Linux 4.19.133
[linux/fpc-iii.git] / ipc / mqueue.c
blob46d0265423f5ba2d5fefa8b4256f09b625dea4c1
1 /*
2 * POSIX message queues filesystem for Linux.
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
42 #include <net/sock.h>
43 #include "util.h"
45 #define MQUEUE_MAGIC 0x19800202
46 #define DIRENT_SIZE 20
47 #define FILENT_SIZE 80
49 #define SEND 0
50 #define RECV 1
52 #define STATE_NONE 0
53 #define STATE_READY 1
55 struct posix_msg_tree_node {
56 struct rb_node rb_node;
57 struct list_head msg_list;
58 int priority;
61 struct ext_wait_queue { /* queue of sleeping tasks */
62 struct task_struct *task;
63 struct list_head list;
64 struct msg_msg *msg; /* ptr of loaded message */
65 int state; /* one of STATE_* values */
68 struct mqueue_inode_info {
69 spinlock_t lock;
70 struct inode vfs_inode;
71 wait_queue_head_t wait_q;
73 struct rb_root msg_tree;
74 struct posix_msg_tree_node *node_cache;
75 struct mq_attr attr;
77 struct sigevent notify;
78 struct pid *notify_owner;
79 u32 notify_self_exec_id;
80 struct user_namespace *notify_user_ns;
81 struct user_struct *user; /* user who created, for accounting */
82 struct sock *notify_sock;
83 struct sk_buff *notify_cookie;
85 /* for tasks waiting for free space and messages, respectively */
86 struct ext_wait_queue e_wait_q[2];
88 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
91 static const struct inode_operations mqueue_dir_inode_operations;
92 static const struct file_operations mqueue_file_operations;
93 static const struct super_operations mqueue_super_ops;
94 static void remove_notification(struct mqueue_inode_info *info);
96 static struct kmem_cache *mqueue_inode_cachep;
98 static struct ctl_table_header *mq_sysctl_table;
100 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
102 return container_of(inode, struct mqueue_inode_info, vfs_inode);
106 * This routine should be called with the mq_lock held.
108 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
110 return get_ipc_ns(inode->i_sb->s_fs_info);
113 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
115 struct ipc_namespace *ns;
117 spin_lock(&mq_lock);
118 ns = __get_ns_from_inode(inode);
119 spin_unlock(&mq_lock);
120 return ns;
123 /* Auxiliary functions to manipulate messages' list */
124 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
126 struct rb_node **p, *parent = NULL;
127 struct posix_msg_tree_node *leaf;
129 p = &info->msg_tree.rb_node;
130 while (*p) {
131 parent = *p;
132 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
134 if (likely(leaf->priority == msg->m_type))
135 goto insert_msg;
136 else if (msg->m_type < leaf->priority)
137 p = &(*p)->rb_left;
138 else
139 p = &(*p)->rb_right;
141 if (info->node_cache) {
142 leaf = info->node_cache;
143 info->node_cache = NULL;
144 } else {
145 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
146 if (!leaf)
147 return -ENOMEM;
148 INIT_LIST_HEAD(&leaf->msg_list);
150 leaf->priority = msg->m_type;
151 rb_link_node(&leaf->rb_node, parent, p);
152 rb_insert_color(&leaf->rb_node, &info->msg_tree);
153 insert_msg:
154 info->attr.mq_curmsgs++;
155 info->qsize += msg->m_ts;
156 list_add_tail(&msg->m_list, &leaf->msg_list);
157 return 0;
160 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
162 struct rb_node **p, *parent = NULL;
163 struct posix_msg_tree_node *leaf;
164 struct msg_msg *msg;
166 try_again:
167 p = &info->msg_tree.rb_node;
168 while (*p) {
169 parent = *p;
171 * During insert, low priorities go to the left and high to the
172 * right. On receive, we want the highest priorities first, so
173 * walk all the way to the right.
175 p = &(*p)->rb_right;
177 if (!parent) {
178 if (info->attr.mq_curmsgs) {
179 pr_warn_once("Inconsistency in POSIX message queue, "
180 "no tree element, but supposedly messages "
181 "should exist!\n");
182 info->attr.mq_curmsgs = 0;
184 return NULL;
186 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
187 if (unlikely(list_empty(&leaf->msg_list))) {
188 pr_warn_once("Inconsistency in POSIX message queue, "
189 "empty leaf node but we haven't implemented "
190 "lazy leaf delete!\n");
191 rb_erase(&leaf->rb_node, &info->msg_tree);
192 if (info->node_cache) {
193 kfree(leaf);
194 } else {
195 info->node_cache = leaf;
197 goto try_again;
198 } else {
199 msg = list_first_entry(&leaf->msg_list,
200 struct msg_msg, m_list);
201 list_del(&msg->m_list);
202 if (list_empty(&leaf->msg_list)) {
203 rb_erase(&leaf->rb_node, &info->msg_tree);
204 if (info->node_cache) {
205 kfree(leaf);
206 } else {
207 info->node_cache = leaf;
211 info->attr.mq_curmsgs--;
212 info->qsize -= msg->m_ts;
213 return msg;
216 static struct inode *mqueue_get_inode(struct super_block *sb,
217 struct ipc_namespace *ipc_ns, umode_t mode,
218 struct mq_attr *attr)
220 struct user_struct *u = current_user();
221 struct inode *inode;
222 int ret = -ENOMEM;
224 inode = new_inode(sb);
225 if (!inode)
226 goto err;
228 inode->i_ino = get_next_ino();
229 inode->i_mode = mode;
230 inode->i_uid = current_fsuid();
231 inode->i_gid = current_fsgid();
232 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
234 if (S_ISREG(mode)) {
235 struct mqueue_inode_info *info;
236 unsigned long mq_bytes, mq_treesize;
238 inode->i_fop = &mqueue_file_operations;
239 inode->i_size = FILENT_SIZE;
240 /* mqueue specific info */
241 info = MQUEUE_I(inode);
242 spin_lock_init(&info->lock);
243 init_waitqueue_head(&info->wait_q);
244 INIT_LIST_HEAD(&info->e_wait_q[0].list);
245 INIT_LIST_HEAD(&info->e_wait_q[1].list);
246 info->notify_owner = NULL;
247 info->notify_user_ns = NULL;
248 info->qsize = 0;
249 info->user = NULL; /* set when all is ok */
250 info->msg_tree = RB_ROOT;
251 info->node_cache = NULL;
252 memset(&info->attr, 0, sizeof(info->attr));
253 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
254 ipc_ns->mq_msg_default);
255 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
256 ipc_ns->mq_msgsize_default);
257 if (attr) {
258 info->attr.mq_maxmsg = attr->mq_maxmsg;
259 info->attr.mq_msgsize = attr->mq_msgsize;
262 * We used to allocate a static array of pointers and account
263 * the size of that array as well as one msg_msg struct per
264 * possible message into the queue size. That's no longer
265 * accurate as the queue is now an rbtree and will grow and
266 * shrink depending on usage patterns. We can, however, still
267 * account one msg_msg struct per message, but the nodes are
268 * allocated depending on priority usage, and most programs
269 * only use one, or a handful, of priorities. However, since
270 * this is pinned memory, we need to assume worst case, so
271 * that means the min(mq_maxmsg, max_priorities) * struct
272 * posix_msg_tree_node.
275 ret = -EINVAL;
276 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
277 goto out_inode;
278 if (capable(CAP_SYS_RESOURCE)) {
279 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
280 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
281 goto out_inode;
282 } else {
283 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
284 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
285 goto out_inode;
287 ret = -EOVERFLOW;
288 /* check for overflow */
289 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
290 goto out_inode;
291 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
292 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
293 sizeof(struct posix_msg_tree_node);
294 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
295 if (mq_bytes + mq_treesize < mq_bytes)
296 goto out_inode;
297 mq_bytes += mq_treesize;
298 spin_lock(&mq_lock);
299 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
300 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
301 spin_unlock(&mq_lock);
302 /* mqueue_evict_inode() releases info->messages */
303 ret = -EMFILE;
304 goto out_inode;
306 u->mq_bytes += mq_bytes;
307 spin_unlock(&mq_lock);
309 /* all is ok */
310 info->user = get_uid(u);
311 } else if (S_ISDIR(mode)) {
312 inc_nlink(inode);
313 /* Some things misbehave if size == 0 on a directory */
314 inode->i_size = 2 * DIRENT_SIZE;
315 inode->i_op = &mqueue_dir_inode_operations;
316 inode->i_fop = &simple_dir_operations;
319 return inode;
320 out_inode:
321 iput(inode);
322 err:
323 return ERR_PTR(ret);
326 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
328 struct inode *inode;
329 struct ipc_namespace *ns = sb->s_fs_info;
331 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
332 sb->s_blocksize = PAGE_SIZE;
333 sb->s_blocksize_bits = PAGE_SHIFT;
334 sb->s_magic = MQUEUE_MAGIC;
335 sb->s_op = &mqueue_super_ops;
337 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
338 if (IS_ERR(inode))
339 return PTR_ERR(inode);
341 sb->s_root = d_make_root(inode);
342 if (!sb->s_root)
343 return -ENOMEM;
344 return 0;
347 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
348 int flags, const char *dev_name,
349 void *data)
351 struct ipc_namespace *ns;
352 if (flags & SB_KERNMOUNT) {
353 ns = data;
354 data = NULL;
355 } else {
356 ns = current->nsproxy->ipc_ns;
358 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
361 static void init_once(void *foo)
363 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
365 inode_init_once(&p->vfs_inode);
368 static struct inode *mqueue_alloc_inode(struct super_block *sb)
370 struct mqueue_inode_info *ei;
372 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
373 if (!ei)
374 return NULL;
375 return &ei->vfs_inode;
378 static void mqueue_i_callback(struct rcu_head *head)
380 struct inode *inode = container_of(head, struct inode, i_rcu);
381 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
384 static void mqueue_destroy_inode(struct inode *inode)
386 call_rcu(&inode->i_rcu, mqueue_i_callback);
389 static void mqueue_evict_inode(struct inode *inode)
391 struct mqueue_inode_info *info;
392 struct user_struct *user;
393 struct ipc_namespace *ipc_ns;
394 struct msg_msg *msg, *nmsg;
395 LIST_HEAD(tmp_msg);
397 clear_inode(inode);
399 if (S_ISDIR(inode->i_mode))
400 return;
402 ipc_ns = get_ns_from_inode(inode);
403 info = MQUEUE_I(inode);
404 spin_lock(&info->lock);
405 while ((msg = msg_get(info)) != NULL)
406 list_add_tail(&msg->m_list, &tmp_msg);
407 kfree(info->node_cache);
408 spin_unlock(&info->lock);
410 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
411 list_del(&msg->m_list);
412 free_msg(msg);
415 user = info->user;
416 if (user) {
417 unsigned long mq_bytes, mq_treesize;
419 /* Total amount of bytes accounted for the mqueue */
420 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
421 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
422 sizeof(struct posix_msg_tree_node);
424 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
425 info->attr.mq_msgsize);
427 spin_lock(&mq_lock);
428 user->mq_bytes -= mq_bytes;
430 * get_ns_from_inode() ensures that the
431 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
432 * to which we now hold a reference, or it is NULL.
433 * We can't put it here under mq_lock, though.
435 if (ipc_ns)
436 ipc_ns->mq_queues_count--;
437 spin_unlock(&mq_lock);
438 free_uid(user);
440 if (ipc_ns)
441 put_ipc_ns(ipc_ns);
444 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
446 struct inode *dir = dentry->d_parent->d_inode;
447 struct inode *inode;
448 struct mq_attr *attr = arg;
449 int error;
450 struct ipc_namespace *ipc_ns;
452 spin_lock(&mq_lock);
453 ipc_ns = __get_ns_from_inode(dir);
454 if (!ipc_ns) {
455 error = -EACCES;
456 goto out_unlock;
459 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
460 !capable(CAP_SYS_RESOURCE)) {
461 error = -ENOSPC;
462 goto out_unlock;
464 ipc_ns->mq_queues_count++;
465 spin_unlock(&mq_lock);
467 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
468 if (IS_ERR(inode)) {
469 error = PTR_ERR(inode);
470 spin_lock(&mq_lock);
471 ipc_ns->mq_queues_count--;
472 goto out_unlock;
475 put_ipc_ns(ipc_ns);
476 dir->i_size += DIRENT_SIZE;
477 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
479 d_instantiate(dentry, inode);
480 dget(dentry);
481 return 0;
482 out_unlock:
483 spin_unlock(&mq_lock);
484 if (ipc_ns)
485 put_ipc_ns(ipc_ns);
486 return error;
489 static int mqueue_create(struct inode *dir, struct dentry *dentry,
490 umode_t mode, bool excl)
492 return mqueue_create_attr(dentry, mode, NULL);
495 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
497 struct inode *inode = d_inode(dentry);
499 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
500 dir->i_size -= DIRENT_SIZE;
501 drop_nlink(inode);
502 dput(dentry);
503 return 0;
507 * This is routine for system read from queue file.
508 * To avoid mess with doing here some sort of mq_receive we allow
509 * to read only queue size & notification info (the only values
510 * that are interesting from user point of view and aren't accessible
511 * through std routines)
513 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
514 size_t count, loff_t *off)
516 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
517 char buffer[FILENT_SIZE];
518 ssize_t ret;
520 spin_lock(&info->lock);
521 snprintf(buffer, sizeof(buffer),
522 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
523 info->qsize,
524 info->notify_owner ? info->notify.sigev_notify : 0,
525 (info->notify_owner &&
526 info->notify.sigev_notify == SIGEV_SIGNAL) ?
527 info->notify.sigev_signo : 0,
528 pid_vnr(info->notify_owner));
529 spin_unlock(&info->lock);
530 buffer[sizeof(buffer)-1] = '\0';
532 ret = simple_read_from_buffer(u_data, count, off, buffer,
533 strlen(buffer));
534 if (ret <= 0)
535 return ret;
537 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
538 return ret;
541 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
543 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
545 spin_lock(&info->lock);
546 if (task_tgid(current) == info->notify_owner)
547 remove_notification(info);
549 spin_unlock(&info->lock);
550 return 0;
553 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
555 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
556 __poll_t retval = 0;
558 poll_wait(filp, &info->wait_q, poll_tab);
560 spin_lock(&info->lock);
561 if (info->attr.mq_curmsgs)
562 retval = EPOLLIN | EPOLLRDNORM;
564 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
565 retval |= EPOLLOUT | EPOLLWRNORM;
566 spin_unlock(&info->lock);
568 return retval;
571 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
572 static void wq_add(struct mqueue_inode_info *info, int sr,
573 struct ext_wait_queue *ewp)
575 struct ext_wait_queue *walk;
577 ewp->task = current;
579 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
580 if (walk->task->prio <= current->prio) {
581 list_add_tail(&ewp->list, &walk->list);
582 return;
585 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
589 * Puts current task to sleep. Caller must hold queue lock. After return
590 * lock isn't held.
591 * sr: SEND or RECV
593 static int wq_sleep(struct mqueue_inode_info *info, int sr,
594 ktime_t *timeout, struct ext_wait_queue *ewp)
595 __releases(&info->lock)
597 int retval;
598 signed long time;
600 wq_add(info, sr, ewp);
602 for (;;) {
603 __set_current_state(TASK_INTERRUPTIBLE);
605 spin_unlock(&info->lock);
606 time = schedule_hrtimeout_range_clock(timeout, 0,
607 HRTIMER_MODE_ABS, CLOCK_REALTIME);
609 if (ewp->state == STATE_READY) {
610 retval = 0;
611 goto out;
613 spin_lock(&info->lock);
614 if (ewp->state == STATE_READY) {
615 retval = 0;
616 goto out_unlock;
618 if (signal_pending(current)) {
619 retval = -ERESTARTSYS;
620 break;
622 if (time == 0) {
623 retval = -ETIMEDOUT;
624 break;
627 list_del(&ewp->list);
628 out_unlock:
629 spin_unlock(&info->lock);
630 out:
631 return retval;
635 * Returns waiting task that should be serviced first or NULL if none exists
637 static struct ext_wait_queue *wq_get_first_waiter(
638 struct mqueue_inode_info *info, int sr)
640 struct list_head *ptr;
642 ptr = info->e_wait_q[sr].list.prev;
643 if (ptr == &info->e_wait_q[sr].list)
644 return NULL;
645 return list_entry(ptr, struct ext_wait_queue, list);
649 static inline void set_cookie(struct sk_buff *skb, char code)
651 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
655 * The next function is only to split too long sys_mq_timedsend
657 static void __do_notify(struct mqueue_inode_info *info)
659 /* notification
660 * invoked when there is registered process and there isn't process
661 * waiting synchronously for message AND state of queue changed from
662 * empty to not empty. Here we are sure that no one is waiting
663 * synchronously. */
664 if (info->notify_owner &&
665 info->attr.mq_curmsgs == 1) {
666 switch (info->notify.sigev_notify) {
667 case SIGEV_NONE:
668 break;
669 case SIGEV_SIGNAL: {
670 struct siginfo sig_i;
671 struct task_struct *task;
673 /* do_mq_notify() accepts sigev_signo == 0, why?? */
674 if (!info->notify.sigev_signo)
675 break;
677 clear_siginfo(&sig_i);
678 sig_i.si_signo = info->notify.sigev_signo;
679 sig_i.si_errno = 0;
680 sig_i.si_code = SI_MESGQ;
681 sig_i.si_value = info->notify.sigev_value;
682 rcu_read_lock();
683 /* map current pid/uid into info->owner's namespaces */
684 sig_i.si_pid = task_tgid_nr_ns(current,
685 ns_of_pid(info->notify_owner));
686 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
687 current_uid());
689 * We can't use kill_pid_info(), this signal should
690 * bypass check_kill_permission(). It is from kernel
691 * but si_fromuser() can't know this.
692 * We do check the self_exec_id, to avoid sending
693 * signals to programs that don't expect them.
695 task = pid_task(info->notify_owner, PIDTYPE_TGID);
696 if (task && task->self_exec_id ==
697 info->notify_self_exec_id) {
698 do_send_sig_info(info->notify.sigev_signo,
699 &sig_i, task, PIDTYPE_TGID);
701 rcu_read_unlock();
702 break;
704 case SIGEV_THREAD:
705 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
706 netlink_sendskb(info->notify_sock, info->notify_cookie);
707 break;
709 /* after notification unregisters process */
710 put_pid(info->notify_owner);
711 put_user_ns(info->notify_user_ns);
712 info->notify_owner = NULL;
713 info->notify_user_ns = NULL;
715 wake_up(&info->wait_q);
718 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
719 struct timespec64 *ts)
721 if (get_timespec64(ts, u_abs_timeout))
722 return -EFAULT;
723 if (!timespec64_valid(ts))
724 return -EINVAL;
725 return 0;
728 static void remove_notification(struct mqueue_inode_info *info)
730 if (info->notify_owner != NULL &&
731 info->notify.sigev_notify == SIGEV_THREAD) {
732 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
733 netlink_sendskb(info->notify_sock, info->notify_cookie);
735 put_pid(info->notify_owner);
736 put_user_ns(info->notify_user_ns);
737 info->notify_owner = NULL;
738 info->notify_user_ns = NULL;
741 static int prepare_open(struct dentry *dentry, int oflag, int ro,
742 umode_t mode, struct filename *name,
743 struct mq_attr *attr)
745 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
746 MAY_READ | MAY_WRITE };
747 int acc;
749 if (d_really_is_negative(dentry)) {
750 if (!(oflag & O_CREAT))
751 return -ENOENT;
752 if (ro)
753 return ro;
754 audit_inode_parent_hidden(name, dentry->d_parent);
755 return vfs_mkobj(dentry, mode & ~current_umask(),
756 mqueue_create_attr, attr);
758 /* it already existed */
759 audit_inode(name, dentry, 0);
760 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
761 return -EEXIST;
762 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
763 return -EINVAL;
764 acc = oflag2acc[oflag & O_ACCMODE];
765 return inode_permission(d_inode(dentry), acc);
768 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
769 struct mq_attr *attr)
771 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
772 struct dentry *root = mnt->mnt_root;
773 struct filename *name;
774 struct path path;
775 int fd, error;
776 int ro;
778 audit_mq_open(oflag, mode, attr);
780 if (IS_ERR(name = getname(u_name)))
781 return PTR_ERR(name);
783 fd = get_unused_fd_flags(O_CLOEXEC);
784 if (fd < 0)
785 goto out_putname;
787 ro = mnt_want_write(mnt); /* we'll drop it in any case */
788 inode_lock(d_inode(root));
789 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
790 if (IS_ERR(path.dentry)) {
791 error = PTR_ERR(path.dentry);
792 goto out_putfd;
794 path.mnt = mntget(mnt);
795 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
796 if (!error) {
797 struct file *file = dentry_open(&path, oflag, current_cred());
798 if (!IS_ERR(file))
799 fd_install(fd, file);
800 else
801 error = PTR_ERR(file);
803 path_put(&path);
804 out_putfd:
805 if (error) {
806 put_unused_fd(fd);
807 fd = error;
809 inode_unlock(d_inode(root));
810 if (!ro)
811 mnt_drop_write(mnt);
812 out_putname:
813 putname(name);
814 return fd;
817 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
818 struct mq_attr __user *, u_attr)
820 struct mq_attr attr;
821 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
822 return -EFAULT;
824 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
827 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
829 int err;
830 struct filename *name;
831 struct dentry *dentry;
832 struct inode *inode = NULL;
833 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
834 struct vfsmount *mnt = ipc_ns->mq_mnt;
836 name = getname(u_name);
837 if (IS_ERR(name))
838 return PTR_ERR(name);
840 audit_inode_parent_hidden(name, mnt->mnt_root);
841 err = mnt_want_write(mnt);
842 if (err)
843 goto out_name;
844 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
845 dentry = lookup_one_len(name->name, mnt->mnt_root,
846 strlen(name->name));
847 if (IS_ERR(dentry)) {
848 err = PTR_ERR(dentry);
849 goto out_unlock;
852 inode = d_inode(dentry);
853 if (!inode) {
854 err = -ENOENT;
855 } else {
856 ihold(inode);
857 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
859 dput(dentry);
861 out_unlock:
862 inode_unlock(d_inode(mnt->mnt_root));
863 if (inode)
864 iput(inode);
865 mnt_drop_write(mnt);
866 out_name:
867 putname(name);
869 return err;
872 /* Pipelined send and receive functions.
874 * If a receiver finds no waiting message, then it registers itself in the
875 * list of waiting receivers. A sender checks that list before adding the new
876 * message into the message array. If there is a waiting receiver, then it
877 * bypasses the message array and directly hands the message over to the
878 * receiver. The receiver accepts the message and returns without grabbing the
879 * queue spinlock:
881 * - Set pointer to message.
882 * - Queue the receiver task for later wakeup (without the info->lock).
883 * - Update its state to STATE_READY. Now the receiver can continue.
884 * - Wake up the process after the lock is dropped. Should the process wake up
885 * before this wakeup (due to a timeout or a signal) it will either see
886 * STATE_READY and continue or acquire the lock to check the state again.
888 * The same algorithm is used for senders.
891 /* pipelined_send() - send a message directly to the task waiting in
892 * sys_mq_timedreceive() (without inserting message into a queue).
894 static inline void pipelined_send(struct wake_q_head *wake_q,
895 struct mqueue_inode_info *info,
896 struct msg_msg *message,
897 struct ext_wait_queue *receiver)
899 receiver->msg = message;
900 list_del(&receiver->list);
901 wake_q_add(wake_q, receiver->task);
903 * Rely on the implicit cmpxchg barrier from wake_q_add such
904 * that we can ensure that updating receiver->state is the last
905 * write operation: As once set, the receiver can continue,
906 * and if we don't have the reference count from the wake_q,
907 * yet, at that point we can later have a use-after-free
908 * condition and bogus wakeup.
910 receiver->state = STATE_READY;
913 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
914 * gets its message and put to the queue (we have one free place for sure). */
915 static inline void pipelined_receive(struct wake_q_head *wake_q,
916 struct mqueue_inode_info *info)
918 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
920 if (!sender) {
921 /* for poll */
922 wake_up_interruptible(&info->wait_q);
923 return;
925 if (msg_insert(sender->msg, info))
926 return;
928 list_del(&sender->list);
929 wake_q_add(wake_q, sender->task);
930 sender->state = STATE_READY;
933 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
934 size_t msg_len, unsigned int msg_prio,
935 struct timespec64 *ts)
937 struct fd f;
938 struct inode *inode;
939 struct ext_wait_queue wait;
940 struct ext_wait_queue *receiver;
941 struct msg_msg *msg_ptr;
942 struct mqueue_inode_info *info;
943 ktime_t expires, *timeout = NULL;
944 struct posix_msg_tree_node *new_leaf = NULL;
945 int ret = 0;
946 DEFINE_WAKE_Q(wake_q);
948 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
949 return -EINVAL;
951 if (ts) {
952 expires = timespec64_to_ktime(*ts);
953 timeout = &expires;
956 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
958 f = fdget(mqdes);
959 if (unlikely(!f.file)) {
960 ret = -EBADF;
961 goto out;
964 inode = file_inode(f.file);
965 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
966 ret = -EBADF;
967 goto out_fput;
969 info = MQUEUE_I(inode);
970 audit_file(f.file);
972 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
973 ret = -EBADF;
974 goto out_fput;
977 if (unlikely(msg_len > info->attr.mq_msgsize)) {
978 ret = -EMSGSIZE;
979 goto out_fput;
982 /* First try to allocate memory, before doing anything with
983 * existing queues. */
984 msg_ptr = load_msg(u_msg_ptr, msg_len);
985 if (IS_ERR(msg_ptr)) {
986 ret = PTR_ERR(msg_ptr);
987 goto out_fput;
989 msg_ptr->m_ts = msg_len;
990 msg_ptr->m_type = msg_prio;
993 * msg_insert really wants us to have a valid, spare node struct so
994 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
995 * fall back to that if necessary.
997 if (!info->node_cache)
998 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1000 spin_lock(&info->lock);
1002 if (!info->node_cache && new_leaf) {
1003 /* Save our speculative allocation into the cache */
1004 INIT_LIST_HEAD(&new_leaf->msg_list);
1005 info->node_cache = new_leaf;
1006 new_leaf = NULL;
1007 } else {
1008 kfree(new_leaf);
1011 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1012 if (f.file->f_flags & O_NONBLOCK) {
1013 ret = -EAGAIN;
1014 } else {
1015 wait.task = current;
1016 wait.msg = (void *) msg_ptr;
1017 wait.state = STATE_NONE;
1018 ret = wq_sleep(info, SEND, timeout, &wait);
1020 * wq_sleep must be called with info->lock held, and
1021 * returns with the lock released
1023 goto out_free;
1025 } else {
1026 receiver = wq_get_first_waiter(info, RECV);
1027 if (receiver) {
1028 pipelined_send(&wake_q, info, msg_ptr, receiver);
1029 } else {
1030 /* adds message to the queue */
1031 ret = msg_insert(msg_ptr, info);
1032 if (ret)
1033 goto out_unlock;
1034 __do_notify(info);
1036 inode->i_atime = inode->i_mtime = inode->i_ctime =
1037 current_time(inode);
1039 out_unlock:
1040 spin_unlock(&info->lock);
1041 wake_up_q(&wake_q);
1042 out_free:
1043 if (ret)
1044 free_msg(msg_ptr);
1045 out_fput:
1046 fdput(f);
1047 out:
1048 return ret;
1051 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1052 size_t msg_len, unsigned int __user *u_msg_prio,
1053 struct timespec64 *ts)
1055 ssize_t ret;
1056 struct msg_msg *msg_ptr;
1057 struct fd f;
1058 struct inode *inode;
1059 struct mqueue_inode_info *info;
1060 struct ext_wait_queue wait;
1061 ktime_t expires, *timeout = NULL;
1062 struct posix_msg_tree_node *new_leaf = NULL;
1064 if (ts) {
1065 expires = timespec64_to_ktime(*ts);
1066 timeout = &expires;
1069 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1071 f = fdget(mqdes);
1072 if (unlikely(!f.file)) {
1073 ret = -EBADF;
1074 goto out;
1077 inode = file_inode(f.file);
1078 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1079 ret = -EBADF;
1080 goto out_fput;
1082 info = MQUEUE_I(inode);
1083 audit_file(f.file);
1085 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1086 ret = -EBADF;
1087 goto out_fput;
1090 /* checks if buffer is big enough */
1091 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1092 ret = -EMSGSIZE;
1093 goto out_fput;
1097 * msg_insert really wants us to have a valid, spare node struct so
1098 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1099 * fall back to that if necessary.
1101 if (!info->node_cache)
1102 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1104 spin_lock(&info->lock);
1106 if (!info->node_cache && new_leaf) {
1107 /* Save our speculative allocation into the cache */
1108 INIT_LIST_HEAD(&new_leaf->msg_list);
1109 info->node_cache = new_leaf;
1110 } else {
1111 kfree(new_leaf);
1114 if (info->attr.mq_curmsgs == 0) {
1115 if (f.file->f_flags & O_NONBLOCK) {
1116 spin_unlock(&info->lock);
1117 ret = -EAGAIN;
1118 } else {
1119 wait.task = current;
1120 wait.state = STATE_NONE;
1121 ret = wq_sleep(info, RECV, timeout, &wait);
1122 msg_ptr = wait.msg;
1124 } else {
1125 DEFINE_WAKE_Q(wake_q);
1127 msg_ptr = msg_get(info);
1129 inode->i_atime = inode->i_mtime = inode->i_ctime =
1130 current_time(inode);
1132 /* There is now free space in queue. */
1133 pipelined_receive(&wake_q, info);
1134 spin_unlock(&info->lock);
1135 wake_up_q(&wake_q);
1136 ret = 0;
1138 if (ret == 0) {
1139 ret = msg_ptr->m_ts;
1141 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1142 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1143 ret = -EFAULT;
1145 free_msg(msg_ptr);
1147 out_fput:
1148 fdput(f);
1149 out:
1150 return ret;
1153 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1154 size_t, msg_len, unsigned int, msg_prio,
1155 const struct __kernel_timespec __user *, u_abs_timeout)
1157 struct timespec64 ts, *p = NULL;
1158 if (u_abs_timeout) {
1159 int res = prepare_timeout(u_abs_timeout, &ts);
1160 if (res)
1161 return res;
1162 p = &ts;
1164 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1167 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1168 size_t, msg_len, unsigned int __user *, u_msg_prio,
1169 const struct __kernel_timespec __user *, u_abs_timeout)
1171 struct timespec64 ts, *p = NULL;
1172 if (u_abs_timeout) {
1173 int res = prepare_timeout(u_abs_timeout, &ts);
1174 if (res)
1175 return res;
1176 p = &ts;
1178 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1182 * Notes: the case when user wants us to deregister (with NULL as pointer)
1183 * and he isn't currently owner of notification, will be silently discarded.
1184 * It isn't explicitly defined in the POSIX.
1186 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1188 int ret;
1189 struct fd f;
1190 struct sock *sock;
1191 struct inode *inode;
1192 struct mqueue_inode_info *info;
1193 struct sk_buff *nc;
1195 audit_mq_notify(mqdes, notification);
1197 nc = NULL;
1198 sock = NULL;
1199 if (notification != NULL) {
1200 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1201 notification->sigev_notify != SIGEV_SIGNAL &&
1202 notification->sigev_notify != SIGEV_THREAD))
1203 return -EINVAL;
1204 if (notification->sigev_notify == SIGEV_SIGNAL &&
1205 !valid_signal(notification->sigev_signo)) {
1206 return -EINVAL;
1208 if (notification->sigev_notify == SIGEV_THREAD) {
1209 long timeo;
1211 /* create the notify skb */
1212 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1213 if (!nc) {
1214 ret = -ENOMEM;
1215 goto out;
1217 if (copy_from_user(nc->data,
1218 notification->sigev_value.sival_ptr,
1219 NOTIFY_COOKIE_LEN)) {
1220 ret = -EFAULT;
1221 goto out;
1224 /* TODO: add a header? */
1225 skb_put(nc, NOTIFY_COOKIE_LEN);
1226 /* and attach it to the socket */
1227 retry:
1228 f = fdget(notification->sigev_signo);
1229 if (!f.file) {
1230 ret = -EBADF;
1231 goto out;
1233 sock = netlink_getsockbyfilp(f.file);
1234 fdput(f);
1235 if (IS_ERR(sock)) {
1236 ret = PTR_ERR(sock);
1237 sock = NULL;
1238 goto out;
1241 timeo = MAX_SCHEDULE_TIMEOUT;
1242 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1243 if (ret == 1) {
1244 sock = NULL;
1245 goto retry;
1247 if (ret) {
1248 sock = NULL;
1249 nc = NULL;
1250 goto out;
1255 f = fdget(mqdes);
1256 if (!f.file) {
1257 ret = -EBADF;
1258 goto out;
1261 inode = file_inode(f.file);
1262 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1263 ret = -EBADF;
1264 goto out_fput;
1266 info = MQUEUE_I(inode);
1268 ret = 0;
1269 spin_lock(&info->lock);
1270 if (notification == NULL) {
1271 if (info->notify_owner == task_tgid(current)) {
1272 remove_notification(info);
1273 inode->i_atime = inode->i_ctime = current_time(inode);
1275 } else if (info->notify_owner != NULL) {
1276 ret = -EBUSY;
1277 } else {
1278 switch (notification->sigev_notify) {
1279 case SIGEV_NONE:
1280 info->notify.sigev_notify = SIGEV_NONE;
1281 break;
1282 case SIGEV_THREAD:
1283 info->notify_sock = sock;
1284 info->notify_cookie = nc;
1285 sock = NULL;
1286 nc = NULL;
1287 info->notify.sigev_notify = SIGEV_THREAD;
1288 break;
1289 case SIGEV_SIGNAL:
1290 info->notify.sigev_signo = notification->sigev_signo;
1291 info->notify.sigev_value = notification->sigev_value;
1292 info->notify.sigev_notify = SIGEV_SIGNAL;
1293 info->notify_self_exec_id = current->self_exec_id;
1294 break;
1297 info->notify_owner = get_pid(task_tgid(current));
1298 info->notify_user_ns = get_user_ns(current_user_ns());
1299 inode->i_atime = inode->i_ctime = current_time(inode);
1301 spin_unlock(&info->lock);
1302 out_fput:
1303 fdput(f);
1304 out:
1305 if (sock)
1306 netlink_detachskb(sock, nc);
1307 else if (nc)
1308 dev_kfree_skb(nc);
1310 return ret;
1313 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1314 const struct sigevent __user *, u_notification)
1316 struct sigevent n, *p = NULL;
1317 if (u_notification) {
1318 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1319 return -EFAULT;
1320 p = &n;
1322 return do_mq_notify(mqdes, p);
1325 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1327 struct fd f;
1328 struct inode *inode;
1329 struct mqueue_inode_info *info;
1331 if (new && (new->mq_flags & (~O_NONBLOCK)))
1332 return -EINVAL;
1334 f = fdget(mqdes);
1335 if (!f.file)
1336 return -EBADF;
1338 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1339 fdput(f);
1340 return -EBADF;
1343 inode = file_inode(f.file);
1344 info = MQUEUE_I(inode);
1346 spin_lock(&info->lock);
1348 if (old) {
1349 *old = info->attr;
1350 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1352 if (new) {
1353 audit_mq_getsetattr(mqdes, new);
1354 spin_lock(&f.file->f_lock);
1355 if (new->mq_flags & O_NONBLOCK)
1356 f.file->f_flags |= O_NONBLOCK;
1357 else
1358 f.file->f_flags &= ~O_NONBLOCK;
1359 spin_unlock(&f.file->f_lock);
1361 inode->i_atime = inode->i_ctime = current_time(inode);
1364 spin_unlock(&info->lock);
1365 fdput(f);
1366 return 0;
1369 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1370 const struct mq_attr __user *, u_mqstat,
1371 struct mq_attr __user *, u_omqstat)
1373 int ret;
1374 struct mq_attr mqstat, omqstat;
1375 struct mq_attr *new = NULL, *old = NULL;
1377 if (u_mqstat) {
1378 new = &mqstat;
1379 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1380 return -EFAULT;
1382 if (u_omqstat)
1383 old = &omqstat;
1385 ret = do_mq_getsetattr(mqdes, new, old);
1386 if (ret || !old)
1387 return ret;
1389 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1390 return -EFAULT;
1391 return 0;
1394 #ifdef CONFIG_COMPAT
1396 struct compat_mq_attr {
1397 compat_long_t mq_flags; /* message queue flags */
1398 compat_long_t mq_maxmsg; /* maximum number of messages */
1399 compat_long_t mq_msgsize; /* maximum message size */
1400 compat_long_t mq_curmsgs; /* number of messages currently queued */
1401 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1404 static inline int get_compat_mq_attr(struct mq_attr *attr,
1405 const struct compat_mq_attr __user *uattr)
1407 struct compat_mq_attr v;
1409 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1410 return -EFAULT;
1412 memset(attr, 0, sizeof(*attr));
1413 attr->mq_flags = v.mq_flags;
1414 attr->mq_maxmsg = v.mq_maxmsg;
1415 attr->mq_msgsize = v.mq_msgsize;
1416 attr->mq_curmsgs = v.mq_curmsgs;
1417 return 0;
1420 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1421 struct compat_mq_attr __user *uattr)
1423 struct compat_mq_attr v;
1425 memset(&v, 0, sizeof(v));
1426 v.mq_flags = attr->mq_flags;
1427 v.mq_maxmsg = attr->mq_maxmsg;
1428 v.mq_msgsize = attr->mq_msgsize;
1429 v.mq_curmsgs = attr->mq_curmsgs;
1430 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1431 return -EFAULT;
1432 return 0;
1435 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1436 int, oflag, compat_mode_t, mode,
1437 struct compat_mq_attr __user *, u_attr)
1439 struct mq_attr attr, *p = NULL;
1440 if (u_attr && oflag & O_CREAT) {
1441 p = &attr;
1442 if (get_compat_mq_attr(&attr, u_attr))
1443 return -EFAULT;
1445 return do_mq_open(u_name, oflag, mode, p);
1448 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1449 const struct compat_sigevent __user *, u_notification)
1451 struct sigevent n, *p = NULL;
1452 if (u_notification) {
1453 if (get_compat_sigevent(&n, u_notification))
1454 return -EFAULT;
1455 if (n.sigev_notify == SIGEV_THREAD)
1456 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1457 p = &n;
1459 return do_mq_notify(mqdes, p);
1462 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1463 const struct compat_mq_attr __user *, u_mqstat,
1464 struct compat_mq_attr __user *, u_omqstat)
1466 int ret;
1467 struct mq_attr mqstat, omqstat;
1468 struct mq_attr *new = NULL, *old = NULL;
1470 if (u_mqstat) {
1471 new = &mqstat;
1472 if (get_compat_mq_attr(new, u_mqstat))
1473 return -EFAULT;
1475 if (u_omqstat)
1476 old = &omqstat;
1478 ret = do_mq_getsetattr(mqdes, new, old);
1479 if (ret || !old)
1480 return ret;
1482 if (put_compat_mq_attr(old, u_omqstat))
1483 return -EFAULT;
1484 return 0;
1486 #endif
1488 #ifdef CONFIG_COMPAT_32BIT_TIME
1489 static int compat_prepare_timeout(const struct compat_timespec __user *p,
1490 struct timespec64 *ts)
1492 if (compat_get_timespec64(ts, p))
1493 return -EFAULT;
1494 if (!timespec64_valid(ts))
1495 return -EINVAL;
1496 return 0;
1499 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1500 const char __user *, u_msg_ptr,
1501 compat_size_t, msg_len, unsigned int, msg_prio,
1502 const struct compat_timespec __user *, u_abs_timeout)
1504 struct timespec64 ts, *p = NULL;
1505 if (u_abs_timeout) {
1506 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1507 if (res)
1508 return res;
1509 p = &ts;
1511 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1514 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1515 char __user *, u_msg_ptr,
1516 compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1517 const struct compat_timespec __user *, u_abs_timeout)
1519 struct timespec64 ts, *p = NULL;
1520 if (u_abs_timeout) {
1521 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1522 if (res)
1523 return res;
1524 p = &ts;
1526 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1528 #endif
1530 static const struct inode_operations mqueue_dir_inode_operations = {
1531 .lookup = simple_lookup,
1532 .create = mqueue_create,
1533 .unlink = mqueue_unlink,
1536 static const struct file_operations mqueue_file_operations = {
1537 .flush = mqueue_flush_file,
1538 .poll = mqueue_poll_file,
1539 .read = mqueue_read_file,
1540 .llseek = default_llseek,
1543 static const struct super_operations mqueue_super_ops = {
1544 .alloc_inode = mqueue_alloc_inode,
1545 .destroy_inode = mqueue_destroy_inode,
1546 .evict_inode = mqueue_evict_inode,
1547 .statfs = simple_statfs,
1550 static struct file_system_type mqueue_fs_type = {
1551 .name = "mqueue",
1552 .mount = mqueue_mount,
1553 .kill_sb = kill_litter_super,
1554 .fs_flags = FS_USERNS_MOUNT,
1557 int mq_init_ns(struct ipc_namespace *ns)
1559 ns->mq_queues_count = 0;
1560 ns->mq_queues_max = DFLT_QUEUESMAX;
1561 ns->mq_msg_max = DFLT_MSGMAX;
1562 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1563 ns->mq_msg_default = DFLT_MSG;
1564 ns->mq_msgsize_default = DFLT_MSGSIZE;
1566 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1567 if (IS_ERR(ns->mq_mnt)) {
1568 int err = PTR_ERR(ns->mq_mnt);
1569 ns->mq_mnt = NULL;
1570 return err;
1572 return 0;
1575 void mq_clear_sbinfo(struct ipc_namespace *ns)
1577 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1580 void mq_put_mnt(struct ipc_namespace *ns)
1582 kern_unmount(ns->mq_mnt);
1585 static int __init init_mqueue_fs(void)
1587 int error;
1589 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1590 sizeof(struct mqueue_inode_info), 0,
1591 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1592 if (mqueue_inode_cachep == NULL)
1593 return -ENOMEM;
1595 /* ignore failures - they are not fatal */
1596 mq_sysctl_table = mq_register_sysctl_table();
1598 error = register_filesystem(&mqueue_fs_type);
1599 if (error)
1600 goto out_sysctl;
1602 spin_lock_init(&mq_lock);
1604 error = mq_init_ns(&init_ipc_ns);
1605 if (error)
1606 goto out_filesystem;
1608 return 0;
1610 out_filesystem:
1611 unregister_filesystem(&mqueue_fs_type);
1612 out_sysctl:
1613 if (mq_sysctl_table)
1614 unregister_sysctl_table(mq_sysctl_table);
1615 kmem_cache_destroy(mqueue_inode_cachep);
1616 return error;
1619 device_initcall(init_mqueue_fs);