))
147 goto verify;
149 lock_buffer(bh);
150 if (bitmap_uptodate(bh)) {
151 unlock_buffer(bh);
152 goto verify;
155 ext4_lock_group(sb, block_group);
156 if (ext4_has_group_desc_csum(sb) &&
157 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
158 if (block_group == 0) {
159 ext4_unlock_group(sb, block_group);
160 unlock_buffer(bh);
161 ext4_error(sb, "Inode bitmap for bg 0 marked "
162 "uninitialized");
163 err = -EFSCORRUPTED;
164 goto out;
166 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
167 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
168 sb->s_blocksize * 8, bh->b_data);
169 set_bitmap_uptodate(bh);
170 set_buffer_uptodate(bh);
171 set_buffer_verified(bh);
172 ext4_unlock_group(sb, block_group);
173 unlock_buffer(bh);
174 return bh;
176 ext4_unlock_group(sb, block_group);
178 if (buffer_uptodate(bh)) {
180 * if not uninit if bh is uptodate,
181 * bitmap is also uptodate
183 set_bitmap_uptodate(bh);
184 unlock_buffer(bh);
185 goto verify;
188 * submit the buffer_head for reading
190 trace_ext4_load_inode_bitmap(sb, block_group);
191 bh->b_end_io = ext4_end_bitmap_read;
192 get_bh(bh);
193 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
194 wait_on_buffer(bh);
195 if (!buffer_uptodate(bh)) {
196 put_bh(bh);
197 ext4_error(sb, "Cannot read inode bitmap - "
198 "block_group = %u, inode_bitmap = %llu",
199 block_group, bitmap_blk);
200 ext4_mark_group_bitmap_corrupted(sb, block_group,
201 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
202 return ERR_PTR(-EIO);
205 verify:
206 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
207 if (err)
208 goto out;
209 return bh;
210 out:
211 put_bh(bh);
212 return ERR_PTR(err);
216 * NOTE! When we get the inode, we're the only people
217 * that have access to it, and as such there are no
218 * race conditions we have to worry about. The inode
219 * is not on the hash-lists, and it cannot be reached
220 * through the filesystem because the directory entry
221 * has been deleted earlier.
223 * HOWEVER: we must make sure that we get no aliases,
224 * which means that we have to call "clear_inode()"
225 * _before_ we mark the inode not in use in the inode
226 * bitmaps. Otherwise a newly created file might use
227 * the same inode number (not actually the same pointer
228 * though), and then we'd have two inodes sharing the
229 * same inode number and space on the harddisk.
231 void ext4_free_inode(handle_t *handle, struct inode *inode)
233 struct super_block *sb = inode->i_sb;
234 int is_directory;
235 unsigned long ino;
236 struct buffer_head *bitmap_bh = NULL;
237 struct buffer_head *bh2;
238 ext4_group_t block_group;
239 unsigned long bit;
240 struct ext4_group_desc *gdp;
241 struct ext4_super_block *es;
242 struct ext4_sb_info *sbi;
243 int fatal = 0, err, count, cleared;
244 struct ext4_group_info *grp;
246 if (!sb) {
247 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
248 "nonexistent device\n", __func__, __LINE__);
249 return;
251 if (atomic_read(&inode->i_count) > 1) {
252 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
253 __func__, __LINE__, inode->i_ino,
254 atomic_read(&inode->i_count));
255 return;
257 if (inode->i_nlink) {
258 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
259 __func__, __LINE__, inode->i_ino, inode->i_nlink);
260 return;
262 sbi = EXT4_SB(sb);
264 ino = inode->i_ino;
265 ext4_debug("freeing inode %lu\n", ino);
266 trace_ext4_free_inode(inode);
269 * Note: we must free any quota before locking the superblock,
270 * as writing the quota to disk may need the lock as well.
272 dquot_initialize(inode);
273 dquot_free_inode(inode);
274 dquot_drop(inode);
276 is_directory = S_ISDIR(inode->i_mode);
278 /* Do this BEFORE marking the inode not in use or returning an error */
279 ext4_clear_inode(inode);
281 es = sbi->s_es;
282 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
283 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
284 goto error_return;
286 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
287 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
288 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
289 /* Don't bother if the inode bitmap is corrupt. */
290 grp = ext4_get_group_info(sb, block_group);
291 if (IS_ERR(bitmap_bh)) {
292 fatal = PTR_ERR(bitmap_bh);
293 bitmap_bh = NULL;
294 goto error_return;
296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
297 fatal = -EFSCORRUPTED;
298 goto error_return;
301 BUFFER_TRACE(bitmap_bh, "get_write_access");
302 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
303 if (fatal)
304 goto error_return;
306 fatal = -ESRCH;
307 gdp = ext4_get_group_desc(sb, block_group, &bh2);
308 if (gdp) {
309 BUFFER_TRACE(bh2, "get_write_access");
310 fatal = ext4_journal_get_write_access(handle, bh2);
312 ext4_lock_group(sb, block_group);
313 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
314 if (fatal || !cleared) {
315 ext4_unlock_group(sb, block_group);
316 goto out;
319 count = ext4_free_inodes_count(sb, gdp) + 1;
320 ext4_free_inodes_set(sb, gdp, count);
321 if (is_directory) {
322 count = ext4_used_dirs_count(sb, gdp) - 1;
323 ext4_used_dirs_set(sb, gdp, count);
324 percpu_counter_dec(&sbi->s_dirs_counter);
326 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
327 EXT4_INODES_PER_GROUP(sb) / 8);
328 ext4_group_desc_csum_set(sb, block_group, gdp);
329 ext4_unlock_group(sb, block_group);
331 percpu_counter_inc(&sbi->s_freeinodes_counter);
332 if (sbi->s_log_groups_per_flex) {
333 struct flex_groups *fg;
335 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
336 ext4_flex_group(sbi, block_group));
337 atomic_inc(&fg->free_inodes);
338 if (is_directory)
339 atomic_dec(&fg->used_dirs);
341 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
342 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
343 out:
344 if (cleared) {
345 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
346 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
347 if (!fatal)
348 fatal = err;
349 } else {
350 ext4_error(sb, "bit already cleared for inode %lu", ino);
351 ext4_mark_group_bitmap_corrupted(sb, block_group,
352 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
355 error_return:
356 brelse(bitmap_bh);
357 ext4_std_error(sb, fatal);
360 struct orlov_stats {
361 __u64 free_clusters;
362 __u32 free_inodes;
363 __u32 used_dirs;
367 * Helper function for Orlov's allocator; returns critical information
368 * for a particular block group or flex_bg. If flex_size is 1, then g
369 * is a block group number; otherwise it is flex_bg number.
371 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
372 int flex_size, struct orlov_stats *stats)
374 struct ext4_group_desc *desc;
376 if (flex_size > 1) {
377 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
378 s_flex_groups, g);
379 stats->free_inodes = atomic_read(&fg->free_inodes);
380 stats->free_clusters = atomic64_read(&fg->free_clusters);
381 stats->used_dirs = atomic_read(&fg->used_dirs);
382 return;
385 desc = ext4_get_group_desc(sb, g, NULL);
386 if (desc) {
387 stats->free_inodes = ext4_free_inodes_count(sb, desc);
388 stats->free_clusters = ext4_free_group_clusters(sb, desc);
389 stats->used_dirs = ext4_used_dirs_count(sb, desc);
390 } else {
391 stats->free_inodes = 0;
392 stats->free_clusters = 0;
393 stats->used_dirs = 0;
398 * Orlov's allocator for directories.
400 * We always try to spread first-level directories.
402 * If there are blockgroups with both free inodes and free blocks counts
403 * not worse than average we return one with smallest directory count.
404 * Otherwise we simply return a random group.
406 * For the rest rules look so:
408 * It's OK to put directory into a group unless
409 * it has too many directories already (max_dirs) or
410 * it has too few free inodes left (min_inodes) or
411 * it has too few free blocks left (min_blocks) or
412 * Parent's group is preferred, if it doesn't satisfy these
413 * conditions we search cyclically through the rest. If none
414 * of the groups look good we just look for a group with more
415 * free inodes than average (starting at parent's group).
418 static int find_group_orlov(struct super_block *sb, struct inode *parent,
419 ext4_group_t *group, umode_t mode,
420 const struct qstr *qstr)
422 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
423 struct ext4_sb_info *sbi = EXT4_SB(sb);
424 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
425 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
426 unsigned int freei, avefreei, grp_free;
427 ext4_fsblk_t freeb, avefreec;
428 unsigned int ndirs;
429 int max_dirs, min_inodes;
430 ext4_grpblk_t min_clusters;
431 ext4_group_t i, grp, g, ngroups;
432 struct ext4_group_desc *desc;
433 struct orlov_stats stats;
434 int flex_size = ext4_flex_bg_size(sbi);
435 struct dx_hash_info hinfo;
437 ngroups = real_ngroups;
438 if (flex_size > 1) {
439 ngroups = (real_ngroups + flex_size - 1) >>
440 sbi->s_log_groups_per_flex;
441 parent_group >>= sbi->s_log_groups_per_flex;
444 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
445 avefreei = freei / ngroups;
446 freeb = EXT4_C2B(sbi,
447 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
448 avefreec = freeb;
449 do_div(avefreec, ngroups);
450 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
452 if (S_ISDIR(mode) &&
453 ((parent == d_inode(sb->s_root)) ||
454 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
455 int best_ndir = inodes_per_group;
456 int ret = -1;
458 if (qstr) {
459 hinfo.hash_version = DX_HASH_HALF_MD4;
460 hinfo.seed = sbi->s_hash_seed;
461 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
462 grp = hinfo.hash;
463 } else
464 grp = prandom_u32();
465 parent_group = (unsigned)grp % ngroups;
466 for (i = 0; i < ngroups; i++) {
467 g = (parent_group + i) % ngroups;
468 get_orlov_stats(sb, g, flex_size, &stats);
469 if (!stats.free_inodes)
470 continue;
471 if (stats.used_dirs >= best_ndir)
472 continue;
473 if (stats.free_inodes < avefreei)
474 continue;
475 if (stats.free_clusters < avefreec)
476 continue;
477 grp = g;
478 ret = 0;
479 best_ndir = stats.used_dirs;
481 if (ret)
482 goto fallback;
483 found_flex_bg:
484 if (flex_size == 1) {
485 *group = grp;
486 return 0;
490 * We pack inodes at the beginning of the flexgroup's
491 * inode tables. Block allocation decisions will do
492 * something similar, although regular files will
493 * start at 2nd block group of the flexgroup. See
494 * ext4_ext_find_goal() and ext4_find_near().
496 grp *= flex_size;
497 for (i = 0; i < flex_size; i++) {
498 if (grp+i >= real_ngroups)
499 break;
500 desc = ext4_get_group_desc(sb, grp+i, NULL);
501 if (desc && ext4_free_inodes_count(sb, desc)) {
502 *group = grp+i;
503 return 0;
506 goto fallback;
509 max_dirs = ndirs / ngroups + inodes_per_group / 16;
510 min_inodes = avefreei - inodes_per_group*flex_size / 4;
511 if (min_inodes < 1)
512 min_inodes = 1;
513 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
516 * Start looking in the flex group where we last allocated an
517 * inode for this parent directory
519 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
520 parent_group = EXT4_I(parent)->i_last_alloc_group;
521 if (flex_size > 1)
522 parent_group >>= sbi->s_log_groups_per_flex;
525 for (i = 0; i < ngroups; i++) {
526 grp = (parent_group + i) % ngroups;
527 get_orlov_stats(sb, grp, flex_size, &stats);
528 if (stats.used_dirs >= max_dirs)
529 continue;
530 if (stats.free_inodes < min_inodes)
531 continue;
532 if (stats.free_clusters < min_clusters)
533 continue;
534 goto found_flex_bg;
537 fallback:
538 ngroups = real_ngroups;
539 avefreei = freei / ngroups;
540 fallback_retry:
541 parent_group = EXT4_I(parent)->i_block_group;
542 for (i = 0; i < ngroups; i++) {
543 grp = (parent_group + i) % ngroups;
544 desc = ext4_get_group_desc(sb, grp, NULL);
545 if (desc) {
546 grp_free = ext4_free_inodes_count(sb, desc);
547 if (grp_free && grp_free >= avefreei) {
548 *group = grp;
549 return 0;
554 if (avefreei) {
556 * The free-inodes counter is approximate, and for really small
557 * filesystems the above test can fail to find any blockgroups
559 avefreei = 0;
560 goto fallback_retry;
563 return -1;
566 static int find_group_other(struct super_block *sb, struct inode *parent,
567 ext4_group_t *group, umode_t mode)
569 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
570 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
571 struct ext4_group_desc *desc;
572 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
575 * Try to place the inode is the same flex group as its
576 * parent. If we can't find space, use the Orlov algorithm to
577 * find another flex group, and store that information in the
578 * parent directory's inode information so that use that flex
579 * group for future allocations.
581 if (flex_size > 1) {
582 int retry = 0;
584 try_again:
585 parent_group &= ~(flex_size-1);
586 last = parent_group + flex_size;
587 if (last > ngroups)
588 last = ngroups;
589 for (i = parent_group; i < last; i++) {
590 desc = ext4_get_group_desc(sb, i, NULL);
591 if (desc && ext4_free_inodes_count(sb, desc)) {
592 *group = i;
593 return 0;
596 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
597 retry = 1;
598 parent_group = EXT4_I(parent)->i_last_alloc_group;
599 goto try_again;
602 * If this didn't work, use the Orlov search algorithm
603 * to find a new flex group; we pass in the mode to
604 * avoid the topdir algorithms.
606 *group = parent_group + flex_size;
607 if (*group > ngroups)
608 *group = 0;
609 return find_group_orlov(sb, parent, group, mode, NULL);
613 * Try to place the inode in its parent directory
615 *group = parent_group;
616 desc = ext4_get_group_desc(sb, *group, NULL);
617 if (desc && ext4_free_inodes_count(sb, desc) &&
618 ext4_free_group_clusters(sb, desc))
619 return 0;
622 * We're going to place this inode in a different blockgroup from its
623 * parent. We want to cause files in a common directory to all land in
624 * the same blockgroup. But we want files which are in a different
625 * directory which shares a blockgroup with our parent to land in a
626 * different blockgroup.
628 * So add our directory's i_ino into the starting point for the hash.
630 *group = (*group + parent->i_ino) % ngroups;
633 * Use a quadratic hash to find a group with a free inode and some free
634 * blocks.
636 for (i = 1; i < ngroups; i <<= 1) {
637 *group += i;
638 if (*group >= ngroups)
639 *group -= ngroups;
640 desc = ext4_get_group_desc(sb, *group, NULL);
641 if (desc && ext4_free_inodes_count(sb, desc) &&
642 ext4_free_group_clusters(sb, desc))
643 return 0;
647 * That failed: try linear search for a free inode, even if that group
648 * has no free blocks.
650 *group = parent_group;
651 for (i = 0; i < ngroups; i++) {
652 if (++*group >= ngroups)
653 *group = 0;
654 desc = ext4_get_group_desc(sb, *group, NULL);
655 if (desc && ext4_free_inodes_count(sb, desc))
656 return 0;
659 return -1;
663 * In no journal mode, if an inode has recently been deleted, we want
664 * to avoid reusing it until we're reasonably sure the inode table
665 * block has been written back to disk. (Yes, these values are
666 * somewhat arbitrary...)
668 #define RECENTCY_MIN 60
669 #define RECENTCY_DIRTY 300
671 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
673 struct ext4_group_desc *gdp;
674 struct ext4_inode *raw_inode;
675 struct buffer_head *bh;
676 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
677 int offset, ret = 0;
678 int recentcy = RECENTCY_MIN;
679 u32 dtime, now;
681 gdp = ext4_get_group_desc(sb, group, NULL);
682 if (unlikely(!gdp))
683 return 0;
685 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
686 (ino / inodes_per_block));
687 if (!bh || !buffer_uptodate(bh))
689 * If the block is not in the buffer cache, then it
690 * must have been written out.
692 goto out;
694 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
695 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
697 /* i_dtime is only 32 bits on disk, but we only care about relative
698 * times in the range of a few minutes (i.e. long enough to sync a
699 * recently-deleted inode to disk), so using the low 32 bits of the
700 * clock (a 68 year range) is enough, see time_before32() */
701 dtime = le32_to_cpu(raw_inode->i_dtime);
702 now = ktime_get_real_seconds();
703 if (buffer_dirty(bh))
704 recentcy += RECENTCY_DIRTY;
706 if (dtime && time_before32(dtime, now) &&
707 time_before32(now, dtime + recentcy))
708 ret = 1;
709 out:
710 brelse(bh);
711 return ret;
714 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
715 struct buffer_head *bitmap, unsigned long *ino)
717 next:
718 *ino = ext4_find_next_zero_bit((unsigned long *)
719 bitmap->b_data,
720 EXT4_INODES_PER_GROUP(sb), *ino);
721 if (*ino >= EXT4_INODES_PER_GROUP(sb))
722 return 0;
724 if ((EXT4_SB(sb)->s_journal == NULL) &&
725 recently_deleted(sb, group, *ino)) {
726 *ino = *ino + 1;
727 if (*ino < EXT4_INODES_PER_GROUP(sb))
728 goto next;
729 return 0;
732 return 1;
736 * There are two policies for allocating an inode. If the new inode is
737 * a directory, then a forward search is made for a block group with both
738 * free space and a low directory-to-inode ratio; if that fails, then of
739 * the groups with above-average free space, that group with the fewest
740 * directories already is chosen.
742 * For other inodes, search forward from the parent directory's block
743 * group to find a free inode.
745 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
746 umode_t mode, const struct qstr *qstr,
747 __u32 goal, uid_t *owner, __u32 i_flags,
748 int handle_type, unsigned int line_no,
749 int nblocks)
751 struct super_block *sb;
752 struct buffer_head *inode_bitmap_bh = NULL;
753 struct buffer_head *group_desc_bh;
754 ext4_group_t ngroups, group = 0;
755 unsigned long ino = 0;
756 struct inode *inode;
757 struct ext4_group_desc *gdp = NULL;
758 struct ext4_inode_info *ei;
759 struct ext4_sb_info *sbi;
760 int ret2, err;
761 struct inode *ret;
762 ext4_group_t i;
763 ext4_group_t flex_group;
764 struct ext4_group_info *grp;
765 int encrypt = 0;
767 /* Cannot create files in a deleted directory */
768 if (!dir || !dir->i_nlink)
769 return ERR_PTR(-EPERM);
771 sb = dir->i_sb;
772 sbi = EXT4_SB(sb);
774 if (unlikely(ext4_forced_shutdown(sbi)))
775 return ERR_PTR(-EIO);
777 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
778 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
779 !(i_flags & EXT4_EA_INODE_FL)) {
780 err = fscrypt_get_encryption_info(dir);
781 if (err)
782 return ERR_PTR(err);
783 if (!fscrypt_has_encryption_key(dir))
784 return ERR_PTR(-ENOKEY);
785 encrypt = 1;
788 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
789 #ifdef CONFIG_EXT4_FS_POSIX_ACL
790 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
792 if (IS_ERR(p))
793 return ERR_CAST(p);
794 if (p) {
795 int acl_size = p->a_count * sizeof(ext4_acl_entry);
797 nblocks += (S_ISDIR(mode) ? 2 : 1) *
798 __ext4_xattr_set_credits(sb, NULL /* inode */,
799 NULL /* block_bh */, acl_size,
800 true /* is_create */);
801 posix_acl_release(p);
803 #endif
805 #ifdef CONFIG_SECURITY
807 int num_security_xattrs = 1;
809 #ifdef CONFIG_INTEGRITY
810 num_security_xattrs++;
811 #endif
813 * We assume that security xattrs are never
814 * more than 1k. In practice they are under
815 * 128 bytes.
817 nblocks += num_security_xattrs *
818 __ext4_xattr_set_credits(sb, NULL /* inode */,
819 NULL /* block_bh */, 1024,
820 true /* is_create */);
822 #endif
823 if (encrypt)
824 nblocks += __ext4_xattr_set_credits(sb,
825 NULL /* inode */, NULL /* block_bh */,
826 FSCRYPT_SET_CONTEXT_MAX_SIZE,
827 true /* is_create */);
830 ngroups = ext4_get_groups_count(sb);
831 trace_ext4_request_inode(dir, mode);
832 inode = new_inode(sb);
833 if (!inode)
834 return ERR_PTR(-ENOMEM);
835 ei = EXT4_I(inode);
838 * Initialize owners and quota early so that we don't have to account
839 * for quota initialization worst case in standard inode creating
840 * transaction
842 if (owner) {
843 inode->i_mode = mode;
844 i_uid_write(inode, owner[0]);
845 i_gid_write(inode, owner[1]);
846 } else if (test_opt(sb, GRPID)) {
847 inode->i_mode = mode;
848 inode->i_uid = current_fsuid();
849 inode->i_gid = dir->i_gid;
850 } else
851 inode_init_owner(inode, dir, mode);
853 if (ext4_has_feature_project(sb) &&
854 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
855 ei->i_projid = EXT4_I(dir)->i_projid;
856 else
857 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
859 err = dquot_initialize(inode);
860 if (err)
861 goto out;
863 if (!goal)
864 goal = sbi->s_inode_goal;
866 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
867 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
868 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
869 ret2 = 0;
870 goto got_group;
873 if (S_ISDIR(mode))
874 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
875 else
876 ret2 = find_group_other(sb, dir, &group, mode);
878 got_group:
879 EXT4_I(dir)->i_last_alloc_group = group;
880 err = -ENOSPC;
881 if (ret2 == -1)
882 goto out;
885 * Normally we will only go through one pass of this loop,
886 * unless we get unlucky and it turns out the group we selected
887 * had its last inode grabbed by someone else.
889 for (i = 0; i < ngroups; i++, ino = 0) {
890 err = -EIO;
892 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
893 if (!gdp)
894 goto out;
897 * Check free inodes count before loading bitmap.
899 if (ext4_free_inodes_count(sb, gdp) == 0)
900 goto next_group;
902 grp = ext4_get_group_info(sb, group);
903 /* Skip groups with already-known suspicious inode tables */
904 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
905 goto next_group;
907 brelse(inode_bitmap_bh);
908 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
909 /* Skip groups with suspicious inode tables */
910 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
911 IS_ERR(inode_bitmap_bh)) {
912 inode_bitmap_bh = NULL;
913 goto next_group;
916 repeat_in_this_group:
917 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
918 if (!ret2)
919 goto next_group;
921 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
922 ext4_error(sb, "reserved inode found cleared - "
923 "inode=%lu", ino + 1);
924 ext4_mark_group_bitmap_corrupted(sb, group,
925 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
926 goto next_group;
929 if (!handle) {
930 BUG_ON(nblocks <= 0);
931 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
932 handle_type, nblocks,
934 if (IS_ERR(handle)) {
935 err = PTR_ERR(handle);
936 ext4_std_error(sb, err);
937 goto out;
940 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
941 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
942 if (err) {
943 ext4_std_error(sb, err);
944 goto out;
946 ext4_lock_group(sb, group);
947 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
948 if (ret2) {
949 /* Someone already took the bit. Repeat the search
950 * with lock held.
952 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
953 if (ret2) {
954 ext4_set_bit(ino, inode_bitmap_bh->b_data);
955 ret2 = 0;
956 } else {
957 ret2 = 1; /* we didn't grab the inode */
960 ext4_unlock_group(sb, group);
961 ino++; /* the inode bitmap is zero-based */
962 if (!ret2)
963 goto got; /* we grabbed the inode! */
965 if (ino < EXT4_INODES_PER_GROUP(sb))
966 goto repeat_in_this_group;
967 next_group:
968 if (++group == ngroups)
969 group = 0;
971 err = -ENOSPC;
972 goto out;
974 got:
975 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
976 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
977 if (err) {
978 ext4_std_error(sb, err);
979 goto out;
982 BUFFER_TRACE(group_desc_bh, "get_write_access");
983 err = ext4_journal_get_write_access(handle, group_desc_bh);
984 if (err) {
985 ext4_std_error(sb, err);
986 goto out;
989 /* We may have to initialize the block bitmap if it isn't already */
990 if (ext4_has_group_desc_csum(sb) &&
991 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
992 struct buffer_head *block_bitmap_bh;
994 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
995 if (IS_ERR(block_bitmap_bh)) {
996 err = PTR_ERR(block_bitmap_bh);
997 goto out;
999 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1000 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1001 if (err) {
1002 brelse(block_bitmap_bh);
1003 ext4_std_error(sb, err);
1004 goto out;
1007 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1008 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1010 /* recheck and clear flag under lock if we still need to */
1011 ext4_lock_group(sb, group);
1012 if (ext4_has_group_desc_csum(sb) &&
1013 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1014 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1015 ext4_free_group_clusters_set(sb, gdp,
1016 ext4_free_clusters_after_init(sb, group, gdp));
1017 ext4_block_bitmap_csum_set(sb, group, gdp,
1018 block_bitmap_bh);
1019 ext4_group_desc_csum_set(sb, group, gdp);
1021 ext4_unlock_group(sb, group);
1022 brelse(block_bitmap_bh);
1024 if (err) {
1025 ext4_std_error(sb, err);
1026 goto out;
1030 /* Update the relevant bg descriptor fields */
1031 if (ext4_has_group_desc_csum(sb)) {
1032 int free;
1033 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1035 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1036 ext4_lock_group(sb, group); /* while we modify the bg desc */
1037 free = EXT4_INODES_PER_GROUP(sb) -
1038 ext4_itable_unused_count(sb, gdp);
1039 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1040 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1041 free = 0;
1044 * Check the relative inode number against the last used
1045 * relative inode number in this group. if it is greater
1046 * we need to update the bg_itable_unused count
1048 if (ino > free)
1049 ext4_itable_unused_set(sb, gdp,
1050 (EXT4_INODES_PER_GROUP(sb) - ino));
1051 up_read(&grp->alloc_sem);
1052 } else {
1053 ext4_lock_group(sb, group);
1056 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1057 if (S_ISDIR(mode)) {
1058 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1059 if (sbi->s_log_groups_per_flex) {
1060 ext4_group_t f = ext4_flex_group(sbi, group);
1062 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1063 f)->used_dirs);
1066 if (ext4_has_group_desc_csum(sb)) {
1067 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1068 EXT4_INODES_PER_GROUP(sb) / 8);
1069 ext4_group_desc_csum_set(sb, group, gdp);
1071 ext4_unlock_group(sb, group);
1073 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1074 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1075 if (err) {
1076 ext4_std_error(sb, err);
1077 goto out;
1080 percpu_counter_dec(&sbi->s_freeinodes_counter);
1081 if (S_ISDIR(mode))
1082 percpu_counter_inc(&sbi->s_dirs_counter);
1084 if (sbi->s_log_groups_per_flex) {
1085 flex_group = ext4_flex_group(sbi, group);
1086 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1087 flex_group)->free_inodes);
1090 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1091 /* This is the optimal IO size (for stat), not the fs block size */
1092 inode->i_blocks = 0;
1093 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1094 ei->i_crtime = inode->i_mtime;
1096 memset(ei->i_data, 0, sizeof(ei->i_data));
1097 ei->i_dir_start_lookup = 0;
1098 ei->i_disksize = 0;
1100 /* Don't inherit extent flag from directory, amongst others. */
1101 ei->i_flags =
1102 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1103 ei->i_flags |= i_flags;
1104 ei->i_file_acl = 0;
1105 ei->i_dtime = 0;
1106 ei->i_block_group = group;
1107 ei->i_last_alloc_group = ~0;
1109 ext4_set_inode_flags(inode);
1110 if (IS_DIRSYNC(inode))
1111 ext4_handle_sync(handle);
1112 if (insert_inode_locked(inode) < 0) {
1114 * Likely a bitmap corruption causing inode to be allocated
1115 * twice.
1117 err = -EIO;
1118 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1119 inode->i_ino);
1120 ext4_mark_group_bitmap_corrupted(sb, group,
1121 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1122 goto out;
1124 inode->i_generation = prandom_u32();
1126 /* Precompute checksum seed for inode metadata */
1127 if (ext4_has_metadata_csum(sb)) {
1128 __u32 csum;
1129 __le32 inum = cpu_to_le32(inode->i_ino);
1130 __le32 gen = cpu_to_le32(inode->i_generation);
1131 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1132 sizeof(inum));
1133 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1134 sizeof(gen));
1137 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1138 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1140 ei->i_extra_isize = sbi->s_want_extra_isize;
1141 ei->i_inline_off = 0;
1142 if (ext4_has_feature_inline_data(sb))
1143 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1144 ret = inode;
1145 err = dquot_alloc_inode(inode);
1146 if (err)
1147 goto fail_drop;
1150 * Since the encryption xattr will always be unique, create it first so
1151 * that it's less likely to end up in an external xattr block and
1152 * prevent its deduplication.
1154 if (encrypt) {
1155 err = fscrypt_inherit_context(dir, inode, handle, true);
1156 if (err)
1157 goto fail_free_drop;
1160 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1161 err = ext4_init_acl(handle, inode, dir);
1162 if (err)
1163 goto fail_free_drop;
1165 err = ext4_init_security(handle, inode, dir, qstr);
1166 if (err)
1167 goto fail_free_drop;
1170 if (ext4_has_feature_extents(sb)) {
1171 /* set extent flag only for directory, file and normal symlink*/
1172 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1173 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1174 ext4_ext_tree_init(handle, inode);
1178 if (ext4_handle_valid(handle)) {
1179 ei->i_sync_tid = handle->h_transaction->t_tid;
1180 ei->i_datasync_tid = handle->h_transaction->t_tid;
1183 err = ext4_mark_inode_dirty(handle, inode);
1184 if (err) {
1185 ext4_std_error(sb, err);
1186 goto fail_free_drop;
1189 ext4_debug("allocating inode %lu\n", inode->i_ino);
1190 trace_ext4_allocate_inode(inode, dir, mode);
1191 brelse(inode_bitmap_bh);
1192 return ret;
1194 fail_free_drop:
1195 dquot_free_inode(inode);
1196 fail_drop:
1197 clear_nlink(inode);
1198 unlock_new_inode(inode);
1199 out:
1200 dquot_drop(inode);
1201 inode->i_flags |= S_NOQUOTA;
1202 iput(inode);
1203 brelse(inode_bitmap_bh);
1204 return ERR_PTR(err);
1207 /* Verify that we are loading a valid orphan from disk */
1208 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1210 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1211 ext4_group_t block_group;
1212 int bit;
1213 struct buffer_head *bitmap_bh = NULL;
1214 struct inode *inode = NULL;
1215 int err = -EFSCORRUPTED;
1217 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1218 goto bad_orphan;
1220 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1221 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1222 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1223 if (IS_ERR(bitmap_bh))
1224 return (struct inode *) bitmap_bh;
1226 /* Having the inode bit set should be a 100% indicator that this
1227 * is a valid orphan (no e2fsck run on fs). Orphans also include
1228 * inodes that were being truncated, so we can't check i_nlink==0.
1230 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1231 goto bad_orphan;
1233 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1234 if (IS_ERR(inode)) {
1235 err = PTR_ERR(inode);
1236 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1237 ino, err);
1238 return inode;
1242 * If the orphans has i_nlinks > 0 then it should be able to
1243 * be truncated, otherwise it won't be removed from the orphan
1244 * list during processing and an infinite loop will result.
1245 * Similarly, it must not be a bad inode.
1247 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1248 is_bad_inode(inode))
1249 goto bad_orphan;
1251 if (NEXT_ORPHAN(inode) > max_ino)
1252 goto bad_orphan;
1253 brelse(bitmap_bh);
1254 return inode;
1256 bad_orphan:
1257 ext4_error(sb, "bad orphan inode %lu", ino);
1258 if (bitmap_bh)
1259 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1260 bit, (unsigned long long)bitmap_bh->b_blocknr,
1261 ext4_test_bit(bit, bitmap_bh->b_data));
1262 if (inode) {
1263 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1264 is_bad_inode(inode));
1265 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1266 NEXT_ORPHAN(inode));
1267 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1268 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1269 /* Avoid freeing blocks if we got a bad deleted inode */
1270 if (inode->i_nlink == 0)
1271 inode->i_blocks = 0;
1272 iput(inode);
1274 brelse(bitmap_bh);
1275 return ERR_PTR(err);
1278 unsigned long ext4_count_free_inodes(struct super_block *sb)
1280 unsigned long desc_count;
1281 struct ext4_group_desc *gdp;
1282 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1283 #ifdef EXT4FS_DEBUG
1284 struct ext4_super_block *es;
1285 unsigned long bitmap_count, x;
1286 struct buffer_head *bitmap_bh = NULL;
1288 es = EXT4_SB(sb)->s_es;
1289 desc_count = 0;
1290 bitmap_count = 0;
1291 gdp = NULL;
1292 for (i = 0; i < ngroups; i++) {
1293 gdp = ext4_get_group_desc(sb, i, NULL);
1294 if (!gdp)
1295 continue;
1296 desc_count += ext4_free_inodes_count(sb, gdp);
1297 brelse(bitmap_bh);
1298 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1299 if (IS_ERR(bitmap_bh)) {
1300 bitmap_bh = NULL;
1301 continue;
1304 x = ext4_count_free(bitmap_bh->b_data,
1305 EXT4_INODES_PER_GROUP(sb) / 8);
1306 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1307 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1308 bitmap_count += x;
1310 brelse(bitmap_bh);
1311 printk(KERN_DEBUG "ext4_count_free_inodes: "
1312 "stored = %u, computed = %lu, %lu\n",
1313 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1314 return desc_count;
1315 #else
1316 desc_count = 0;
1317 for (i = 0; i < ngroups; i++) {
1318 gdp = ext4_get_group_desc(sb, i, NULL);
1319 if (!gdp)
1320 continue;
1321 desc_count += ext4_free_inodes_count(sb, gdp);
1322 cond_resched();
1324 return desc_count;
1325 #endif
1328 /* Called at mount-time, super-block is locked */
1329 unsigned long ext4_count_dirs(struct super_block * sb)
1331 unsigned long count = 0;
1332 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1334 for (i = 0; i < ngroups; i++) {
1335 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1336 if (!gdp)
1337 continue;
1338 count += ext4_used_dirs_count(sb, gdp);
1340 return count;
1344 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1345 * inode table. Must be called without any spinlock held. The only place
1346 * where it is called from on active part of filesystem is ext4lazyinit
1347 * thread, so we do not need any special locks, however we have to prevent
1348 * inode allocation from the current group, so we take alloc_sem lock, to
1349 * block ext4_new_inode() until we are finished.
1351 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1352 int barrier)
1354 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1355 struct ext4_sb_info *sbi = EXT4_SB(sb);
1356 struct ext4_group_desc *gdp = NULL;
1357 struct buffer_head *group_desc_bh;
1358 handle_t *handle;
1359 ext4_fsblk_t blk;
1360 int num, ret = 0, used_blks = 0;
1362 /* This should not happen, but just to be sure check this */
1363 if (sb_rdonly(sb)) {
1364 ret = 1;
1365 goto out;
1368 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1369 if (!gdp)
1370 goto out;
1373 * We do not need to lock this, because we are the only one
1374 * handling this flag.
1376 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1377 goto out;
1379 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1380 if (IS_ERR(handle)) {
1381 ret = PTR_ERR(handle);
1382 goto out;
1385 down_write(&grp->alloc_sem);
1387 * If inode bitmap was already initialized there may be some
1388 * used inodes so we need to skip blocks with used inodes in
1389 * inode table.
1391 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1392 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1393 ext4_itable_unused_count(sb, gdp)),
1394 sbi->s_inodes_per_block);
1396 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1397 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1398 ext4_itable_unused_count(sb, gdp)) <
1399 EXT4_FIRST_INO(sb)))) {
1400 ext4_error(sb, "Something is wrong with group %u: "
1401 "used itable blocks: %d; "
1402 "itable unused count: %u",
1403 group, used_blks,
1404 ext4_itable_unused_count(sb, gdp));
1405 ret = 1;
1406 goto err_out;
1409 blk = ext4_inode_table(sb, gdp) + used_blks;
1410 num = sbi->s_itb_per_group - used_blks;
1412 BUFFER_TRACE(group_desc_bh, "get_write_access");
1413 ret = ext4_journal_get_write_access(handle,
1414 group_desc_bh);
1415 if (ret)
1416 goto err_out;
1419 * Skip zeroout if the inode table is full. But we set the ZEROED
1420 * flag anyway, because obviously, when it is full it does not need
1421 * further zeroing.
1423 if (unlikely(num == 0))
1424 goto skip_zeroout;
1426 ext4_debug("going to zero out inode table in group %d\n",
1427 group);
1428 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1429 if (ret < 0)
1430 goto err_out;
1431 if (barrier)
1432 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1434 skip_zeroout:
1435 ext4_lock_group(sb, group);
1436 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1437 ext4_group_desc_csum_set(sb, group, gdp);
1438 ext4_unlock_group(sb, group);
1440 BUFFER_TRACE(group_desc_bh,
1441 "call ext4_handle_dirty_metadata");
1442 ret = ext4_handle_dirty_metadata(handle, NULL,
1443 group_desc_bh);
1445 err_out:
1446 up_write(&grp->alloc_sem);
1447 ext4_journal_stop(handle);
1448 out:
1449 return ret;