Linux 4.19.133
[linux/fpc-iii.git] / fs / pstore / ram_core.c
blob3c777ec80d470742979a13be6b1193e45a73725c
1 /*
2 * Copyright (C) 2012 Google, Inc.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
15 #define pr_fmt(fmt) "persistent_ram: " fmt
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/pstore_ram.h>
26 #include <linux/rslib.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <asm/page.h>
32 struct persistent_ram_buffer {
33 uint32_t sig;
34 atomic_t start;
35 atomic_t size;
36 uint8_t data[0];
39 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
41 static inline size_t buffer_size(struct persistent_ram_zone *prz)
43 return atomic_read(&prz->buffer->size);
46 static inline size_t buffer_start(struct persistent_ram_zone *prz)
48 return atomic_read(&prz->buffer->start);
51 /* increase and wrap the start pointer, returning the old value */
52 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
54 int old;
55 int new;
56 unsigned long flags = 0;
58 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
59 raw_spin_lock_irqsave(&prz->buffer_lock, flags);
61 old = atomic_read(&prz->buffer->start);
62 new = old + a;
63 while (unlikely(new >= prz->buffer_size))
64 new -= prz->buffer_size;
65 atomic_set(&prz->buffer->start, new);
67 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
68 raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
70 return old;
73 /* increase the size counter until it hits the max size */
74 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
76 size_t old;
77 size_t new;
78 unsigned long flags = 0;
80 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
81 raw_spin_lock_irqsave(&prz->buffer_lock, flags);
83 old = atomic_read(&prz->buffer->size);
84 if (old == prz->buffer_size)
85 goto exit;
87 new = old + a;
88 if (new > prz->buffer_size)
89 new = prz->buffer_size;
90 atomic_set(&prz->buffer->size, new);
92 exit:
93 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
94 raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
97 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
98 uint8_t *data, size_t len, uint8_t *ecc)
100 int i;
102 /* Initialize the parity buffer */
103 memset(prz->ecc_info.par, 0,
104 prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
105 encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
106 for (i = 0; i < prz->ecc_info.ecc_size; i++)
107 ecc[i] = prz->ecc_info.par[i];
110 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
111 void *data, size_t len, uint8_t *ecc)
113 int i;
115 for (i = 0; i < prz->ecc_info.ecc_size; i++)
116 prz->ecc_info.par[i] = ecc[i];
117 return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
118 NULL, 0, NULL, 0, NULL);
121 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
122 unsigned int start, unsigned int count)
124 struct persistent_ram_buffer *buffer = prz->buffer;
125 uint8_t *buffer_end = buffer->data + prz->buffer_size;
126 uint8_t *block;
127 uint8_t *par;
128 int ecc_block_size = prz->ecc_info.block_size;
129 int ecc_size = prz->ecc_info.ecc_size;
130 int size = ecc_block_size;
132 if (!ecc_size)
133 return;
135 block = buffer->data + (start & ~(ecc_block_size - 1));
136 par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138 do {
139 if (block + ecc_block_size > buffer_end)
140 size = buffer_end - block;
141 persistent_ram_encode_rs8(prz, block, size, par);
142 block += ecc_block_size;
143 par += ecc_size;
144 } while (block < buffer->data + start + count);
147 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149 struct persistent_ram_buffer *buffer = prz->buffer;
151 if (!prz->ecc_info.ecc_size)
152 return;
154 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
155 prz->par_header);
158 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160 struct persistent_ram_buffer *buffer = prz->buffer;
161 uint8_t *block;
162 uint8_t *par;
164 if (!prz->ecc_info.ecc_size)
165 return;
167 block = buffer->data;
168 par = prz->par_buffer;
169 while (block < buffer->data + buffer_size(prz)) {
170 int numerr;
171 int size = prz->ecc_info.block_size;
172 if (block + size > buffer->data + prz->buffer_size)
173 size = buffer->data + prz->buffer_size - block;
174 numerr = persistent_ram_decode_rs8(prz, block, size, par);
175 if (numerr > 0) {
176 pr_devel("error in block %p, %d\n", block, numerr);
177 prz->corrected_bytes += numerr;
178 } else if (numerr < 0) {
179 pr_devel("uncorrectable error in block %p\n", block);
180 prz->bad_blocks++;
182 block += prz->ecc_info.block_size;
183 par += prz->ecc_info.ecc_size;
187 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
188 struct persistent_ram_ecc_info *ecc_info)
190 int numerr;
191 struct persistent_ram_buffer *buffer = prz->buffer;
192 int ecc_blocks;
193 size_t ecc_total;
195 if (!ecc_info || !ecc_info->ecc_size)
196 return 0;
198 prz->ecc_info.block_size = ecc_info->block_size ?: 128;
199 prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
200 prz->ecc_info.symsize = ecc_info->symsize ?: 8;
201 prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203 ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
204 prz->ecc_info.block_size +
205 prz->ecc_info.ecc_size);
206 ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
207 if (ecc_total >= prz->buffer_size) {
208 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
209 __func__, prz->ecc_info.ecc_size,
210 ecc_total, prz->buffer_size);
211 return -EINVAL;
214 prz->buffer_size -= ecc_total;
215 prz->par_buffer = buffer->data + prz->buffer_size;
216 prz->par_header = prz->par_buffer +
217 ecc_blocks * prz->ecc_info.ecc_size;
220 * first consecutive root is 0
221 * primitive element to generate roots = 1
223 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
224 0, 1, prz->ecc_info.ecc_size);
225 if (prz->rs_decoder == NULL) {
226 pr_info("init_rs failed\n");
227 return -EINVAL;
230 /* allocate workspace instead of using stack VLA */
231 prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
232 sizeof(*prz->ecc_info.par),
233 GFP_KERNEL);
234 if (!prz->ecc_info.par) {
235 pr_err("cannot allocate ECC parity workspace\n");
236 return -ENOMEM;
239 prz->corrected_bytes = 0;
240 prz->bad_blocks = 0;
242 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
243 prz->par_header);
244 if (numerr > 0) {
245 pr_info("error in header, %d\n", numerr);
246 prz->corrected_bytes += numerr;
247 } else if (numerr < 0) {
248 pr_info("uncorrectable error in header\n");
249 prz->bad_blocks++;
252 return 0;
255 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
256 char *str, size_t len)
258 ssize_t ret;
260 if (!prz->ecc_info.ecc_size)
261 return 0;
263 if (prz->corrected_bytes || prz->bad_blocks)
264 ret = snprintf(str, len, ""
265 "\n%d Corrected bytes, %d unrecoverable blocks\n",
266 prz->corrected_bytes, prz->bad_blocks);
267 else
268 ret = snprintf(str, len, "\nNo errors detected\n");
270 return ret;
273 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
274 const void *s, unsigned int start, unsigned int count)
276 struct persistent_ram_buffer *buffer = prz->buffer;
277 memcpy_toio(buffer->data + start, s, count);
278 persistent_ram_update_ecc(prz, start, count);
281 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
282 const void __user *s, unsigned int start, unsigned int count)
284 struct persistent_ram_buffer *buffer = prz->buffer;
285 int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
286 -EFAULT : 0;
287 persistent_ram_update_ecc(prz, start, count);
288 return ret;
291 void persistent_ram_save_old(struct persistent_ram_zone *prz)
293 struct persistent_ram_buffer *buffer = prz->buffer;
294 size_t size = buffer_size(prz);
295 size_t start = buffer_start(prz);
297 if (!size)
298 return;
300 if (!prz->old_log) {
301 persistent_ram_ecc_old(prz);
302 prz->old_log = kmalloc(size, GFP_KERNEL);
304 if (!prz->old_log) {
305 pr_err("failed to allocate buffer\n");
306 return;
309 prz->old_log_size = size;
310 memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
311 memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
314 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
315 const void *s, unsigned int count)
317 int rem;
318 int c = count;
319 size_t start;
321 if (unlikely(c > prz->buffer_size)) {
322 s += c - prz->buffer_size;
323 c = prz->buffer_size;
326 buffer_size_add(prz, c);
328 start = buffer_start_add(prz, c);
330 rem = prz->buffer_size - start;
331 if (unlikely(rem < c)) {
332 persistent_ram_update(prz, s, start, rem);
333 s += rem;
334 c -= rem;
335 start = 0;
337 persistent_ram_update(prz, s, start, c);
339 persistent_ram_update_header_ecc(prz);
341 return count;
344 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
345 const void __user *s, unsigned int count)
347 int rem, ret = 0, c = count;
348 size_t start;
350 if (unlikely(!access_ok(VERIFY_READ, s, count)))
351 return -EFAULT;
352 if (unlikely(c > prz->buffer_size)) {
353 s += c - prz->buffer_size;
354 c = prz->buffer_size;
357 buffer_size_add(prz, c);
359 start = buffer_start_add(prz, c);
361 rem = prz->buffer_size - start;
362 if (unlikely(rem < c)) {
363 ret = persistent_ram_update_user(prz, s, start, rem);
364 s += rem;
365 c -= rem;
366 start = 0;
368 if (likely(!ret))
369 ret = persistent_ram_update_user(prz, s, start, c);
371 persistent_ram_update_header_ecc(prz);
373 return unlikely(ret) ? ret : count;
376 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
378 return prz->old_log_size;
381 void *persistent_ram_old(struct persistent_ram_zone *prz)
383 return prz->old_log;
386 void persistent_ram_free_old(struct persistent_ram_zone *prz)
388 kfree(prz->old_log);
389 prz->old_log = NULL;
390 prz->old_log_size = 0;
393 void persistent_ram_zap(struct persistent_ram_zone *prz)
395 atomic_set(&prz->buffer->start, 0);
396 atomic_set(&prz->buffer->size, 0);
397 persistent_ram_update_header_ecc(prz);
400 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
401 unsigned int memtype)
403 struct page **pages;
404 phys_addr_t page_start;
405 unsigned int page_count;
406 pgprot_t prot;
407 unsigned int i;
408 void *vaddr;
410 page_start = start - offset_in_page(start);
411 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
413 if (memtype)
414 prot = pgprot_noncached(PAGE_KERNEL);
415 else
416 prot = pgprot_writecombine(PAGE_KERNEL);
418 pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
419 if (!pages) {
420 pr_err("%s: Failed to allocate array for %u pages\n",
421 __func__, page_count);
422 return NULL;
425 for (i = 0; i < page_count; i++) {
426 phys_addr_t addr = page_start + i * PAGE_SIZE;
427 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
429 vaddr = vmap(pages, page_count, VM_MAP, prot);
430 kfree(pages);
433 * Since vmap() uses page granularity, we must add the offset
434 * into the page here, to get the byte granularity address
435 * into the mapping to represent the actual "start" location.
437 return vaddr + offset_in_page(start);
440 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
441 unsigned int memtype)
443 void *va;
445 if (!request_mem_region(start, size, "persistent_ram")) {
446 pr_err("request mem region (0x%llx@0x%llx) failed\n",
447 (unsigned long long)size, (unsigned long long)start);
448 return NULL;
451 if (memtype)
452 va = ioremap(start, size);
453 else
454 va = ioremap_wc(start, size);
457 * Since request_mem_region() and ioremap() are byte-granularity
458 * there is no need handle anything special like we do when the
459 * vmap() case in persistent_ram_vmap() above.
461 return va;
464 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
465 struct persistent_ram_zone *prz, int memtype)
467 prz->paddr = start;
468 prz->size = size;
470 if (pfn_valid(start >> PAGE_SHIFT))
471 prz->vaddr = persistent_ram_vmap(start, size, memtype);
472 else
473 prz->vaddr = persistent_ram_iomap(start, size, memtype);
475 if (!prz->vaddr) {
476 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
477 (unsigned long long)size, (unsigned long long)start);
478 return -ENOMEM;
481 prz->buffer = prz->vaddr;
482 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
484 return 0;
487 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
488 struct persistent_ram_ecc_info *ecc_info)
490 int ret;
492 ret = persistent_ram_init_ecc(prz, ecc_info);
493 if (ret)
494 return ret;
496 sig ^= PERSISTENT_RAM_SIG;
498 if (prz->buffer->sig == sig) {
499 if (buffer_size(prz) == 0) {
500 pr_debug("found existing empty buffer\n");
501 return 0;
504 if (buffer_size(prz) > prz->buffer_size ||
505 buffer_start(prz) > buffer_size(prz))
506 pr_info("found existing invalid buffer, size %zu, start %zu\n",
507 buffer_size(prz), buffer_start(prz));
508 else {
509 pr_debug("found existing buffer, size %zu, start %zu\n",
510 buffer_size(prz), buffer_start(prz));
511 persistent_ram_save_old(prz);
512 return 0;
514 } else {
515 pr_debug("no valid data in buffer (sig = 0x%08x)\n",
516 prz->buffer->sig);
519 /* Rewind missing or invalid memory area. */
520 prz->buffer->sig = sig;
521 persistent_ram_zap(prz);
523 return 0;
526 void persistent_ram_free(struct persistent_ram_zone *prz)
528 if (!prz)
529 return;
531 if (prz->vaddr) {
532 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
533 /* We must vunmap() at page-granularity. */
534 vunmap(prz->vaddr - offset_in_page(prz->paddr));
535 } else {
536 iounmap(prz->vaddr);
537 release_mem_region(prz->paddr, prz->size);
539 prz->vaddr = NULL;
541 if (prz->rs_decoder) {
542 free_rs(prz->rs_decoder);
543 prz->rs_decoder = NULL;
545 kfree(prz->ecc_info.par);
546 prz->ecc_info.par = NULL;
548 persistent_ram_free_old(prz);
549 kfree(prz);
552 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
553 u32 sig, struct persistent_ram_ecc_info *ecc_info,
554 unsigned int memtype, u32 flags)
556 struct persistent_ram_zone *prz;
557 int ret = -ENOMEM;
559 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
560 if (!prz) {
561 pr_err("failed to allocate persistent ram zone\n");
562 goto err;
565 /* Initialize general buffer state. */
566 raw_spin_lock_init(&prz->buffer_lock);
567 prz->flags = flags;
569 ret = persistent_ram_buffer_map(start, size, prz, memtype);
570 if (ret)
571 goto err;
573 ret = persistent_ram_post_init(prz, sig, ecc_info);
574 if (ret)
575 goto err;
577 return prz;
578 err:
579 persistent_ram_free(prz);
580 return ERR_PTR(ret);