Linux 4.19.133
[linux/fpc-iii.git] / fs / nfs / file.c
blobb2257fa209ac45b12fbde39899a99cfb69775a75
1 /*
2 * linux/fs/nfs/file.c
4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
32 #include <linux/uaccess.h>
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
40 #include "nfstrace.h"
42 #define NFSDBG_FACILITY NFSDBG_FILE
44 static const struct vm_operations_struct nfs_file_vm_ops;
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
51 int nfs_check_flags(int flags)
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
56 return 0;
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
61 * Open file
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
66 int res;
68 dprintk("NFS: open file(%pD2)\n", filp);
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
75 res = nfs_open(inode, filp);
76 return res;
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
82 dprintk("NFS: release(%pD2)\n", filp);
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 inode_dio_wait(inode);
86 nfs_file_clear_open_context(filp);
87 return 0;
89 EXPORT_SYMBOL_GPL(nfs_file_release);
91 /**
92 * nfs_revalidate_size - Revalidate the file size
93 * @inode - pointer to inode struct
94 * @file - pointer to struct file
96 * Revalidates the file length. This is basically a wrapper around
97 * nfs_revalidate_inode() that takes into account the fact that we may
98 * have cached writes (in which case we don't care about the server's
99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
104 struct nfs_server *server = NFS_SERVER(inode);
106 if (filp->f_flags & O_DIRECT)
107 goto force_reval;
108 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109 goto force_reval;
110 return 0;
111 force_reval:
112 return __nfs_revalidate_inode(server, inode);
115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
117 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 filp, offset, whence);
121 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 * the cached file length
124 if (whence != SEEK_SET && whence != SEEK_CUR) {
125 struct inode *inode = filp->f_mapping->host;
127 int retval = nfs_revalidate_file_size(inode, filp);
128 if (retval < 0)
129 return (loff_t)retval;
132 return generic_file_llseek(filp, offset, whence);
134 EXPORT_SYMBOL_GPL(nfs_file_llseek);
137 * Flush all dirty pages, and check for write errors.
139 static int
140 nfs_file_flush(struct file *file, fl_owner_t id)
142 struct inode *inode = file_inode(file);
144 dprintk("NFS: flush(%pD2)\n", file);
146 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147 if ((file->f_mode & FMODE_WRITE) == 0)
148 return 0;
150 /* Flush writes to the server and return any errors */
151 return vfs_fsync(file, 0);
154 ssize_t
155 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157 struct inode *inode = file_inode(iocb->ki_filp);
158 ssize_t result;
160 if (iocb->ki_flags & IOCB_DIRECT)
161 return nfs_file_direct_read(iocb, to);
163 dprintk("NFS: read(%pD2, %zu@%lu)\n",
164 iocb->ki_filp,
165 iov_iter_count(to), (unsigned long) iocb->ki_pos);
167 nfs_start_io_read(inode);
168 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
169 if (!result) {
170 result = generic_file_read_iter(iocb, to);
171 if (result > 0)
172 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 nfs_end_io_read(inode);
175 return result;
177 EXPORT_SYMBOL_GPL(nfs_file_read);
180 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182 struct inode *inode = file_inode(file);
183 int status;
185 dprintk("NFS: mmap(%pD2)\n", file);
187 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
188 * so we call that before revalidating the mapping
190 status = generic_file_mmap(file, vma);
191 if (!status) {
192 vma->vm_ops = &nfs_file_vm_ops;
193 status = nfs_revalidate_mapping(inode, file->f_mapping);
195 return status;
197 EXPORT_SYMBOL_GPL(nfs_file_mmap);
200 * Flush any dirty pages for this process, and check for write errors.
201 * The return status from this call provides a reliable indication of
202 * whether any write errors occurred for this process.
204 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
205 * disk, but it retrieves and clears ctx->error after synching, despite
206 * the two being set at the same time in nfs_context_set_write_error().
207 * This is because the former is used to notify the _next_ call to
208 * nfs_file_write() that a write error occurred, and hence cause it to
209 * fall back to doing a synchronous write.
211 static int
212 nfs_file_fsync_commit(struct file *file, int datasync)
214 struct nfs_open_context *ctx = nfs_file_open_context(file);
215 struct inode *inode = file_inode(file);
216 int do_resend, status;
217 int ret = 0;
219 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
221 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
222 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
223 status = nfs_commit_inode(inode, FLUSH_SYNC);
224 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
225 ret = xchg(&ctx->error, 0);
226 if (ret)
227 goto out;
229 if (status < 0) {
230 ret = status;
231 goto out;
233 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
234 if (do_resend)
235 ret = -EAGAIN;
236 out:
237 return ret;
241 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
243 int ret;
244 struct inode *inode = file_inode(file);
246 trace_nfs_fsync_enter(inode);
248 do {
249 struct nfs_open_context *ctx = nfs_file_open_context(file);
250 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
251 if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
252 int ret2 = xchg(&ctx->error, 0);
253 if (ret2)
254 ret = ret2;
256 if (ret != 0)
257 break;
258 ret = nfs_file_fsync_commit(file, datasync);
259 if (!ret)
260 ret = pnfs_sync_inode(inode, !!datasync);
262 * If nfs_file_fsync_commit detected a server reboot, then
263 * resend all dirty pages that might have been covered by
264 * the NFS_CONTEXT_RESEND_WRITES flag
266 start = 0;
267 end = LLONG_MAX;
268 } while (ret == -EAGAIN);
270 trace_nfs_fsync_exit(inode, ret);
271 return ret;
273 EXPORT_SYMBOL_GPL(nfs_file_fsync);
276 * Decide whether a read/modify/write cycle may be more efficient
277 * then a modify/write/read cycle when writing to a page in the
278 * page cache.
280 * The modify/write/read cycle may occur if a page is read before
281 * being completely filled by the writer. In this situation, the
282 * page must be completely written to stable storage on the server
283 * before it can be refilled by reading in the page from the server.
284 * This can lead to expensive, small, FILE_SYNC mode writes being
285 * done.
287 * It may be more efficient to read the page first if the file is
288 * open for reading in addition to writing, the page is not marked
289 * as Uptodate, it is not dirty or waiting to be committed,
290 * indicating that it was previously allocated and then modified,
291 * that there were valid bytes of data in that range of the file,
292 * and that the new data won't completely replace the old data in
293 * that range of the file.
295 static int nfs_want_read_modify_write(struct file *file, struct page *page,
296 loff_t pos, unsigned len)
298 unsigned int pglen = nfs_page_length(page);
299 unsigned int offset = pos & (PAGE_SIZE - 1);
300 unsigned int end = offset + len;
302 if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
303 if (!PageUptodate(page))
304 return 1;
305 return 0;
308 if ((file->f_mode & FMODE_READ) && /* open for read? */
309 !PageUptodate(page) && /* Uptodate? */
310 !PagePrivate(page) && /* i/o request already? */
311 pglen && /* valid bytes of file? */
312 (end < pglen || offset)) /* replace all valid bytes? */
313 return 1;
314 return 0;
318 * This does the "real" work of the write. We must allocate and lock the
319 * page to be sent back to the generic routine, which then copies the
320 * data from user space.
322 * If the writer ends up delaying the write, the writer needs to
323 * increment the page use counts until he is done with the page.
325 static int nfs_write_begin(struct file *file, struct address_space *mapping,
326 loff_t pos, unsigned len, unsigned flags,
327 struct page **pagep, void **fsdata)
329 int ret;
330 pgoff_t index = pos >> PAGE_SHIFT;
331 struct page *page;
332 int once_thru = 0;
334 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
335 file, mapping->host->i_ino, len, (long long) pos);
337 start:
338 page = grab_cache_page_write_begin(mapping, index, flags);
339 if (!page)
340 return -ENOMEM;
341 *pagep = page;
343 ret = nfs_flush_incompatible(file, page);
344 if (ret) {
345 unlock_page(page);
346 put_page(page);
347 } else if (!once_thru &&
348 nfs_want_read_modify_write(file, page, pos, len)) {
349 once_thru = 1;
350 ret = nfs_readpage(file, page);
351 put_page(page);
352 if (!ret)
353 goto start;
355 return ret;
358 static int nfs_write_end(struct file *file, struct address_space *mapping,
359 loff_t pos, unsigned len, unsigned copied,
360 struct page *page, void *fsdata)
362 unsigned offset = pos & (PAGE_SIZE - 1);
363 struct nfs_open_context *ctx = nfs_file_open_context(file);
364 int status;
366 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
367 file, mapping->host->i_ino, len, (long long) pos);
370 * Zero any uninitialised parts of the page, and then mark the page
371 * as up to date if it turns out that we're extending the file.
373 if (!PageUptodate(page)) {
374 unsigned pglen = nfs_page_length(page);
375 unsigned end = offset + copied;
377 if (pglen == 0) {
378 zero_user_segments(page, 0, offset,
379 end, PAGE_SIZE);
380 SetPageUptodate(page);
381 } else if (end >= pglen) {
382 zero_user_segment(page, end, PAGE_SIZE);
383 if (offset == 0)
384 SetPageUptodate(page);
385 } else
386 zero_user_segment(page, pglen, PAGE_SIZE);
389 status = nfs_updatepage(file, page, offset, copied);
391 unlock_page(page);
392 put_page(page);
394 if (status < 0)
395 return status;
396 NFS_I(mapping->host)->write_io += copied;
398 if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
399 status = nfs_wb_all(mapping->host);
400 if (status < 0)
401 return status;
404 return copied;
408 * Partially or wholly invalidate a page
409 * - Release the private state associated with a page if undergoing complete
410 * page invalidation
411 * - Called if either PG_private or PG_fscache is set on the page
412 * - Caller holds page lock
414 static void nfs_invalidate_page(struct page *page, unsigned int offset,
415 unsigned int length)
417 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
418 page, offset, length);
420 if (offset != 0 || length < PAGE_SIZE)
421 return;
422 /* Cancel any unstarted writes on this page */
423 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
425 nfs_fscache_invalidate_page(page, page->mapping->host);
429 * Attempt to release the private state associated with a page
430 * - Called if either PG_private or PG_fscache is set on the page
431 * - Caller holds page lock
432 * - Return true (may release page) or false (may not)
434 static int nfs_release_page(struct page *page, gfp_t gfp)
436 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
438 /* If PagePrivate() is set, then the page is not freeable */
439 if (PagePrivate(page))
440 return 0;
441 return nfs_fscache_release_page(page, gfp);
444 static void nfs_check_dirty_writeback(struct page *page,
445 bool *dirty, bool *writeback)
447 struct nfs_inode *nfsi;
448 struct address_space *mapping = page_file_mapping(page);
450 if (!mapping || PageSwapCache(page))
451 return;
454 * Check if an unstable page is currently being committed and
455 * if so, have the VM treat it as if the page is under writeback
456 * so it will not block due to pages that will shortly be freeable.
458 nfsi = NFS_I(mapping->host);
459 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
460 *writeback = true;
461 return;
465 * If PagePrivate() is set, then the page is not freeable and as the
466 * inode is not being committed, it's not going to be cleaned in the
467 * near future so treat it as dirty
469 if (PagePrivate(page))
470 *dirty = true;
474 * Attempt to clear the private state associated with a page when an error
475 * occurs that requires the cached contents of an inode to be written back or
476 * destroyed
477 * - Called if either PG_private or fscache is set on the page
478 * - Caller holds page lock
479 * - Return 0 if successful, -error otherwise
481 static int nfs_launder_page(struct page *page)
483 struct inode *inode = page_file_mapping(page)->host;
484 struct nfs_inode *nfsi = NFS_I(inode);
486 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
487 inode->i_ino, (long long)page_offset(page));
489 nfs_fscache_wait_on_page_write(nfsi, page);
490 return nfs_wb_page(inode, page);
493 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
494 sector_t *span)
496 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
498 *span = sis->pages;
500 return rpc_clnt_swap_activate(clnt);
503 static void nfs_swap_deactivate(struct file *file)
505 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
507 rpc_clnt_swap_deactivate(clnt);
510 const struct address_space_operations nfs_file_aops = {
511 .readpage = nfs_readpage,
512 .readpages = nfs_readpages,
513 .set_page_dirty = __set_page_dirty_nobuffers,
514 .writepage = nfs_writepage,
515 .writepages = nfs_writepages,
516 .write_begin = nfs_write_begin,
517 .write_end = nfs_write_end,
518 .invalidatepage = nfs_invalidate_page,
519 .releasepage = nfs_release_page,
520 .direct_IO = nfs_direct_IO,
521 #ifdef CONFIG_MIGRATION
522 .migratepage = nfs_migrate_page,
523 #endif
524 .launder_page = nfs_launder_page,
525 .is_dirty_writeback = nfs_check_dirty_writeback,
526 .error_remove_page = generic_error_remove_page,
527 .swap_activate = nfs_swap_activate,
528 .swap_deactivate = nfs_swap_deactivate,
532 * Notification that a PTE pointing to an NFS page is about to be made
533 * writable, implying that someone is about to modify the page through a
534 * shared-writable mapping
536 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
538 struct page *page = vmf->page;
539 struct file *filp = vmf->vma->vm_file;
540 struct inode *inode = file_inode(filp);
541 unsigned pagelen;
542 vm_fault_t ret = VM_FAULT_NOPAGE;
543 struct address_space *mapping;
545 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
546 filp, filp->f_mapping->host->i_ino,
547 (long long)page_offset(page));
549 sb_start_pagefault(inode->i_sb);
551 /* make sure the cache has finished storing the page */
552 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
554 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
555 nfs_wait_bit_killable, TASK_KILLABLE);
557 lock_page(page);
558 mapping = page_file_mapping(page);
559 if (mapping != inode->i_mapping)
560 goto out_unlock;
562 wait_on_page_writeback(page);
564 pagelen = nfs_page_length(page);
565 if (pagelen == 0)
566 goto out_unlock;
568 ret = VM_FAULT_LOCKED;
569 if (nfs_flush_incompatible(filp, page) == 0 &&
570 nfs_updatepage(filp, page, 0, pagelen) == 0)
571 goto out;
573 ret = VM_FAULT_SIGBUS;
574 out_unlock:
575 unlock_page(page);
576 out:
577 sb_end_pagefault(inode->i_sb);
578 return ret;
581 static const struct vm_operations_struct nfs_file_vm_ops = {
582 .fault = filemap_fault,
583 .map_pages = filemap_map_pages,
584 .page_mkwrite = nfs_vm_page_mkwrite,
587 static int nfs_need_check_write(struct file *filp, struct inode *inode)
589 struct nfs_open_context *ctx;
591 ctx = nfs_file_open_context(filp);
592 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
593 nfs_ctx_key_to_expire(ctx, inode))
594 return 1;
595 return 0;
598 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
600 struct file *file = iocb->ki_filp;
601 struct inode *inode = file_inode(file);
602 unsigned long written = 0;
603 ssize_t result;
605 result = nfs_key_timeout_notify(file, inode);
606 if (result)
607 return result;
609 if (iocb->ki_flags & IOCB_DIRECT)
610 return nfs_file_direct_write(iocb, from);
612 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
613 file, iov_iter_count(from), (long long) iocb->ki_pos);
615 if (IS_SWAPFILE(inode))
616 goto out_swapfile;
618 * O_APPEND implies that we must revalidate the file length.
620 if (iocb->ki_flags & IOCB_APPEND) {
621 result = nfs_revalidate_file_size(inode, file);
622 if (result)
623 goto out;
625 if (iocb->ki_pos > i_size_read(inode))
626 nfs_revalidate_mapping(inode, file->f_mapping);
628 nfs_start_io_write(inode);
629 result = generic_write_checks(iocb, from);
630 if (result > 0) {
631 current->backing_dev_info = inode_to_bdi(inode);
632 result = generic_perform_write(file, from, iocb->ki_pos);
633 current->backing_dev_info = NULL;
635 nfs_end_io_write(inode);
636 if (result <= 0)
637 goto out;
639 written = result;
640 iocb->ki_pos += written;
641 result = generic_write_sync(iocb, written);
642 if (result < 0)
643 goto out;
645 /* Return error values */
646 if (nfs_need_check_write(file, inode)) {
647 int err = vfs_fsync(file, 0);
648 if (err < 0)
649 result = err;
651 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
652 out:
653 return result;
655 out_swapfile:
656 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
657 return -EBUSY;
659 EXPORT_SYMBOL_GPL(nfs_file_write);
661 static int
662 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
664 struct inode *inode = filp->f_mapping->host;
665 int status = 0;
666 unsigned int saved_type = fl->fl_type;
668 /* Try local locking first */
669 posix_test_lock(filp, fl);
670 if (fl->fl_type != F_UNLCK) {
671 /* found a conflict */
672 goto out;
674 fl->fl_type = saved_type;
676 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
677 goto out_noconflict;
679 if (is_local)
680 goto out_noconflict;
682 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683 out:
684 return status;
685 out_noconflict:
686 fl->fl_type = F_UNLCK;
687 goto out;
690 static int
691 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
693 struct inode *inode = filp->f_mapping->host;
694 struct nfs_lock_context *l_ctx;
695 int status;
698 * Flush all pending writes before doing anything
699 * with locks..
701 vfs_fsync(filp, 0);
703 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
704 if (!IS_ERR(l_ctx)) {
705 status = nfs_iocounter_wait(l_ctx);
706 nfs_put_lock_context(l_ctx);
707 /* NOTE: special case
708 * If we're signalled while cleaning up locks on process exit, we
709 * still need to complete the unlock.
711 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
712 return status;
716 * Use local locking if mounted with "-onolock" or with appropriate
717 * "-olocal_lock="
719 if (!is_local)
720 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
721 else
722 status = locks_lock_file_wait(filp, fl);
723 return status;
726 static int
727 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
729 struct inode *inode = filp->f_mapping->host;
730 int status;
733 * Flush all pending writes before doing anything
734 * with locks..
736 status = nfs_sync_mapping(filp->f_mapping);
737 if (status != 0)
738 goto out;
741 * Use local locking if mounted with "-onolock" or with appropriate
742 * "-olocal_lock="
744 if (!is_local)
745 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
746 else
747 status = locks_lock_file_wait(filp, fl);
748 if (status < 0)
749 goto out;
752 * Invalidate cache to prevent missing any changes. If
753 * the file is mapped, clear the page cache as well so
754 * those mappings will be loaded.
756 * This makes locking act as a cache coherency point.
758 nfs_sync_mapping(filp->f_mapping);
759 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
760 nfs_zap_caches(inode);
761 if (mapping_mapped(filp->f_mapping))
762 nfs_revalidate_mapping(inode, filp->f_mapping);
764 out:
765 return status;
769 * Lock a (portion of) a file
771 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
773 struct inode *inode = filp->f_mapping->host;
774 int ret = -ENOLCK;
775 int is_local = 0;
777 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
778 filp, fl->fl_type, fl->fl_flags,
779 (long long)fl->fl_start, (long long)fl->fl_end);
781 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
783 /* No mandatory locks over NFS */
784 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
785 goto out_err;
787 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
788 is_local = 1;
790 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
791 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
792 if (ret < 0)
793 goto out_err;
796 if (IS_GETLK(cmd))
797 ret = do_getlk(filp, cmd, fl, is_local);
798 else if (fl->fl_type == F_UNLCK)
799 ret = do_unlk(filp, cmd, fl, is_local);
800 else
801 ret = do_setlk(filp, cmd, fl, is_local);
802 out_err:
803 return ret;
805 EXPORT_SYMBOL_GPL(nfs_lock);
808 * Lock a (portion of) a file
810 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
812 struct inode *inode = filp->f_mapping->host;
813 int is_local = 0;
815 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
816 filp, fl->fl_type, fl->fl_flags);
818 if (!(fl->fl_flags & FL_FLOCK))
819 return -ENOLCK;
822 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
823 * any standard. In principle we might be able to support LOCK_MAND
824 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
825 * NFS code is not set up for it.
827 if (fl->fl_type & LOCK_MAND)
828 return -EINVAL;
830 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
831 is_local = 1;
833 /* We're simulating flock() locks using posix locks on the server */
834 if (fl->fl_type == F_UNLCK)
835 return do_unlk(filp, cmd, fl, is_local);
836 return do_setlk(filp, cmd, fl, is_local);
838 EXPORT_SYMBOL_GPL(nfs_flock);
840 const struct file_operations nfs_file_operations = {
841 .llseek = nfs_file_llseek,
842 .read_iter = nfs_file_read,
843 .write_iter = nfs_file_write,
844 .mmap = nfs_file_mmap,
845 .open = nfs_file_open,
846 .flush = nfs_file_flush,
847 .release = nfs_file_release,
848 .fsync = nfs_file_fsync,
849 .lock = nfs_lock,
850 .flock = nfs_flock,
851 .splice_read = generic_file_splice_read,
852 .splice_write = iter_file_splice_write,
853 .check_flags = nfs_check_flags,
854 .setlease = simple_nosetlease,
856 EXPORT_SYMBOL_GPL(nfs_file_operations);