Linux 4.19.133
[linux/fpc-iii.git] / net / ceph / messenger.c
blobf7d7f32ac673c6b48b09f9ace7a81a420646fa18
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 * connection states
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
171 static void queue_con(struct ceph_connection *con);
172 static void cancel_con(struct ceph_connection *con);
173 static void ceph_con_workfn(struct work_struct *);
174 static void con_fault(struct ceph_connection *con);
177 * Nicely render a sockaddr as a string. An array of formatted
178 * strings is used, to approximate reentrancy.
180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
185 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
186 static atomic_t addr_str_seq = ATOMIC_INIT(0);
188 static struct page *zero_page; /* used in certain error cases */
190 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
192 int i;
193 char *s;
194 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 s = addr_str[i];
200 switch (ss->ss_family) {
201 case AF_INET:
202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
203 ntohs(in4->sin_port));
204 break;
206 case AF_INET6:
207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
208 ntohs(in6->sin6_port));
209 break;
211 default:
212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
213 ss->ss_family);
216 return s;
218 EXPORT_SYMBOL(ceph_pr_addr);
220 static void encode_my_addr(struct ceph_messenger *msgr)
222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
223 ceph_encode_addr(&msgr->my_enc_addr);
227 * work queue for all reading and writing to/from the socket.
229 static struct workqueue_struct *ceph_msgr_wq;
231 static int ceph_msgr_slab_init(void)
233 BUG_ON(ceph_msg_cache);
234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
235 if (!ceph_msg_cache)
236 return -ENOMEM;
238 BUG_ON(ceph_msg_data_cache);
239 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
240 if (ceph_msg_data_cache)
241 return 0;
243 kmem_cache_destroy(ceph_msg_cache);
244 ceph_msg_cache = NULL;
246 return -ENOMEM;
249 static void ceph_msgr_slab_exit(void)
251 BUG_ON(!ceph_msg_data_cache);
252 kmem_cache_destroy(ceph_msg_data_cache);
253 ceph_msg_data_cache = NULL;
255 BUG_ON(!ceph_msg_cache);
256 kmem_cache_destroy(ceph_msg_cache);
257 ceph_msg_cache = NULL;
260 static void _ceph_msgr_exit(void)
262 if (ceph_msgr_wq) {
263 destroy_workqueue(ceph_msgr_wq);
264 ceph_msgr_wq = NULL;
267 BUG_ON(zero_page == NULL);
268 put_page(zero_page);
269 zero_page = NULL;
271 ceph_msgr_slab_exit();
274 int __init ceph_msgr_init(void)
276 if (ceph_msgr_slab_init())
277 return -ENOMEM;
279 BUG_ON(zero_page != NULL);
280 zero_page = ZERO_PAGE(0);
281 get_page(zero_page);
284 * The number of active work items is limited by the number of
285 * connections, so leave @max_active at default.
287 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
288 if (ceph_msgr_wq)
289 return 0;
291 pr_err("msgr_init failed to create workqueue\n");
292 _ceph_msgr_exit();
294 return -ENOMEM;
297 void ceph_msgr_exit(void)
299 BUG_ON(ceph_msgr_wq == NULL);
301 _ceph_msgr_exit();
304 void ceph_msgr_flush(void)
306 flush_workqueue(ceph_msgr_wq);
308 EXPORT_SYMBOL(ceph_msgr_flush);
310 /* Connection socket state transition functions */
312 static void con_sock_state_init(struct ceph_connection *con)
314 int old_state;
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
317 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
318 printk("%s: unexpected old state %d\n", __func__, old_state);
319 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
320 CON_SOCK_STATE_CLOSED);
323 static void con_sock_state_connecting(struct ceph_connection *con)
325 int old_state;
327 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
328 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
329 printk("%s: unexpected old state %d\n", __func__, old_state);
330 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
331 CON_SOCK_STATE_CONNECTING);
334 static void con_sock_state_connected(struct ceph_connection *con)
336 int old_state;
338 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
339 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
340 printk("%s: unexpected old state %d\n", __func__, old_state);
341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 CON_SOCK_STATE_CONNECTED);
345 static void con_sock_state_closing(struct ceph_connection *con)
347 int old_state;
349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
351 old_state != CON_SOCK_STATE_CONNECTED &&
352 old_state != CON_SOCK_STATE_CLOSING))
353 printk("%s: unexpected old state %d\n", __func__, old_state);
354 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
355 CON_SOCK_STATE_CLOSING);
358 static void con_sock_state_closed(struct ceph_connection *con)
360 int old_state;
362 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
363 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
364 old_state != CON_SOCK_STATE_CLOSING &&
365 old_state != CON_SOCK_STATE_CONNECTING &&
366 old_state != CON_SOCK_STATE_CLOSED))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSED);
373 * socket callback functions
376 /* data available on socket, or listen socket received a connect */
377 static void ceph_sock_data_ready(struct sock *sk)
379 struct ceph_connection *con = sk->sk_user_data;
380 if (atomic_read(&con->msgr->stopping)) {
381 return;
384 if (sk->sk_state != TCP_CLOSE_WAIT) {
385 dout("%s on %p state = %lu, queueing work\n", __func__,
386 con, con->state);
387 queue_con(con);
391 /* socket has buffer space for writing */
392 static void ceph_sock_write_space(struct sock *sk)
394 struct ceph_connection *con = sk->sk_user_data;
396 /* only queue to workqueue if there is data we want to write,
397 * and there is sufficient space in the socket buffer to accept
398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
399 * doesn't get called again until try_write() fills the socket
400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
401 * and net/core/stream.c:sk_stream_write_space().
403 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
404 if (sk_stream_is_writeable(sk)) {
405 dout("%s %p queueing write work\n", __func__, con);
406 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407 queue_con(con);
409 } else {
410 dout("%s %p nothing to write\n", __func__, con);
414 /* socket's state has changed */
415 static void ceph_sock_state_change(struct sock *sk)
417 struct ceph_connection *con = sk->sk_user_data;
419 dout("%s %p state = %lu sk_state = %u\n", __func__,
420 con, con->state, sk->sk_state);
422 switch (sk->sk_state) {
423 case TCP_CLOSE:
424 dout("%s TCP_CLOSE\n", __func__);
425 /* fall through */
426 case TCP_CLOSE_WAIT:
427 dout("%s TCP_CLOSE_WAIT\n", __func__);
428 con_sock_state_closing(con);
429 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
430 queue_con(con);
431 break;
432 case TCP_ESTABLISHED:
433 dout("%s TCP_ESTABLISHED\n", __func__);
434 con_sock_state_connected(con);
435 queue_con(con);
436 break;
437 default: /* Everything else is uninteresting */
438 break;
443 * set up socket callbacks
445 static void set_sock_callbacks(struct socket *sock,
446 struct ceph_connection *con)
448 struct sock *sk = sock->sk;
449 sk->sk_user_data = con;
450 sk->sk_data_ready = ceph_sock_data_ready;
451 sk->sk_write_space = ceph_sock_write_space;
452 sk->sk_state_change = ceph_sock_state_change;
457 * socket helpers
461 * initiate connection to a remote socket.
463 static int ceph_tcp_connect(struct ceph_connection *con)
465 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
466 struct socket *sock;
467 unsigned int noio_flag;
468 int ret;
470 BUG_ON(con->sock);
472 /* sock_create_kern() allocates with GFP_KERNEL */
473 noio_flag = memalloc_noio_save();
474 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
475 SOCK_STREAM, IPPROTO_TCP, &sock);
476 memalloc_noio_restore(noio_flag);
477 if (ret)
478 return ret;
479 sock->sk->sk_allocation = GFP_NOFS;
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
485 set_sock_callbacks(sock, con);
487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
489 con_sock_state_connecting(con);
490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 O_NONBLOCK);
492 if (ret == -EINPROGRESS) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con->peer_addr.in_addr),
495 sock->sk->sk_state);
496 } else if (ret < 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 sock_release(sock);
500 return ret;
503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 int optval = 1;
506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 (char *)&optval, sizeof(optval));
508 if (ret)
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 ret);
513 con->sock = sock;
514 return 0;
518 * If @buf is NULL, discard up to @len bytes.
520 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
522 struct kvec iov = {buf, len};
523 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
524 int r;
526 if (!buf)
527 msg.msg_flags |= MSG_TRUNC;
529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 if (r == -EAGAIN)
532 r = 0;
533 return r;
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 int page_offset, size_t length)
539 struct bio_vec bvec = {
540 .bv_page = page,
541 .bv_offset = page_offset,
542 .bv_len = length
544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 int r;
547 BUG_ON(page_offset + length > PAGE_SIZE);
548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 if (r == -EAGAIN)
551 r = 0;
552 return r;
556 * write something. @more is true if caller will be sending more data
557 * shortly.
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 size_t kvlen, size_t len, int more)
562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 int r;
565 if (more)
566 msg.msg_flags |= MSG_MORE;
567 else
568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 if (r == -EAGAIN)
572 r = 0;
573 return r;
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 int offset, size_t size, bool more)
579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 int ret;
582 ret = kernel_sendpage(sock, page, offset, size, flags);
583 if (ret == -EAGAIN)
584 ret = 0;
586 return ret;
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 int offset, size_t size, bool more)
592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 struct bio_vec bvec;
594 int ret;
597 * sendpage cannot properly handle pages with page_count == 0,
598 * we need to fall back to sendmsg if that's the case.
600 * Same goes for slab pages: skb_can_coalesce() allows
601 * coalescing neighboring slab objects into a single frag which
602 * triggers one of hardened usercopy checks.
604 if (page_count(page) >= 1 && !PageSlab(page))
605 return __ceph_tcp_sendpage(sock, page, offset, size, more);
607 bvec.bv_page = page;
608 bvec.bv_offset = offset;
609 bvec.bv_len = size;
611 if (more)
612 msg.msg_flags |= MSG_MORE;
613 else
614 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
616 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
617 ret = sock_sendmsg(sock, &msg);
618 if (ret == -EAGAIN)
619 ret = 0;
621 return ret;
625 * Shutdown/close the socket for the given connection.
627 static int con_close_socket(struct ceph_connection *con)
629 int rc = 0;
631 dout("con_close_socket on %p sock %p\n", con, con->sock);
632 if (con->sock) {
633 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
634 sock_release(con->sock);
635 con->sock = NULL;
639 * Forcibly clear the SOCK_CLOSED flag. It gets set
640 * independent of the connection mutex, and we could have
641 * received a socket close event before we had the chance to
642 * shut the socket down.
644 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
646 con_sock_state_closed(con);
647 return rc;
651 * Reset a connection. Discard all incoming and outgoing messages
652 * and clear *_seq state.
654 static void ceph_msg_remove(struct ceph_msg *msg)
656 list_del_init(&msg->list_head);
658 ceph_msg_put(msg);
660 static void ceph_msg_remove_list(struct list_head *head)
662 while (!list_empty(head)) {
663 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
664 list_head);
665 ceph_msg_remove(msg);
669 static void reset_connection(struct ceph_connection *con)
671 /* reset connection, out_queue, msg_ and connect_seq */
672 /* discard existing out_queue and msg_seq */
673 dout("reset_connection %p\n", con);
674 ceph_msg_remove_list(&con->out_queue);
675 ceph_msg_remove_list(&con->out_sent);
677 if (con->in_msg) {
678 BUG_ON(con->in_msg->con != con);
679 ceph_msg_put(con->in_msg);
680 con->in_msg = NULL;
683 con->connect_seq = 0;
684 con->out_seq = 0;
685 if (con->out_msg) {
686 BUG_ON(con->out_msg->con != con);
687 ceph_msg_put(con->out_msg);
688 con->out_msg = NULL;
690 con->in_seq = 0;
691 con->in_seq_acked = 0;
693 con->out_skip = 0;
697 * mark a peer down. drop any open connections.
699 void ceph_con_close(struct ceph_connection *con)
701 mutex_lock(&con->mutex);
702 dout("con_close %p peer %s\n", con,
703 ceph_pr_addr(&con->peer_addr.in_addr));
704 con->state = CON_STATE_CLOSED;
706 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
707 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
708 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
709 con_flag_clear(con, CON_FLAG_BACKOFF);
711 reset_connection(con);
712 con->peer_global_seq = 0;
713 cancel_con(con);
714 con_close_socket(con);
715 mutex_unlock(&con->mutex);
717 EXPORT_SYMBOL(ceph_con_close);
720 * Reopen a closed connection, with a new peer address.
722 void ceph_con_open(struct ceph_connection *con,
723 __u8 entity_type, __u64 entity_num,
724 struct ceph_entity_addr *addr)
726 mutex_lock(&con->mutex);
727 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
729 WARN_ON(con->state != CON_STATE_CLOSED);
730 con->state = CON_STATE_PREOPEN;
732 con->peer_name.type = (__u8) entity_type;
733 con->peer_name.num = cpu_to_le64(entity_num);
735 memcpy(&con->peer_addr, addr, sizeof(*addr));
736 con->delay = 0; /* reset backoff memory */
737 mutex_unlock(&con->mutex);
738 queue_con(con);
740 EXPORT_SYMBOL(ceph_con_open);
743 * return true if this connection ever successfully opened
745 bool ceph_con_opened(struct ceph_connection *con)
747 return con->connect_seq > 0;
751 * initialize a new connection.
753 void ceph_con_init(struct ceph_connection *con, void *private,
754 const struct ceph_connection_operations *ops,
755 struct ceph_messenger *msgr)
757 dout("con_init %p\n", con);
758 memset(con, 0, sizeof(*con));
759 con->private = private;
760 con->ops = ops;
761 con->msgr = msgr;
763 con_sock_state_init(con);
765 mutex_init(&con->mutex);
766 INIT_LIST_HEAD(&con->out_queue);
767 INIT_LIST_HEAD(&con->out_sent);
768 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
770 con->state = CON_STATE_CLOSED;
772 EXPORT_SYMBOL(ceph_con_init);
776 * We maintain a global counter to order connection attempts. Get
777 * a unique seq greater than @gt.
779 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
781 u32 ret;
783 spin_lock(&msgr->global_seq_lock);
784 if (msgr->global_seq < gt)
785 msgr->global_seq = gt;
786 ret = ++msgr->global_seq;
787 spin_unlock(&msgr->global_seq_lock);
788 return ret;
791 static void con_out_kvec_reset(struct ceph_connection *con)
793 BUG_ON(con->out_skip);
795 con->out_kvec_left = 0;
796 con->out_kvec_bytes = 0;
797 con->out_kvec_cur = &con->out_kvec[0];
800 static void con_out_kvec_add(struct ceph_connection *con,
801 size_t size, void *data)
803 int index = con->out_kvec_left;
805 BUG_ON(con->out_skip);
806 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
808 con->out_kvec[index].iov_len = size;
809 con->out_kvec[index].iov_base = data;
810 con->out_kvec_left++;
811 con->out_kvec_bytes += size;
815 * Chop off a kvec from the end. Return residual number of bytes for
816 * that kvec, i.e. how many bytes would have been written if the kvec
817 * hadn't been nuked.
819 static int con_out_kvec_skip(struct ceph_connection *con)
821 int off = con->out_kvec_cur - con->out_kvec;
822 int skip = 0;
824 if (con->out_kvec_bytes > 0) {
825 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
826 BUG_ON(con->out_kvec_bytes < skip);
827 BUG_ON(!con->out_kvec_left);
828 con->out_kvec_bytes -= skip;
829 con->out_kvec_left--;
832 return skip;
835 #ifdef CONFIG_BLOCK
838 * For a bio data item, a piece is whatever remains of the next
839 * entry in the current bio iovec, or the first entry in the next
840 * bio in the list.
842 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
843 size_t length)
845 struct ceph_msg_data *data = cursor->data;
846 struct ceph_bio_iter *it = &cursor->bio_iter;
848 cursor->resid = min_t(size_t, length, data->bio_length);
849 *it = data->bio_pos;
850 if (cursor->resid < it->iter.bi_size)
851 it->iter.bi_size = cursor->resid;
853 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
854 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
857 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
858 size_t *page_offset,
859 size_t *length)
861 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
862 cursor->bio_iter.iter);
864 *page_offset = bv.bv_offset;
865 *length = bv.bv_len;
866 return bv.bv_page;
869 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
870 size_t bytes)
872 struct ceph_bio_iter *it = &cursor->bio_iter;
874 BUG_ON(bytes > cursor->resid);
875 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
876 cursor->resid -= bytes;
877 bio_advance_iter(it->bio, &it->iter, bytes);
879 if (!cursor->resid) {
880 BUG_ON(!cursor->last_piece);
881 return false; /* no more data */
884 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
885 return false; /* more bytes to process in this segment */
887 if (!it->iter.bi_size) {
888 it->bio = it->bio->bi_next;
889 it->iter = it->bio->bi_iter;
890 if (cursor->resid < it->iter.bi_size)
891 it->iter.bi_size = cursor->resid;
894 BUG_ON(cursor->last_piece);
895 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
896 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
897 return true;
899 #endif /* CONFIG_BLOCK */
901 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
902 size_t length)
904 struct ceph_msg_data *data = cursor->data;
905 struct bio_vec *bvecs = data->bvec_pos.bvecs;
907 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
908 cursor->bvec_iter = data->bvec_pos.iter;
909 cursor->bvec_iter.bi_size = cursor->resid;
911 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
912 cursor->last_piece =
913 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
916 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
917 size_t *page_offset,
918 size_t *length)
920 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
921 cursor->bvec_iter);
923 *page_offset = bv.bv_offset;
924 *length = bv.bv_len;
925 return bv.bv_page;
928 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
929 size_t bytes)
931 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
933 BUG_ON(bytes > cursor->resid);
934 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
935 cursor->resid -= bytes;
936 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
938 if (!cursor->resid) {
939 BUG_ON(!cursor->last_piece);
940 return false; /* no more data */
943 if (!bytes || cursor->bvec_iter.bi_bvec_done)
944 return false; /* more bytes to process in this segment */
946 BUG_ON(cursor->last_piece);
947 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
948 cursor->last_piece =
949 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
950 return true;
954 * For a page array, a piece comes from the first page in the array
955 * that has not already been fully consumed.
957 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
958 size_t length)
960 struct ceph_msg_data *data = cursor->data;
961 int page_count;
963 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
965 BUG_ON(!data->pages);
966 BUG_ON(!data->length);
968 cursor->resid = min(length, data->length);
969 page_count = calc_pages_for(data->alignment, (u64)data->length);
970 cursor->page_offset = data->alignment & ~PAGE_MASK;
971 cursor->page_index = 0;
972 BUG_ON(page_count > (int)USHRT_MAX);
973 cursor->page_count = (unsigned short)page_count;
974 BUG_ON(length > SIZE_MAX - cursor->page_offset);
975 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
978 static struct page *
979 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
980 size_t *page_offset, size_t *length)
982 struct ceph_msg_data *data = cursor->data;
984 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
986 BUG_ON(cursor->page_index >= cursor->page_count);
987 BUG_ON(cursor->page_offset >= PAGE_SIZE);
989 *page_offset = cursor->page_offset;
990 if (cursor->last_piece)
991 *length = cursor->resid;
992 else
993 *length = PAGE_SIZE - *page_offset;
995 return data->pages[cursor->page_index];
998 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
999 size_t bytes)
1001 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
1003 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
1005 /* Advance the cursor page offset */
1007 cursor->resid -= bytes;
1008 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1009 if (!bytes || cursor->page_offset)
1010 return false; /* more bytes to process in the current page */
1012 if (!cursor->resid)
1013 return false; /* no more data */
1015 /* Move on to the next page; offset is already at 0 */
1017 BUG_ON(cursor->page_index >= cursor->page_count);
1018 cursor->page_index++;
1019 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1021 return true;
1025 * For a pagelist, a piece is whatever remains to be consumed in the
1026 * first page in the list, or the front of the next page.
1028 static void
1029 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1030 size_t length)
1032 struct ceph_msg_data *data = cursor->data;
1033 struct ceph_pagelist *pagelist;
1034 struct page *page;
1036 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1038 pagelist = data->pagelist;
1039 BUG_ON(!pagelist);
1041 if (!length)
1042 return; /* pagelist can be assigned but empty */
1044 BUG_ON(list_empty(&pagelist->head));
1045 page = list_first_entry(&pagelist->head, struct page, lru);
1047 cursor->resid = min(length, pagelist->length);
1048 cursor->page = page;
1049 cursor->offset = 0;
1050 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1053 static struct page *
1054 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1055 size_t *page_offset, size_t *length)
1057 struct ceph_msg_data *data = cursor->data;
1058 struct ceph_pagelist *pagelist;
1060 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1062 pagelist = data->pagelist;
1063 BUG_ON(!pagelist);
1065 BUG_ON(!cursor->page);
1066 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1068 /* offset of first page in pagelist is always 0 */
1069 *page_offset = cursor->offset & ~PAGE_MASK;
1070 if (cursor->last_piece)
1071 *length = cursor->resid;
1072 else
1073 *length = PAGE_SIZE - *page_offset;
1075 return cursor->page;
1078 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1079 size_t bytes)
1081 struct ceph_msg_data *data = cursor->data;
1082 struct ceph_pagelist *pagelist;
1084 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1086 pagelist = data->pagelist;
1087 BUG_ON(!pagelist);
1089 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1090 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1092 /* Advance the cursor offset */
1094 cursor->resid -= bytes;
1095 cursor->offset += bytes;
1096 /* offset of first page in pagelist is always 0 */
1097 if (!bytes || cursor->offset & ~PAGE_MASK)
1098 return false; /* more bytes to process in the current page */
1100 if (!cursor->resid)
1101 return false; /* no more data */
1103 /* Move on to the next page */
1105 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1106 cursor->page = list_next_entry(cursor->page, lru);
1107 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1109 return true;
1113 * Message data is handled (sent or received) in pieces, where each
1114 * piece resides on a single page. The network layer might not
1115 * consume an entire piece at once. A data item's cursor keeps
1116 * track of which piece is next to process and how much remains to
1117 * be processed in that piece. It also tracks whether the current
1118 * piece is the last one in the data item.
1120 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1122 size_t length = cursor->total_resid;
1124 switch (cursor->data->type) {
1125 case CEPH_MSG_DATA_PAGELIST:
1126 ceph_msg_data_pagelist_cursor_init(cursor, length);
1127 break;
1128 case CEPH_MSG_DATA_PAGES:
1129 ceph_msg_data_pages_cursor_init(cursor, length);
1130 break;
1131 #ifdef CONFIG_BLOCK
1132 case CEPH_MSG_DATA_BIO:
1133 ceph_msg_data_bio_cursor_init(cursor, length);
1134 break;
1135 #endif /* CONFIG_BLOCK */
1136 case CEPH_MSG_DATA_BVECS:
1137 ceph_msg_data_bvecs_cursor_init(cursor, length);
1138 break;
1139 case CEPH_MSG_DATA_NONE:
1140 default:
1141 /* BUG(); */
1142 break;
1144 cursor->need_crc = true;
1147 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1149 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1150 struct ceph_msg_data *data;
1152 BUG_ON(!length);
1153 BUG_ON(length > msg->data_length);
1154 BUG_ON(list_empty(&msg->data));
1156 cursor->data_head = &msg->data;
1157 cursor->total_resid = length;
1158 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1159 cursor->data = data;
1161 __ceph_msg_data_cursor_init(cursor);
1165 * Return the page containing the next piece to process for a given
1166 * data item, and supply the page offset and length of that piece.
1167 * Indicate whether this is the last piece in this data item.
1169 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1170 size_t *page_offset, size_t *length,
1171 bool *last_piece)
1173 struct page *page;
1175 switch (cursor->data->type) {
1176 case CEPH_MSG_DATA_PAGELIST:
1177 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1178 break;
1179 case CEPH_MSG_DATA_PAGES:
1180 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1181 break;
1182 #ifdef CONFIG_BLOCK
1183 case CEPH_MSG_DATA_BIO:
1184 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1185 break;
1186 #endif /* CONFIG_BLOCK */
1187 case CEPH_MSG_DATA_BVECS:
1188 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1189 break;
1190 case CEPH_MSG_DATA_NONE:
1191 default:
1192 page = NULL;
1193 break;
1196 BUG_ON(!page);
1197 BUG_ON(*page_offset + *length > PAGE_SIZE);
1198 BUG_ON(!*length);
1199 BUG_ON(*length > cursor->resid);
1200 if (last_piece)
1201 *last_piece = cursor->last_piece;
1203 return page;
1207 * Returns true if the result moves the cursor on to the next piece
1208 * of the data item.
1210 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1211 size_t bytes)
1213 bool new_piece;
1215 BUG_ON(bytes > cursor->resid);
1216 switch (cursor->data->type) {
1217 case CEPH_MSG_DATA_PAGELIST:
1218 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1219 break;
1220 case CEPH_MSG_DATA_PAGES:
1221 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1222 break;
1223 #ifdef CONFIG_BLOCK
1224 case CEPH_MSG_DATA_BIO:
1225 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1226 break;
1227 #endif /* CONFIG_BLOCK */
1228 case CEPH_MSG_DATA_BVECS:
1229 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1230 break;
1231 case CEPH_MSG_DATA_NONE:
1232 default:
1233 BUG();
1234 break;
1236 cursor->total_resid -= bytes;
1238 if (!cursor->resid && cursor->total_resid) {
1239 WARN_ON(!cursor->last_piece);
1240 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1241 cursor->data = list_next_entry(cursor->data, links);
1242 __ceph_msg_data_cursor_init(cursor);
1243 new_piece = true;
1245 cursor->need_crc = new_piece;
1248 static size_t sizeof_footer(struct ceph_connection *con)
1250 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1251 sizeof(struct ceph_msg_footer) :
1252 sizeof(struct ceph_msg_footer_old);
1255 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1257 BUG_ON(!msg);
1258 BUG_ON(!data_len);
1260 /* Initialize data cursor */
1262 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1266 * Prepare footer for currently outgoing message, and finish things
1267 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1269 static void prepare_write_message_footer(struct ceph_connection *con)
1271 struct ceph_msg *m = con->out_msg;
1273 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1275 dout("prepare_write_message_footer %p\n", con);
1276 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1277 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1278 if (con->ops->sign_message)
1279 con->ops->sign_message(m);
1280 else
1281 m->footer.sig = 0;
1282 } else {
1283 m->old_footer.flags = m->footer.flags;
1285 con->out_more = m->more_to_follow;
1286 con->out_msg_done = true;
1290 * Prepare headers for the next outgoing message.
1292 static void prepare_write_message(struct ceph_connection *con)
1294 struct ceph_msg *m;
1295 u32 crc;
1297 con_out_kvec_reset(con);
1298 con->out_msg_done = false;
1300 /* Sneak an ack in there first? If we can get it into the same
1301 * TCP packet that's a good thing. */
1302 if (con->in_seq > con->in_seq_acked) {
1303 con->in_seq_acked = con->in_seq;
1304 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1305 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1306 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1307 &con->out_temp_ack);
1310 BUG_ON(list_empty(&con->out_queue));
1311 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1312 con->out_msg = m;
1313 BUG_ON(m->con != con);
1315 /* put message on sent list */
1316 ceph_msg_get(m);
1317 list_move_tail(&m->list_head, &con->out_sent);
1320 * only assign outgoing seq # if we haven't sent this message
1321 * yet. if it is requeued, resend with it's original seq.
1323 if (m->needs_out_seq) {
1324 m->hdr.seq = cpu_to_le64(++con->out_seq);
1325 m->needs_out_seq = false;
1327 if (con->ops->reencode_message)
1328 con->ops->reencode_message(m);
1331 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1332 m, con->out_seq, le16_to_cpu(m->hdr.type),
1333 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1334 m->data_length);
1335 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1336 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1338 /* tag + hdr + front + middle */
1339 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1340 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1341 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1343 if (m->middle)
1344 con_out_kvec_add(con, m->middle->vec.iov_len,
1345 m->middle->vec.iov_base);
1347 /* fill in hdr crc and finalize hdr */
1348 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1349 con->out_msg->hdr.crc = cpu_to_le32(crc);
1350 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1352 /* fill in front and middle crc, footer */
1353 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1354 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1355 if (m->middle) {
1356 crc = crc32c(0, m->middle->vec.iov_base,
1357 m->middle->vec.iov_len);
1358 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1359 } else
1360 con->out_msg->footer.middle_crc = 0;
1361 dout("%s front_crc %u middle_crc %u\n", __func__,
1362 le32_to_cpu(con->out_msg->footer.front_crc),
1363 le32_to_cpu(con->out_msg->footer.middle_crc));
1364 con->out_msg->footer.flags = 0;
1366 /* is there a data payload? */
1367 con->out_msg->footer.data_crc = 0;
1368 if (m->data_length) {
1369 prepare_message_data(con->out_msg, m->data_length);
1370 con->out_more = 1; /* data + footer will follow */
1371 } else {
1372 /* no, queue up footer too and be done */
1373 prepare_write_message_footer(con);
1376 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1380 * Prepare an ack.
1382 static void prepare_write_ack(struct ceph_connection *con)
1384 dout("prepare_write_ack %p %llu -> %llu\n", con,
1385 con->in_seq_acked, con->in_seq);
1386 con->in_seq_acked = con->in_seq;
1388 con_out_kvec_reset(con);
1390 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1392 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1393 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1394 &con->out_temp_ack);
1396 con->out_more = 1; /* more will follow.. eventually.. */
1397 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401 * Prepare to share the seq during handshake
1403 static void prepare_write_seq(struct ceph_connection *con)
1405 dout("prepare_write_seq %p %llu -> %llu\n", con,
1406 con->in_seq_acked, con->in_seq);
1407 con->in_seq_acked = con->in_seq;
1409 con_out_kvec_reset(con);
1411 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1412 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1413 &con->out_temp_ack);
1415 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1419 * Prepare to write keepalive byte.
1421 static void prepare_write_keepalive(struct ceph_connection *con)
1423 dout("prepare_write_keepalive %p\n", con);
1424 con_out_kvec_reset(con);
1425 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1426 struct timespec64 now;
1428 ktime_get_real_ts64(&now);
1429 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1430 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1431 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1432 &con->out_temp_keepalive2);
1433 } else {
1434 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1436 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1440 * Connection negotiation.
1443 static int get_connect_authorizer(struct ceph_connection *con)
1445 struct ceph_auth_handshake *auth;
1446 int auth_proto;
1448 if (!con->ops->get_authorizer) {
1449 con->auth = NULL;
1450 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1451 con->out_connect.authorizer_len = 0;
1452 return 0;
1455 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1456 if (IS_ERR(auth))
1457 return PTR_ERR(auth);
1459 con->auth = auth;
1460 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1461 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1462 return 0;
1466 * We connected to a peer and are saying hello.
1468 static void prepare_write_banner(struct ceph_connection *con)
1470 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1471 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1472 &con->msgr->my_enc_addr);
1474 con->out_more = 0;
1475 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1478 static void __prepare_write_connect(struct ceph_connection *con)
1480 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1481 if (con->auth)
1482 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1483 con->auth->authorizer_buf);
1485 con->out_more = 0;
1486 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1489 static int prepare_write_connect(struct ceph_connection *con)
1491 unsigned int global_seq = get_global_seq(con->msgr, 0);
1492 int proto;
1493 int ret;
1495 switch (con->peer_name.type) {
1496 case CEPH_ENTITY_TYPE_MON:
1497 proto = CEPH_MONC_PROTOCOL;
1498 break;
1499 case CEPH_ENTITY_TYPE_OSD:
1500 proto = CEPH_OSDC_PROTOCOL;
1501 break;
1502 case CEPH_ENTITY_TYPE_MDS:
1503 proto = CEPH_MDSC_PROTOCOL;
1504 break;
1505 default:
1506 BUG();
1509 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1510 con->connect_seq, global_seq, proto);
1512 con->out_connect.features =
1513 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1514 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1515 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1516 con->out_connect.global_seq = cpu_to_le32(global_seq);
1517 con->out_connect.protocol_version = cpu_to_le32(proto);
1518 con->out_connect.flags = 0;
1520 ret = get_connect_authorizer(con);
1521 if (ret)
1522 return ret;
1524 __prepare_write_connect(con);
1525 return 0;
1529 * write as much of pending kvecs to the socket as we can.
1530 * 1 -> done
1531 * 0 -> socket full, but more to do
1532 * <0 -> error
1534 static int write_partial_kvec(struct ceph_connection *con)
1536 int ret;
1538 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1539 while (con->out_kvec_bytes > 0) {
1540 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1541 con->out_kvec_left, con->out_kvec_bytes,
1542 con->out_more);
1543 if (ret <= 0)
1544 goto out;
1545 con->out_kvec_bytes -= ret;
1546 if (con->out_kvec_bytes == 0)
1547 break; /* done */
1549 /* account for full iov entries consumed */
1550 while (ret >= con->out_kvec_cur->iov_len) {
1551 BUG_ON(!con->out_kvec_left);
1552 ret -= con->out_kvec_cur->iov_len;
1553 con->out_kvec_cur++;
1554 con->out_kvec_left--;
1556 /* and for a partially-consumed entry */
1557 if (ret) {
1558 con->out_kvec_cur->iov_len -= ret;
1559 con->out_kvec_cur->iov_base += ret;
1562 con->out_kvec_left = 0;
1563 ret = 1;
1564 out:
1565 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1566 con->out_kvec_bytes, con->out_kvec_left, ret);
1567 return ret; /* done! */
1570 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1571 unsigned int page_offset,
1572 unsigned int length)
1574 char *kaddr;
1576 kaddr = kmap(page);
1577 BUG_ON(kaddr == NULL);
1578 crc = crc32c(crc, kaddr + page_offset, length);
1579 kunmap(page);
1581 return crc;
1584 * Write as much message data payload as we can. If we finish, queue
1585 * up the footer.
1586 * 1 -> done, footer is now queued in out_kvec[].
1587 * 0 -> socket full, but more to do
1588 * <0 -> error
1590 static int write_partial_message_data(struct ceph_connection *con)
1592 struct ceph_msg *msg = con->out_msg;
1593 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1594 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1595 u32 crc;
1597 dout("%s %p msg %p\n", __func__, con, msg);
1599 if (list_empty(&msg->data))
1600 return -EINVAL;
1603 * Iterate through each page that contains data to be
1604 * written, and send as much as possible for each.
1606 * If we are calculating the data crc (the default), we will
1607 * need to map the page. If we have no pages, they have
1608 * been revoked, so use the zero page.
1610 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1611 while (cursor->total_resid) {
1612 struct page *page;
1613 size_t page_offset;
1614 size_t length;
1615 bool last_piece;
1616 int ret;
1618 if (!cursor->resid) {
1619 ceph_msg_data_advance(cursor, 0);
1620 continue;
1623 page = ceph_msg_data_next(cursor, &page_offset, &length,
1624 &last_piece);
1625 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1626 length, !last_piece);
1627 if (ret <= 0) {
1628 if (do_datacrc)
1629 msg->footer.data_crc = cpu_to_le32(crc);
1631 return ret;
1633 if (do_datacrc && cursor->need_crc)
1634 crc = ceph_crc32c_page(crc, page, page_offset, length);
1635 ceph_msg_data_advance(cursor, (size_t)ret);
1638 dout("%s %p msg %p done\n", __func__, con, msg);
1640 /* prepare and queue up footer, too */
1641 if (do_datacrc)
1642 msg->footer.data_crc = cpu_to_le32(crc);
1643 else
1644 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1645 con_out_kvec_reset(con);
1646 prepare_write_message_footer(con);
1648 return 1; /* must return > 0 to indicate success */
1652 * write some zeros
1654 static int write_partial_skip(struct ceph_connection *con)
1656 int ret;
1658 dout("%s %p %d left\n", __func__, con, con->out_skip);
1659 while (con->out_skip > 0) {
1660 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1662 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1663 if (ret <= 0)
1664 goto out;
1665 con->out_skip -= ret;
1667 ret = 1;
1668 out:
1669 return ret;
1673 * Prepare to read connection handshake, or an ack.
1675 static void prepare_read_banner(struct ceph_connection *con)
1677 dout("prepare_read_banner %p\n", con);
1678 con->in_base_pos = 0;
1681 static void prepare_read_connect(struct ceph_connection *con)
1683 dout("prepare_read_connect %p\n", con);
1684 con->in_base_pos = 0;
1687 static void prepare_read_ack(struct ceph_connection *con)
1689 dout("prepare_read_ack %p\n", con);
1690 con->in_base_pos = 0;
1693 static void prepare_read_seq(struct ceph_connection *con)
1695 dout("prepare_read_seq %p\n", con);
1696 con->in_base_pos = 0;
1697 con->in_tag = CEPH_MSGR_TAG_SEQ;
1700 static void prepare_read_tag(struct ceph_connection *con)
1702 dout("prepare_read_tag %p\n", con);
1703 con->in_base_pos = 0;
1704 con->in_tag = CEPH_MSGR_TAG_READY;
1707 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1709 dout("prepare_read_keepalive_ack %p\n", con);
1710 con->in_base_pos = 0;
1714 * Prepare to read a message.
1716 static int prepare_read_message(struct ceph_connection *con)
1718 dout("prepare_read_message %p\n", con);
1719 BUG_ON(con->in_msg != NULL);
1720 con->in_base_pos = 0;
1721 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1722 return 0;
1726 static int read_partial(struct ceph_connection *con,
1727 int end, int size, void *object)
1729 while (con->in_base_pos < end) {
1730 int left = end - con->in_base_pos;
1731 int have = size - left;
1732 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1733 if (ret <= 0)
1734 return ret;
1735 con->in_base_pos += ret;
1737 return 1;
1742 * Read all or part of the connect-side handshake on a new connection
1744 static int read_partial_banner(struct ceph_connection *con)
1746 int size;
1747 int end;
1748 int ret;
1750 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1752 /* peer's banner */
1753 size = strlen(CEPH_BANNER);
1754 end = size;
1755 ret = read_partial(con, end, size, con->in_banner);
1756 if (ret <= 0)
1757 goto out;
1759 size = sizeof (con->actual_peer_addr);
1760 end += size;
1761 ret = read_partial(con, end, size, &con->actual_peer_addr);
1762 if (ret <= 0)
1763 goto out;
1765 size = sizeof (con->peer_addr_for_me);
1766 end += size;
1767 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1768 if (ret <= 0)
1769 goto out;
1771 out:
1772 return ret;
1775 static int read_partial_connect(struct ceph_connection *con)
1777 int size;
1778 int end;
1779 int ret;
1781 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1783 size = sizeof (con->in_reply);
1784 end = size;
1785 ret = read_partial(con, end, size, &con->in_reply);
1786 if (ret <= 0)
1787 goto out;
1789 if (con->auth) {
1790 size = le32_to_cpu(con->in_reply.authorizer_len);
1791 if (size > con->auth->authorizer_reply_buf_len) {
1792 pr_err("authorizer reply too big: %d > %zu\n", size,
1793 con->auth->authorizer_reply_buf_len);
1794 ret = -EINVAL;
1795 goto out;
1798 end += size;
1799 ret = read_partial(con, end, size,
1800 con->auth->authorizer_reply_buf);
1801 if (ret <= 0)
1802 goto out;
1805 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1806 con, (int)con->in_reply.tag,
1807 le32_to_cpu(con->in_reply.connect_seq),
1808 le32_to_cpu(con->in_reply.global_seq));
1809 out:
1810 return ret;
1814 * Verify the hello banner looks okay.
1816 static int verify_hello(struct ceph_connection *con)
1818 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1819 pr_err("connect to %s got bad banner\n",
1820 ceph_pr_addr(&con->peer_addr.in_addr));
1821 con->error_msg = "protocol error, bad banner";
1822 return -1;
1824 return 0;
1827 static bool addr_is_blank(struct sockaddr_storage *ss)
1829 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1830 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1832 switch (ss->ss_family) {
1833 case AF_INET:
1834 return addr->s_addr == htonl(INADDR_ANY);
1835 case AF_INET6:
1836 return ipv6_addr_any(addr6);
1837 default:
1838 return true;
1842 static int addr_port(struct sockaddr_storage *ss)
1844 switch (ss->ss_family) {
1845 case AF_INET:
1846 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1847 case AF_INET6:
1848 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1850 return 0;
1853 static void addr_set_port(struct sockaddr_storage *ss, int p)
1855 switch (ss->ss_family) {
1856 case AF_INET:
1857 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1858 break;
1859 case AF_INET6:
1860 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1861 break;
1866 * Unlike other *_pton function semantics, zero indicates success.
1868 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1869 char delim, const char **ipend)
1871 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1872 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1874 memset(ss, 0, sizeof(*ss));
1876 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1877 ss->ss_family = AF_INET;
1878 return 0;
1881 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1882 ss->ss_family = AF_INET6;
1883 return 0;
1886 return -EINVAL;
1890 * Extract hostname string and resolve using kernel DNS facility.
1892 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1893 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1894 struct sockaddr_storage *ss, char delim, const char **ipend)
1896 const char *end, *delim_p;
1897 char *colon_p, *ip_addr = NULL;
1898 int ip_len, ret;
1901 * The end of the hostname occurs immediately preceding the delimiter or
1902 * the port marker (':') where the delimiter takes precedence.
1904 delim_p = memchr(name, delim, namelen);
1905 colon_p = memchr(name, ':', namelen);
1907 if (delim_p && colon_p)
1908 end = delim_p < colon_p ? delim_p : colon_p;
1909 else if (!delim_p && colon_p)
1910 end = colon_p;
1911 else {
1912 end = delim_p;
1913 if (!end) /* case: hostname:/ */
1914 end = name + namelen;
1917 if (end <= name)
1918 return -EINVAL;
1920 /* do dns_resolve upcall */
1921 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1922 if (ip_len > 0)
1923 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1924 else
1925 ret = -ESRCH;
1927 kfree(ip_addr);
1929 *ipend = end;
1931 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1932 ret, ret ? "failed" : ceph_pr_addr(ss));
1934 return ret;
1936 #else
1937 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1938 struct sockaddr_storage *ss, char delim, const char **ipend)
1940 return -EINVAL;
1942 #endif
1945 * Parse a server name (IP or hostname). If a valid IP address is not found
1946 * then try to extract a hostname to resolve using userspace DNS upcall.
1948 static int ceph_parse_server_name(const char *name, size_t namelen,
1949 struct sockaddr_storage *ss, char delim, const char **ipend)
1951 int ret;
1953 ret = ceph_pton(name, namelen, ss, delim, ipend);
1954 if (ret)
1955 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1957 return ret;
1961 * Parse an ip[:port] list into an addr array. Use the default
1962 * monitor port if a port isn't specified.
1964 int ceph_parse_ips(const char *c, const char *end,
1965 struct ceph_entity_addr *addr,
1966 int max_count, int *count)
1968 int i, ret = -EINVAL;
1969 const char *p = c;
1971 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1972 for (i = 0; i < max_count; i++) {
1973 const char *ipend;
1974 struct sockaddr_storage *ss = &addr[i].in_addr;
1975 int port;
1976 char delim = ',';
1978 if (*p == '[') {
1979 delim = ']';
1980 p++;
1983 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1984 if (ret)
1985 goto bad;
1986 ret = -EINVAL;
1988 p = ipend;
1990 if (delim == ']') {
1991 if (*p != ']') {
1992 dout("missing matching ']'\n");
1993 goto bad;
1995 p++;
1998 /* port? */
1999 if (p < end && *p == ':') {
2000 port = 0;
2001 p++;
2002 while (p < end && *p >= '0' && *p <= '9') {
2003 port = (port * 10) + (*p - '0');
2004 p++;
2006 if (port == 0)
2007 port = CEPH_MON_PORT;
2008 else if (port > 65535)
2009 goto bad;
2010 } else {
2011 port = CEPH_MON_PORT;
2014 addr_set_port(ss, port);
2016 dout("parse_ips got %s\n", ceph_pr_addr(ss));
2018 if (p == end)
2019 break;
2020 if (*p != ',')
2021 goto bad;
2022 p++;
2025 if (p != end)
2026 goto bad;
2028 if (count)
2029 *count = i + 1;
2030 return 0;
2032 bad:
2033 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2034 return ret;
2036 EXPORT_SYMBOL(ceph_parse_ips);
2038 static int process_banner(struct ceph_connection *con)
2040 dout("process_banner on %p\n", con);
2042 if (verify_hello(con) < 0)
2043 return -1;
2045 ceph_decode_addr(&con->actual_peer_addr);
2046 ceph_decode_addr(&con->peer_addr_for_me);
2049 * Make sure the other end is who we wanted. note that the other
2050 * end may not yet know their ip address, so if it's 0.0.0.0, give
2051 * them the benefit of the doubt.
2053 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2054 sizeof(con->peer_addr)) != 0 &&
2055 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2056 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2057 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2058 ceph_pr_addr(&con->peer_addr.in_addr),
2059 (int)le32_to_cpu(con->peer_addr.nonce),
2060 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2061 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2062 con->error_msg = "wrong peer at address";
2063 return -1;
2067 * did we learn our address?
2069 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2070 int port = addr_port(&con->msgr->inst.addr.in_addr);
2072 memcpy(&con->msgr->inst.addr.in_addr,
2073 &con->peer_addr_for_me.in_addr,
2074 sizeof(con->peer_addr_for_me.in_addr));
2075 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2076 encode_my_addr(con->msgr);
2077 dout("process_banner learned my addr is %s\n",
2078 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2081 return 0;
2084 static int process_connect(struct ceph_connection *con)
2086 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2087 u64 req_feat = from_msgr(con->msgr)->required_features;
2088 u64 server_feat = le64_to_cpu(con->in_reply.features);
2089 int ret;
2091 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2093 if (con->auth) {
2094 int len = le32_to_cpu(con->in_reply.authorizer_len);
2097 * Any connection that defines ->get_authorizer()
2098 * should also define ->add_authorizer_challenge() and
2099 * ->verify_authorizer_reply().
2101 * See get_connect_authorizer().
2103 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2104 ret = con->ops->add_authorizer_challenge(
2105 con, con->auth->authorizer_reply_buf, len);
2106 if (ret < 0)
2107 return ret;
2109 con_out_kvec_reset(con);
2110 __prepare_write_connect(con);
2111 prepare_read_connect(con);
2112 return 0;
2115 if (len) {
2116 ret = con->ops->verify_authorizer_reply(con);
2117 if (ret < 0) {
2118 con->error_msg = "bad authorize reply";
2119 return ret;
2124 switch (con->in_reply.tag) {
2125 case CEPH_MSGR_TAG_FEATURES:
2126 pr_err("%s%lld %s feature set mismatch,"
2127 " my %llx < server's %llx, missing %llx\n",
2128 ENTITY_NAME(con->peer_name),
2129 ceph_pr_addr(&con->peer_addr.in_addr),
2130 sup_feat, server_feat, server_feat & ~sup_feat);
2131 con->error_msg = "missing required protocol features";
2132 reset_connection(con);
2133 return -1;
2135 case CEPH_MSGR_TAG_BADPROTOVER:
2136 pr_err("%s%lld %s protocol version mismatch,"
2137 " my %d != server's %d\n",
2138 ENTITY_NAME(con->peer_name),
2139 ceph_pr_addr(&con->peer_addr.in_addr),
2140 le32_to_cpu(con->out_connect.protocol_version),
2141 le32_to_cpu(con->in_reply.protocol_version));
2142 con->error_msg = "protocol version mismatch";
2143 reset_connection(con);
2144 return -1;
2146 case CEPH_MSGR_TAG_BADAUTHORIZER:
2147 con->auth_retry++;
2148 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2149 con->auth_retry);
2150 if (con->auth_retry == 2) {
2151 con->error_msg = "connect authorization failure";
2152 return -1;
2154 con_out_kvec_reset(con);
2155 ret = prepare_write_connect(con);
2156 if (ret < 0)
2157 return ret;
2158 prepare_read_connect(con);
2159 break;
2161 case CEPH_MSGR_TAG_RESETSESSION:
2163 * If we connected with a large connect_seq but the peer
2164 * has no record of a session with us (no connection, or
2165 * connect_seq == 0), they will send RESETSESION to indicate
2166 * that they must have reset their session, and may have
2167 * dropped messages.
2169 dout("process_connect got RESET peer seq %u\n",
2170 le32_to_cpu(con->in_reply.connect_seq));
2171 pr_err("%s%lld %s connection reset\n",
2172 ENTITY_NAME(con->peer_name),
2173 ceph_pr_addr(&con->peer_addr.in_addr));
2174 reset_connection(con);
2175 con_out_kvec_reset(con);
2176 ret = prepare_write_connect(con);
2177 if (ret < 0)
2178 return ret;
2179 prepare_read_connect(con);
2181 /* Tell ceph about it. */
2182 mutex_unlock(&con->mutex);
2183 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2184 if (con->ops->peer_reset)
2185 con->ops->peer_reset(con);
2186 mutex_lock(&con->mutex);
2187 if (con->state != CON_STATE_NEGOTIATING)
2188 return -EAGAIN;
2189 break;
2191 case CEPH_MSGR_TAG_RETRY_SESSION:
2193 * If we sent a smaller connect_seq than the peer has, try
2194 * again with a larger value.
2196 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2197 le32_to_cpu(con->out_connect.connect_seq),
2198 le32_to_cpu(con->in_reply.connect_seq));
2199 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2200 con_out_kvec_reset(con);
2201 ret = prepare_write_connect(con);
2202 if (ret < 0)
2203 return ret;
2204 prepare_read_connect(con);
2205 break;
2207 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2209 * If we sent a smaller global_seq than the peer has, try
2210 * again with a larger value.
2212 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2213 con->peer_global_seq,
2214 le32_to_cpu(con->in_reply.global_seq));
2215 get_global_seq(con->msgr,
2216 le32_to_cpu(con->in_reply.global_seq));
2217 con_out_kvec_reset(con);
2218 ret = prepare_write_connect(con);
2219 if (ret < 0)
2220 return ret;
2221 prepare_read_connect(con);
2222 break;
2224 case CEPH_MSGR_TAG_SEQ:
2225 case CEPH_MSGR_TAG_READY:
2226 if (req_feat & ~server_feat) {
2227 pr_err("%s%lld %s protocol feature mismatch,"
2228 " my required %llx > server's %llx, need %llx\n",
2229 ENTITY_NAME(con->peer_name),
2230 ceph_pr_addr(&con->peer_addr.in_addr),
2231 req_feat, server_feat, req_feat & ~server_feat);
2232 con->error_msg = "missing required protocol features";
2233 reset_connection(con);
2234 return -1;
2237 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2238 con->state = CON_STATE_OPEN;
2239 con->auth_retry = 0; /* we authenticated; clear flag */
2240 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2241 con->connect_seq++;
2242 con->peer_features = server_feat;
2243 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2244 con->peer_global_seq,
2245 le32_to_cpu(con->in_reply.connect_seq),
2246 con->connect_seq);
2247 WARN_ON(con->connect_seq !=
2248 le32_to_cpu(con->in_reply.connect_seq));
2250 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2251 con_flag_set(con, CON_FLAG_LOSSYTX);
2253 con->delay = 0; /* reset backoff memory */
2255 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2256 prepare_write_seq(con);
2257 prepare_read_seq(con);
2258 } else {
2259 prepare_read_tag(con);
2261 break;
2263 case CEPH_MSGR_TAG_WAIT:
2265 * If there is a connection race (we are opening
2266 * connections to each other), one of us may just have
2267 * to WAIT. This shouldn't happen if we are the
2268 * client.
2270 con->error_msg = "protocol error, got WAIT as client";
2271 return -1;
2273 default:
2274 con->error_msg = "protocol error, garbage tag during connect";
2275 return -1;
2277 return 0;
2282 * read (part of) an ack
2284 static int read_partial_ack(struct ceph_connection *con)
2286 int size = sizeof (con->in_temp_ack);
2287 int end = size;
2289 return read_partial(con, end, size, &con->in_temp_ack);
2293 * We can finally discard anything that's been acked.
2295 static void process_ack(struct ceph_connection *con)
2297 struct ceph_msg *m;
2298 u64 ack = le64_to_cpu(con->in_temp_ack);
2299 u64 seq;
2300 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2301 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2304 * In the reconnect case, con_fault() has requeued messages
2305 * in out_sent. We should cleanup old messages according to
2306 * the reconnect seq.
2308 while (!list_empty(list)) {
2309 m = list_first_entry(list, struct ceph_msg, list_head);
2310 if (reconnect && m->needs_out_seq)
2311 break;
2312 seq = le64_to_cpu(m->hdr.seq);
2313 if (seq > ack)
2314 break;
2315 dout("got ack for seq %llu type %d at %p\n", seq,
2316 le16_to_cpu(m->hdr.type), m);
2317 m->ack_stamp = jiffies;
2318 ceph_msg_remove(m);
2321 prepare_read_tag(con);
2325 static int read_partial_message_section(struct ceph_connection *con,
2326 struct kvec *section,
2327 unsigned int sec_len, u32 *crc)
2329 int ret, left;
2331 BUG_ON(!section);
2333 while (section->iov_len < sec_len) {
2334 BUG_ON(section->iov_base == NULL);
2335 left = sec_len - section->iov_len;
2336 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2337 section->iov_len, left);
2338 if (ret <= 0)
2339 return ret;
2340 section->iov_len += ret;
2342 if (section->iov_len == sec_len)
2343 *crc = crc32c(0, section->iov_base, section->iov_len);
2345 return 1;
2348 static int read_partial_msg_data(struct ceph_connection *con)
2350 struct ceph_msg *msg = con->in_msg;
2351 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2352 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2353 struct page *page;
2354 size_t page_offset;
2355 size_t length;
2356 u32 crc = 0;
2357 int ret;
2359 BUG_ON(!msg);
2360 if (list_empty(&msg->data))
2361 return -EIO;
2363 if (do_datacrc)
2364 crc = con->in_data_crc;
2365 while (cursor->total_resid) {
2366 if (!cursor->resid) {
2367 ceph_msg_data_advance(cursor, 0);
2368 continue;
2371 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2372 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2373 if (ret <= 0) {
2374 if (do_datacrc)
2375 con->in_data_crc = crc;
2377 return ret;
2380 if (do_datacrc)
2381 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2382 ceph_msg_data_advance(cursor, (size_t)ret);
2384 if (do_datacrc)
2385 con->in_data_crc = crc;
2387 return 1; /* must return > 0 to indicate success */
2391 * read (part of) a message.
2393 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2395 static int read_partial_message(struct ceph_connection *con)
2397 struct ceph_msg *m = con->in_msg;
2398 int size;
2399 int end;
2400 int ret;
2401 unsigned int front_len, middle_len, data_len;
2402 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2403 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2404 u64 seq;
2405 u32 crc;
2407 dout("read_partial_message con %p msg %p\n", con, m);
2409 /* header */
2410 size = sizeof (con->in_hdr);
2411 end = size;
2412 ret = read_partial(con, end, size, &con->in_hdr);
2413 if (ret <= 0)
2414 return ret;
2416 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2417 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2418 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2419 crc, con->in_hdr.crc);
2420 return -EBADMSG;
2423 front_len = le32_to_cpu(con->in_hdr.front_len);
2424 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2425 return -EIO;
2426 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2427 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2428 return -EIO;
2429 data_len = le32_to_cpu(con->in_hdr.data_len);
2430 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2431 return -EIO;
2433 /* verify seq# */
2434 seq = le64_to_cpu(con->in_hdr.seq);
2435 if ((s64)seq - (s64)con->in_seq < 1) {
2436 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2437 ENTITY_NAME(con->peer_name),
2438 ceph_pr_addr(&con->peer_addr.in_addr),
2439 seq, con->in_seq + 1);
2440 con->in_base_pos = -front_len - middle_len - data_len -
2441 sizeof_footer(con);
2442 con->in_tag = CEPH_MSGR_TAG_READY;
2443 return 1;
2444 } else if ((s64)seq - (s64)con->in_seq > 1) {
2445 pr_err("read_partial_message bad seq %lld expected %lld\n",
2446 seq, con->in_seq + 1);
2447 con->error_msg = "bad message sequence # for incoming message";
2448 return -EBADE;
2451 /* allocate message? */
2452 if (!con->in_msg) {
2453 int skip = 0;
2455 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2456 front_len, data_len);
2457 ret = ceph_con_in_msg_alloc(con, &skip);
2458 if (ret < 0)
2459 return ret;
2461 BUG_ON(!con->in_msg ^ skip);
2462 if (skip) {
2463 /* skip this message */
2464 dout("alloc_msg said skip message\n");
2465 con->in_base_pos = -front_len - middle_len - data_len -
2466 sizeof_footer(con);
2467 con->in_tag = CEPH_MSGR_TAG_READY;
2468 con->in_seq++;
2469 return 1;
2472 BUG_ON(!con->in_msg);
2473 BUG_ON(con->in_msg->con != con);
2474 m = con->in_msg;
2475 m->front.iov_len = 0; /* haven't read it yet */
2476 if (m->middle)
2477 m->middle->vec.iov_len = 0;
2479 /* prepare for data payload, if any */
2481 if (data_len)
2482 prepare_message_data(con->in_msg, data_len);
2485 /* front */
2486 ret = read_partial_message_section(con, &m->front, front_len,
2487 &con->in_front_crc);
2488 if (ret <= 0)
2489 return ret;
2491 /* middle */
2492 if (m->middle) {
2493 ret = read_partial_message_section(con, &m->middle->vec,
2494 middle_len,
2495 &con->in_middle_crc);
2496 if (ret <= 0)
2497 return ret;
2500 /* (page) data */
2501 if (data_len) {
2502 ret = read_partial_msg_data(con);
2503 if (ret <= 0)
2504 return ret;
2507 /* footer */
2508 size = sizeof_footer(con);
2509 end += size;
2510 ret = read_partial(con, end, size, &m->footer);
2511 if (ret <= 0)
2512 return ret;
2514 if (!need_sign) {
2515 m->footer.flags = m->old_footer.flags;
2516 m->footer.sig = 0;
2519 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2520 m, front_len, m->footer.front_crc, middle_len,
2521 m->footer.middle_crc, data_len, m->footer.data_crc);
2523 /* crc ok? */
2524 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2525 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2526 m, con->in_front_crc, m->footer.front_crc);
2527 return -EBADMSG;
2529 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2530 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2531 m, con->in_middle_crc, m->footer.middle_crc);
2532 return -EBADMSG;
2534 if (do_datacrc &&
2535 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2536 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2537 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2538 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2539 return -EBADMSG;
2542 if (need_sign && con->ops->check_message_signature &&
2543 con->ops->check_message_signature(m)) {
2544 pr_err("read_partial_message %p signature check failed\n", m);
2545 return -EBADMSG;
2548 return 1; /* done! */
2552 * Process message. This happens in the worker thread. The callback should
2553 * be careful not to do anything that waits on other incoming messages or it
2554 * may deadlock.
2556 static void process_message(struct ceph_connection *con)
2558 struct ceph_msg *msg = con->in_msg;
2560 BUG_ON(con->in_msg->con != con);
2561 con->in_msg = NULL;
2563 /* if first message, set peer_name */
2564 if (con->peer_name.type == 0)
2565 con->peer_name = msg->hdr.src;
2567 con->in_seq++;
2568 mutex_unlock(&con->mutex);
2570 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2571 msg, le64_to_cpu(msg->hdr.seq),
2572 ENTITY_NAME(msg->hdr.src),
2573 le16_to_cpu(msg->hdr.type),
2574 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2575 le32_to_cpu(msg->hdr.front_len),
2576 le32_to_cpu(msg->hdr.data_len),
2577 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2578 con->ops->dispatch(con, msg);
2580 mutex_lock(&con->mutex);
2583 static int read_keepalive_ack(struct ceph_connection *con)
2585 struct ceph_timespec ceph_ts;
2586 size_t size = sizeof(ceph_ts);
2587 int ret = read_partial(con, size, size, &ceph_ts);
2588 if (ret <= 0)
2589 return ret;
2590 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2591 prepare_read_tag(con);
2592 return 1;
2596 * Write something to the socket. Called in a worker thread when the
2597 * socket appears to be writeable and we have something ready to send.
2599 static int try_write(struct ceph_connection *con)
2601 int ret = 1;
2603 dout("try_write start %p state %lu\n", con, con->state);
2604 if (con->state != CON_STATE_PREOPEN &&
2605 con->state != CON_STATE_CONNECTING &&
2606 con->state != CON_STATE_NEGOTIATING &&
2607 con->state != CON_STATE_OPEN)
2608 return 0;
2610 /* open the socket first? */
2611 if (con->state == CON_STATE_PREOPEN) {
2612 BUG_ON(con->sock);
2613 con->state = CON_STATE_CONNECTING;
2615 con_out_kvec_reset(con);
2616 prepare_write_banner(con);
2617 prepare_read_banner(con);
2619 BUG_ON(con->in_msg);
2620 con->in_tag = CEPH_MSGR_TAG_READY;
2621 dout("try_write initiating connect on %p new state %lu\n",
2622 con, con->state);
2623 ret = ceph_tcp_connect(con);
2624 if (ret < 0) {
2625 con->error_msg = "connect error";
2626 goto out;
2630 more:
2631 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2632 BUG_ON(!con->sock);
2634 /* kvec data queued? */
2635 if (con->out_kvec_left) {
2636 ret = write_partial_kvec(con);
2637 if (ret <= 0)
2638 goto out;
2640 if (con->out_skip) {
2641 ret = write_partial_skip(con);
2642 if (ret <= 0)
2643 goto out;
2646 /* msg pages? */
2647 if (con->out_msg) {
2648 if (con->out_msg_done) {
2649 ceph_msg_put(con->out_msg);
2650 con->out_msg = NULL; /* we're done with this one */
2651 goto do_next;
2654 ret = write_partial_message_data(con);
2655 if (ret == 1)
2656 goto more; /* we need to send the footer, too! */
2657 if (ret == 0)
2658 goto out;
2659 if (ret < 0) {
2660 dout("try_write write_partial_message_data err %d\n",
2661 ret);
2662 goto out;
2666 do_next:
2667 if (con->state == CON_STATE_OPEN) {
2668 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2669 prepare_write_keepalive(con);
2670 goto more;
2672 /* is anything else pending? */
2673 if (!list_empty(&con->out_queue)) {
2674 prepare_write_message(con);
2675 goto more;
2677 if (con->in_seq > con->in_seq_acked) {
2678 prepare_write_ack(con);
2679 goto more;
2683 /* Nothing to do! */
2684 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2685 dout("try_write nothing else to write.\n");
2686 ret = 0;
2687 out:
2688 dout("try_write done on %p ret %d\n", con, ret);
2689 return ret;
2693 * Read what we can from the socket.
2695 static int try_read(struct ceph_connection *con)
2697 int ret = -1;
2699 more:
2700 dout("try_read start on %p state %lu\n", con, con->state);
2701 if (con->state != CON_STATE_CONNECTING &&
2702 con->state != CON_STATE_NEGOTIATING &&
2703 con->state != CON_STATE_OPEN)
2704 return 0;
2706 BUG_ON(!con->sock);
2708 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2709 con->in_base_pos);
2711 if (con->state == CON_STATE_CONNECTING) {
2712 dout("try_read connecting\n");
2713 ret = read_partial_banner(con);
2714 if (ret <= 0)
2715 goto out;
2716 ret = process_banner(con);
2717 if (ret < 0)
2718 goto out;
2720 con->state = CON_STATE_NEGOTIATING;
2723 * Received banner is good, exchange connection info.
2724 * Do not reset out_kvec, as sending our banner raced
2725 * with receiving peer banner after connect completed.
2727 ret = prepare_write_connect(con);
2728 if (ret < 0)
2729 goto out;
2730 prepare_read_connect(con);
2732 /* Send connection info before awaiting response */
2733 goto out;
2736 if (con->state == CON_STATE_NEGOTIATING) {
2737 dout("try_read negotiating\n");
2738 ret = read_partial_connect(con);
2739 if (ret <= 0)
2740 goto out;
2741 ret = process_connect(con);
2742 if (ret < 0)
2743 goto out;
2744 goto more;
2747 WARN_ON(con->state != CON_STATE_OPEN);
2749 if (con->in_base_pos < 0) {
2751 * skipping + discarding content.
2753 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2754 if (ret <= 0)
2755 goto out;
2756 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2757 con->in_base_pos += ret;
2758 if (con->in_base_pos)
2759 goto more;
2761 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2763 * what's next?
2765 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2766 if (ret <= 0)
2767 goto out;
2768 dout("try_read got tag %d\n", (int)con->in_tag);
2769 switch (con->in_tag) {
2770 case CEPH_MSGR_TAG_MSG:
2771 prepare_read_message(con);
2772 break;
2773 case CEPH_MSGR_TAG_ACK:
2774 prepare_read_ack(con);
2775 break;
2776 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2777 prepare_read_keepalive_ack(con);
2778 break;
2779 case CEPH_MSGR_TAG_CLOSE:
2780 con_close_socket(con);
2781 con->state = CON_STATE_CLOSED;
2782 goto out;
2783 default:
2784 goto bad_tag;
2787 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2788 ret = read_partial_message(con);
2789 if (ret <= 0) {
2790 switch (ret) {
2791 case -EBADMSG:
2792 con->error_msg = "bad crc/signature";
2793 /* fall through */
2794 case -EBADE:
2795 ret = -EIO;
2796 break;
2797 case -EIO:
2798 con->error_msg = "io error";
2799 break;
2801 goto out;
2803 if (con->in_tag == CEPH_MSGR_TAG_READY)
2804 goto more;
2805 process_message(con);
2806 if (con->state == CON_STATE_OPEN)
2807 prepare_read_tag(con);
2808 goto more;
2810 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2811 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2813 * the final handshake seq exchange is semantically
2814 * equivalent to an ACK
2816 ret = read_partial_ack(con);
2817 if (ret <= 0)
2818 goto out;
2819 process_ack(con);
2820 goto more;
2822 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2823 ret = read_keepalive_ack(con);
2824 if (ret <= 0)
2825 goto out;
2826 goto more;
2829 out:
2830 dout("try_read done on %p ret %d\n", con, ret);
2831 return ret;
2833 bad_tag:
2834 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2835 con->error_msg = "protocol error, garbage tag";
2836 ret = -1;
2837 goto out;
2842 * Atomically queue work on a connection after the specified delay.
2843 * Bump @con reference to avoid races with connection teardown.
2844 * Returns 0 if work was queued, or an error code otherwise.
2846 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2848 if (!con->ops->get(con)) {
2849 dout("%s %p ref count 0\n", __func__, con);
2850 return -ENOENT;
2853 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2854 dout("%s %p - already queued\n", __func__, con);
2855 con->ops->put(con);
2856 return -EBUSY;
2859 dout("%s %p %lu\n", __func__, con, delay);
2860 return 0;
2863 static void queue_con(struct ceph_connection *con)
2865 (void) queue_con_delay(con, 0);
2868 static void cancel_con(struct ceph_connection *con)
2870 if (cancel_delayed_work(&con->work)) {
2871 dout("%s %p\n", __func__, con);
2872 con->ops->put(con);
2876 static bool con_sock_closed(struct ceph_connection *con)
2878 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2879 return false;
2881 #define CASE(x) \
2882 case CON_STATE_ ## x: \
2883 con->error_msg = "socket closed (con state " #x ")"; \
2884 break;
2886 switch (con->state) {
2887 CASE(CLOSED);
2888 CASE(PREOPEN);
2889 CASE(CONNECTING);
2890 CASE(NEGOTIATING);
2891 CASE(OPEN);
2892 CASE(STANDBY);
2893 default:
2894 pr_warn("%s con %p unrecognized state %lu\n",
2895 __func__, con, con->state);
2896 con->error_msg = "unrecognized con state";
2897 BUG();
2898 break;
2900 #undef CASE
2902 return true;
2905 static bool con_backoff(struct ceph_connection *con)
2907 int ret;
2909 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2910 return false;
2912 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2913 if (ret) {
2914 dout("%s: con %p FAILED to back off %lu\n", __func__,
2915 con, con->delay);
2916 BUG_ON(ret == -ENOENT);
2917 con_flag_set(con, CON_FLAG_BACKOFF);
2920 return true;
2923 /* Finish fault handling; con->mutex must *not* be held here */
2925 static void con_fault_finish(struct ceph_connection *con)
2927 dout("%s %p\n", __func__, con);
2930 * in case we faulted due to authentication, invalidate our
2931 * current tickets so that we can get new ones.
2933 if (con->auth_retry) {
2934 dout("auth_retry %d, invalidating\n", con->auth_retry);
2935 if (con->ops->invalidate_authorizer)
2936 con->ops->invalidate_authorizer(con);
2937 con->auth_retry = 0;
2940 if (con->ops->fault)
2941 con->ops->fault(con);
2945 * Do some work on a connection. Drop a connection ref when we're done.
2947 static void ceph_con_workfn(struct work_struct *work)
2949 struct ceph_connection *con = container_of(work, struct ceph_connection,
2950 work.work);
2951 bool fault;
2953 mutex_lock(&con->mutex);
2954 while (true) {
2955 int ret;
2957 if ((fault = con_sock_closed(con))) {
2958 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2959 break;
2961 if (con_backoff(con)) {
2962 dout("%s: con %p BACKOFF\n", __func__, con);
2963 break;
2965 if (con->state == CON_STATE_STANDBY) {
2966 dout("%s: con %p STANDBY\n", __func__, con);
2967 break;
2969 if (con->state == CON_STATE_CLOSED) {
2970 dout("%s: con %p CLOSED\n", __func__, con);
2971 BUG_ON(con->sock);
2972 break;
2974 if (con->state == CON_STATE_PREOPEN) {
2975 dout("%s: con %p PREOPEN\n", __func__, con);
2976 BUG_ON(con->sock);
2979 ret = try_read(con);
2980 if (ret < 0) {
2981 if (ret == -EAGAIN)
2982 continue;
2983 if (!con->error_msg)
2984 con->error_msg = "socket error on read";
2985 fault = true;
2986 break;
2989 ret = try_write(con);
2990 if (ret < 0) {
2991 if (ret == -EAGAIN)
2992 continue;
2993 if (!con->error_msg)
2994 con->error_msg = "socket error on write";
2995 fault = true;
2998 break; /* If we make it to here, we're done */
3000 if (fault)
3001 con_fault(con);
3002 mutex_unlock(&con->mutex);
3004 if (fault)
3005 con_fault_finish(con);
3007 con->ops->put(con);
3011 * Generic error/fault handler. A retry mechanism is used with
3012 * exponential backoff
3014 static void con_fault(struct ceph_connection *con)
3016 dout("fault %p state %lu to peer %s\n",
3017 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
3019 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
3020 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
3021 con->error_msg = NULL;
3023 WARN_ON(con->state != CON_STATE_CONNECTING &&
3024 con->state != CON_STATE_NEGOTIATING &&
3025 con->state != CON_STATE_OPEN);
3027 con_close_socket(con);
3029 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3030 dout("fault on LOSSYTX channel, marking CLOSED\n");
3031 con->state = CON_STATE_CLOSED;
3032 return;
3035 if (con->in_msg) {
3036 BUG_ON(con->in_msg->con != con);
3037 ceph_msg_put(con->in_msg);
3038 con->in_msg = NULL;
3041 /* Requeue anything that hasn't been acked */
3042 list_splice_init(&con->out_sent, &con->out_queue);
3044 /* If there are no messages queued or keepalive pending, place
3045 * the connection in a STANDBY state */
3046 if (list_empty(&con->out_queue) &&
3047 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3048 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3049 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3050 con->state = CON_STATE_STANDBY;
3051 } else {
3052 /* retry after a delay. */
3053 con->state = CON_STATE_PREOPEN;
3054 if (con->delay == 0)
3055 con->delay = BASE_DELAY_INTERVAL;
3056 else if (con->delay < MAX_DELAY_INTERVAL)
3057 con->delay *= 2;
3058 con_flag_set(con, CON_FLAG_BACKOFF);
3059 queue_con(con);
3066 * initialize a new messenger instance
3068 void ceph_messenger_init(struct ceph_messenger *msgr,
3069 struct ceph_entity_addr *myaddr)
3071 spin_lock_init(&msgr->global_seq_lock);
3073 if (myaddr)
3074 msgr->inst.addr = *myaddr;
3076 /* select a random nonce */
3077 msgr->inst.addr.type = 0;
3078 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3079 encode_my_addr(msgr);
3081 atomic_set(&msgr->stopping, 0);
3082 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3084 dout("%s %p\n", __func__, msgr);
3086 EXPORT_SYMBOL(ceph_messenger_init);
3088 void ceph_messenger_fini(struct ceph_messenger *msgr)
3090 put_net(read_pnet(&msgr->net));
3092 EXPORT_SYMBOL(ceph_messenger_fini);
3094 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3096 if (msg->con)
3097 msg->con->ops->put(msg->con);
3099 msg->con = con ? con->ops->get(con) : NULL;
3100 BUG_ON(msg->con != con);
3103 static void clear_standby(struct ceph_connection *con)
3105 /* come back from STANDBY? */
3106 if (con->state == CON_STATE_STANDBY) {
3107 dout("clear_standby %p and ++connect_seq\n", con);
3108 con->state = CON_STATE_PREOPEN;
3109 con->connect_seq++;
3110 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3111 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3116 * Queue up an outgoing message on the given connection.
3118 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3120 /* set src+dst */
3121 msg->hdr.src = con->msgr->inst.name;
3122 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3123 msg->needs_out_seq = true;
3125 mutex_lock(&con->mutex);
3127 if (con->state == CON_STATE_CLOSED) {
3128 dout("con_send %p closed, dropping %p\n", con, msg);
3129 ceph_msg_put(msg);
3130 mutex_unlock(&con->mutex);
3131 return;
3134 msg_con_set(msg, con);
3136 BUG_ON(!list_empty(&msg->list_head));
3137 list_add_tail(&msg->list_head, &con->out_queue);
3138 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3139 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3140 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3141 le32_to_cpu(msg->hdr.front_len),
3142 le32_to_cpu(msg->hdr.middle_len),
3143 le32_to_cpu(msg->hdr.data_len));
3145 clear_standby(con);
3146 mutex_unlock(&con->mutex);
3148 /* if there wasn't anything waiting to send before, queue
3149 * new work */
3150 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3151 queue_con(con);
3153 EXPORT_SYMBOL(ceph_con_send);
3156 * Revoke a message that was previously queued for send
3158 void ceph_msg_revoke(struct ceph_msg *msg)
3160 struct ceph_connection *con = msg->con;
3162 if (!con) {
3163 dout("%s msg %p null con\n", __func__, msg);
3164 return; /* Message not in our possession */
3167 mutex_lock(&con->mutex);
3168 if (!list_empty(&msg->list_head)) {
3169 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3170 list_del_init(&msg->list_head);
3171 msg->hdr.seq = 0;
3173 ceph_msg_put(msg);
3175 if (con->out_msg == msg) {
3176 BUG_ON(con->out_skip);
3177 /* footer */
3178 if (con->out_msg_done) {
3179 con->out_skip += con_out_kvec_skip(con);
3180 } else {
3181 BUG_ON(!msg->data_length);
3182 con->out_skip += sizeof_footer(con);
3184 /* data, middle, front */
3185 if (msg->data_length)
3186 con->out_skip += msg->cursor.total_resid;
3187 if (msg->middle)
3188 con->out_skip += con_out_kvec_skip(con);
3189 con->out_skip += con_out_kvec_skip(con);
3191 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3192 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3193 msg->hdr.seq = 0;
3194 con->out_msg = NULL;
3195 ceph_msg_put(msg);
3198 mutex_unlock(&con->mutex);
3202 * Revoke a message that we may be reading data into
3204 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3206 struct ceph_connection *con = msg->con;
3208 if (!con) {
3209 dout("%s msg %p null con\n", __func__, msg);
3210 return; /* Message not in our possession */
3213 mutex_lock(&con->mutex);
3214 if (con->in_msg == msg) {
3215 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3216 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3217 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3219 /* skip rest of message */
3220 dout("%s %p msg %p revoked\n", __func__, con, msg);
3221 con->in_base_pos = con->in_base_pos -
3222 sizeof(struct ceph_msg_header) -
3223 front_len -
3224 middle_len -
3225 data_len -
3226 sizeof(struct ceph_msg_footer);
3227 ceph_msg_put(con->in_msg);
3228 con->in_msg = NULL;
3229 con->in_tag = CEPH_MSGR_TAG_READY;
3230 con->in_seq++;
3231 } else {
3232 dout("%s %p in_msg %p msg %p no-op\n",
3233 __func__, con, con->in_msg, msg);
3235 mutex_unlock(&con->mutex);
3239 * Queue a keepalive byte to ensure the tcp connection is alive.
3241 void ceph_con_keepalive(struct ceph_connection *con)
3243 dout("con_keepalive %p\n", con);
3244 mutex_lock(&con->mutex);
3245 clear_standby(con);
3246 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3247 mutex_unlock(&con->mutex);
3249 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3250 queue_con(con);
3252 EXPORT_SYMBOL(ceph_con_keepalive);
3254 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3255 unsigned long interval)
3257 if (interval > 0 &&
3258 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3259 struct timespec64 now;
3260 struct timespec64 ts;
3261 ktime_get_real_ts64(&now);
3262 jiffies_to_timespec64(interval, &ts);
3263 ts = timespec64_add(con->last_keepalive_ack, ts);
3264 return timespec64_compare(&now, &ts) >= 0;
3266 return false;
3269 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3271 struct ceph_msg_data *data;
3273 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3274 return NULL;
3276 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3277 if (!data)
3278 return NULL;
3280 data->type = type;
3281 INIT_LIST_HEAD(&data->links);
3283 return data;
3286 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3288 if (!data)
3289 return;
3291 WARN_ON(!list_empty(&data->links));
3292 if (data->type == CEPH_MSG_DATA_PAGELIST)
3293 ceph_pagelist_release(data->pagelist);
3294 kmem_cache_free(ceph_msg_data_cache, data);
3297 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3298 size_t length, size_t alignment)
3300 struct ceph_msg_data *data;
3302 BUG_ON(!pages);
3303 BUG_ON(!length);
3305 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3306 BUG_ON(!data);
3307 data->pages = pages;
3308 data->length = length;
3309 data->alignment = alignment & ~PAGE_MASK;
3311 list_add_tail(&data->links, &msg->data);
3312 msg->data_length += length;
3314 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3316 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3317 struct ceph_pagelist *pagelist)
3319 struct ceph_msg_data *data;
3321 BUG_ON(!pagelist);
3322 BUG_ON(!pagelist->length);
3324 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3325 BUG_ON(!data);
3326 data->pagelist = pagelist;
3328 list_add_tail(&data->links, &msg->data);
3329 msg->data_length += pagelist->length;
3331 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3333 #ifdef CONFIG_BLOCK
3334 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3335 u32 length)
3337 struct ceph_msg_data *data;
3339 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3340 BUG_ON(!data);
3341 data->bio_pos = *bio_pos;
3342 data->bio_length = length;
3344 list_add_tail(&data->links, &msg->data);
3345 msg->data_length += length;
3347 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3348 #endif /* CONFIG_BLOCK */
3350 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3351 struct ceph_bvec_iter *bvec_pos)
3353 struct ceph_msg_data *data;
3355 data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3356 BUG_ON(!data);
3357 data->bvec_pos = *bvec_pos;
3359 list_add_tail(&data->links, &msg->data);
3360 msg->data_length += bvec_pos->iter.bi_size;
3362 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3365 * construct a new message with given type, size
3366 * the new msg has a ref count of 1.
3368 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3369 bool can_fail)
3371 struct ceph_msg *m;
3373 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3374 if (m == NULL)
3375 goto out;
3377 m->hdr.type = cpu_to_le16(type);
3378 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3379 m->hdr.front_len = cpu_to_le32(front_len);
3381 INIT_LIST_HEAD(&m->list_head);
3382 kref_init(&m->kref);
3383 INIT_LIST_HEAD(&m->data);
3385 /* front */
3386 if (front_len) {
3387 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3388 if (m->front.iov_base == NULL) {
3389 dout("ceph_msg_new can't allocate %d bytes\n",
3390 front_len);
3391 goto out2;
3393 } else {
3394 m->front.iov_base = NULL;
3396 m->front_alloc_len = m->front.iov_len = front_len;
3398 dout("ceph_msg_new %p front %d\n", m, front_len);
3399 return m;
3401 out2:
3402 ceph_msg_put(m);
3403 out:
3404 if (!can_fail) {
3405 pr_err("msg_new can't create type %d front %d\n", type,
3406 front_len);
3407 WARN_ON(1);
3408 } else {
3409 dout("msg_new can't create type %d front %d\n", type,
3410 front_len);
3412 return NULL;
3414 EXPORT_SYMBOL(ceph_msg_new);
3417 * Allocate "middle" portion of a message, if it is needed and wasn't
3418 * allocated by alloc_msg. This allows us to read a small fixed-size
3419 * per-type header in the front and then gracefully fail (i.e.,
3420 * propagate the error to the caller based on info in the front) when
3421 * the middle is too large.
3423 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3425 int type = le16_to_cpu(msg->hdr.type);
3426 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3428 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3429 ceph_msg_type_name(type), middle_len);
3430 BUG_ON(!middle_len);
3431 BUG_ON(msg->middle);
3433 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3434 if (!msg->middle)
3435 return -ENOMEM;
3436 return 0;
3440 * Allocate a message for receiving an incoming message on a
3441 * connection, and save the result in con->in_msg. Uses the
3442 * connection's private alloc_msg op if available.
3444 * Returns 0 on success, or a negative error code.
3446 * On success, if we set *skip = 1:
3447 * - the next message should be skipped and ignored.
3448 * - con->in_msg == NULL
3449 * or if we set *skip = 0:
3450 * - con->in_msg is non-null.
3451 * On error (ENOMEM, EAGAIN, ...),
3452 * - con->in_msg == NULL
3454 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3456 struct ceph_msg_header *hdr = &con->in_hdr;
3457 int middle_len = le32_to_cpu(hdr->middle_len);
3458 struct ceph_msg *msg;
3459 int ret = 0;
3461 BUG_ON(con->in_msg != NULL);
3462 BUG_ON(!con->ops->alloc_msg);
3464 mutex_unlock(&con->mutex);
3465 msg = con->ops->alloc_msg(con, hdr, skip);
3466 mutex_lock(&con->mutex);
3467 if (con->state != CON_STATE_OPEN) {
3468 if (msg)
3469 ceph_msg_put(msg);
3470 return -EAGAIN;
3472 if (msg) {
3473 BUG_ON(*skip);
3474 msg_con_set(msg, con);
3475 con->in_msg = msg;
3476 } else {
3478 * Null message pointer means either we should skip
3479 * this message or we couldn't allocate memory. The
3480 * former is not an error.
3482 if (*skip)
3483 return 0;
3485 con->error_msg = "error allocating memory for incoming message";
3486 return -ENOMEM;
3488 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3490 if (middle_len && !con->in_msg->middle) {
3491 ret = ceph_alloc_middle(con, con->in_msg);
3492 if (ret < 0) {
3493 ceph_msg_put(con->in_msg);
3494 con->in_msg = NULL;
3498 return ret;
3503 * Free a generically kmalloc'd message.
3505 static void ceph_msg_free(struct ceph_msg *m)
3507 dout("%s %p\n", __func__, m);
3508 kvfree(m->front.iov_base);
3509 kmem_cache_free(ceph_msg_cache, m);
3512 static void ceph_msg_release(struct kref *kref)
3514 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3515 struct ceph_msg_data *data, *next;
3517 dout("%s %p\n", __func__, m);
3518 WARN_ON(!list_empty(&m->list_head));
3520 msg_con_set(m, NULL);
3522 /* drop middle, data, if any */
3523 if (m->middle) {
3524 ceph_buffer_put(m->middle);
3525 m->middle = NULL;
3528 list_for_each_entry_safe(data, next, &m->data, links) {
3529 list_del_init(&data->links);
3530 ceph_msg_data_destroy(data);
3532 m->data_length = 0;
3534 if (m->pool)
3535 ceph_msgpool_put(m->pool, m);
3536 else
3537 ceph_msg_free(m);
3540 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3542 dout("%s %p (was %d)\n", __func__, msg,
3543 kref_read(&msg->kref));
3544 kref_get(&msg->kref);
3545 return msg;
3547 EXPORT_SYMBOL(ceph_msg_get);
3549 void ceph_msg_put(struct ceph_msg *msg)
3551 dout("%s %p (was %d)\n", __func__, msg,
3552 kref_read(&msg->kref));
3553 kref_put(&msg->kref, ceph_msg_release);
3555 EXPORT_SYMBOL(ceph_msg_put);
3557 void ceph_msg_dump(struct ceph_msg *msg)
3559 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3560 msg->front_alloc_len, msg->data_length);
3561 print_hex_dump(KERN_DEBUG, "header: ",
3562 DUMP_PREFIX_OFFSET, 16, 1,
3563 &msg->hdr, sizeof(msg->hdr), true);
3564 print_hex_dump(KERN_DEBUG, " front: ",
3565 DUMP_PREFIX_OFFSET, 16, 1,
3566 msg->front.iov_base, msg->front.iov_len, true);
3567 if (msg->middle)
3568 print_hex_dump(KERN_DEBUG, "middle: ",
3569 DUMP_PREFIX_OFFSET, 16, 1,
3570 msg->middle->vec.iov_base,
3571 msg->middle->vec.iov_len, true);
3572 print_hex_dump(KERN_DEBUG, "footer: ",
3573 DUMP_PREFIX_OFFSET, 16, 1,
3574 &msg->footer, sizeof(msg->footer), true);
3576 EXPORT_SYMBOL(ceph_msg_dump);