Linux 4.19.133
[linux/fpc-iii.git] / fs / reiserfs / inode.c
blob6419e6dacc394dd0e3290a4fefe6af35b06039b2
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
27 void reiserfs_evict_inode(struct inode *inode)
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
53 reiserfs_delete_xattrs(inode);
55 reiserfs_write_lock(inode->i_sb);
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
61 reiserfs_discard_prealloc(&th, inode);
63 err = reiserfs_delete_object(&th, inode);
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
76 if (journal_end(&th))
77 goto out;
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
83 if (err)
84 goto out;
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
91 remove_save_link(inode, 0 /* not truncate */);
92 out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
106 no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
114 key->version = version;
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
136 /* when key is 0, do not set version and short key */
137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
156 put_ih_entry_count(ih, entry_count);
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to readpage,
174 * needlessly researching again later on.
176 * The size of the cache could be dynamic based on the size of the file.
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
181 * --chris
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
193 static inline void fix_tail_page_for_writing(struct page *page)
195 struct buffer_head *head, *next, *bh;
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
205 bh = next;
206 } while (bh != head);
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
226 static inline int indirect_item_found(int retval, struct item_head *ih)
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
234 map_bh(bh, inode->i_sb, block);
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
241 static int file_capable(struct inode *inode, sector_t block)
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
249 return 0;
252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
255 struct super_block *s = th->t_super;
256 int err;
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
261 pathrelse(path);
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
274 return err;
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p = NULL;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (p)
309 kunmap(bh_result->b_page);
310 if (result == IO_ERROR)
311 return -EIO;
313 * We do not return -ENOENT if there is a hole but page is
314 * uptodate, because it means that there is some MMAPED data
315 * associated with it that is yet to be written to disk.
317 if ((args & GET_BLOCK_NO_HOLE)
318 && !PageUptodate(bh_result->b_page)) {
319 return -ENOENT;
321 return 0;
324 bh = get_last_bh(&path);
325 ih = tp_item_head(&path);
326 if (is_indirect_le_ih(ih)) {
327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
330 * FIXME: here we could cache indirect item or part of it in
331 * the inode to avoid search_by_key in case of subsequent
332 * access to file
334 blocknr = get_block_num(ind_item, path.pos_in_item);
335 ret = 0;
336 if (blocknr) {
337 map_bh(bh_result, inode->i_sb, blocknr);
338 if (path.pos_in_item ==
339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
340 set_buffer_boundary(bh_result);
342 } else
344 * We do not return -ENOENT if there is a hole but
345 * page is uptodate, because it means that there is
346 * some MMAPED data associated with it that is
347 * yet to be written to disk.
349 if ((args & GET_BLOCK_NO_HOLE)
350 && !PageUptodate(bh_result->b_page)) {
351 ret = -ENOENT;
354 pathrelse(&path);
355 if (p)
356 kunmap(bh_result->b_page);
357 return ret;
359 /* requested data are in direct item(s) */
360 if (!(args & GET_BLOCK_READ_DIRECT)) {
362 * we are called by bmap. FIXME: we can not map block of file
363 * when it is stored in direct item(s)
365 pathrelse(&path);
366 if (p)
367 kunmap(bh_result->b_page);
368 return -ENOENT;
372 * if we've got a direct item, and the buffer or page was uptodate,
373 * we don't want to pull data off disk again. skip to the
374 * end, where we map the buffer and return
376 if (buffer_uptodate(bh_result)) {
377 goto finished;
378 } else
380 * grab_tail_page can trigger calls to reiserfs_get_block on
381 * up to date pages without any buffers. If the page is up
382 * to date, we don't want read old data off disk. Set the up
383 * to date bit on the buffer instead and jump to the end
385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
386 set_buffer_uptodate(bh_result);
387 goto finished;
389 /* read file tail into part of page */
390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
391 copy_item_head(&tmp_ih, ih);
394 * we only want to kmap if we are reading the tail into the page.
395 * this is not the common case, so we don't kmap until we are
396 * sure we need to. But, this means the item might move if
397 * kmap schedules
399 if (!p)
400 p = (char *)kmap(bh_result->b_page);
402 p += offset;
403 memset(p, 0, inode->i_sb->s_blocksize);
404 do {
405 if (!is_direct_le_ih(ih)) {
406 BUG();
409 * make sure we don't read more bytes than actually exist in
410 * the file. This can happen in odd cases where i_size isn't
411 * correct, and when direct item padding results in a few
412 * extra bytes at the end of the direct item
414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
415 break;
416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
417 chars =
418 inode->i_size - (le_ih_k_offset(ih) - 1) -
419 path.pos_in_item;
420 done = 1;
421 } else {
422 chars = ih_item_len(ih) - path.pos_in_item;
424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
426 if (done)
427 break;
429 p += chars;
432 * we done, if read direct item is not the last item of
433 * node FIXME: we could try to check right delimiting key
434 * to see whether direct item continues in the right
435 * neighbor or rely on i_size
437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
438 break;
440 /* update key to look for the next piece */
441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
442 result = search_for_position_by_key(inode->i_sb, &key, &path);
443 if (result != POSITION_FOUND)
444 /* i/o error most likely */
445 break;
446 bh = get_last_bh(&path);
447 ih = tp_item_head(&path);
448 } while (1);
450 flush_dcache_page(bh_result->b_page);
451 kunmap(bh_result->b_page);
453 finished:
454 pathrelse(&path);
456 if (result == IO_ERROR)
457 return -EIO;
460 * this buffer has valid data, but isn't valid for io. mapping it to
461 * block #0 tells the rest of reiserfs it just has a tail in it
463 map_bh(bh_result, inode->i_sb, 0);
464 set_buffer_uptodate(bh_result);
465 return 0;
469 * this is called to create file map. So, _get_block_create_0 will not
470 * read direct item
472 static int reiserfs_bmap(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
475 if (!file_capable(inode, block))
476 return -EFBIG;
478 reiserfs_write_lock(inode->i_sb);
479 /* do not read the direct item */
480 _get_block_create_0(inode, block, bh_result, 0);
481 reiserfs_write_unlock(inode->i_sb);
482 return 0;
486 * special version of get_block that is only used by grab_tail_page right
487 * now. It is sent to __block_write_begin, and when you try to get a
488 * block past the end of the file (or a block from a hole) it returns
489 * -ENOENT instead of a valid buffer. __block_write_begin expects to
490 * be able to do i/o on the buffers returned, unless an error value
491 * is also returned.
493 * So, this allows __block_write_begin to be used for reading a single block
494 * in a page. Where it does not produce a valid page for holes, or past the
495 * end of the file. This turns out to be exactly what we need for reading
496 * tails for conversion.
498 * The point of the wrapper is forcing a certain value for create, even
499 * though the VFS layer is calling this function with create==1. If you
500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
501 * don't use this function.
503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
504 struct buffer_head *bh_result,
505 int create)
507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
511 * This is special helper for reiserfs_get_block in case we are executing
512 * direct_IO request.
514 static int reiserfs_get_blocks_direct_io(struct inode *inode,
515 sector_t iblock,
516 struct buffer_head *bh_result,
517 int create)
519 int ret;
521 bh_result->b_page = NULL;
524 * We set the b_size before reiserfs_get_block call since it is
525 * referenced in convert_tail_for_hole() that may be called from
526 * reiserfs_get_block()
528 bh_result->b_size = i_blocksize(inode);
530 ret = reiserfs_get_block(inode, iblock, bh_result,
531 create | GET_BLOCK_NO_DANGLE);
532 if (ret)
533 goto out;
535 /* don't allow direct io onto tail pages */
536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
538 * make sure future calls to the direct io funcs for this
539 * offset in the file fail by unmapping the buffer
541 clear_buffer_mapped(bh_result);
542 ret = -EINVAL;
546 * Possible unpacked tail. Flush the data before pages have
547 * disappeared
549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
550 int err;
552 reiserfs_write_lock(inode->i_sb);
554 err = reiserfs_commit_for_inode(inode);
555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
557 reiserfs_write_unlock(inode->i_sb);
559 if (err < 0)
560 ret = err;
562 out:
563 return ret;
567 * helper function for when reiserfs_get_block is called for a hole
568 * but the file tail is still in a direct item
569 * bh_result is the buffer head for the hole
570 * tail_offset is the offset of the start of the tail in the file
572 * This calls prepare_write, which will start a new transaction
573 * you should not be in a transaction, or have any paths held when you
574 * call this.
576 static int convert_tail_for_hole(struct inode *inode,
577 struct buffer_head *bh_result,
578 loff_t tail_offset)
580 unsigned long index;
581 unsigned long tail_end;
582 unsigned long tail_start;
583 struct page *tail_page;
584 struct page *hole_page = bh_result->b_page;
585 int retval = 0;
587 if ((tail_offset & (bh_result->b_size - 1)) != 1)
588 return -EIO;
590 /* always try to read until the end of the block */
591 tail_start = tail_offset & (PAGE_SIZE - 1);
592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
594 index = tail_offset >> PAGE_SHIFT;
596 * hole_page can be zero in case of direct_io, we are sure
597 * that we cannot get here if we write with O_DIRECT into tail page
599 if (!hole_page || index != hole_page->index) {
600 tail_page = grab_cache_page(inode->i_mapping, index);
601 retval = -ENOMEM;
602 if (!tail_page) {
603 goto out;
605 } else {
606 tail_page = hole_page;
610 * we don't have to make sure the conversion did not happen while
611 * we were locking the page because anyone that could convert
612 * must first take i_mutex.
614 * We must fix the tail page for writing because it might have buffers
615 * that are mapped, but have a block number of 0. This indicates tail
616 * data that has been read directly into the page, and
617 * __block_write_begin won't trigger a get_block in this case.
619 fix_tail_page_for_writing(tail_page);
620 retval = __reiserfs_write_begin(tail_page, tail_start,
621 tail_end - tail_start);
622 if (retval)
623 goto unlock;
625 /* tail conversion might change the data in the page */
626 flush_dcache_page(tail_page);
628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
630 unlock:
631 if (tail_page != hole_page) {
632 unlock_page(tail_page);
633 put_page(tail_page);
635 out:
636 return retval;
639 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
640 sector_t block,
641 struct inode *inode,
642 b_blocknr_t * allocated_block_nr,
643 struct treepath *path, int flags)
645 BUG_ON(!th->t_trans_id);
647 #ifdef REISERFS_PREALLOCATE
648 if (!(flags & GET_BLOCK_NO_IMUX)) {
649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
650 path, block);
652 #endif
653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
654 block);
657 int reiserfs_get_block(struct inode *inode, sector_t block,
658 struct buffer_head *bh_result, int create)
660 int repeat, retval = 0;
661 /* b_blocknr_t is (unsigned) 32 bit int*/
662 b_blocknr_t allocated_block_nr = 0;
663 INITIALIZE_PATH(path);
664 int pos_in_item;
665 struct cpu_key key;
666 struct buffer_head *bh, *unbh = NULL;
667 struct item_head *ih, tmp_ih;
668 __le32 *item;
669 int done;
670 int fs_gen;
671 struct reiserfs_transaction_handle *th = NULL;
673 * space reserved in transaction batch:
674 * . 3 balancings in direct->indirect conversion
675 * . 1 block involved into reiserfs_update_sd()
676 * XXX in practically impossible worst case direct2indirect()
677 * can incur (much) more than 3 balancings.
678 * quota update for user, group
680 int jbegin_count =
681 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
683 int version;
684 int dangle = 1;
685 loff_t new_offset =
686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
688 reiserfs_write_lock(inode->i_sb);
689 version = get_inode_item_key_version(inode);
691 if (!file_capable(inode, block)) {
692 reiserfs_write_unlock(inode->i_sb);
693 return -EFBIG;
697 * if !create, we aren't changing the FS, so we don't need to
698 * log anything, so we don't need to start a transaction
700 if (!(create & GET_BLOCK_CREATE)) {
701 int ret;
702 /* find number of block-th logical block of the file */
703 ret = _get_block_create_0(inode, block, bh_result,
704 create | GET_BLOCK_READ_DIRECT);
705 reiserfs_write_unlock(inode->i_sb);
706 return ret;
710 * if we're already in a transaction, make sure to close
711 * any new transactions we start in this func
713 if ((create & GET_BLOCK_NO_DANGLE) ||
714 reiserfs_transaction_running(inode->i_sb))
715 dangle = 0;
718 * If file is of such a size, that it might have a tail and
719 * tails are enabled we should mark it as possibly needing
720 * tail packing on close
722 if ((have_large_tails(inode->i_sb)
723 && inode->i_size < i_block_size(inode) * 4)
724 || (have_small_tails(inode->i_sb)
725 && inode->i_size < i_block_size(inode)))
726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
728 /* set the key of the first byte in the 'block'-th block of file */
729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
731 start_trans:
732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
733 if (!th) {
734 retval = -ENOMEM;
735 goto failure;
737 reiserfs_update_inode_transaction(inode);
739 research:
741 retval = search_for_position_by_key(inode->i_sb, &key, &path);
742 if (retval == IO_ERROR) {
743 retval = -EIO;
744 goto failure;
747 bh = get_last_bh(&path);
748 ih = tp_item_head(&path);
749 item = tp_item_body(&path);
750 pos_in_item = path.pos_in_item;
752 fs_gen = get_generation(inode->i_sb);
753 copy_item_head(&tmp_ih, ih);
755 if (allocation_needed
756 (retval, allocated_block_nr, ih, item, pos_in_item)) {
757 /* we have to allocate block for the unformatted node */
758 if (!th) {
759 pathrelse(&path);
760 goto start_trans;
763 repeat =
764 _allocate_block(th, block, inode, &allocated_block_nr,
765 &path, create);
768 * restart the transaction to give the journal a chance to free
769 * some blocks. releases the path, so we have to go back to
770 * research if we succeed on the second try
772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
774 retval = restart_transaction(th, inode, &path);
775 if (retval)
776 goto failure;
777 repeat =
778 _allocate_block(th, block, inode,
779 &allocated_block_nr, NULL, create);
781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
782 goto research;
784 if (repeat == QUOTA_EXCEEDED)
785 retval = -EDQUOT;
786 else
787 retval = -ENOSPC;
788 goto failure;
791 if (fs_changed(fs_gen, inode->i_sb)
792 && item_moved(&tmp_ih, &path)) {
793 goto research;
797 if (indirect_item_found(retval, ih)) {
798 b_blocknr_t unfm_ptr;
800 * 'block'-th block is in the file already (there is
801 * corresponding cell in some indirect item). But it may be
802 * zero unformatted node pointer (hole)
804 unfm_ptr = get_block_num(item, pos_in_item);
805 if (unfm_ptr == 0) {
806 /* use allocated block to plug the hole */
807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
808 if (fs_changed(fs_gen, inode->i_sb)
809 && item_moved(&tmp_ih, &path)) {
810 reiserfs_restore_prepared_buffer(inode->i_sb,
811 bh);
812 goto research;
814 set_buffer_new(bh_result);
815 if (buffer_dirty(bh_result)
816 && reiserfs_data_ordered(inode->i_sb))
817 reiserfs_add_ordered_list(inode, bh_result);
818 put_block_num(item, pos_in_item, allocated_block_nr);
819 unfm_ptr = allocated_block_nr;
820 journal_mark_dirty(th, bh);
821 reiserfs_update_sd(th, inode);
823 set_block_dev_mapped(bh_result, unfm_ptr, inode);
824 pathrelse(&path);
825 retval = 0;
826 if (!dangle && th)
827 retval = reiserfs_end_persistent_transaction(th);
829 reiserfs_write_unlock(inode->i_sb);
832 * the item was found, so new blocks were not added to the file
833 * there is no need to make sure the inode is updated with this
834 * transaction
836 return retval;
839 if (!th) {
840 pathrelse(&path);
841 goto start_trans;
845 * desired position is not found or is in the direct item. We have
846 * to append file with holes up to 'block'-th block converting
847 * direct items to indirect one if necessary
849 done = 0;
850 do {
851 if (is_statdata_le_ih(ih)) {
852 __le32 unp = 0;
853 struct cpu_key tmp_key;
855 /* indirect item has to be inserted */
856 make_le_item_head(&tmp_ih, &key, version, 1,
857 TYPE_INDIRECT, UNFM_P_SIZE,
858 0 /* free_space */ );
861 * we are going to add 'block'-th block to the file.
862 * Use allocated block for that
864 if (cpu_key_k_offset(&key) == 1) {
865 unp = cpu_to_le32(allocated_block_nr);
866 set_block_dev_mapped(bh_result,
867 allocated_block_nr, inode);
868 set_buffer_new(bh_result);
869 done = 1;
871 tmp_key = key; /* ;) */
872 set_cpu_key_k_offset(&tmp_key, 1);
873 PATH_LAST_POSITION(&path)++;
875 retval =
876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
877 inode, (char *)&unp);
878 if (retval) {
879 reiserfs_free_block(th, inode,
880 allocated_block_nr, 1);
882 * retval == -ENOSPC, -EDQUOT or -EIO
883 * or -EEXIST
885 goto failure;
887 } else if (is_direct_le_ih(ih)) {
888 /* direct item has to be converted */
889 loff_t tail_offset;
891 tail_offset =
892 ((le_ih_k_offset(ih) -
893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
896 * direct item we just found fits into block we have
897 * to map. Convert it into unformatted node: use
898 * bh_result for the conversion
900 if (tail_offset == cpu_key_k_offset(&key)) {
901 set_block_dev_mapped(bh_result,
902 allocated_block_nr, inode);
903 unbh = bh_result;
904 done = 1;
905 } else {
907 * we have to pad file tail stored in direct
908 * item(s) up to block size and convert it
909 * to unformatted node. FIXME: this should
910 * also get into page cache
913 pathrelse(&path);
915 * ugly, but we can only end the transaction if
916 * we aren't nested
918 BUG_ON(!th->t_refcount);
919 if (th->t_refcount == 1) {
920 retval =
921 reiserfs_end_persistent_transaction
922 (th);
923 th = NULL;
924 if (retval)
925 goto failure;
928 retval =
929 convert_tail_for_hole(inode, bh_result,
930 tail_offset);
931 if (retval) {
932 if (retval != -ENOSPC)
933 reiserfs_error(inode->i_sb,
934 "clm-6004",
935 "convert tail failed "
936 "inode %lu, error %d",
937 inode->i_ino,
938 retval);
939 if (allocated_block_nr) {
941 * the bitmap, the super,
942 * and the stat data == 3
944 if (!th)
945 th = reiserfs_persistent_transaction(inode->i_sb, 3);
946 if (th)
947 reiserfs_free_block(th,
948 inode,
949 allocated_block_nr,
952 goto failure;
954 goto research;
956 retval =
957 direct2indirect(th, inode, &path, unbh,
958 tail_offset);
959 if (retval) {
960 reiserfs_unmap_buffer(unbh);
961 reiserfs_free_block(th, inode,
962 allocated_block_nr, 1);
963 goto failure;
966 * it is important the set_buffer_uptodate is done
967 * after the direct2indirect. The buffer might
968 * contain valid data newer than the data on disk
969 * (read by readpage, changed, and then sent here by
970 * writepage). direct2indirect needs to know if unbh
971 * was already up to date, so it can decide if the
972 * data in unbh needs to be replaced with data from
973 * the disk
975 set_buffer_uptodate(unbh);
978 * unbh->b_page == NULL in case of DIRECT_IO request,
979 * this means buffer will disappear shortly, so it
980 * should not be added to
982 if (unbh->b_page) {
984 * we've converted the tail, so we must
985 * flush unbh before the transaction commits
987 reiserfs_add_tail_list(inode, unbh);
990 * mark it dirty now to prevent commit_write
991 * from adding this buffer to the inode's
992 * dirty buffer list
995 * AKPM: changed __mark_buffer_dirty to
996 * mark_buffer_dirty(). It's still atomic,
997 * but it sets the page dirty too, which makes
998 * it eligible for writeback at any time by the
999 * VM (which was also the case with
1000 * __mark_buffer_dirty())
1002 mark_buffer_dirty(unbh);
1004 } else {
1006 * append indirect item with holes if needed, when
1007 * appending pointer to 'block'-th block use block,
1008 * which is already allocated
1010 struct cpu_key tmp_key;
1012 * We use this in case we need to allocate
1013 * only one block which is a fastpath
1015 unp_t unf_single = 0;
1016 unp_t *un;
1017 __u64 max_to_insert =
1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019 UNFM_P_SIZE;
1020 __u64 blocks_needed;
1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023 "vs-804: invalid position for append");
1025 * indirect item has to be appended,
1026 * set up key of that position
1027 * (key type is unimportant)
1029 make_cpu_key(&tmp_key, inode,
1030 le_key_k_offset(version,
1031 &ih->ih_key) +
1032 op_bytes_number(ih,
1033 inode->i_sb->s_blocksize),
1034 TYPE_INDIRECT, 3);
1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037 "green-805: invalid offset");
1038 blocks_needed =
1040 ((cpu_key_k_offset(&key) -
1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042 s_blocksize_bits);
1044 if (blocks_needed == 1) {
1045 un = &unf_single;
1046 } else {
1047 un = kcalloc(min(blocks_needed, max_to_insert),
1048 UNFM_P_SIZE, GFP_NOFS);
1049 if (!un) {
1050 un = &unf_single;
1051 blocks_needed = 1;
1052 max_to_insert = 0;
1055 if (blocks_needed <= max_to_insert) {
1057 * we are going to add target block to
1058 * the file. Use allocated block for that
1060 un[blocks_needed - 1] =
1061 cpu_to_le32(allocated_block_nr);
1062 set_block_dev_mapped(bh_result,
1063 allocated_block_nr, inode);
1064 set_buffer_new(bh_result);
1065 done = 1;
1066 } else {
1067 /* paste hole to the indirect item */
1069 * If kmalloc failed, max_to_insert becomes
1070 * zero and it means we only have space for
1071 * one block
1073 blocks_needed =
1074 max_to_insert ? max_to_insert : 1;
1076 retval =
1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1078 (char *)un,
1079 UNFM_P_SIZE *
1080 blocks_needed);
1082 if (blocks_needed != 1)
1083 kfree(un);
1085 if (retval) {
1086 reiserfs_free_block(th, inode,
1087 allocated_block_nr, 1);
1088 goto failure;
1090 if (!done) {
1092 * We need to mark new file size in case
1093 * this function will be interrupted/aborted
1094 * later on. And we may do this only for
1095 * holes.
1097 inode->i_size +=
1098 inode->i_sb->s_blocksize * blocks_needed;
1102 if (done == 1)
1103 break;
1106 * this loop could log more blocks than we had originally
1107 * asked for. So, we have to allow the transaction to end
1108 * if it is too big or too full. Update the inode so things
1109 * are consistent if we crash before the function returns
1110 * release the path so that anybody waiting on the path before
1111 * ending their transaction will be able to continue.
1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1114 retval = restart_transaction(th, inode, &path);
1115 if (retval)
1116 goto failure;
1119 * inserting indirect pointers for a hole can take a
1120 * long time. reschedule if needed and also release the write
1121 * lock for others.
1123 reiserfs_cond_resched(inode->i_sb);
1125 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1126 if (retval == IO_ERROR) {
1127 retval = -EIO;
1128 goto failure;
1130 if (retval == POSITION_FOUND) {
1131 reiserfs_warning(inode->i_sb, "vs-825",
1132 "%K should not be found", &key);
1133 retval = -EEXIST;
1134 if (allocated_block_nr)
1135 reiserfs_free_block(th, inode,
1136 allocated_block_nr, 1);
1137 pathrelse(&path);
1138 goto failure;
1140 bh = get_last_bh(&path);
1141 ih = tp_item_head(&path);
1142 item = tp_item_body(&path);
1143 pos_in_item = path.pos_in_item;
1144 } while (1);
1146 retval = 0;
1148 failure:
1149 if (th && (!dangle || (retval && !th->t_trans_id))) {
1150 int err;
1151 if (th->t_trans_id)
1152 reiserfs_update_sd(th, inode);
1153 err = reiserfs_end_persistent_transaction(th);
1154 if (err)
1155 retval = err;
1158 reiserfs_write_unlock(inode->i_sb);
1159 reiserfs_check_path(&path);
1160 return retval;
1163 static int
1164 reiserfs_readpages(struct file *file, struct address_space *mapping,
1165 struct list_head *pages, unsigned nr_pages)
1167 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1171 * Compute real number of used bytes by file
1172 * Following three functions can go away when we'll have enough space in
1173 * stat item
1175 static int real_space_diff(struct inode *inode, int sd_size)
1177 int bytes;
1178 loff_t blocksize = inode->i_sb->s_blocksize;
1180 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1181 return sd_size;
1184 * End of file is also in full block with indirect reference, so round
1185 * up to the next block.
1187 * there is just no way to know if the tail is actually packed
1188 * on the file, so we have to assume it isn't. When we pack the
1189 * tail, we add 4 bytes to pretend there really is an unformatted
1190 * node pointer
1192 bytes =
1193 ((inode->i_size +
1194 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1195 sd_size;
1196 return bytes;
1199 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1200 int sd_size)
1202 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1203 return inode->i_size +
1204 (loff_t) (real_space_diff(inode, sd_size));
1206 return ((loff_t) real_space_diff(inode, sd_size)) +
1207 (((loff_t) blocks) << 9);
1210 /* Compute number of blocks used by file in ReiserFS counting */
1211 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1213 loff_t bytes = inode_get_bytes(inode);
1214 loff_t real_space = real_space_diff(inode, sd_size);
1216 /* keeps fsck and non-quota versions of reiserfs happy */
1217 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1218 bytes += (loff_t) 511;
1222 * files from before the quota patch might i_blocks such that
1223 * bytes < real_space. Deal with that here to prevent it from
1224 * going negative.
1226 if (bytes < real_space)
1227 return 0;
1228 return (bytes - real_space) >> 9;
1232 * BAD: new directories have stat data of new type and all other items
1233 * of old type. Version stored in the inode says about body items, so
1234 * in update_stat_data we can not rely on inode, but have to check
1235 * item version directly
1238 /* called by read_locked_inode */
1239 static void init_inode(struct inode *inode, struct treepath *path)
1241 struct buffer_head *bh;
1242 struct item_head *ih;
1243 __u32 rdev;
1245 bh = PATH_PLAST_BUFFER(path);
1246 ih = tp_item_head(path);
1248 copy_key(INODE_PKEY(inode), &ih->ih_key);
1250 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1251 REISERFS_I(inode)->i_flags = 0;
1252 REISERFS_I(inode)->i_prealloc_block = 0;
1253 REISERFS_I(inode)->i_prealloc_count = 0;
1254 REISERFS_I(inode)->i_trans_id = 0;
1255 REISERFS_I(inode)->i_jl = NULL;
1256 reiserfs_init_xattr_rwsem(inode);
1258 if (stat_data_v1(ih)) {
1259 struct stat_data_v1 *sd =
1260 (struct stat_data_v1 *)ih_item_body(bh, ih);
1261 unsigned long blocks;
1263 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1264 set_inode_sd_version(inode, STAT_DATA_V1);
1265 inode->i_mode = sd_v1_mode(sd);
1266 set_nlink(inode, sd_v1_nlink(sd));
1267 i_uid_write(inode, sd_v1_uid(sd));
1268 i_gid_write(inode, sd_v1_gid(sd));
1269 inode->i_size = sd_v1_size(sd);
1270 inode->i_atime.tv_sec = sd_v1_atime(sd);
1271 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1272 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1273 inode->i_atime.tv_nsec = 0;
1274 inode->i_ctime.tv_nsec = 0;
1275 inode->i_mtime.tv_nsec = 0;
1277 inode->i_blocks = sd_v1_blocks(sd);
1278 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1279 blocks = (inode->i_size + 511) >> 9;
1280 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1283 * there was a bug in <=3.5.23 when i_blocks could take
1284 * negative values. Starting from 3.5.17 this value could
1285 * even be stored in stat data. For such files we set
1286 * i_blocks based on file size. Just 2 notes: this can be
1287 * wrong for sparse files. On-disk value will be only
1288 * updated if file's inode will ever change
1290 if (inode->i_blocks > blocks) {
1291 inode->i_blocks = blocks;
1294 rdev = sd_v1_rdev(sd);
1295 REISERFS_I(inode)->i_first_direct_byte =
1296 sd_v1_first_direct_byte(sd);
1299 * an early bug in the quota code can give us an odd
1300 * number for the block count. This is incorrect, fix it here.
1302 if (inode->i_blocks & 1) {
1303 inode->i_blocks++;
1305 inode_set_bytes(inode,
1306 to_real_used_space(inode, inode->i_blocks,
1307 SD_V1_SIZE));
1309 * nopack is initially zero for v1 objects. For v2 objects,
1310 * nopack is initialised from sd_attrs
1312 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1313 } else {
1315 * new stat data found, but object may have old items
1316 * (directories and symlinks)
1318 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1320 inode->i_mode = sd_v2_mode(sd);
1321 set_nlink(inode, sd_v2_nlink(sd));
1322 i_uid_write(inode, sd_v2_uid(sd));
1323 inode->i_size = sd_v2_size(sd);
1324 i_gid_write(inode, sd_v2_gid(sd));
1325 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1326 inode->i_atime.tv_sec = sd_v2_atime(sd);
1327 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1328 inode->i_ctime.tv_nsec = 0;
1329 inode->i_mtime.tv_nsec = 0;
1330 inode->i_atime.tv_nsec = 0;
1331 inode->i_blocks = sd_v2_blocks(sd);
1332 rdev = sd_v2_rdev(sd);
1333 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1334 inode->i_generation =
1335 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1336 else
1337 inode->i_generation = sd_v2_generation(sd);
1339 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1340 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1341 else
1342 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1343 REISERFS_I(inode)->i_first_direct_byte = 0;
1344 set_inode_sd_version(inode, STAT_DATA_V2);
1345 inode_set_bytes(inode,
1346 to_real_used_space(inode, inode->i_blocks,
1347 SD_V2_SIZE));
1349 * read persistent inode attributes from sd and initialise
1350 * generic inode flags from them
1352 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1353 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1356 pathrelse(path);
1357 if (S_ISREG(inode->i_mode)) {
1358 inode->i_op = &reiserfs_file_inode_operations;
1359 inode->i_fop = &reiserfs_file_operations;
1360 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1361 } else if (S_ISDIR(inode->i_mode)) {
1362 inode->i_op = &reiserfs_dir_inode_operations;
1363 inode->i_fop = &reiserfs_dir_operations;
1364 } else if (S_ISLNK(inode->i_mode)) {
1365 inode->i_op = &reiserfs_symlink_inode_operations;
1366 inode_nohighmem(inode);
1367 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1368 } else {
1369 inode->i_blocks = 0;
1370 inode->i_op = &reiserfs_special_inode_operations;
1371 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1375 /* update new stat data with inode fields */
1376 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1378 struct stat_data *sd_v2 = (struct stat_data *)sd;
1380 set_sd_v2_mode(sd_v2, inode->i_mode);
1381 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1382 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1383 set_sd_v2_size(sd_v2, size);
1384 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1385 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1386 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1387 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1388 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1389 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1390 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1391 else
1392 set_sd_v2_generation(sd_v2, inode->i_generation);
1393 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1396 /* used to copy inode's fields to old stat data */
1397 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1399 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1401 set_sd_v1_mode(sd_v1, inode->i_mode);
1402 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1403 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1404 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1405 set_sd_v1_size(sd_v1, size);
1406 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1407 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1408 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1410 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1411 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1412 else
1413 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1415 /* Sigh. i_first_direct_byte is back */
1416 set_sd_v1_first_direct_byte(sd_v1,
1417 REISERFS_I(inode)->i_first_direct_byte);
1421 * NOTE, you must prepare the buffer head before sending it here,
1422 * and then log it after the call
1424 static void update_stat_data(struct treepath *path, struct inode *inode,
1425 loff_t size)
1427 struct buffer_head *bh;
1428 struct item_head *ih;
1430 bh = PATH_PLAST_BUFFER(path);
1431 ih = tp_item_head(path);
1433 if (!is_statdata_le_ih(ih))
1434 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1435 INODE_PKEY(inode), ih);
1437 /* path points to old stat data */
1438 if (stat_data_v1(ih)) {
1439 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1440 } else {
1441 inode2sd(ih_item_body(bh, ih), inode, size);
1444 return;
1447 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1448 struct inode *inode, loff_t size)
1450 struct cpu_key key;
1451 INITIALIZE_PATH(path);
1452 struct buffer_head *bh;
1453 int fs_gen;
1454 struct item_head *ih, tmp_ih;
1455 int retval;
1457 BUG_ON(!th->t_trans_id);
1459 /* key type is unimportant */
1460 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1462 for (;;) {
1463 int pos;
1464 /* look for the object's stat data */
1465 retval = search_item(inode->i_sb, &key, &path);
1466 if (retval == IO_ERROR) {
1467 reiserfs_error(inode->i_sb, "vs-13050",
1468 "i/o failure occurred trying to "
1469 "update %K stat data", &key);
1470 return;
1472 if (retval == ITEM_NOT_FOUND) {
1473 pos = PATH_LAST_POSITION(&path);
1474 pathrelse(&path);
1475 if (inode->i_nlink == 0) {
1476 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1477 return;
1479 reiserfs_warning(inode->i_sb, "vs-13060",
1480 "stat data of object %k (nlink == %d) "
1481 "not found (pos %d)",
1482 INODE_PKEY(inode), inode->i_nlink,
1483 pos);
1484 reiserfs_check_path(&path);
1485 return;
1489 * sigh, prepare_for_journal might schedule. When it
1490 * schedules the FS might change. We have to detect that,
1491 * and loop back to the search if the stat data item has moved
1493 bh = get_last_bh(&path);
1494 ih = tp_item_head(&path);
1495 copy_item_head(&tmp_ih, ih);
1496 fs_gen = get_generation(inode->i_sb);
1497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1499 /* Stat_data item has been moved after scheduling. */
1500 if (fs_changed(fs_gen, inode->i_sb)
1501 && item_moved(&tmp_ih, &path)) {
1502 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1503 continue;
1505 break;
1507 update_stat_data(&path, inode, size);
1508 journal_mark_dirty(th, bh);
1509 pathrelse(&path);
1510 return;
1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1515 * does a make_bad_inode when things go wrong. But, we need to make sure
1516 * and clear the key in the private portion of the inode, otherwise a
1517 * corresponding iput might try to delete whatever object the inode last
1518 * represented.
1520 static void reiserfs_make_bad_inode(struct inode *inode)
1522 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1523 make_bad_inode(inode);
1527 * initially this function was derived from minix or ext2's analog and
1528 * evolved as the prototype did
1530 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1532 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1533 inode->i_ino = args->objectid;
1534 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1535 return 0;
1539 * looks for stat data in the tree, and fills up the fields of in-core
1540 * inode stat data fields
1542 void reiserfs_read_locked_inode(struct inode *inode,
1543 struct reiserfs_iget_args *args)
1545 INITIALIZE_PATH(path_to_sd);
1546 struct cpu_key key;
1547 unsigned long dirino;
1548 int retval;
1550 dirino = args->dirid;
1553 * set version 1, version 2 could be used too, because stat data
1554 * key is the same in both versions
1556 key.version = KEY_FORMAT_3_5;
1557 key.on_disk_key.k_dir_id = dirino;
1558 key.on_disk_key.k_objectid = inode->i_ino;
1559 key.on_disk_key.k_offset = 0;
1560 key.on_disk_key.k_type = 0;
1562 /* look for the object's stat data */
1563 retval = search_item(inode->i_sb, &key, &path_to_sd);
1564 if (retval == IO_ERROR) {
1565 reiserfs_error(inode->i_sb, "vs-13070",
1566 "i/o failure occurred trying to find "
1567 "stat data of %K", &key);
1568 reiserfs_make_bad_inode(inode);
1569 return;
1572 /* a stale NFS handle can trigger this without it being an error */
1573 if (retval != ITEM_FOUND) {
1574 pathrelse(&path_to_sd);
1575 reiserfs_make_bad_inode(inode);
1576 clear_nlink(inode);
1577 return;
1580 init_inode(inode, &path_to_sd);
1583 * It is possible that knfsd is trying to access inode of a file
1584 * that is being removed from the disk by some other thread. As we
1585 * update sd on unlink all that is required is to check for nlink
1586 * here. This bug was first found by Sizif when debugging
1587 * SquidNG/Butterfly, forgotten, and found again after Philippe
1588 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1590 * More logical fix would require changes in fs/inode.c:iput() to
1591 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1592 * in iget() to return NULL if I_FREEING inode is found in
1593 * hash-table.
1597 * Currently there is one place where it's ok to meet inode with
1598 * nlink==0: processing of open-unlinked and half-truncated files
1599 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1601 if ((inode->i_nlink == 0) &&
1602 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1603 reiserfs_warning(inode->i_sb, "vs-13075",
1604 "dead inode read from disk %K. "
1605 "This is likely to be race with knfsd. Ignore",
1606 &key);
1607 reiserfs_make_bad_inode(inode);
1610 /* init inode should be relsing */
1611 reiserfs_check_path(&path_to_sd);
1614 * Stat data v1 doesn't support ACLs.
1616 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1617 cache_no_acl(inode);
1621 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1623 * @inode: inode from hash table to check
1624 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1626 * This function is called by iget5_locked() to distinguish reiserfs inodes
1627 * having the same inode numbers. Such inodes can only exist due to some
1628 * error condition. One of them should be bad. Inodes with identical
1629 * inode numbers (objectids) are distinguished by parent directory ids.
1632 int reiserfs_find_actor(struct inode *inode, void *opaque)
1634 struct reiserfs_iget_args *args;
1636 args = opaque;
1637 /* args is already in CPU order */
1638 return (inode->i_ino == args->objectid) &&
1639 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1642 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1644 struct inode *inode;
1645 struct reiserfs_iget_args args;
1646 int depth;
1648 args.objectid = key->on_disk_key.k_objectid;
1649 args.dirid = key->on_disk_key.k_dir_id;
1650 depth = reiserfs_write_unlock_nested(s);
1651 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1652 reiserfs_find_actor, reiserfs_init_locked_inode,
1653 (void *)(&args));
1654 reiserfs_write_lock_nested(s, depth);
1655 if (!inode)
1656 return ERR_PTR(-ENOMEM);
1658 if (inode->i_state & I_NEW) {
1659 reiserfs_read_locked_inode(inode, &args);
1660 unlock_new_inode(inode);
1663 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1664 /* either due to i/o error or a stale NFS handle */
1665 iput(inode);
1666 inode = NULL;
1668 return inode;
1671 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1672 u32 objectid, u32 dir_id, u32 generation)
1675 struct cpu_key key;
1676 struct inode *inode;
1678 key.on_disk_key.k_objectid = objectid;
1679 key.on_disk_key.k_dir_id = dir_id;
1680 reiserfs_write_lock(sb);
1681 inode = reiserfs_iget(sb, &key);
1682 if (inode && !IS_ERR(inode) && generation != 0 &&
1683 generation != inode->i_generation) {
1684 iput(inode);
1685 inode = NULL;
1687 reiserfs_write_unlock(sb);
1689 return d_obtain_alias(inode);
1692 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1693 int fh_len, int fh_type)
1696 * fhtype happens to reflect the number of u32s encoded.
1697 * due to a bug in earlier code, fhtype might indicate there
1698 * are more u32s then actually fitted.
1699 * so if fhtype seems to be more than len, reduce fhtype.
1700 * Valid types are:
1701 * 2 - objectid + dir_id - legacy support
1702 * 3 - objectid + dir_id + generation
1703 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1704 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1705 * 6 - as above plus generation of directory
1706 * 6 does not fit in NFSv2 handles
1708 if (fh_type > fh_len) {
1709 if (fh_type != 6 || fh_len != 5)
1710 reiserfs_warning(sb, "reiserfs-13077",
1711 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1712 fh_type, fh_len);
1713 fh_type = fh_len;
1715 if (fh_len < 2)
1716 return NULL;
1718 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1719 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1722 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1723 int fh_len, int fh_type)
1725 if (fh_type > fh_len)
1726 fh_type = fh_len;
1727 if (fh_type < 4)
1728 return NULL;
1730 return reiserfs_get_dentry(sb,
1731 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1732 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1733 (fh_type == 6) ? fid->raw[5] : 0);
1736 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1737 struct inode *parent)
1739 int maxlen = *lenp;
1741 if (parent && (maxlen < 5)) {
1742 *lenp = 5;
1743 return FILEID_INVALID;
1744 } else if (maxlen < 3) {
1745 *lenp = 3;
1746 return FILEID_INVALID;
1749 data[0] = inode->i_ino;
1750 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1751 data[2] = inode->i_generation;
1752 *lenp = 3;
1753 if (parent) {
1754 data[3] = parent->i_ino;
1755 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1756 *lenp = 5;
1757 if (maxlen >= 6) {
1758 data[5] = parent->i_generation;
1759 *lenp = 6;
1762 return *lenp;
1766 * looks for stat data, then copies fields to it, marks the buffer
1767 * containing stat data as dirty
1770 * reiserfs inodes are never really dirty, since the dirty inode call
1771 * always logs them. This call allows the VFS inode marking routines
1772 * to properly mark inodes for datasync and such, but only actually
1773 * does something when called for a synchronous update.
1775 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1777 struct reiserfs_transaction_handle th;
1778 int jbegin_count = 1;
1780 if (sb_rdonly(inode->i_sb))
1781 return -EROFS;
1783 * memory pressure can sometimes initiate write_inode calls with
1784 * sync == 1,
1785 * these cases are just when the system needs ram, not when the
1786 * inode needs to reach disk for safety, and they can safely be
1787 * ignored because the altered inode has already been logged.
1789 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1790 reiserfs_write_lock(inode->i_sb);
1791 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1792 reiserfs_update_sd(&th, inode);
1793 journal_end_sync(&th);
1795 reiserfs_write_unlock(inode->i_sb);
1797 return 0;
1801 * stat data of new object is inserted already, this inserts the item
1802 * containing "." and ".." entries
1804 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1805 struct inode *inode,
1806 struct item_head *ih, struct treepath *path,
1807 struct inode *dir)
1809 struct super_block *sb = th->t_super;
1810 char empty_dir[EMPTY_DIR_SIZE];
1811 char *body = empty_dir;
1812 struct cpu_key key;
1813 int retval;
1815 BUG_ON(!th->t_trans_id);
1817 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1818 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1819 TYPE_DIRENTRY, 3 /*key length */ );
1822 * compose item head for new item. Directories consist of items of
1823 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1824 * is done by reiserfs_new_inode
1826 if (old_format_only(sb)) {
1827 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1828 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1830 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1831 ih->ih_key.k_objectid,
1832 INODE_PKEY(dir)->k_dir_id,
1833 INODE_PKEY(dir)->k_objectid);
1834 } else {
1835 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1836 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1838 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1839 ih->ih_key.k_objectid,
1840 INODE_PKEY(dir)->k_dir_id,
1841 INODE_PKEY(dir)->k_objectid);
1844 /* look for place in the tree for new item */
1845 retval = search_item(sb, &key, path);
1846 if (retval == IO_ERROR) {
1847 reiserfs_error(sb, "vs-13080",
1848 "i/o failure occurred creating new directory");
1849 return -EIO;
1851 if (retval == ITEM_FOUND) {
1852 pathrelse(path);
1853 reiserfs_warning(sb, "vs-13070",
1854 "object with this key exists (%k)",
1855 &(ih->ih_key));
1856 return -EEXIST;
1859 /* insert item, that is empty directory item */
1860 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1864 * stat data of object has been inserted, this inserts the item
1865 * containing the body of symlink
1867 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1868 struct inode *inode,
1869 struct item_head *ih,
1870 struct treepath *path, const char *symname,
1871 int item_len)
1873 struct super_block *sb = th->t_super;
1874 struct cpu_key key;
1875 int retval;
1877 BUG_ON(!th->t_trans_id);
1879 _make_cpu_key(&key, KEY_FORMAT_3_5,
1880 le32_to_cpu(ih->ih_key.k_dir_id),
1881 le32_to_cpu(ih->ih_key.k_objectid),
1882 1, TYPE_DIRECT, 3 /*key length */ );
1884 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1885 0 /*free_space */ );
1887 /* look for place in the tree for new item */
1888 retval = search_item(sb, &key, path);
1889 if (retval == IO_ERROR) {
1890 reiserfs_error(sb, "vs-13080",
1891 "i/o failure occurred creating new symlink");
1892 return -EIO;
1894 if (retval == ITEM_FOUND) {
1895 pathrelse(path);
1896 reiserfs_warning(sb, "vs-13080",
1897 "object with this key exists (%k)",
1898 &(ih->ih_key));
1899 return -EEXIST;
1902 /* insert item, that is body of symlink */
1903 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1907 * inserts the stat data into the tree, and then calls
1908 * reiserfs_new_directory (to insert ".", ".." item if new object is
1909 * directory) or reiserfs_new_symlink (to insert symlink body if new
1910 * object is symlink) or nothing (if new object is regular file)
1912 * NOTE! uid and gid must already be set in the inode. If we return
1913 * non-zero due to an error, we have to drop the quota previously allocated
1914 * for the fresh inode. This can only be done outside a transaction, so
1915 * if we return non-zero, we also end the transaction.
1917 * @th: active transaction handle
1918 * @dir: parent directory for new inode
1919 * @mode: mode of new inode
1920 * @symname: symlink contents if inode is symlink
1921 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1922 * symlinks
1923 * @inode: inode to be filled
1924 * @security: optional security context to associate with this inode
1926 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1927 struct inode *dir, umode_t mode, const char *symname,
1928 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1929 strlen (symname) for symlinks) */
1930 loff_t i_size, struct dentry *dentry,
1931 struct inode *inode,
1932 struct reiserfs_security_handle *security)
1934 struct super_block *sb = dir->i_sb;
1935 struct reiserfs_iget_args args;
1936 INITIALIZE_PATH(path_to_key);
1937 struct cpu_key key;
1938 struct item_head ih;
1939 struct stat_data sd;
1940 int retval;
1941 int err;
1942 int depth;
1944 BUG_ON(!th->t_trans_id);
1946 depth = reiserfs_write_unlock_nested(sb);
1947 err = dquot_alloc_inode(inode);
1948 reiserfs_write_lock_nested(sb, depth);
1949 if (err)
1950 goto out_end_trans;
1951 if (!dir->i_nlink) {
1952 err = -EPERM;
1953 goto out_bad_inode;
1956 /* item head of new item */
1957 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1958 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1959 if (!ih.ih_key.k_objectid) {
1960 err = -ENOMEM;
1961 goto out_bad_inode;
1963 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1964 if (old_format_only(sb))
1965 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1966 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1967 else
1968 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1969 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1970 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1971 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1973 depth = reiserfs_write_unlock_nested(inode->i_sb);
1974 err = insert_inode_locked4(inode, args.objectid,
1975 reiserfs_find_actor, &args);
1976 reiserfs_write_lock_nested(inode->i_sb, depth);
1977 if (err) {
1978 err = -EINVAL;
1979 goto out_bad_inode;
1982 if (old_format_only(sb))
1984 * not a perfect generation count, as object ids can be reused,
1985 * but this is as good as reiserfs can do right now.
1986 * note that the private part of inode isn't filled in yet,
1987 * we have to use the directory.
1989 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1990 else
1991 #if defined( USE_INODE_GENERATION_COUNTER )
1992 inode->i_generation =
1993 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1994 #else
1995 inode->i_generation = ++event;
1996 #endif
1998 /* fill stat data */
1999 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2001 /* uid and gid must already be set by the caller for quota init */
2003 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2004 inode->i_size = i_size;
2005 inode->i_blocks = 0;
2006 inode->i_bytes = 0;
2007 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2008 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2010 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2011 REISERFS_I(inode)->i_flags = 0;
2012 REISERFS_I(inode)->i_prealloc_block = 0;
2013 REISERFS_I(inode)->i_prealloc_count = 0;
2014 REISERFS_I(inode)->i_trans_id = 0;
2015 REISERFS_I(inode)->i_jl = NULL;
2016 REISERFS_I(inode)->i_attrs =
2017 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2018 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2019 reiserfs_init_xattr_rwsem(inode);
2021 /* key to search for correct place for new stat data */
2022 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2023 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2024 TYPE_STAT_DATA, 3 /*key length */ );
2026 /* find proper place for inserting of stat data */
2027 retval = search_item(sb, &key, &path_to_key);
2028 if (retval == IO_ERROR) {
2029 err = -EIO;
2030 goto out_bad_inode;
2032 if (retval == ITEM_FOUND) {
2033 pathrelse(&path_to_key);
2034 err = -EEXIST;
2035 goto out_bad_inode;
2037 if (old_format_only(sb)) {
2038 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2039 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2040 pathrelse(&path_to_key);
2041 err = -EINVAL;
2042 goto out_bad_inode;
2044 inode2sd_v1(&sd, inode, inode->i_size);
2045 } else {
2046 inode2sd(&sd, inode, inode->i_size);
2049 * store in in-core inode the key of stat data and version all
2050 * object items will have (directory items will have old offset
2051 * format, other new objects will consist of new items)
2053 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2054 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2055 else
2056 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2057 if (old_format_only(sb))
2058 set_inode_sd_version(inode, STAT_DATA_V1);
2059 else
2060 set_inode_sd_version(inode, STAT_DATA_V2);
2062 /* insert the stat data into the tree */
2063 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2064 if (REISERFS_I(dir)->new_packing_locality)
2065 th->displace_new_blocks = 1;
2066 #endif
2067 retval =
2068 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2069 (char *)(&sd));
2070 if (retval) {
2071 err = retval;
2072 reiserfs_check_path(&path_to_key);
2073 goto out_bad_inode;
2075 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2076 if (!th->displace_new_blocks)
2077 REISERFS_I(dir)->new_packing_locality = 0;
2078 #endif
2079 if (S_ISDIR(mode)) {
2080 /* insert item with "." and ".." */
2081 retval =
2082 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2085 if (S_ISLNK(mode)) {
2086 /* insert body of symlink */
2087 if (!old_format_only(sb))
2088 i_size = ROUND_UP(i_size);
2089 retval =
2090 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2091 i_size);
2093 if (retval) {
2094 err = retval;
2095 reiserfs_check_path(&path_to_key);
2096 journal_end(th);
2097 goto out_inserted_sd;
2101 * Mark it private if we're creating the privroot
2102 * or something under it.
2104 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2105 inode->i_flags |= S_PRIVATE;
2106 inode->i_opflags &= ~IOP_XATTR;
2109 if (reiserfs_posixacl(inode->i_sb)) {
2110 reiserfs_write_unlock(inode->i_sb);
2111 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2112 reiserfs_write_lock(inode->i_sb);
2113 if (retval) {
2114 err = retval;
2115 reiserfs_check_path(&path_to_key);
2116 journal_end(th);
2117 goto out_inserted_sd;
2119 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2120 reiserfs_warning(inode->i_sb, "jdm-13090",
2121 "ACLs aren't enabled in the fs, "
2122 "but vfs thinks they are!");
2125 if (security->name) {
2126 reiserfs_write_unlock(inode->i_sb);
2127 retval = reiserfs_security_write(th, inode, security);
2128 reiserfs_write_lock(inode->i_sb);
2129 if (retval) {
2130 err = retval;
2131 reiserfs_check_path(&path_to_key);
2132 retval = journal_end(th);
2133 if (retval)
2134 err = retval;
2135 goto out_inserted_sd;
2139 reiserfs_update_sd(th, inode);
2140 reiserfs_check_path(&path_to_key);
2142 return 0;
2144 out_bad_inode:
2145 /* Invalidate the object, nothing was inserted yet */
2146 INODE_PKEY(inode)->k_objectid = 0;
2148 /* Quota change must be inside a transaction for journaling */
2149 depth = reiserfs_write_unlock_nested(inode->i_sb);
2150 dquot_free_inode(inode);
2151 reiserfs_write_lock_nested(inode->i_sb, depth);
2153 out_end_trans:
2154 journal_end(th);
2156 * Drop can be outside and it needs more credits so it's better
2157 * to have it outside
2159 depth = reiserfs_write_unlock_nested(inode->i_sb);
2160 dquot_drop(inode);
2161 reiserfs_write_lock_nested(inode->i_sb, depth);
2162 inode->i_flags |= S_NOQUOTA;
2163 make_bad_inode(inode);
2165 out_inserted_sd:
2166 clear_nlink(inode);
2167 th->t_trans_id = 0; /* so the caller can't use this handle later */
2168 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2169 iput(inode);
2170 return err;
2174 * finds the tail page in the page cache,
2175 * reads the last block in.
2177 * On success, page_result is set to a locked, pinned page, and bh_result
2178 * is set to an up to date buffer for the last block in the file. returns 0.
2180 * tail conversion is not done, so bh_result might not be valid for writing
2181 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2182 * trying to write the block.
2184 * on failure, nonzero is returned, page_result and bh_result are untouched.
2186 static int grab_tail_page(struct inode *inode,
2187 struct page **page_result,
2188 struct buffer_head **bh_result)
2192 * we want the page with the last byte in the file,
2193 * not the page that will hold the next byte for appending
2195 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2196 unsigned long pos = 0;
2197 unsigned long start = 0;
2198 unsigned long blocksize = inode->i_sb->s_blocksize;
2199 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2200 struct buffer_head *bh;
2201 struct buffer_head *head;
2202 struct page *page;
2203 int error;
2206 * we know that we are only called with inode->i_size > 0.
2207 * we also know that a file tail can never be as big as a block
2208 * If i_size % blocksize == 0, our file is currently block aligned
2209 * and it won't need converting or zeroing after a truncate.
2211 if ((offset & (blocksize - 1)) == 0) {
2212 return -ENOENT;
2214 page = grab_cache_page(inode->i_mapping, index);
2215 error = -ENOMEM;
2216 if (!page) {
2217 goto out;
2219 /* start within the page of the last block in the file */
2220 start = (offset / blocksize) * blocksize;
2222 error = __block_write_begin(page, start, offset - start,
2223 reiserfs_get_block_create_0);
2224 if (error)
2225 goto unlock;
2227 head = page_buffers(page);
2228 bh = head;
2229 do {
2230 if (pos >= start) {
2231 break;
2233 bh = bh->b_this_page;
2234 pos += blocksize;
2235 } while (bh != head);
2237 if (!buffer_uptodate(bh)) {
2239 * note, this should never happen, prepare_write should be
2240 * taking care of this for us. If the buffer isn't up to
2241 * date, I've screwed up the code to find the buffer, or the
2242 * code to call prepare_write
2244 reiserfs_error(inode->i_sb, "clm-6000",
2245 "error reading block %lu", bh->b_blocknr);
2246 error = -EIO;
2247 goto unlock;
2249 *bh_result = bh;
2250 *page_result = page;
2252 out:
2253 return error;
2255 unlock:
2256 unlock_page(page);
2257 put_page(page);
2258 return error;
2262 * vfs version of truncate file. Must NOT be called with
2263 * a transaction already started.
2265 * some code taken from block_truncate_page
2267 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2269 struct reiserfs_transaction_handle th;
2270 /* we want the offset for the first byte after the end of the file */
2271 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2272 unsigned blocksize = inode->i_sb->s_blocksize;
2273 unsigned length;
2274 struct page *page = NULL;
2275 int error;
2276 struct buffer_head *bh = NULL;
2277 int err2;
2279 reiserfs_write_lock(inode->i_sb);
2281 if (inode->i_size > 0) {
2282 error = grab_tail_page(inode, &page, &bh);
2283 if (error) {
2285 * -ENOENT means we truncated past the end of the
2286 * file, and get_block_create_0 could not find a
2287 * block to read in, which is ok.
2289 if (error != -ENOENT)
2290 reiserfs_error(inode->i_sb, "clm-6001",
2291 "grab_tail_page failed %d",
2292 error);
2293 page = NULL;
2294 bh = NULL;
2299 * so, if page != NULL, we have a buffer head for the offset at
2300 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2301 * then we have an unformatted node. Otherwise, we have a direct item,
2302 * and no zeroing is required on disk. We zero after the truncate,
2303 * because the truncate might pack the item anyway
2304 * (it will unmap bh if it packs).
2306 * it is enough to reserve space in transaction for 2 balancings:
2307 * one for "save" link adding and another for the first
2308 * cut_from_item. 1 is for update_sd
2310 error = journal_begin(&th, inode->i_sb,
2311 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2312 if (error)
2313 goto out;
2314 reiserfs_update_inode_transaction(inode);
2315 if (update_timestamps)
2317 * we are doing real truncate: if the system crashes
2318 * before the last transaction of truncating gets committed
2319 * - on reboot the file either appears truncated properly
2320 * or not truncated at all
2322 add_save_link(&th, inode, 1);
2323 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2324 error = journal_end(&th);
2325 if (error)
2326 goto out;
2328 /* check reiserfs_do_truncate after ending the transaction */
2329 if (err2) {
2330 error = err2;
2331 goto out;
2334 if (update_timestamps) {
2335 error = remove_save_link(inode, 1 /* truncate */);
2336 if (error)
2337 goto out;
2340 if (page) {
2341 length = offset & (blocksize - 1);
2342 /* if we are not on a block boundary */
2343 if (length) {
2344 length = blocksize - length;
2345 zero_user(page, offset, length);
2346 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2347 mark_buffer_dirty(bh);
2350 unlock_page(page);
2351 put_page(page);
2354 reiserfs_write_unlock(inode->i_sb);
2356 return 0;
2357 out:
2358 if (page) {
2359 unlock_page(page);
2360 put_page(page);
2363 reiserfs_write_unlock(inode->i_sb);
2365 return error;
2368 static int map_block_for_writepage(struct inode *inode,
2369 struct buffer_head *bh_result,
2370 unsigned long block)
2372 struct reiserfs_transaction_handle th;
2373 int fs_gen;
2374 struct item_head tmp_ih;
2375 struct item_head *ih;
2376 struct buffer_head *bh;
2377 __le32 *item;
2378 struct cpu_key key;
2379 INITIALIZE_PATH(path);
2380 int pos_in_item;
2381 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2382 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2383 int retval;
2384 int use_get_block = 0;
2385 int bytes_copied = 0;
2386 int copy_size;
2387 int trans_running = 0;
2390 * catch places below that try to log something without
2391 * starting a trans
2393 th.t_trans_id = 0;
2395 if (!buffer_uptodate(bh_result)) {
2396 return -EIO;
2399 kmap(bh_result->b_page);
2400 start_over:
2401 reiserfs_write_lock(inode->i_sb);
2402 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2404 research:
2405 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2406 if (retval != POSITION_FOUND) {
2407 use_get_block = 1;
2408 goto out;
2411 bh = get_last_bh(&path);
2412 ih = tp_item_head(&path);
2413 item = tp_item_body(&path);
2414 pos_in_item = path.pos_in_item;
2416 /* we've found an unformatted node */
2417 if (indirect_item_found(retval, ih)) {
2418 if (bytes_copied > 0) {
2419 reiserfs_warning(inode->i_sb, "clm-6002",
2420 "bytes_copied %d", bytes_copied);
2422 if (!get_block_num(item, pos_in_item)) {
2423 /* crap, we are writing to a hole */
2424 use_get_block = 1;
2425 goto out;
2427 set_block_dev_mapped(bh_result,
2428 get_block_num(item, pos_in_item), inode);
2429 } else if (is_direct_le_ih(ih)) {
2430 char *p;
2431 p = page_address(bh_result->b_page);
2432 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2433 copy_size = ih_item_len(ih) - pos_in_item;
2435 fs_gen = get_generation(inode->i_sb);
2436 copy_item_head(&tmp_ih, ih);
2438 if (!trans_running) {
2439 /* vs-3050 is gone, no need to drop the path */
2440 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2441 if (retval)
2442 goto out;
2443 reiserfs_update_inode_transaction(inode);
2444 trans_running = 1;
2445 if (fs_changed(fs_gen, inode->i_sb)
2446 && item_moved(&tmp_ih, &path)) {
2447 reiserfs_restore_prepared_buffer(inode->i_sb,
2448 bh);
2449 goto research;
2453 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2455 if (fs_changed(fs_gen, inode->i_sb)
2456 && item_moved(&tmp_ih, &path)) {
2457 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2458 goto research;
2461 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2462 copy_size);
2464 journal_mark_dirty(&th, bh);
2465 bytes_copied += copy_size;
2466 set_block_dev_mapped(bh_result, 0, inode);
2468 /* are there still bytes left? */
2469 if (bytes_copied < bh_result->b_size &&
2470 (byte_offset + bytes_copied) < inode->i_size) {
2471 set_cpu_key_k_offset(&key,
2472 cpu_key_k_offset(&key) +
2473 copy_size);
2474 goto research;
2476 } else {
2477 reiserfs_warning(inode->i_sb, "clm-6003",
2478 "bad item inode %lu", inode->i_ino);
2479 retval = -EIO;
2480 goto out;
2482 retval = 0;
2484 out:
2485 pathrelse(&path);
2486 if (trans_running) {
2487 int err = journal_end(&th);
2488 if (err)
2489 retval = err;
2490 trans_running = 0;
2492 reiserfs_write_unlock(inode->i_sb);
2494 /* this is where we fill in holes in the file. */
2495 if (use_get_block) {
2496 retval = reiserfs_get_block(inode, block, bh_result,
2497 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2498 | GET_BLOCK_NO_DANGLE);
2499 if (!retval) {
2500 if (!buffer_mapped(bh_result)
2501 || bh_result->b_blocknr == 0) {
2502 /* get_block failed to find a mapped unformatted node. */
2503 use_get_block = 0;
2504 goto start_over;
2508 kunmap(bh_result->b_page);
2510 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2512 * we've copied data from the page into the direct item, so the
2513 * buffer in the page is now clean, mark it to reflect that.
2515 lock_buffer(bh_result);
2516 clear_buffer_dirty(bh_result);
2517 unlock_buffer(bh_result);
2519 return retval;
2523 * mason@suse.com: updated in 2.5.54 to follow the same general io
2524 * start/recovery path as __block_write_full_page, along with special
2525 * code to handle reiserfs tails.
2527 static int reiserfs_write_full_page(struct page *page,
2528 struct writeback_control *wbc)
2530 struct inode *inode = page->mapping->host;
2531 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2532 int error = 0;
2533 unsigned long block;
2534 sector_t last_block;
2535 struct buffer_head *head, *bh;
2536 int partial = 0;
2537 int nr = 0;
2538 int checked = PageChecked(page);
2539 struct reiserfs_transaction_handle th;
2540 struct super_block *s = inode->i_sb;
2541 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2542 th.t_trans_id = 0;
2544 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2545 if (checked && (current->flags & PF_MEMALLOC)) {
2546 redirty_page_for_writepage(wbc, page);
2547 unlock_page(page);
2548 return 0;
2552 * The page dirty bit is cleared before writepage is called, which
2553 * means we have to tell create_empty_buffers to make dirty buffers
2554 * The page really should be up to date at this point, so tossing
2555 * in the BH_Uptodate is just a sanity check.
2557 if (!page_has_buffers(page)) {
2558 create_empty_buffers(page, s->s_blocksize,
2559 (1 << BH_Dirty) | (1 << BH_Uptodate));
2561 head = page_buffers(page);
2564 * last page in the file, zero out any contents past the
2565 * last byte in the file
2567 if (page->index >= end_index) {
2568 unsigned last_offset;
2570 last_offset = inode->i_size & (PAGE_SIZE - 1);
2571 /* no file contents in this page */
2572 if (page->index >= end_index + 1 || !last_offset) {
2573 unlock_page(page);
2574 return 0;
2576 zero_user_segment(page, last_offset, PAGE_SIZE);
2578 bh = head;
2579 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2580 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2581 /* first map all the buffers, logging any direct items we find */
2582 do {
2583 if (block > last_block) {
2585 * This can happen when the block size is less than
2586 * the page size. The corresponding bytes in the page
2587 * were zero filled above
2589 clear_buffer_dirty(bh);
2590 set_buffer_uptodate(bh);
2591 } else if ((checked || buffer_dirty(bh)) &&
2592 (!buffer_mapped(bh) || (buffer_mapped(bh)
2593 && bh->b_blocknr ==
2594 0))) {
2596 * not mapped yet, or it points to a direct item, search
2597 * the btree for the mapping info, and log any direct
2598 * items found
2600 if ((error = map_block_for_writepage(inode, bh, block))) {
2601 goto fail;
2604 bh = bh->b_this_page;
2605 block++;
2606 } while (bh != head);
2609 * we start the transaction after map_block_for_writepage,
2610 * because it can create holes in the file (an unbounded operation).
2611 * starting it here, we can make a reliable estimate for how many
2612 * blocks we're going to log
2614 if (checked) {
2615 ClearPageChecked(page);
2616 reiserfs_write_lock(s);
2617 error = journal_begin(&th, s, bh_per_page + 1);
2618 if (error) {
2619 reiserfs_write_unlock(s);
2620 goto fail;
2622 reiserfs_update_inode_transaction(inode);
2624 /* now go through and lock any dirty buffers on the page */
2625 do {
2626 get_bh(bh);
2627 if (!buffer_mapped(bh))
2628 continue;
2629 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2630 continue;
2632 if (checked) {
2633 reiserfs_prepare_for_journal(s, bh, 1);
2634 journal_mark_dirty(&th, bh);
2635 continue;
2638 * from this point on, we know the buffer is mapped to a
2639 * real block and not a direct item
2641 if (wbc->sync_mode != WB_SYNC_NONE) {
2642 lock_buffer(bh);
2643 } else {
2644 if (!trylock_buffer(bh)) {
2645 redirty_page_for_writepage(wbc, page);
2646 continue;
2649 if (test_clear_buffer_dirty(bh)) {
2650 mark_buffer_async_write(bh);
2651 } else {
2652 unlock_buffer(bh);
2654 } while ((bh = bh->b_this_page) != head);
2656 if (checked) {
2657 error = journal_end(&th);
2658 reiserfs_write_unlock(s);
2659 if (error)
2660 goto fail;
2662 BUG_ON(PageWriteback(page));
2663 set_page_writeback(page);
2664 unlock_page(page);
2667 * since any buffer might be the only dirty buffer on the page,
2668 * the first submit_bh can bring the page out of writeback.
2669 * be careful with the buffers.
2671 do {
2672 struct buffer_head *next = bh->b_this_page;
2673 if (buffer_async_write(bh)) {
2674 submit_bh(REQ_OP_WRITE, 0, bh);
2675 nr++;
2677 put_bh(bh);
2678 bh = next;
2679 } while (bh != head);
2681 error = 0;
2682 done:
2683 if (nr == 0) {
2685 * if this page only had a direct item, it is very possible for
2686 * no io to be required without there being an error. Or,
2687 * someone else could have locked them and sent them down the
2688 * pipe without locking the page
2690 bh = head;
2691 do {
2692 if (!buffer_uptodate(bh)) {
2693 partial = 1;
2694 break;
2696 bh = bh->b_this_page;
2697 } while (bh != head);
2698 if (!partial)
2699 SetPageUptodate(page);
2700 end_page_writeback(page);
2702 return error;
2704 fail:
2706 * catches various errors, we need to make sure any valid dirty blocks
2707 * get to the media. The page is currently locked and not marked for
2708 * writeback
2710 ClearPageUptodate(page);
2711 bh = head;
2712 do {
2713 get_bh(bh);
2714 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2715 lock_buffer(bh);
2716 mark_buffer_async_write(bh);
2717 } else {
2719 * clear any dirty bits that might have come from
2720 * getting attached to a dirty page
2722 clear_buffer_dirty(bh);
2724 bh = bh->b_this_page;
2725 } while (bh != head);
2726 SetPageError(page);
2727 BUG_ON(PageWriteback(page));
2728 set_page_writeback(page);
2729 unlock_page(page);
2730 do {
2731 struct buffer_head *next = bh->b_this_page;
2732 if (buffer_async_write(bh)) {
2733 clear_buffer_dirty(bh);
2734 submit_bh(REQ_OP_WRITE, 0, bh);
2735 nr++;
2737 put_bh(bh);
2738 bh = next;
2739 } while (bh != head);
2740 goto done;
2743 static int reiserfs_readpage(struct file *f, struct page *page)
2745 return block_read_full_page(page, reiserfs_get_block);
2748 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2750 struct inode *inode = page->mapping->host;
2751 reiserfs_wait_on_write_block(inode->i_sb);
2752 return reiserfs_write_full_page(page, wbc);
2755 static void reiserfs_truncate_failed_write(struct inode *inode)
2757 truncate_inode_pages(inode->i_mapping, inode->i_size);
2758 reiserfs_truncate_file(inode, 0);
2761 static int reiserfs_write_begin(struct file *file,
2762 struct address_space *mapping,
2763 loff_t pos, unsigned len, unsigned flags,
2764 struct page **pagep, void **fsdata)
2766 struct inode *inode;
2767 struct page *page;
2768 pgoff_t index;
2769 int ret;
2770 int old_ref = 0;
2772 inode = mapping->host;
2773 *fsdata = NULL;
2774 if (flags & AOP_FLAG_CONT_EXPAND &&
2775 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2776 pos ++;
2777 *fsdata = (void *)(unsigned long)flags;
2780 index = pos >> PAGE_SHIFT;
2781 page = grab_cache_page_write_begin(mapping, index, flags);
2782 if (!page)
2783 return -ENOMEM;
2784 *pagep = page;
2786 reiserfs_wait_on_write_block(inode->i_sb);
2787 fix_tail_page_for_writing(page);
2788 if (reiserfs_transaction_running(inode->i_sb)) {
2789 struct reiserfs_transaction_handle *th;
2790 th = (struct reiserfs_transaction_handle *)current->
2791 journal_info;
2792 BUG_ON(!th->t_refcount);
2793 BUG_ON(!th->t_trans_id);
2794 old_ref = th->t_refcount;
2795 th->t_refcount++;
2797 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2798 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2799 struct reiserfs_transaction_handle *th = current->journal_info;
2801 * this gets a little ugly. If reiserfs_get_block returned an
2802 * error and left a transacstion running, we've got to close
2803 * it, and we've got to free handle if it was a persistent
2804 * transaction.
2806 * But, if we had nested into an existing transaction, we need
2807 * to just drop the ref count on the handle.
2809 * If old_ref == 0, the transaction is from reiserfs_get_block,
2810 * and it was a persistent trans. Otherwise, it was nested
2811 * above.
2813 if (th->t_refcount > old_ref) {
2814 if (old_ref)
2815 th->t_refcount--;
2816 else {
2817 int err;
2818 reiserfs_write_lock(inode->i_sb);
2819 err = reiserfs_end_persistent_transaction(th);
2820 reiserfs_write_unlock(inode->i_sb);
2821 if (err)
2822 ret = err;
2826 if (ret) {
2827 unlock_page(page);
2828 put_page(page);
2829 /* Truncate allocated blocks */
2830 reiserfs_truncate_failed_write(inode);
2832 return ret;
2835 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2837 struct inode *inode = page->mapping->host;
2838 int ret;
2839 int old_ref = 0;
2840 int depth;
2842 depth = reiserfs_write_unlock_nested(inode->i_sb);
2843 reiserfs_wait_on_write_block(inode->i_sb);
2844 reiserfs_write_lock_nested(inode->i_sb, depth);
2846 fix_tail_page_for_writing(page);
2847 if (reiserfs_transaction_running(inode->i_sb)) {
2848 struct reiserfs_transaction_handle *th;
2849 th = (struct reiserfs_transaction_handle *)current->
2850 journal_info;
2851 BUG_ON(!th->t_refcount);
2852 BUG_ON(!th->t_trans_id);
2853 old_ref = th->t_refcount;
2854 th->t_refcount++;
2857 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2858 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2859 struct reiserfs_transaction_handle *th = current->journal_info;
2861 * this gets a little ugly. If reiserfs_get_block returned an
2862 * error and left a transacstion running, we've got to close
2863 * it, and we've got to free handle if it was a persistent
2864 * transaction.
2866 * But, if we had nested into an existing transaction, we need
2867 * to just drop the ref count on the handle.
2869 * If old_ref == 0, the transaction is from reiserfs_get_block,
2870 * and it was a persistent trans. Otherwise, it was nested
2871 * above.
2873 if (th->t_refcount > old_ref) {
2874 if (old_ref)
2875 th->t_refcount--;
2876 else {
2877 int err;
2878 reiserfs_write_lock(inode->i_sb);
2879 err = reiserfs_end_persistent_transaction(th);
2880 reiserfs_write_unlock(inode->i_sb);
2881 if (err)
2882 ret = err;
2886 return ret;
2890 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2892 return generic_block_bmap(as, block, reiserfs_bmap);
2895 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2896 loff_t pos, unsigned len, unsigned copied,
2897 struct page *page, void *fsdata)
2899 struct inode *inode = page->mapping->host;
2900 int ret = 0;
2901 int update_sd = 0;
2902 struct reiserfs_transaction_handle *th;
2903 unsigned start;
2904 bool locked = false;
2906 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2907 pos ++;
2909 reiserfs_wait_on_write_block(inode->i_sb);
2910 if (reiserfs_transaction_running(inode->i_sb))
2911 th = current->journal_info;
2912 else
2913 th = NULL;
2915 start = pos & (PAGE_SIZE - 1);
2916 if (unlikely(copied < len)) {
2917 if (!PageUptodate(page))
2918 copied = 0;
2920 page_zero_new_buffers(page, start + copied, start + len);
2922 flush_dcache_page(page);
2924 reiserfs_commit_page(inode, page, start, start + copied);
2927 * generic_commit_write does this for us, but does not update the
2928 * transaction tracking stuff when the size changes. So, we have
2929 * to do the i_size updates here.
2931 if (pos + copied > inode->i_size) {
2932 struct reiserfs_transaction_handle myth;
2933 reiserfs_write_lock(inode->i_sb);
2934 locked = true;
2936 * If the file have grown beyond the border where it
2937 * can have a tail, unmark it as needing a tail
2938 * packing
2940 if ((have_large_tails(inode->i_sb)
2941 && inode->i_size > i_block_size(inode) * 4)
2942 || (have_small_tails(inode->i_sb)
2943 && inode->i_size > i_block_size(inode)))
2944 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2946 ret = journal_begin(&myth, inode->i_sb, 1);
2947 if (ret)
2948 goto journal_error;
2950 reiserfs_update_inode_transaction(inode);
2951 inode->i_size = pos + copied;
2953 * this will just nest into our transaction. It's important
2954 * to use mark_inode_dirty so the inode gets pushed around on
2955 * the dirty lists, and so that O_SYNC works as expected
2957 mark_inode_dirty(inode);
2958 reiserfs_update_sd(&myth, inode);
2959 update_sd = 1;
2960 ret = journal_end(&myth);
2961 if (ret)
2962 goto journal_error;
2964 if (th) {
2965 if (!locked) {
2966 reiserfs_write_lock(inode->i_sb);
2967 locked = true;
2969 if (!update_sd)
2970 mark_inode_dirty(inode);
2971 ret = reiserfs_end_persistent_transaction(th);
2972 if (ret)
2973 goto out;
2976 out:
2977 if (locked)
2978 reiserfs_write_unlock(inode->i_sb);
2979 unlock_page(page);
2980 put_page(page);
2982 if (pos + len > inode->i_size)
2983 reiserfs_truncate_failed_write(inode);
2985 return ret == 0 ? copied : ret;
2987 journal_error:
2988 reiserfs_write_unlock(inode->i_sb);
2989 locked = false;
2990 if (th) {
2991 if (!update_sd)
2992 reiserfs_update_sd(th, inode);
2993 ret = reiserfs_end_persistent_transaction(th);
2995 goto out;
2998 int reiserfs_commit_write(struct file *f, struct page *page,
2999 unsigned from, unsigned to)
3001 struct inode *inode = page->mapping->host;
3002 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
3003 int ret = 0;
3004 int update_sd = 0;
3005 struct reiserfs_transaction_handle *th = NULL;
3006 int depth;
3008 depth = reiserfs_write_unlock_nested(inode->i_sb);
3009 reiserfs_wait_on_write_block(inode->i_sb);
3010 reiserfs_write_lock_nested(inode->i_sb, depth);
3012 if (reiserfs_transaction_running(inode->i_sb)) {
3013 th = current->journal_info;
3015 reiserfs_commit_page(inode, page, from, to);
3018 * generic_commit_write does this for us, but does not update the
3019 * transaction tracking stuff when the size changes. So, we have
3020 * to do the i_size updates here.
3022 if (pos > inode->i_size) {
3023 struct reiserfs_transaction_handle myth;
3025 * If the file have grown beyond the border where it
3026 * can have a tail, unmark it as needing a tail
3027 * packing
3029 if ((have_large_tails(inode->i_sb)
3030 && inode->i_size > i_block_size(inode) * 4)
3031 || (have_small_tails(inode->i_sb)
3032 && inode->i_size > i_block_size(inode)))
3033 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3035 ret = journal_begin(&myth, inode->i_sb, 1);
3036 if (ret)
3037 goto journal_error;
3039 reiserfs_update_inode_transaction(inode);
3040 inode->i_size = pos;
3042 * this will just nest into our transaction. It's important
3043 * to use mark_inode_dirty so the inode gets pushed around
3044 * on the dirty lists, and so that O_SYNC works as expected
3046 mark_inode_dirty(inode);
3047 reiserfs_update_sd(&myth, inode);
3048 update_sd = 1;
3049 ret = journal_end(&myth);
3050 if (ret)
3051 goto journal_error;
3053 if (th) {
3054 if (!update_sd)
3055 mark_inode_dirty(inode);
3056 ret = reiserfs_end_persistent_transaction(th);
3057 if (ret)
3058 goto out;
3061 out:
3062 return ret;
3064 journal_error:
3065 if (th) {
3066 if (!update_sd)
3067 reiserfs_update_sd(th, inode);
3068 ret = reiserfs_end_persistent_transaction(th);
3071 return ret;
3074 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3076 if (reiserfs_attrs(inode->i_sb)) {
3077 if (sd_attrs & REISERFS_SYNC_FL)
3078 inode->i_flags |= S_SYNC;
3079 else
3080 inode->i_flags &= ~S_SYNC;
3081 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3082 inode->i_flags |= S_IMMUTABLE;
3083 else
3084 inode->i_flags &= ~S_IMMUTABLE;
3085 if (sd_attrs & REISERFS_APPEND_FL)
3086 inode->i_flags |= S_APPEND;
3087 else
3088 inode->i_flags &= ~S_APPEND;
3089 if (sd_attrs & REISERFS_NOATIME_FL)
3090 inode->i_flags |= S_NOATIME;
3091 else
3092 inode->i_flags &= ~S_NOATIME;
3093 if (sd_attrs & REISERFS_NOTAIL_FL)
3094 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3095 else
3096 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3101 * decide if this buffer needs to stay around for data logging or ordered
3102 * write purposes
3104 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3106 int ret = 1;
3107 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3109 lock_buffer(bh);
3110 spin_lock(&j->j_dirty_buffers_lock);
3111 if (!buffer_mapped(bh)) {
3112 goto free_jh;
3115 * the page is locked, and the only places that log a data buffer
3116 * also lock the page.
3118 if (reiserfs_file_data_log(inode)) {
3120 * very conservative, leave the buffer pinned if
3121 * anyone might need it.
3123 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3124 ret = 0;
3126 } else if (buffer_dirty(bh)) {
3127 struct reiserfs_journal_list *jl;
3128 struct reiserfs_jh *jh = bh->b_private;
3131 * why is this safe?
3132 * reiserfs_setattr updates i_size in the on disk
3133 * stat data before allowing vmtruncate to be called.
3135 * If buffer was put onto the ordered list for this
3136 * transaction, we know for sure either this transaction
3137 * or an older one already has updated i_size on disk,
3138 * and this ordered data won't be referenced in the file
3139 * if we crash.
3141 * if the buffer was put onto the ordered list for an older
3142 * transaction, we need to leave it around
3144 if (jh && (jl = jh->jl)
3145 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3146 ret = 0;
3148 free_jh:
3149 if (ret && bh->b_private) {
3150 reiserfs_free_jh(bh);
3152 spin_unlock(&j->j_dirty_buffers_lock);
3153 unlock_buffer(bh);
3154 return ret;
3157 /* clm -- taken from fs/buffer.c:block_invalidate_page */
3158 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3159 unsigned int length)
3161 struct buffer_head *head, *bh, *next;
3162 struct inode *inode = page->mapping->host;
3163 unsigned int curr_off = 0;
3164 unsigned int stop = offset + length;
3165 int partial_page = (offset || length < PAGE_SIZE);
3166 int ret = 1;
3168 BUG_ON(!PageLocked(page));
3170 if (!partial_page)
3171 ClearPageChecked(page);
3173 if (!page_has_buffers(page))
3174 goto out;
3176 head = page_buffers(page);
3177 bh = head;
3178 do {
3179 unsigned int next_off = curr_off + bh->b_size;
3180 next = bh->b_this_page;
3182 if (next_off > stop)
3183 goto out;
3186 * is this block fully invalidated?
3188 if (offset <= curr_off) {
3189 if (invalidatepage_can_drop(inode, bh))
3190 reiserfs_unmap_buffer(bh);
3191 else
3192 ret = 0;
3194 curr_off = next_off;
3195 bh = next;
3196 } while (bh != head);
3199 * We release buffers only if the entire page is being invalidated.
3200 * The get_block cached value has been unconditionally invalidated,
3201 * so real IO is not possible anymore.
3203 if (!partial_page && ret) {
3204 ret = try_to_release_page(page, 0);
3205 /* maybe should BUG_ON(!ret); - neilb */
3207 out:
3208 return;
3211 static int reiserfs_set_page_dirty(struct page *page)
3213 struct inode *inode = page->mapping->host;
3214 if (reiserfs_file_data_log(inode)) {
3215 SetPageChecked(page);
3216 return __set_page_dirty_nobuffers(page);
3218 return __set_page_dirty_buffers(page);
3222 * Returns 1 if the page's buffers were dropped. The page is locked.
3224 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3225 * in the buffers at page_buffers(page).
3227 * even in -o notail mode, we can't be sure an old mount without -o notail
3228 * didn't create files with tails.
3230 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3232 struct inode *inode = page->mapping->host;
3233 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3234 struct buffer_head *head;
3235 struct buffer_head *bh;
3236 int ret = 1;
3238 WARN_ON(PageChecked(page));
3239 spin_lock(&j->j_dirty_buffers_lock);
3240 head = page_buffers(page);
3241 bh = head;
3242 do {
3243 if (bh->b_private) {
3244 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3245 reiserfs_free_jh(bh);
3246 } else {
3247 ret = 0;
3248 break;
3251 bh = bh->b_this_page;
3252 } while (bh != head);
3253 if (ret)
3254 ret = try_to_free_buffers(page);
3255 spin_unlock(&j->j_dirty_buffers_lock);
3256 return ret;
3260 * We thank Mingming Cao for helping us understand in great detail what
3261 * to do in this section of the code.
3263 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3265 struct file *file = iocb->ki_filp;
3266 struct inode *inode = file->f_mapping->host;
3267 size_t count = iov_iter_count(iter);
3268 ssize_t ret;
3270 ret = blockdev_direct_IO(iocb, inode, iter,
3271 reiserfs_get_blocks_direct_io);
3274 * In case of error extending write may have instantiated a few
3275 * blocks outside i_size. Trim these off again.
3277 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3278 loff_t isize = i_size_read(inode);
3279 loff_t end = iocb->ki_pos + count;
3281 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3282 truncate_setsize(inode, isize);
3283 reiserfs_vfs_truncate_file(inode);
3287 return ret;
3290 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3292 struct inode *inode = d_inode(dentry);
3293 unsigned int ia_valid;
3294 int error;
3296 error = setattr_prepare(dentry, attr);
3297 if (error)
3298 return error;
3300 /* must be turned off for recursive notify_change calls */
3301 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3303 if (is_quota_modification(inode, attr)) {
3304 error = dquot_initialize(inode);
3305 if (error)
3306 return error;
3308 reiserfs_write_lock(inode->i_sb);
3309 if (attr->ia_valid & ATTR_SIZE) {
3311 * version 2 items will be caught by the s_maxbytes check
3312 * done for us in vmtruncate
3314 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3315 attr->ia_size > MAX_NON_LFS) {
3316 reiserfs_write_unlock(inode->i_sb);
3317 error = -EFBIG;
3318 goto out;
3321 inode_dio_wait(inode);
3323 /* fill in hole pointers in the expanding truncate case. */
3324 if (attr->ia_size > inode->i_size) {
3325 error = generic_cont_expand_simple(inode, attr->ia_size);
3326 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3327 int err;
3328 struct reiserfs_transaction_handle th;
3329 /* we're changing at most 2 bitmaps, inode + super */
3330 err = journal_begin(&th, inode->i_sb, 4);
3331 if (!err) {
3332 reiserfs_discard_prealloc(&th, inode);
3333 err = journal_end(&th);
3335 if (err)
3336 error = err;
3338 if (error) {
3339 reiserfs_write_unlock(inode->i_sb);
3340 goto out;
3343 * file size is changed, ctime and mtime are
3344 * to be updated
3346 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3349 reiserfs_write_unlock(inode->i_sb);
3351 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3352 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3353 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3354 /* stat data of format v3.5 has 16 bit uid and gid */
3355 error = -EINVAL;
3356 goto out;
3359 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3360 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3361 struct reiserfs_transaction_handle th;
3362 int jbegin_count =
3364 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3365 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3368 error = reiserfs_chown_xattrs(inode, attr);
3370 if (error)
3371 return error;
3374 * (user+group)*(old+new) structure - we count quota
3375 * info and , inode write (sb, inode)
3377 reiserfs_write_lock(inode->i_sb);
3378 error = journal_begin(&th, inode->i_sb, jbegin_count);
3379 reiserfs_write_unlock(inode->i_sb);
3380 if (error)
3381 goto out;
3382 error = dquot_transfer(inode, attr);
3383 reiserfs_write_lock(inode->i_sb);
3384 if (error) {
3385 journal_end(&th);
3386 reiserfs_write_unlock(inode->i_sb);
3387 goto out;
3391 * Update corresponding info in inode so that everything
3392 * is in one transaction
3394 if (attr->ia_valid & ATTR_UID)
3395 inode->i_uid = attr->ia_uid;
3396 if (attr->ia_valid & ATTR_GID)
3397 inode->i_gid = attr->ia_gid;
3398 mark_inode_dirty(inode);
3399 error = journal_end(&th);
3400 reiserfs_write_unlock(inode->i_sb);
3401 if (error)
3402 goto out;
3405 if ((attr->ia_valid & ATTR_SIZE) &&
3406 attr->ia_size != i_size_read(inode)) {
3407 error = inode_newsize_ok(inode, attr->ia_size);
3408 if (!error) {
3410 * Could race against reiserfs_file_release
3411 * if called from NFS, so take tailpack mutex.
3413 mutex_lock(&REISERFS_I(inode)->tailpack);
3414 truncate_setsize(inode, attr->ia_size);
3415 reiserfs_truncate_file(inode, 1);
3416 mutex_unlock(&REISERFS_I(inode)->tailpack);
3420 if (!error) {
3421 setattr_copy(inode, attr);
3422 mark_inode_dirty(inode);
3425 if (!error && reiserfs_posixacl(inode->i_sb)) {
3426 if (attr->ia_valid & ATTR_MODE)
3427 error = reiserfs_acl_chmod(inode);
3430 out:
3431 return error;
3434 const struct address_space_operations reiserfs_address_space_operations = {
3435 .writepage = reiserfs_writepage,
3436 .readpage = reiserfs_readpage,
3437 .readpages = reiserfs_readpages,
3438 .releasepage = reiserfs_releasepage,
3439 .invalidatepage = reiserfs_invalidatepage,
3440 .write_begin = reiserfs_write_begin,
3441 .write_end = reiserfs_write_end,
3442 .bmap = reiserfs_aop_bmap,
3443 .direct_IO = reiserfs_direct_IO,
3444 .set_page_dirty = reiserfs_set_page_dirty,