Linux 4.19.133
[linux/fpc-iii.git] / fs / userfaultfd.c
blobd269d1139f7ff228889c975be56cc11c755fb582
1 /*
2 * fs/userfaultfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
66 atomic_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq->entry);
142 out:
143 return ret;
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 if (!atomic_inc_not_zero(&ctx->refcount))
154 BUG();
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 if (atomic_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181 static inline void msg_init(struct uffd_msg *msg)
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
188 memset(msg, 0, sizeof(struct uffd_msg));
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
193 unsigned long reason,
194 unsigned int features)
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
200 if (flags & FAULT_FLAG_WRITE)
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209 if (reason & VM_UFFD_WP)
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (features & UFFD_FEATURE_THREAD_ID)
219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 return msg;
223 #ifdef CONFIG_HUGETLB_PAGE
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229 struct vm_area_struct *vma,
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
234 struct mm_struct *mm = ctx->mm;
235 pte_t *ptep, pte;
236 bool ret = true;
238 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
242 if (!ptep)
243 goto out;
245 ret = false;
246 pte = huge_ptep_get(ptep);
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
252 if (huge_pte_none(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256 out:
257 return ret;
259 #else
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_area_struct *vma,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
266 return false; /* should never get here */
268 #endif /* CONFIG_HUGETLB_PAGE */
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
284 p4d_t *p4d;
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
290 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
310 _pmd = READ_ONCE(*pmd);
311 if (pmd_none(_pmd))
312 goto out;
314 ret = false;
315 if (!pmd_present(_pmd))
316 goto out;
318 if (pmd_trans_huge(_pmd))
319 goto out;
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
325 pte = pte_offset_map(pmd, address);
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
330 if (pte_none(*pte))
331 ret = true;
332 pte_unmap(pte);
334 out:
335 return ret;
339 * The locking rules involved in returning VM_FAULT_RETRY depending on
340 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342 * recommendation in __lock_page_or_retry is not an understatement.
344 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346 * not set.
348 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349 * set, VM_FAULT_RETRY can still be returned if and only if there are
350 * fatal_signal_pending()s, and the mmap_sem must be released before
351 * returning it.
353 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
355 struct mm_struct *mm = vmf->vma->vm_mm;
356 struct userfaultfd_ctx *ctx;
357 struct userfaultfd_wait_queue uwq;
358 vm_fault_t ret = VM_FAULT_SIGBUS;
359 bool must_wait, return_to_userland;
360 long blocking_state;
363 * We don't do userfault handling for the final child pid update.
365 * We also don't do userfault handling during
366 * coredumping. hugetlbfs has the special
367 * follow_hugetlb_page() to skip missing pages in the
368 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369 * the no_page_table() helper in follow_page_mask(), but the
370 * shmem_vm_ops->fault method is invoked even during
371 * coredumping without mmap_sem and it ends up here.
373 if (current->flags & (PF_EXITING|PF_DUMPCORE))
374 goto out;
377 * Coredumping runs without mmap_sem so we can only check that
378 * the mmap_sem is held, if PF_DUMPCORE was not set.
380 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
382 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
383 if (!ctx)
384 goto out;
386 BUG_ON(ctx->mm != mm);
388 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
391 if (ctx->features & UFFD_FEATURE_SIGBUS)
392 goto out;
395 * If it's already released don't get it. This avoids to loop
396 * in __get_user_pages if userfaultfd_release waits on the
397 * caller of handle_userfault to release the mmap_sem.
399 if (unlikely(READ_ONCE(ctx->released))) {
401 * Don't return VM_FAULT_SIGBUS in this case, so a non
402 * cooperative manager can close the uffd after the
403 * last UFFDIO_COPY, without risking to trigger an
404 * involuntary SIGBUS if the process was starting the
405 * userfaultfd while the userfaultfd was still armed
406 * (but after the last UFFDIO_COPY). If the uffd
407 * wasn't already closed when the userfault reached
408 * this point, that would normally be solved by
409 * userfaultfd_must_wait returning 'false'.
411 * If we were to return VM_FAULT_SIGBUS here, the non
412 * cooperative manager would be instead forced to
413 * always call UFFDIO_UNREGISTER before it can safely
414 * close the uffd.
416 ret = VM_FAULT_NOPAGE;
417 goto out;
421 * Check that we can return VM_FAULT_RETRY.
423 * NOTE: it should become possible to return VM_FAULT_RETRY
424 * even if FAULT_FLAG_TRIED is set without leading to gup()
425 * -EBUSY failures, if the userfaultfd is to be extended for
426 * VM_UFFD_WP tracking and we intend to arm the userfault
427 * without first stopping userland access to the memory. For
428 * VM_UFFD_MISSING userfaults this is enough for now.
430 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
432 * Validate the invariant that nowait must allow retry
433 * to be sure not to return SIGBUS erroneously on
434 * nowait invocations.
436 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
437 #ifdef CONFIG_DEBUG_VM
438 if (printk_ratelimit()) {
439 printk(KERN_WARNING
440 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 vmf->flags);
442 dump_stack();
444 #endif
445 goto out;
449 * Handle nowait, not much to do other than tell it to retry
450 * and wait.
452 ret = VM_FAULT_RETRY;
453 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
454 goto out;
456 /* take the reference before dropping the mmap_sem */
457 userfaultfd_ctx_get(ctx);
459 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460 uwq.wq.private = current;
461 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462 ctx->features);
463 uwq.ctx = ctx;
464 uwq.waken = false;
466 return_to_userland =
467 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
468 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
469 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470 TASK_KILLABLE;
472 spin_lock_irq(&ctx->fault_pending_wqh.lock);
474 * After the __add_wait_queue the uwq is visible to userland
475 * through poll/read().
477 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
479 * The smp_mb() after __set_current_state prevents the reads
480 * following the spin_unlock to happen before the list_add in
481 * __add_wait_queue.
483 set_current_state(blocking_state);
484 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
486 if (!is_vm_hugetlb_page(vmf->vma))
487 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488 reason);
489 else
490 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491 vmf->address,
492 vmf->flags, reason);
493 up_read(&mm->mmap_sem);
495 if (likely(must_wait && !READ_ONCE(ctx->released) &&
496 (return_to_userland ? !signal_pending(current) :
497 !fatal_signal_pending(current)))) {
498 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
499 schedule();
500 ret |= VM_FAULT_MAJOR;
503 * False wakeups can orginate even from rwsem before
504 * up_read() however userfaults will wait either for a
505 * targeted wakeup on the specific uwq waitqueue from
506 * wake_userfault() or for signals or for uffd
507 * release.
509 while (!READ_ONCE(uwq.waken)) {
511 * This needs the full smp_store_mb()
512 * guarantee as the state write must be
513 * visible to other CPUs before reading
514 * uwq.waken from other CPUs.
516 set_current_state(blocking_state);
517 if (READ_ONCE(uwq.waken) ||
518 READ_ONCE(ctx->released) ||
519 (return_to_userland ? signal_pending(current) :
520 fatal_signal_pending(current)))
521 break;
522 schedule();
526 __set_current_state(TASK_RUNNING);
528 if (return_to_userland) {
529 if (signal_pending(current) &&
530 !fatal_signal_pending(current)) {
532 * If we got a SIGSTOP or SIGCONT and this is
533 * a normal userland page fault, just let
534 * userland return so the signal will be
535 * handled and gdb debugging works. The page
536 * fault code immediately after we return from
537 * this function is going to release the
538 * mmap_sem and it's not depending on it
539 * (unlike gup would if we were not to return
540 * VM_FAULT_RETRY).
542 * If a fatal signal is pending we still take
543 * the streamlined VM_FAULT_RETRY failure path
544 * and there's no need to retake the mmap_sem
545 * in such case.
547 down_read(&mm->mmap_sem);
548 ret = VM_FAULT_NOPAGE;
553 * Here we race with the list_del; list_add in
554 * userfaultfd_ctx_read(), however because we don't ever run
555 * list_del_init() to refile across the two lists, the prev
556 * and next pointers will never point to self. list_add also
557 * would never let any of the two pointers to point to
558 * self. So list_empty_careful won't risk to see both pointers
559 * pointing to self at any time during the list refile. The
560 * only case where list_del_init() is called is the full
561 * removal in the wake function and there we don't re-list_add
562 * and it's fine not to block on the spinlock. The uwq on this
563 * kernel stack can be released after the list_del_init.
565 if (!list_empty_careful(&uwq.wq.entry)) {
566 spin_lock_irq(&ctx->fault_pending_wqh.lock);
568 * No need of list_del_init(), the uwq on the stack
569 * will be freed shortly anyway.
571 list_del(&uwq.wq.entry);
572 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
576 * ctx may go away after this if the userfault pseudo fd is
577 * already released.
579 userfaultfd_ctx_put(ctx);
581 out:
582 return ret;
585 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586 struct userfaultfd_wait_queue *ewq)
588 struct userfaultfd_ctx *release_new_ctx;
590 if (WARN_ON_ONCE(current->flags & PF_EXITING))
591 goto out;
593 ewq->ctx = ctx;
594 init_waitqueue_entry(&ewq->wq, current);
595 release_new_ctx = NULL;
597 spin_lock_irq(&ctx->event_wqh.lock);
599 * After the __add_wait_queue the uwq is visible to userland
600 * through poll/read().
602 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603 for (;;) {
604 set_current_state(TASK_KILLABLE);
605 if (ewq->msg.event == 0)
606 break;
607 if (READ_ONCE(ctx->released) ||
608 fatal_signal_pending(current)) {
610 * &ewq->wq may be queued in fork_event, but
611 * __remove_wait_queue ignores the head
612 * parameter. It would be a problem if it
613 * didn't.
615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616 if (ewq->msg.event == UFFD_EVENT_FORK) {
617 struct userfaultfd_ctx *new;
619 new = (struct userfaultfd_ctx *)
620 (unsigned long)
621 ewq->msg.arg.reserved.reserved1;
622 release_new_ctx = new;
624 break;
627 spin_unlock_irq(&ctx->event_wqh.lock);
629 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630 schedule();
632 spin_lock_irq(&ctx->event_wqh.lock);
634 __set_current_state(TASK_RUNNING);
635 spin_unlock_irq(&ctx->event_wqh.lock);
637 if (release_new_ctx) {
638 struct vm_area_struct *vma;
639 struct mm_struct *mm = release_new_ctx->mm;
641 /* the various vma->vm_userfaultfd_ctx still points to it */
642 down_write(&mm->mmap_sem);
643 /* no task can run (and in turn coredump) yet */
644 VM_WARN_ON(!mmget_still_valid(mm));
645 for (vma = mm->mmap; vma; vma = vma->vm_next)
646 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
650 up_write(&mm->mmap_sem);
652 userfaultfd_ctx_put(release_new_ctx);
656 * ctx may go away after this if the userfault pseudo fd is
657 * already released.
659 out:
660 WRITE_ONCE(ctx->mmap_changing, false);
661 userfaultfd_ctx_put(ctx);
664 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665 struct userfaultfd_wait_queue *ewq)
667 ewq->msg.event = 0;
668 wake_up_locked(&ctx->event_wqh);
669 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
672 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
674 struct userfaultfd_ctx *ctx = NULL, *octx;
675 struct userfaultfd_fork_ctx *fctx;
677 octx = vma->vm_userfaultfd_ctx.ctx;
678 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681 return 0;
684 list_for_each_entry(fctx, fcs, list)
685 if (fctx->orig == octx) {
686 ctx = fctx->new;
687 break;
690 if (!ctx) {
691 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692 if (!fctx)
693 return -ENOMEM;
695 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696 if (!ctx) {
697 kfree(fctx);
698 return -ENOMEM;
701 atomic_set(&ctx->refcount, 1);
702 ctx->flags = octx->flags;
703 ctx->state = UFFD_STATE_RUNNING;
704 ctx->features = octx->features;
705 ctx->released = false;
706 ctx->mmap_changing = false;
707 ctx->mm = vma->vm_mm;
708 mmgrab(ctx->mm);
710 userfaultfd_ctx_get(octx);
711 WRITE_ONCE(octx->mmap_changing, true);
712 fctx->orig = octx;
713 fctx->new = ctx;
714 list_add_tail(&fctx->list, fcs);
717 vma->vm_userfaultfd_ctx.ctx = ctx;
718 return 0;
721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
723 struct userfaultfd_ctx *ctx = fctx->orig;
724 struct userfaultfd_wait_queue ewq;
726 msg_init(&ewq.msg);
728 ewq.msg.event = UFFD_EVENT_FORK;
729 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
731 userfaultfd_event_wait_completion(ctx, &ewq);
734 void dup_userfaultfd_complete(struct list_head *fcs)
736 struct userfaultfd_fork_ctx *fctx, *n;
738 list_for_each_entry_safe(fctx, n, fcs, list) {
739 dup_fctx(fctx);
740 list_del(&fctx->list);
741 kfree(fctx);
745 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746 struct vm_userfaultfd_ctx *vm_ctx)
748 struct userfaultfd_ctx *ctx;
750 ctx = vma->vm_userfaultfd_ctx.ctx;
752 if (!ctx)
753 return;
755 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
756 vm_ctx->ctx = ctx;
757 userfaultfd_ctx_get(ctx);
758 WRITE_ONCE(ctx->mmap_changing, true);
759 } else {
760 /* Drop uffd context if remap feature not enabled */
761 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
762 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
766 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
767 unsigned long from, unsigned long to,
768 unsigned long len)
770 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
771 struct userfaultfd_wait_queue ewq;
773 if (!ctx)
774 return;
776 if (to & ~PAGE_MASK) {
777 userfaultfd_ctx_put(ctx);
778 return;
781 msg_init(&ewq.msg);
783 ewq.msg.event = UFFD_EVENT_REMAP;
784 ewq.msg.arg.remap.from = from;
785 ewq.msg.arg.remap.to = to;
786 ewq.msg.arg.remap.len = len;
788 userfaultfd_event_wait_completion(ctx, &ewq);
791 bool userfaultfd_remove(struct vm_area_struct *vma,
792 unsigned long start, unsigned long end)
794 struct mm_struct *mm = vma->vm_mm;
795 struct userfaultfd_ctx *ctx;
796 struct userfaultfd_wait_queue ewq;
798 ctx = vma->vm_userfaultfd_ctx.ctx;
799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800 return true;
802 userfaultfd_ctx_get(ctx);
803 WRITE_ONCE(ctx->mmap_changing, true);
804 up_read(&mm->mmap_sem);
806 msg_init(&ewq.msg);
808 ewq.msg.event = UFFD_EVENT_REMOVE;
809 ewq.msg.arg.remove.start = start;
810 ewq.msg.arg.remove.end = end;
812 userfaultfd_event_wait_completion(ctx, &ewq);
814 return false;
817 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
818 unsigned long start, unsigned long end)
820 struct userfaultfd_unmap_ctx *unmap_ctx;
822 list_for_each_entry(unmap_ctx, unmaps, list)
823 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
824 unmap_ctx->end == end)
825 return true;
827 return false;
830 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
831 unsigned long start, unsigned long end,
832 struct list_head *unmaps)
834 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
835 struct userfaultfd_unmap_ctx *unmap_ctx;
836 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
838 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
839 has_unmap_ctx(ctx, unmaps, start, end))
840 continue;
842 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
843 if (!unmap_ctx)
844 return -ENOMEM;
846 userfaultfd_ctx_get(ctx);
847 WRITE_ONCE(ctx->mmap_changing, true);
848 unmap_ctx->ctx = ctx;
849 unmap_ctx->start = start;
850 unmap_ctx->end = end;
851 list_add_tail(&unmap_ctx->list, unmaps);
854 return 0;
857 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
859 struct userfaultfd_unmap_ctx *ctx, *n;
860 struct userfaultfd_wait_queue ewq;
862 list_for_each_entry_safe(ctx, n, uf, list) {
863 msg_init(&ewq.msg);
865 ewq.msg.event = UFFD_EVENT_UNMAP;
866 ewq.msg.arg.remove.start = ctx->start;
867 ewq.msg.arg.remove.end = ctx->end;
869 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
871 list_del(&ctx->list);
872 kfree(ctx);
876 static int userfaultfd_release(struct inode *inode, struct file *file)
878 struct userfaultfd_ctx *ctx = file->private_data;
879 struct mm_struct *mm = ctx->mm;
880 struct vm_area_struct *vma, *prev;
881 /* len == 0 means wake all */
882 struct userfaultfd_wake_range range = { .len = 0, };
883 unsigned long new_flags;
884 bool still_valid;
886 WRITE_ONCE(ctx->released, true);
888 if (!mmget_not_zero(mm))
889 goto wakeup;
892 * Flush page faults out of all CPUs. NOTE: all page faults
893 * must be retried without returning VM_FAULT_SIGBUS if
894 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
895 * changes while handle_userfault released the mmap_sem. So
896 * it's critical that released is set to true (above), before
897 * taking the mmap_sem for writing.
899 down_write(&mm->mmap_sem);
900 still_valid = mmget_still_valid(mm);
901 prev = NULL;
902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
903 cond_resched();
904 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
905 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
906 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
907 prev = vma;
908 continue;
910 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
911 if (still_valid) {
912 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
913 new_flags, vma->anon_vma,
914 vma->vm_file, vma->vm_pgoff,
915 vma_policy(vma),
916 NULL_VM_UFFD_CTX);
917 if (prev)
918 vma = prev;
919 else
920 prev = vma;
922 vma->vm_flags = new_flags;
923 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
925 up_write(&mm->mmap_sem);
926 mmput(mm);
927 wakeup:
929 * After no new page faults can wait on this fault_*wqh, flush
930 * the last page faults that may have been already waiting on
931 * the fault_*wqh.
933 spin_lock_irq(&ctx->fault_pending_wqh.lock);
934 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
935 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
936 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
938 /* Flush pending events that may still wait on event_wqh */
939 wake_up_all(&ctx->event_wqh);
941 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
942 userfaultfd_ctx_put(ctx);
943 return 0;
946 /* fault_pending_wqh.lock must be hold by the caller */
947 static inline struct userfaultfd_wait_queue *find_userfault_in(
948 wait_queue_head_t *wqh)
950 wait_queue_entry_t *wq;
951 struct userfaultfd_wait_queue *uwq;
953 VM_BUG_ON(!spin_is_locked(&wqh->lock));
955 uwq = NULL;
956 if (!waitqueue_active(wqh))
957 goto out;
958 /* walk in reverse to provide FIFO behavior to read userfaults */
959 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
960 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
961 out:
962 return uwq;
965 static inline struct userfaultfd_wait_queue *find_userfault(
966 struct userfaultfd_ctx *ctx)
968 return find_userfault_in(&ctx->fault_pending_wqh);
971 static inline struct userfaultfd_wait_queue *find_userfault_evt(
972 struct userfaultfd_ctx *ctx)
974 return find_userfault_in(&ctx->event_wqh);
977 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
979 struct userfaultfd_ctx *ctx = file->private_data;
980 __poll_t ret;
982 poll_wait(file, &ctx->fd_wqh, wait);
984 switch (ctx->state) {
985 case UFFD_STATE_WAIT_API:
986 return EPOLLERR;
987 case UFFD_STATE_RUNNING:
989 * poll() never guarantees that read won't block.
990 * userfaults can be waken before they're read().
992 if (unlikely(!(file->f_flags & O_NONBLOCK)))
993 return EPOLLERR;
995 * lockless access to see if there are pending faults
996 * __pollwait last action is the add_wait_queue but
997 * the spin_unlock would allow the waitqueue_active to
998 * pass above the actual list_add inside
999 * add_wait_queue critical section. So use a full
1000 * memory barrier to serialize the list_add write of
1001 * add_wait_queue() with the waitqueue_active read
1002 * below.
1004 ret = 0;
1005 smp_mb();
1006 if (waitqueue_active(&ctx->fault_pending_wqh))
1007 ret = EPOLLIN;
1008 else if (waitqueue_active(&ctx->event_wqh))
1009 ret = EPOLLIN;
1011 return ret;
1012 default:
1013 WARN_ON_ONCE(1);
1014 return EPOLLERR;
1018 static const struct file_operations userfaultfd_fops;
1020 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1021 struct userfaultfd_ctx *new,
1022 struct uffd_msg *msg)
1024 int fd;
1026 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1027 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1028 if (fd < 0)
1029 return fd;
1031 msg->arg.reserved.reserved1 = 0;
1032 msg->arg.fork.ufd = fd;
1033 return 0;
1036 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1037 struct uffd_msg *msg)
1039 ssize_t ret;
1040 DECLARE_WAITQUEUE(wait, current);
1041 struct userfaultfd_wait_queue *uwq;
1043 * Handling fork event requires sleeping operations, so
1044 * we drop the event_wqh lock, then do these ops, then
1045 * lock it back and wake up the waiter. While the lock is
1046 * dropped the ewq may go away so we keep track of it
1047 * carefully.
1049 LIST_HEAD(fork_event);
1050 struct userfaultfd_ctx *fork_nctx = NULL;
1052 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1053 spin_lock_irq(&ctx->fd_wqh.lock);
1054 __add_wait_queue(&ctx->fd_wqh, &wait);
1055 for (;;) {
1056 set_current_state(TASK_INTERRUPTIBLE);
1057 spin_lock(&ctx->fault_pending_wqh.lock);
1058 uwq = find_userfault(ctx);
1059 if (uwq) {
1061 * Use a seqcount to repeat the lockless check
1062 * in wake_userfault() to avoid missing
1063 * wakeups because during the refile both
1064 * waitqueue could become empty if this is the
1065 * only userfault.
1067 write_seqcount_begin(&ctx->refile_seq);
1070 * The fault_pending_wqh.lock prevents the uwq
1071 * to disappear from under us.
1073 * Refile this userfault from
1074 * fault_pending_wqh to fault_wqh, it's not
1075 * pending anymore after we read it.
1077 * Use list_del() by hand (as
1078 * userfaultfd_wake_function also uses
1079 * list_del_init() by hand) to be sure nobody
1080 * changes __remove_wait_queue() to use
1081 * list_del_init() in turn breaking the
1082 * !list_empty_careful() check in
1083 * handle_userfault(). The uwq->wq.head list
1084 * must never be empty at any time during the
1085 * refile, or the waitqueue could disappear
1086 * from under us. The "wait_queue_head_t"
1087 * parameter of __remove_wait_queue() is unused
1088 * anyway.
1090 list_del(&uwq->wq.entry);
1091 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1093 write_seqcount_end(&ctx->refile_seq);
1095 /* careful to always initialize msg if ret == 0 */
1096 *msg = uwq->msg;
1097 spin_unlock(&ctx->fault_pending_wqh.lock);
1098 ret = 0;
1099 break;
1101 spin_unlock(&ctx->fault_pending_wqh.lock);
1103 spin_lock(&ctx->event_wqh.lock);
1104 uwq = find_userfault_evt(ctx);
1105 if (uwq) {
1106 *msg = uwq->msg;
1108 if (uwq->msg.event == UFFD_EVENT_FORK) {
1109 fork_nctx = (struct userfaultfd_ctx *)
1110 (unsigned long)
1111 uwq->msg.arg.reserved.reserved1;
1112 list_move(&uwq->wq.entry, &fork_event);
1114 * fork_nctx can be freed as soon as
1115 * we drop the lock, unless we take a
1116 * reference on it.
1118 userfaultfd_ctx_get(fork_nctx);
1119 spin_unlock(&ctx->event_wqh.lock);
1120 ret = 0;
1121 break;
1124 userfaultfd_event_complete(ctx, uwq);
1125 spin_unlock(&ctx->event_wqh.lock);
1126 ret = 0;
1127 break;
1129 spin_unlock(&ctx->event_wqh.lock);
1131 if (signal_pending(current)) {
1132 ret = -ERESTARTSYS;
1133 break;
1135 if (no_wait) {
1136 ret = -EAGAIN;
1137 break;
1139 spin_unlock_irq(&ctx->fd_wqh.lock);
1140 schedule();
1141 spin_lock_irq(&ctx->fd_wqh.lock);
1143 __remove_wait_queue(&ctx->fd_wqh, &wait);
1144 __set_current_state(TASK_RUNNING);
1145 spin_unlock_irq(&ctx->fd_wqh.lock);
1147 if (!ret && msg->event == UFFD_EVENT_FORK) {
1148 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1149 spin_lock_irq(&ctx->event_wqh.lock);
1150 if (!list_empty(&fork_event)) {
1152 * The fork thread didn't abort, so we can
1153 * drop the temporary refcount.
1155 userfaultfd_ctx_put(fork_nctx);
1157 uwq = list_first_entry(&fork_event,
1158 typeof(*uwq),
1159 wq.entry);
1161 * If fork_event list wasn't empty and in turn
1162 * the event wasn't already released by fork
1163 * (the event is allocated on fork kernel
1164 * stack), put the event back to its place in
1165 * the event_wq. fork_event head will be freed
1166 * as soon as we return so the event cannot
1167 * stay queued there no matter the current
1168 * "ret" value.
1170 list_del(&uwq->wq.entry);
1171 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1174 * Leave the event in the waitqueue and report
1175 * error to userland if we failed to resolve
1176 * the userfault fork.
1178 if (likely(!ret))
1179 userfaultfd_event_complete(ctx, uwq);
1180 } else {
1182 * Here the fork thread aborted and the
1183 * refcount from the fork thread on fork_nctx
1184 * has already been released. We still hold
1185 * the reference we took before releasing the
1186 * lock above. If resolve_userfault_fork
1187 * failed we've to drop it because the
1188 * fork_nctx has to be freed in such case. If
1189 * it succeeded we'll hold it because the new
1190 * uffd references it.
1192 if (ret)
1193 userfaultfd_ctx_put(fork_nctx);
1195 spin_unlock_irq(&ctx->event_wqh.lock);
1198 return ret;
1201 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1202 size_t count, loff_t *ppos)
1204 struct userfaultfd_ctx *ctx = file->private_data;
1205 ssize_t _ret, ret = 0;
1206 struct uffd_msg msg;
1207 int no_wait = file->f_flags & O_NONBLOCK;
1209 if (ctx->state == UFFD_STATE_WAIT_API)
1210 return -EINVAL;
1212 for (;;) {
1213 if (count < sizeof(msg))
1214 return ret ? ret : -EINVAL;
1215 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1216 if (_ret < 0)
1217 return ret ? ret : _ret;
1218 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1219 return ret ? ret : -EFAULT;
1220 ret += sizeof(msg);
1221 buf += sizeof(msg);
1222 count -= sizeof(msg);
1224 * Allow to read more than one fault at time but only
1225 * block if waiting for the very first one.
1227 no_wait = O_NONBLOCK;
1231 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1232 struct userfaultfd_wake_range *range)
1234 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1235 /* wake all in the range and autoremove */
1236 if (waitqueue_active(&ctx->fault_pending_wqh))
1237 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1238 range);
1239 if (waitqueue_active(&ctx->fault_wqh))
1240 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1241 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1244 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1245 struct userfaultfd_wake_range *range)
1247 unsigned seq;
1248 bool need_wakeup;
1251 * To be sure waitqueue_active() is not reordered by the CPU
1252 * before the pagetable update, use an explicit SMP memory
1253 * barrier here. PT lock release or up_read(mmap_sem) still
1254 * have release semantics that can allow the
1255 * waitqueue_active() to be reordered before the pte update.
1257 smp_mb();
1260 * Use waitqueue_active because it's very frequent to
1261 * change the address space atomically even if there are no
1262 * userfaults yet. So we take the spinlock only when we're
1263 * sure we've userfaults to wake.
1265 do {
1266 seq = read_seqcount_begin(&ctx->refile_seq);
1267 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1268 waitqueue_active(&ctx->fault_wqh);
1269 cond_resched();
1270 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1271 if (need_wakeup)
1272 __wake_userfault(ctx, range);
1275 static __always_inline int validate_range(struct mm_struct *mm,
1276 __u64 start, __u64 len)
1278 __u64 task_size = mm->task_size;
1280 if (start & ~PAGE_MASK)
1281 return -EINVAL;
1282 if (len & ~PAGE_MASK)
1283 return -EINVAL;
1284 if (!len)
1285 return -EINVAL;
1286 if (start < mmap_min_addr)
1287 return -EINVAL;
1288 if (start >= task_size)
1289 return -EINVAL;
1290 if (len > task_size - start)
1291 return -EINVAL;
1292 return 0;
1295 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1297 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1298 vma_is_shmem(vma);
1301 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1302 unsigned long arg)
1304 struct mm_struct *mm = ctx->mm;
1305 struct vm_area_struct *vma, *prev, *cur;
1306 int ret;
1307 struct uffdio_register uffdio_register;
1308 struct uffdio_register __user *user_uffdio_register;
1309 unsigned long vm_flags, new_flags;
1310 bool found;
1311 bool basic_ioctls;
1312 unsigned long start, end, vma_end;
1314 user_uffdio_register = (struct uffdio_register __user *) arg;
1316 ret = -EFAULT;
1317 if (copy_from_user(&uffdio_register, user_uffdio_register,
1318 sizeof(uffdio_register)-sizeof(__u64)))
1319 goto out;
1321 ret = -EINVAL;
1322 if (!uffdio_register.mode)
1323 goto out;
1324 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1325 UFFDIO_REGISTER_MODE_WP))
1326 goto out;
1327 vm_flags = 0;
1328 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1329 vm_flags |= VM_UFFD_MISSING;
1330 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1331 vm_flags |= VM_UFFD_WP;
1333 * FIXME: remove the below error constraint by
1334 * implementing the wprotect tracking mode.
1336 ret = -EINVAL;
1337 goto out;
1340 ret = validate_range(mm, uffdio_register.range.start,
1341 uffdio_register.range.len);
1342 if (ret)
1343 goto out;
1345 start = uffdio_register.range.start;
1346 end = start + uffdio_register.range.len;
1348 ret = -ENOMEM;
1349 if (!mmget_not_zero(mm))
1350 goto out;
1352 down_write(&mm->mmap_sem);
1353 if (!mmget_still_valid(mm))
1354 goto out_unlock;
1355 vma = find_vma_prev(mm, start, &prev);
1356 if (!vma)
1357 goto out_unlock;
1359 /* check that there's at least one vma in the range */
1360 ret = -EINVAL;
1361 if (vma->vm_start >= end)
1362 goto out_unlock;
1365 * If the first vma contains huge pages, make sure start address
1366 * is aligned to huge page size.
1368 if (is_vm_hugetlb_page(vma)) {
1369 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1371 if (start & (vma_hpagesize - 1))
1372 goto out_unlock;
1376 * Search for not compatible vmas.
1378 found = false;
1379 basic_ioctls = false;
1380 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1381 cond_resched();
1383 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1384 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1386 /* check not compatible vmas */
1387 ret = -EINVAL;
1388 if (!vma_can_userfault(cur))
1389 goto out_unlock;
1392 * UFFDIO_COPY will fill file holes even without
1393 * PROT_WRITE. This check enforces that if this is a
1394 * MAP_SHARED, the process has write permission to the backing
1395 * file. If VM_MAYWRITE is set it also enforces that on a
1396 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1397 * F_WRITE_SEAL can be taken until the vma is destroyed.
1399 ret = -EPERM;
1400 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1401 goto out_unlock;
1404 * If this vma contains ending address, and huge pages
1405 * check alignment.
1407 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1408 end > cur->vm_start) {
1409 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1411 ret = -EINVAL;
1413 if (end & (vma_hpagesize - 1))
1414 goto out_unlock;
1418 * Check that this vma isn't already owned by a
1419 * different userfaultfd. We can't allow more than one
1420 * userfaultfd to own a single vma simultaneously or we
1421 * wouldn't know which one to deliver the userfaults to.
1423 ret = -EBUSY;
1424 if (cur->vm_userfaultfd_ctx.ctx &&
1425 cur->vm_userfaultfd_ctx.ctx != ctx)
1426 goto out_unlock;
1429 * Note vmas containing huge pages
1431 if (is_vm_hugetlb_page(cur))
1432 basic_ioctls = true;
1434 found = true;
1436 BUG_ON(!found);
1438 if (vma->vm_start < start)
1439 prev = vma;
1441 ret = 0;
1442 do {
1443 cond_resched();
1445 BUG_ON(!vma_can_userfault(vma));
1446 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1447 vma->vm_userfaultfd_ctx.ctx != ctx);
1448 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1451 * Nothing to do: this vma is already registered into this
1452 * userfaultfd and with the right tracking mode too.
1454 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1455 (vma->vm_flags & vm_flags) == vm_flags)
1456 goto skip;
1458 if (vma->vm_start > start)
1459 start = vma->vm_start;
1460 vma_end = min(end, vma->vm_end);
1462 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1463 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1464 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1465 vma_policy(vma),
1466 ((struct vm_userfaultfd_ctx){ ctx }));
1467 if (prev) {
1468 vma = prev;
1469 goto next;
1471 if (vma->vm_start < start) {
1472 ret = split_vma(mm, vma, start, 1);
1473 if (ret)
1474 break;
1476 if (vma->vm_end > end) {
1477 ret = split_vma(mm, vma, end, 0);
1478 if (ret)
1479 break;
1481 next:
1483 * In the vma_merge() successful mprotect-like case 8:
1484 * the next vma was merged into the current one and
1485 * the current one has not been updated yet.
1487 vma->vm_flags = new_flags;
1488 vma->vm_userfaultfd_ctx.ctx = ctx;
1490 skip:
1491 prev = vma;
1492 start = vma->vm_end;
1493 vma = vma->vm_next;
1494 } while (vma && vma->vm_start < end);
1495 out_unlock:
1496 up_write(&mm->mmap_sem);
1497 mmput(mm);
1498 if (!ret) {
1500 * Now that we scanned all vmas we can already tell
1501 * userland which ioctls methods are guaranteed to
1502 * succeed on this range.
1504 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1505 UFFD_API_RANGE_IOCTLS,
1506 &user_uffdio_register->ioctls))
1507 ret = -EFAULT;
1509 out:
1510 return ret;
1513 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1514 unsigned long arg)
1516 struct mm_struct *mm = ctx->mm;
1517 struct vm_area_struct *vma, *prev, *cur;
1518 int ret;
1519 struct uffdio_range uffdio_unregister;
1520 unsigned long new_flags;
1521 bool found;
1522 unsigned long start, end, vma_end;
1523 const void __user *buf = (void __user *)arg;
1525 ret = -EFAULT;
1526 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527 goto out;
1529 ret = validate_range(mm, uffdio_unregister.start,
1530 uffdio_unregister.len);
1531 if (ret)
1532 goto out;
1534 start = uffdio_unregister.start;
1535 end = start + uffdio_unregister.len;
1537 ret = -ENOMEM;
1538 if (!mmget_not_zero(mm))
1539 goto out;
1541 down_write(&mm->mmap_sem);
1542 if (!mmget_still_valid(mm))
1543 goto out_unlock;
1544 vma = find_vma_prev(mm, start, &prev);
1545 if (!vma)
1546 goto out_unlock;
1548 /* check that there's at least one vma in the range */
1549 ret = -EINVAL;
1550 if (vma->vm_start >= end)
1551 goto out_unlock;
1554 * If the first vma contains huge pages, make sure start address
1555 * is aligned to huge page size.
1557 if (is_vm_hugetlb_page(vma)) {
1558 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1560 if (start & (vma_hpagesize - 1))
1561 goto out_unlock;
1565 * Search for not compatible vmas.
1567 found = false;
1568 ret = -EINVAL;
1569 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1570 cond_resched();
1572 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1573 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1576 * Check not compatible vmas, not strictly required
1577 * here as not compatible vmas cannot have an
1578 * userfaultfd_ctx registered on them, but this
1579 * provides for more strict behavior to notice
1580 * unregistration errors.
1582 if (!vma_can_userfault(cur))
1583 goto out_unlock;
1585 found = true;
1587 BUG_ON(!found);
1589 if (vma->vm_start < start)
1590 prev = vma;
1592 ret = 0;
1593 do {
1594 cond_resched();
1596 BUG_ON(!vma_can_userfault(vma));
1599 * Nothing to do: this vma is already registered into this
1600 * userfaultfd and with the right tracking mode too.
1602 if (!vma->vm_userfaultfd_ctx.ctx)
1603 goto skip;
1605 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1607 if (vma->vm_start > start)
1608 start = vma->vm_start;
1609 vma_end = min(end, vma->vm_end);
1611 if (userfaultfd_missing(vma)) {
1613 * Wake any concurrent pending userfault while
1614 * we unregister, so they will not hang
1615 * permanently and it avoids userland to call
1616 * UFFDIO_WAKE explicitly.
1618 struct userfaultfd_wake_range range;
1619 range.start = start;
1620 range.len = vma_end - start;
1621 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1624 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1625 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1626 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1627 vma_policy(vma),
1628 NULL_VM_UFFD_CTX);
1629 if (prev) {
1630 vma = prev;
1631 goto next;
1633 if (vma->vm_start < start) {
1634 ret = split_vma(mm, vma, start, 1);
1635 if (ret)
1636 break;
1638 if (vma->vm_end > end) {
1639 ret = split_vma(mm, vma, end, 0);
1640 if (ret)
1641 break;
1643 next:
1645 * In the vma_merge() successful mprotect-like case 8:
1646 * the next vma was merged into the current one and
1647 * the current one has not been updated yet.
1649 vma->vm_flags = new_flags;
1650 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1652 skip:
1653 prev = vma;
1654 start = vma->vm_end;
1655 vma = vma->vm_next;
1656 } while (vma && vma->vm_start < end);
1657 out_unlock:
1658 up_write(&mm->mmap_sem);
1659 mmput(mm);
1660 out:
1661 return ret;
1665 * userfaultfd_wake may be used in combination with the
1666 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1668 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1669 unsigned long arg)
1671 int ret;
1672 struct uffdio_range uffdio_wake;
1673 struct userfaultfd_wake_range range;
1674 const void __user *buf = (void __user *)arg;
1676 ret = -EFAULT;
1677 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1678 goto out;
1680 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1681 if (ret)
1682 goto out;
1684 range.start = uffdio_wake.start;
1685 range.len = uffdio_wake.len;
1688 * len == 0 means wake all and we don't want to wake all here,
1689 * so check it again to be sure.
1691 VM_BUG_ON(!range.len);
1693 wake_userfault(ctx, &range);
1694 ret = 0;
1696 out:
1697 return ret;
1700 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1701 unsigned long arg)
1703 __s64 ret;
1704 struct uffdio_copy uffdio_copy;
1705 struct uffdio_copy __user *user_uffdio_copy;
1706 struct userfaultfd_wake_range range;
1708 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1710 ret = -EAGAIN;
1711 if (READ_ONCE(ctx->mmap_changing))
1712 goto out;
1714 ret = -EFAULT;
1715 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1716 /* don't copy "copy" last field */
1717 sizeof(uffdio_copy)-sizeof(__s64)))
1718 goto out;
1720 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1721 if (ret)
1722 goto out;
1724 * double check for wraparound just in case. copy_from_user()
1725 * will later check uffdio_copy.src + uffdio_copy.len to fit
1726 * in the userland range.
1728 ret = -EINVAL;
1729 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1730 goto out;
1731 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1732 goto out;
1733 if (mmget_not_zero(ctx->mm)) {
1734 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1735 uffdio_copy.len, &ctx->mmap_changing);
1736 mmput(ctx->mm);
1737 } else {
1738 return -ESRCH;
1740 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1741 return -EFAULT;
1742 if (ret < 0)
1743 goto out;
1744 BUG_ON(!ret);
1745 /* len == 0 would wake all */
1746 range.len = ret;
1747 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1748 range.start = uffdio_copy.dst;
1749 wake_userfault(ctx, &range);
1751 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1752 out:
1753 return ret;
1756 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1757 unsigned long arg)
1759 __s64 ret;
1760 struct uffdio_zeropage uffdio_zeropage;
1761 struct uffdio_zeropage __user *user_uffdio_zeropage;
1762 struct userfaultfd_wake_range range;
1764 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1766 ret = -EAGAIN;
1767 if (READ_ONCE(ctx->mmap_changing))
1768 goto out;
1770 ret = -EFAULT;
1771 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1772 /* don't copy "zeropage" last field */
1773 sizeof(uffdio_zeropage)-sizeof(__s64)))
1774 goto out;
1776 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1777 uffdio_zeropage.range.len);
1778 if (ret)
1779 goto out;
1780 ret = -EINVAL;
1781 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1782 goto out;
1784 if (mmget_not_zero(ctx->mm)) {
1785 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1786 uffdio_zeropage.range.len,
1787 &ctx->mmap_changing);
1788 mmput(ctx->mm);
1789 } else {
1790 return -ESRCH;
1792 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1793 return -EFAULT;
1794 if (ret < 0)
1795 goto out;
1796 /* len == 0 would wake all */
1797 BUG_ON(!ret);
1798 range.len = ret;
1799 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1800 range.start = uffdio_zeropage.range.start;
1801 wake_userfault(ctx, &range);
1803 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1804 out:
1805 return ret;
1808 static inline unsigned int uffd_ctx_features(__u64 user_features)
1811 * For the current set of features the bits just coincide
1813 return (unsigned int)user_features;
1817 * userland asks for a certain API version and we return which bits
1818 * and ioctl commands are implemented in this kernel for such API
1819 * version or -EINVAL if unknown.
1821 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1822 unsigned long arg)
1824 struct uffdio_api uffdio_api;
1825 void __user *buf = (void __user *)arg;
1826 int ret;
1827 __u64 features;
1829 ret = -EINVAL;
1830 if (ctx->state != UFFD_STATE_WAIT_API)
1831 goto out;
1832 ret = -EFAULT;
1833 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1834 goto out;
1835 features = uffdio_api.features;
1836 ret = -EINVAL;
1837 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1838 goto err_out;
1839 ret = -EPERM;
1840 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1841 goto err_out;
1842 /* report all available features and ioctls to userland */
1843 uffdio_api.features = UFFD_API_FEATURES;
1844 uffdio_api.ioctls = UFFD_API_IOCTLS;
1845 ret = -EFAULT;
1846 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1847 goto out;
1848 ctx->state = UFFD_STATE_RUNNING;
1849 /* only enable the requested features for this uffd context */
1850 ctx->features = uffd_ctx_features(features);
1851 ret = 0;
1852 out:
1853 return ret;
1854 err_out:
1855 memset(&uffdio_api, 0, sizeof(uffdio_api));
1856 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1857 ret = -EFAULT;
1858 goto out;
1861 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1862 unsigned long arg)
1864 int ret = -EINVAL;
1865 struct userfaultfd_ctx *ctx = file->private_data;
1867 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1868 return -EINVAL;
1870 switch(cmd) {
1871 case UFFDIO_API:
1872 ret = userfaultfd_api(ctx, arg);
1873 break;
1874 case UFFDIO_REGISTER:
1875 ret = userfaultfd_register(ctx, arg);
1876 break;
1877 case UFFDIO_UNREGISTER:
1878 ret = userfaultfd_unregister(ctx, arg);
1879 break;
1880 case UFFDIO_WAKE:
1881 ret = userfaultfd_wake(ctx, arg);
1882 break;
1883 case UFFDIO_COPY:
1884 ret = userfaultfd_copy(ctx, arg);
1885 break;
1886 case UFFDIO_ZEROPAGE:
1887 ret = userfaultfd_zeropage(ctx, arg);
1888 break;
1890 return ret;
1893 #ifdef CONFIG_PROC_FS
1894 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1896 struct userfaultfd_ctx *ctx = f->private_data;
1897 wait_queue_entry_t *wq;
1898 unsigned long pending = 0, total = 0;
1900 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1901 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1902 pending++;
1903 total++;
1905 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1906 total++;
1908 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1911 * If more protocols will be added, there will be all shown
1912 * separated by a space. Like this:
1913 * protocols: aa:... bb:...
1915 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1916 pending, total, UFFD_API, ctx->features,
1917 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1919 #endif
1921 static const struct file_operations userfaultfd_fops = {
1922 #ifdef CONFIG_PROC_FS
1923 .show_fdinfo = userfaultfd_show_fdinfo,
1924 #endif
1925 .release = userfaultfd_release,
1926 .poll = userfaultfd_poll,
1927 .read = userfaultfd_read,
1928 .unlocked_ioctl = userfaultfd_ioctl,
1929 .compat_ioctl = userfaultfd_ioctl,
1930 .llseek = noop_llseek,
1933 static void init_once_userfaultfd_ctx(void *mem)
1935 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1937 init_waitqueue_head(&ctx->fault_pending_wqh);
1938 init_waitqueue_head(&ctx->fault_wqh);
1939 init_waitqueue_head(&ctx->event_wqh);
1940 init_waitqueue_head(&ctx->fd_wqh);
1941 seqcount_init(&ctx->refile_seq);
1944 SYSCALL_DEFINE1(userfaultfd, int, flags)
1946 struct userfaultfd_ctx *ctx;
1947 int fd;
1949 BUG_ON(!current->mm);
1951 /* Check the UFFD_* constants for consistency. */
1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1956 return -EINVAL;
1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1959 if (!ctx)
1960 return -ENOMEM;
1962 atomic_set(&ctx->refcount, 1);
1963 ctx->flags = flags;
1964 ctx->features = 0;
1965 ctx->state = UFFD_STATE_WAIT_API;
1966 ctx->released = false;
1967 ctx->mmap_changing = false;
1968 ctx->mm = current->mm;
1969 /* prevent the mm struct to be freed */
1970 mmgrab(ctx->mm);
1972 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1974 if (fd < 0) {
1975 mmdrop(ctx->mm);
1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1978 return fd;
1981 static int __init userfaultfd_init(void)
1983 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1984 sizeof(struct userfaultfd_ctx),
1986 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1987 init_once_userfaultfd_ctx);
1988 return 0;
1990 __initcall(userfaultfd_init);