2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
49 struct hstate
*hstate
;
58 int sysctl_hugetlb_shm_group
;
61 Opt_size
, Opt_nr_inodes
,
62 Opt_mode
, Opt_uid
, Opt_gid
,
63 Opt_pagesize
, Opt_min_size
,
67 static const match_table_t tokens
= {
68 {Opt_size
, "size=%s"},
69 {Opt_nr_inodes
, "nr_inodes=%s"},
70 {Opt_mode
, "mode=%o"},
73 {Opt_pagesize
, "pagesize=%s"},
74 {Opt_min_size
, "min_size=%s"},
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
80 struct inode
*inode
, pgoff_t index
)
82 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
88 mpol_cond_put(vma
->vm_policy
);
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
92 struct inode
*inode
, pgoff_t index
)
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
101 static void huge_pagevec_release(struct pagevec
*pvec
)
105 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
106 put_page(pvec
->pages
[i
]);
108 pagevec_reinit(pvec
);
112 * Mask used when checking the page offset value passed in via system
113 * calls. This value will be converted to a loff_t which is signed.
114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115 * value. The extra bit (- 1 in the shift value) is to take the sign
118 #define PGOFF_LOFFT_MAX \
119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
121 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
123 struct inode
*inode
= file_inode(file
);
126 struct hstate
*h
= hstate_file(file
);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
137 vma
->vm_ops
= &hugetlb_vm_ops
;
140 * page based offset in vm_pgoff could be sufficiently large to
141 * overflow a loff_t when converted to byte offset. This can
142 * only happen on architectures where sizeof(loff_t) ==
143 * sizeof(unsigned long). So, only check in those instances.
145 if (sizeof(unsigned long) == sizeof(loff_t
)) {
146 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
150 /* must be huge page aligned */
151 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
154 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
155 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
156 /* check for overflow */
164 if (hugetlb_reserve_pages(inode
,
165 vma
->vm_pgoff
>> huge_page_order(h
),
166 len
>> huge_page_shift(h
), vma
,
171 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
172 i_size_write(inode
, len
);
180 * Called under down_write(mmap_sem).
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
185 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
186 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
188 struct mm_struct
*mm
= current
->mm
;
189 struct vm_area_struct
*vma
;
190 struct hstate
*h
= hstate_file(file
);
191 struct vm_unmapped_area_info info
;
193 if (len
& ~huge_page_mask(h
))
198 if (flags
& MAP_FIXED
) {
199 if (prepare_hugepage_range(file
, addr
, len
))
205 addr
= ALIGN(addr
, huge_page_size(h
));
206 vma
= find_vma(mm
, addr
);
207 if (TASK_SIZE
- len
>= addr
&&
208 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
214 info
.low_limit
= TASK_UNMAPPED_BASE
;
215 info
.high_limit
= TASK_SIZE
;
216 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
217 info
.align_offset
= 0;
218 return vm_unmapped_area(&info
);
223 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
224 struct iov_iter
*to
, unsigned long size
)
229 /* Find which 4k chunk and offset with in that chunk */
230 i
= offset
>> PAGE_SHIFT
;
231 offset
= offset
& ~PAGE_MASK
;
235 chunksize
= PAGE_SIZE
;
238 if (chunksize
> size
)
240 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
252 * Support for read() - Find the page attached to f_mapping and copy out the
253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254 * since it has PAGE_SIZE assumptions.
256 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
258 struct file
*file
= iocb
->ki_filp
;
259 struct hstate
*h
= hstate_file(file
);
260 struct address_space
*mapping
= file
->f_mapping
;
261 struct inode
*inode
= mapping
->host
;
262 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
263 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
264 unsigned long end_index
;
268 while (iov_iter_count(to
)) {
272 /* nr is the maximum number of bytes to copy from this page */
273 nr
= huge_page_size(h
);
274 isize
= i_size_read(inode
);
277 end_index
= (isize
- 1) >> huge_page_shift(h
);
278 if (index
> end_index
)
280 if (index
== end_index
) {
281 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
288 page
= find_lock_page(mapping
, index
);
289 if (unlikely(page
== NULL
)) {
291 * We have a HOLE, zero out the user-buffer for the
292 * length of the hole or request.
294 copied
= iov_iter_zero(nr
, to
);
299 * We have the page, copy it to user space buffer.
301 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
306 if (copied
!= nr
&& iov_iter_count(to
)) {
311 index
+= offset
>> huge_page_shift(h
);
312 offset
&= ~huge_page_mask(h
);
314 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
318 static int hugetlbfs_write_begin(struct file
*file
,
319 struct address_space
*mapping
,
320 loff_t pos
, unsigned len
, unsigned flags
,
321 struct page
**pagep
, void **fsdata
)
326 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
327 loff_t pos
, unsigned len
, unsigned copied
,
328 struct page
*page
, void *fsdata
)
334 static void remove_huge_page(struct page
*page
)
336 ClearPageDirty(page
);
337 ClearPageUptodate(page
);
338 delete_from_page_cache(page
);
342 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
344 struct vm_area_struct
*vma
;
347 * end == 0 indicates that the entire range after
348 * start should be unmapped.
350 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
351 unsigned long v_offset
;
355 * Can the expression below overflow on 32-bit arches?
356 * No, because the interval tree returns us only those vmas
357 * which overlap the truncated area starting at pgoff,
358 * and no vma on a 32-bit arch can span beyond the 4GB.
360 if (vma
->vm_pgoff
< start
)
361 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
368 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
370 if (v_end
> vma
->vm_end
)
374 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
380 * remove_inode_hugepages handles two distinct cases: truncation and hole
381 * punch. There are subtle differences in operation for each case.
383 * truncation is indicated by end of range being LLONG_MAX
384 * In this case, we first scan the range and release found pages.
385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386 * maps and global counts. Page faults can not race with truncation
387 * in this routine. hugetlb_no_page() prevents page faults in the
388 * truncated range. It checks i_size before allocation, and again after
389 * with the page table lock for the page held. The same lock must be
390 * acquired to unmap a page.
391 * hole punch is indicated if end is not LLONG_MAX
392 * In the hole punch case we scan the range and release found pages.
393 * Only when releasing a page is the associated region/reserv map
394 * deleted. The region/reserv map for ranges without associated
395 * pages are not modified. Page faults can race with hole punch.
396 * This is indicated if we find a mapped page.
397 * Note: If the passed end of range value is beyond the end of file, but
398 * not LLONG_MAX this routine still performs a hole punch operation.
400 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
403 struct hstate
*h
= hstate_inode(inode
);
404 struct address_space
*mapping
= &inode
->i_data
;
405 const pgoff_t start
= lstart
>> huge_page_shift(h
);
406 const pgoff_t end
= lend
>> huge_page_shift(h
);
407 struct vm_area_struct pseudo_vma
;
411 bool truncate_op
= (lend
== LLONG_MAX
);
413 vma_init(&pseudo_vma
, current
->mm
);
414 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
419 * When no more pages are found, we are done.
421 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
424 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
425 struct page
*page
= pvec
.pages
[i
];
429 hash
= hugetlb_fault_mutex_hash(h
, mapping
, index
, 0);
430 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
433 * If page is mapped, it was faulted in after being
434 * unmapped in caller. Unmap (again) now after taking
435 * the fault mutex. The mutex will prevent faults
436 * until we finish removing the page.
438 * This race can only happen in the hole punch case.
439 * Getting here in a truncate operation is a bug.
441 if (unlikely(page_mapped(page
))) {
444 i_mmap_lock_write(mapping
);
445 hugetlb_vmdelete_list(&mapping
->i_mmap
,
446 index
* pages_per_huge_page(h
),
447 (index
+ 1) * pages_per_huge_page(h
));
448 i_mmap_unlock_write(mapping
);
453 * We must free the huge page and remove from page
454 * cache (remove_huge_page) BEFORE removing the
455 * region/reserve map (hugetlb_unreserve_pages). In
456 * rare out of memory conditions, removal of the
457 * region/reserve map could fail. Correspondingly,
458 * the subpool and global reserve usage count can need
461 VM_BUG_ON(PagePrivate(page
));
462 remove_huge_page(page
);
465 if (unlikely(hugetlb_unreserve_pages(inode
,
466 index
, index
+ 1, 1)))
467 hugetlb_fix_reserve_counts(inode
);
471 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
473 huge_pagevec_release(&pvec
);
478 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
481 static void hugetlbfs_evict_inode(struct inode
*inode
)
483 struct resv_map
*resv_map
;
485 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
486 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
487 /* root inode doesn't have the resv_map, so we should check it */
489 resv_map_release(&resv_map
->refs
);
493 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
496 struct address_space
*mapping
= inode
->i_mapping
;
497 struct hstate
*h
= hstate_inode(inode
);
499 BUG_ON(offset
& ~huge_page_mask(h
));
500 pgoff
= offset
>> PAGE_SHIFT
;
502 i_size_write(inode
, offset
);
503 i_mmap_lock_write(mapping
);
504 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
505 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
506 i_mmap_unlock_write(mapping
);
507 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
511 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
513 struct hstate
*h
= hstate_inode(inode
);
514 loff_t hpage_size
= huge_page_size(h
);
515 loff_t hole_start
, hole_end
;
518 * For hole punch round up the beginning offset of the hole and
519 * round down the end.
521 hole_start
= round_up(offset
, hpage_size
);
522 hole_end
= round_down(offset
+ len
, hpage_size
);
524 if (hole_end
> hole_start
) {
525 struct address_space
*mapping
= inode
->i_mapping
;
526 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
530 /* protected by i_mutex */
531 if (info
->seals
& F_SEAL_WRITE
) {
536 i_mmap_lock_write(mapping
);
537 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
538 hugetlb_vmdelete_list(&mapping
->i_mmap
,
539 hole_start
>> PAGE_SHIFT
,
540 hole_end
>> PAGE_SHIFT
);
541 i_mmap_unlock_write(mapping
);
542 remove_inode_hugepages(inode
, hole_start
, hole_end
);
549 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
552 struct inode
*inode
= file_inode(file
);
553 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
554 struct address_space
*mapping
= inode
->i_mapping
;
555 struct hstate
*h
= hstate_inode(inode
);
556 struct vm_area_struct pseudo_vma
;
557 struct mm_struct
*mm
= current
->mm
;
558 loff_t hpage_size
= huge_page_size(h
);
559 unsigned long hpage_shift
= huge_page_shift(h
);
560 pgoff_t start
, index
, end
;
564 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
567 if (mode
& FALLOC_FL_PUNCH_HOLE
)
568 return hugetlbfs_punch_hole(inode
, offset
, len
);
571 * Default preallocate case.
572 * For this range, start is rounded down and end is rounded up
573 * as well as being converted to page offsets.
575 start
= offset
>> hpage_shift
;
576 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
580 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
581 error
= inode_newsize_ok(inode
, offset
+ len
);
585 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
591 * Initialize a pseudo vma as this is required by the huge page
592 * allocation routines. If NUMA is configured, use page index
593 * as input to create an allocation policy.
595 vma_init(&pseudo_vma
, mm
);
596 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
597 pseudo_vma
.vm_file
= file
;
599 for (index
= start
; index
< end
; index
++) {
601 * This is supposed to be the vaddr where the page is being
602 * faulted in, but we have no vaddr here.
606 int avoid_reserve
= 0;
611 * fallocate(2) manpage permits EINTR; we may have been
612 * interrupted because we are using up too much memory.
614 if (signal_pending(current
)) {
619 /* Set numa allocation policy based on index */
620 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
622 /* addr is the offset within the file (zero based) */
623 addr
= index
* hpage_size
;
625 /* mutex taken here, fault path and hole punch */
626 hash
= hugetlb_fault_mutex_hash(h
, mapping
, index
, addr
);
627 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
629 /* See if already present in mapping to avoid alloc/free */
630 page
= find_get_page(mapping
, index
);
633 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
634 hugetlb_drop_vma_policy(&pseudo_vma
);
638 /* Allocate page and add to page cache */
639 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
640 hugetlb_drop_vma_policy(&pseudo_vma
);
642 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
643 error
= PTR_ERR(page
);
646 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
647 __SetPageUptodate(page
);
648 error
= huge_add_to_page_cache(page
, mapping
, index
);
649 if (unlikely(error
)) {
651 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
655 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
658 * unlock_page because locked by add_to_page_cache()
659 * page_put due to reference from alloc_huge_page()
665 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
666 i_size_write(inode
, offset
+ len
);
667 inode
->i_ctime
= current_time(inode
);
673 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
675 struct inode
*inode
= d_inode(dentry
);
676 struct hstate
*h
= hstate_inode(inode
);
678 unsigned int ia_valid
= attr
->ia_valid
;
679 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
683 error
= setattr_prepare(dentry
, attr
);
687 if (ia_valid
& ATTR_SIZE
) {
688 loff_t oldsize
= inode
->i_size
;
689 loff_t newsize
= attr
->ia_size
;
691 if (newsize
& ~huge_page_mask(h
))
693 /* protected by i_mutex */
694 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
695 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
697 error
= hugetlb_vmtruncate(inode
, newsize
);
702 setattr_copy(inode
, attr
);
703 mark_inode_dirty(inode
);
707 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
708 struct hugetlbfs_config
*config
)
712 inode
= new_inode(sb
);
714 inode
->i_ino
= get_next_ino();
715 inode
->i_mode
= S_IFDIR
| config
->mode
;
716 inode
->i_uid
= config
->uid
;
717 inode
->i_gid
= config
->gid
;
718 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
719 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
720 inode
->i_fop
= &simple_dir_operations
;
721 /* directory inodes start off with i_nlink == 2 (for "." entry) */
723 lockdep_annotate_inode_mutex_key(inode
);
729 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
730 * be taken from reclaim -- unlike regular filesystems. This needs an
731 * annotation because huge_pmd_share() does an allocation under hugetlb's
734 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
736 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
738 umode_t mode
, dev_t dev
)
741 struct resv_map
*resv_map
= NULL
;
744 * Reserve maps are only needed for inodes that can have associated
747 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
748 resv_map
= resv_map_alloc();
753 inode
= new_inode(sb
);
755 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
757 inode
->i_ino
= get_next_ino();
758 inode_init_owner(inode
, dir
, mode
);
759 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
760 &hugetlbfs_i_mmap_rwsem_key
);
761 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
762 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
763 inode
->i_mapping
->private_data
= resv_map
;
764 info
->seals
= F_SEAL_SEAL
;
765 switch (mode
& S_IFMT
) {
767 init_special_inode(inode
, mode
, dev
);
770 inode
->i_op
= &hugetlbfs_inode_operations
;
771 inode
->i_fop
= &hugetlbfs_file_operations
;
774 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
775 inode
->i_fop
= &simple_dir_operations
;
777 /* directory inodes start off with i_nlink == 2 (for "." entry) */
781 inode
->i_op
= &page_symlink_inode_operations
;
782 inode_nohighmem(inode
);
785 lockdep_annotate_inode_mutex_key(inode
);
788 kref_put(&resv_map
->refs
, resv_map_release
);
795 * File creation. Allocate an inode, and we're done..
797 static int hugetlbfs_mknod(struct inode
*dir
,
798 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
803 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
805 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
806 d_instantiate(dentry
, inode
);
807 dget(dentry
); /* Extra count - pin the dentry in core */
813 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
815 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
821 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
823 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
826 static int hugetlbfs_symlink(struct inode
*dir
,
827 struct dentry
*dentry
, const char *symname
)
832 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
834 int l
= strlen(symname
)+1;
835 error
= page_symlink(inode
, symname
, l
);
837 d_instantiate(dentry
, inode
);
842 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
848 * mark the head page dirty
850 static int hugetlbfs_set_page_dirty(struct page
*page
)
852 struct page
*head
= compound_head(page
);
858 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
859 struct page
*newpage
, struct page
*page
,
860 enum migrate_mode mode
)
864 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
865 if (rc
!= MIGRATEPAGE_SUCCESS
)
869 * page_private is subpool pointer in hugetlb pages. Transfer to
870 * new page. PagePrivate is not associated with page_private for
871 * hugetlb pages and can not be set here as only page_huge_active
872 * pages can be migrated.
874 if (page_private(page
)) {
875 set_page_private(newpage
, page_private(page
));
876 set_page_private(page
, 0);
879 if (mode
!= MIGRATE_SYNC_NO_COPY
)
880 migrate_page_copy(newpage
, page
);
882 migrate_page_states(newpage
, page
);
884 return MIGRATEPAGE_SUCCESS
;
887 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
890 struct inode
*inode
= mapping
->host
;
891 pgoff_t index
= page
->index
;
893 remove_huge_page(page
);
894 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
895 hugetlb_fix_reserve_counts(inode
);
901 * Display the mount options in /proc/mounts.
903 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
905 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
906 struct hugepage_subpool
*spool
= sbinfo
->spool
;
907 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
908 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
911 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
912 seq_printf(m
, ",uid=%u",
913 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
914 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
915 seq_printf(m
, ",gid=%u",
916 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
917 if (sbinfo
->mode
!= 0755)
918 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
919 if (sbinfo
->max_inodes
!= -1)
920 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
924 if (hpage_size
>= 1024) {
928 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
930 if (spool
->max_hpages
!= -1)
931 seq_printf(m
, ",size=%llu",
932 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
933 if (spool
->min_hpages
!= -1)
934 seq_printf(m
, ",min_size=%llu",
935 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
940 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
942 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
943 struct hstate
*h
= hstate_inode(d_inode(dentry
));
945 buf
->f_type
= HUGETLBFS_MAGIC
;
946 buf
->f_bsize
= huge_page_size(h
);
948 spin_lock(&sbinfo
->stat_lock
);
949 /* If no limits set, just report 0 for max/free/used
950 * blocks, like simple_statfs() */
954 spin_lock(&sbinfo
->spool
->lock
);
955 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
956 free_pages
= sbinfo
->spool
->max_hpages
957 - sbinfo
->spool
->used_hpages
;
958 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
959 spin_unlock(&sbinfo
->spool
->lock
);
960 buf
->f_files
= sbinfo
->max_inodes
;
961 buf
->f_ffree
= sbinfo
->free_inodes
;
963 spin_unlock(&sbinfo
->stat_lock
);
965 buf
->f_namelen
= NAME_MAX
;
969 static void hugetlbfs_put_super(struct super_block
*sb
)
971 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
974 sb
->s_fs_info
= NULL
;
977 hugepage_put_subpool(sbi
->spool
);
983 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
985 if (sbinfo
->free_inodes
>= 0) {
986 spin_lock(&sbinfo
->stat_lock
);
987 if (unlikely(!sbinfo
->free_inodes
)) {
988 spin_unlock(&sbinfo
->stat_lock
);
991 sbinfo
->free_inodes
--;
992 spin_unlock(&sbinfo
->stat_lock
);
998 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1000 if (sbinfo
->free_inodes
>= 0) {
1001 spin_lock(&sbinfo
->stat_lock
);
1002 sbinfo
->free_inodes
++;
1003 spin_unlock(&sbinfo
->stat_lock
);
1008 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1010 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1012 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1013 struct hugetlbfs_inode_info
*p
;
1015 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1017 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1019 hugetlbfs_inc_free_inodes(sbinfo
);
1024 * Any time after allocation, hugetlbfs_destroy_inode can be called
1025 * for the inode. mpol_free_shared_policy is unconditionally called
1026 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1027 * in case of a quick call to destroy.
1029 * Note that the policy is initialized even if we are creating a
1030 * private inode. This simplifies hugetlbfs_destroy_inode.
1032 mpol_shared_policy_init(&p
->policy
, NULL
);
1034 return &p
->vfs_inode
;
1037 static void hugetlbfs_i_callback(struct rcu_head
*head
)
1039 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
1040 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1043 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1045 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1046 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1047 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
1050 static const struct address_space_operations hugetlbfs_aops
= {
1051 .write_begin
= hugetlbfs_write_begin
,
1052 .write_end
= hugetlbfs_write_end
,
1053 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1054 .migratepage
= hugetlbfs_migrate_page
,
1055 .error_remove_page
= hugetlbfs_error_remove_page
,
1059 static void init_once(void *foo
)
1061 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1063 inode_init_once(&ei
->vfs_inode
);
1066 const struct file_operations hugetlbfs_file_operations
= {
1067 .read_iter
= hugetlbfs_read_iter
,
1068 .mmap
= hugetlbfs_file_mmap
,
1069 .fsync
= noop_fsync
,
1070 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1071 .llseek
= default_llseek
,
1072 .fallocate
= hugetlbfs_fallocate
,
1075 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1076 .create
= hugetlbfs_create
,
1077 .lookup
= simple_lookup
,
1078 .link
= simple_link
,
1079 .unlink
= simple_unlink
,
1080 .symlink
= hugetlbfs_symlink
,
1081 .mkdir
= hugetlbfs_mkdir
,
1082 .rmdir
= simple_rmdir
,
1083 .mknod
= hugetlbfs_mknod
,
1084 .rename
= simple_rename
,
1085 .setattr
= hugetlbfs_setattr
,
1088 static const struct inode_operations hugetlbfs_inode_operations
= {
1089 .setattr
= hugetlbfs_setattr
,
1092 static const struct super_operations hugetlbfs_ops
= {
1093 .alloc_inode
= hugetlbfs_alloc_inode
,
1094 .destroy_inode
= hugetlbfs_destroy_inode
,
1095 .evict_inode
= hugetlbfs_evict_inode
,
1096 .statfs
= hugetlbfs_statfs
,
1097 .put_super
= hugetlbfs_put_super
,
1098 .show_options
= hugetlbfs_show_options
,
1101 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1104 * Convert size option passed from command line to number of huge pages
1105 * in the pool specified by hstate. Size option could be in bytes
1106 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1109 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1110 enum hugetlbfs_size_type val_type
)
1112 if (val_type
== NO_SIZE
)
1115 if (val_type
== SIZE_PERCENT
) {
1116 size_opt
<<= huge_page_shift(h
);
1117 size_opt
*= h
->max_huge_pages
;
1118 do_div(size_opt
, 100);
1121 size_opt
>>= huge_page_shift(h
);
1126 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1129 substring_t args
[MAX_OPT_ARGS
];
1131 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1132 enum hugetlbfs_size_type max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1137 while ((p
= strsep(&options
, ",")) != NULL
) {
1142 token
= match_token(p
, tokens
, args
);
1145 if (match_int(&args
[0], &option
))
1147 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1148 if (!uid_valid(pconfig
->uid
))
1153 if (match_int(&args
[0], &option
))
1155 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1156 if (!gid_valid(pconfig
->gid
))
1161 if (match_octal(&args
[0], &option
))
1163 pconfig
->mode
= option
& 01777U;
1167 /* memparse() will accept a K/M/G without a digit */
1168 if (!isdigit(*args
[0].from
))
1170 max_size_opt
= memparse(args
[0].from
, &rest
);
1171 max_val_type
= SIZE_STD
;
1173 max_val_type
= SIZE_PERCENT
;
1178 /* memparse() will accept a K/M/G without a digit */
1179 if (!isdigit(*args
[0].from
))
1181 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1184 case Opt_pagesize
: {
1186 ps
= memparse(args
[0].from
, &rest
);
1187 pconfig
->hstate
= size_to_hstate(ps
);
1188 if (!pconfig
->hstate
) {
1189 pr_err("Unsupported page size %lu MB\n",
1196 case Opt_min_size
: {
1197 /* memparse() will accept a K/M/G without a digit */
1198 if (!isdigit(*args
[0].from
))
1200 min_size_opt
= memparse(args
[0].from
, &rest
);
1201 min_val_type
= SIZE_STD
;
1203 min_val_type
= SIZE_PERCENT
;
1208 pr_err("Bad mount option: \"%s\"\n", p
);
1215 * Use huge page pool size (in hstate) to convert the size
1216 * options to number of huge pages. If NO_SIZE, -1 is returned.
1218 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1219 max_size_opt
, max_val_type
);
1220 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1221 min_size_opt
, min_val_type
);
1224 * If max_size was specified, then min_size must be smaller
1226 if (max_val_type
> NO_SIZE
&&
1227 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1228 pr_err("minimum size can not be greater than maximum size\n");
1235 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1240 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1243 struct hugetlbfs_config config
;
1244 struct hugetlbfs_sb_info
*sbinfo
;
1246 config
.max_hpages
= -1; /* No limit on size by default */
1247 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1248 config
.uid
= current_fsuid();
1249 config
.gid
= current_fsgid();
1251 config
.hstate
= &default_hstate
;
1252 config
.min_hpages
= -1; /* No default minimum size */
1253 ret
= hugetlbfs_parse_options(data
, &config
);
1257 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1260 sb
->s_fs_info
= sbinfo
;
1261 sbinfo
->hstate
= config
.hstate
;
1262 spin_lock_init(&sbinfo
->stat_lock
);
1263 sbinfo
->max_inodes
= config
.nr_inodes
;
1264 sbinfo
->free_inodes
= config
.nr_inodes
;
1265 sbinfo
->spool
= NULL
;
1266 sbinfo
->uid
= config
.uid
;
1267 sbinfo
->gid
= config
.gid
;
1268 sbinfo
->mode
= config
.mode
;
1271 * Allocate and initialize subpool if maximum or minimum size is
1272 * specified. Any needed reservations (for minimim size) are taken
1273 * taken when the subpool is created.
1275 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1276 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1282 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1283 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1284 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1285 sb
->s_magic
= HUGETLBFS_MAGIC
;
1286 sb
->s_op
= &hugetlbfs_ops
;
1287 sb
->s_time_gran
= 1;
1288 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1293 kfree(sbinfo
->spool
);
1298 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1299 int flags
, const char *dev_name
, void *data
)
1301 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1304 static struct file_system_type hugetlbfs_fs_type
= {
1305 .name
= "hugetlbfs",
1306 .mount
= hugetlbfs_mount
,
1307 .kill_sb
= kill_litter_super
,
1310 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1312 static int can_do_hugetlb_shm(void)
1315 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1316 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1319 static int get_hstate_idx(int page_size_log
)
1321 struct hstate
*h
= hstate_sizelog(page_size_log
);
1329 * Note that size should be aligned to proper hugepage size in caller side,
1330 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1332 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1333 vm_flags_t acctflag
, struct user_struct
**user
,
1334 int creat_flags
, int page_size_log
)
1336 struct inode
*inode
;
1337 struct vfsmount
*mnt
;
1341 hstate_idx
= get_hstate_idx(page_size_log
);
1343 return ERR_PTR(-ENODEV
);
1346 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1348 return ERR_PTR(-ENOENT
);
1350 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1351 *user
= current_user();
1352 if (user_shm_lock(size
, *user
)) {
1354 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1355 current
->comm
, current
->pid
);
1356 task_unlock(current
);
1359 return ERR_PTR(-EPERM
);
1363 file
= ERR_PTR(-ENOSPC
);
1364 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1367 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1368 inode
->i_flags
|= S_PRIVATE
;
1370 inode
->i_size
= size
;
1373 if (hugetlb_reserve_pages(inode
, 0,
1374 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1376 file
= ERR_PTR(-ENOMEM
);
1378 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1379 &hugetlbfs_file_operations
);
1386 user_shm_unlock(size
, *user
);
1392 static int __init
init_hugetlbfs_fs(void)
1398 if (!hugepages_supported()) {
1399 pr_info("disabling because there are no supported hugepage sizes\n");
1404 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1405 sizeof(struct hugetlbfs_inode_info
),
1406 0, SLAB_ACCOUNT
, init_once
);
1407 if (hugetlbfs_inode_cachep
== NULL
)
1410 error
= register_filesystem(&hugetlbfs_fs_type
);
1415 for_each_hstate(h
) {
1417 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1419 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1420 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1423 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1424 pr_err("Cannot mount internal hugetlbfs for "
1425 "page size %uK", ps_kb
);
1426 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1427 hugetlbfs_vfsmount
[i
] = NULL
;
1431 /* Non default hstates are optional */
1432 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1436 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1440 fs_initcall(init_hugetlbfs_fs
)