1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
165 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class
;
171 static void queue_con(struct ceph_connection
*con
);
172 static void cancel_con(struct ceph_connection
*con
);
173 static void ceph_con_workfn(struct work_struct
*);
174 static void con_fault(struct ceph_connection
*con
);
177 * Nicely render a sockaddr as a string. An array of formatted
178 * strings is used, to approximate reentrancy.
180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
185 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
186 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
188 static struct page
*zero_page
; /* used in certain error cases */
190 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
194 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
195 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
197 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
200 switch (ss
->ss_family
) {
202 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
203 ntohs(in4
->sin_port
));
207 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
208 ntohs(in6
->sin6_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
218 EXPORT_SYMBOL(ceph_pr_addr
);
220 static void encode_my_addr(struct ceph_messenger
*msgr
)
222 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
223 ceph_encode_addr(&msgr
->my_enc_addr
);
227 * work queue for all reading and writing to/from the socket.
229 static struct workqueue_struct
*ceph_msgr_wq
;
231 static int ceph_msgr_slab_init(void)
233 BUG_ON(ceph_msg_cache
);
234 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
238 BUG_ON(ceph_msg_data_cache
);
239 ceph_msg_data_cache
= KMEM_CACHE(ceph_msg_data
, 0);
240 if (ceph_msg_data_cache
)
243 kmem_cache_destroy(ceph_msg_cache
);
244 ceph_msg_cache
= NULL
;
249 static void ceph_msgr_slab_exit(void)
251 BUG_ON(!ceph_msg_data_cache
);
252 kmem_cache_destroy(ceph_msg_data_cache
);
253 ceph_msg_data_cache
= NULL
;
255 BUG_ON(!ceph_msg_cache
);
256 kmem_cache_destroy(ceph_msg_cache
);
257 ceph_msg_cache
= NULL
;
260 static void _ceph_msgr_exit(void)
263 destroy_workqueue(ceph_msgr_wq
);
267 BUG_ON(zero_page
== NULL
);
271 ceph_msgr_slab_exit();
274 int __init
ceph_msgr_init(void)
276 if (ceph_msgr_slab_init())
279 BUG_ON(zero_page
!= NULL
);
280 zero_page
= ZERO_PAGE(0);
284 * The number of active work items is limited by the number of
285 * connections, so leave @max_active at default.
287 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
291 pr_err("msgr_init failed to create workqueue\n");
297 void ceph_msgr_exit(void)
299 BUG_ON(ceph_msgr_wq
== NULL
);
304 void ceph_msgr_flush(void)
306 flush_workqueue(ceph_msgr_wq
);
308 EXPORT_SYMBOL(ceph_msgr_flush
);
310 /* Connection socket state transition functions */
312 static void con_sock_state_init(struct ceph_connection
*con
)
316 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
317 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
318 printk("%s: unexpected old state %d\n", __func__
, old_state
);
319 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
320 CON_SOCK_STATE_CLOSED
);
323 static void con_sock_state_connecting(struct ceph_connection
*con
)
327 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
328 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
329 printk("%s: unexpected old state %d\n", __func__
, old_state
);
330 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
331 CON_SOCK_STATE_CONNECTING
);
334 static void con_sock_state_connected(struct ceph_connection
*con
)
338 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
339 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
340 printk("%s: unexpected old state %d\n", __func__
, old_state
);
341 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
342 CON_SOCK_STATE_CONNECTED
);
345 static void con_sock_state_closing(struct ceph_connection
*con
)
349 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
350 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
351 old_state
!= CON_SOCK_STATE_CONNECTED
&&
352 old_state
!= CON_SOCK_STATE_CLOSING
))
353 printk("%s: unexpected old state %d\n", __func__
, old_state
);
354 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
355 CON_SOCK_STATE_CLOSING
);
358 static void con_sock_state_closed(struct ceph_connection
*con
)
362 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
363 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
364 old_state
!= CON_SOCK_STATE_CLOSING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTING
&&
366 old_state
!= CON_SOCK_STATE_CLOSED
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSED
);
373 * socket callback functions
376 /* data available on socket, or listen socket received a connect */
377 static void ceph_sock_data_ready(struct sock
*sk
)
379 struct ceph_connection
*con
= sk
->sk_user_data
;
380 if (atomic_read(&con
->msgr
->stopping
)) {
384 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
385 dout("%s on %p state = %lu, queueing work\n", __func__
,
391 /* socket has buffer space for writing */
392 static void ceph_sock_write_space(struct sock
*sk
)
394 struct ceph_connection
*con
= sk
->sk_user_data
;
396 /* only queue to workqueue if there is data we want to write,
397 * and there is sufficient space in the socket buffer to accept
398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
399 * doesn't get called again until try_write() fills the socket
400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
401 * and net/core/stream.c:sk_stream_write_space().
403 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
404 if (sk_stream_is_writeable(sk
)) {
405 dout("%s %p queueing write work\n", __func__
, con
);
406 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
410 dout("%s %p nothing to write\n", __func__
, con
);
414 /* socket's state has changed */
415 static void ceph_sock_state_change(struct sock
*sk
)
417 struct ceph_connection
*con
= sk
->sk_user_data
;
419 dout("%s %p state = %lu sk_state = %u\n", __func__
,
420 con
, con
->state
, sk
->sk_state
);
422 switch (sk
->sk_state
) {
424 dout("%s TCP_CLOSE\n", __func__
);
427 dout("%s TCP_CLOSE_WAIT\n", __func__
);
428 con_sock_state_closing(con
);
429 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
432 case TCP_ESTABLISHED
:
433 dout("%s TCP_ESTABLISHED\n", __func__
);
434 con_sock_state_connected(con
);
437 default: /* Everything else is uninteresting */
443 * set up socket callbacks
445 static void set_sock_callbacks(struct socket
*sock
,
446 struct ceph_connection
*con
)
448 struct sock
*sk
= sock
->sk
;
449 sk
->sk_user_data
= con
;
450 sk
->sk_data_ready
= ceph_sock_data_ready
;
451 sk
->sk_write_space
= ceph_sock_write_space
;
452 sk
->sk_state_change
= ceph_sock_state_change
;
461 * initiate connection to a remote socket.
463 static int ceph_tcp_connect(struct ceph_connection
*con
)
465 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
467 unsigned int noio_flag
;
472 /* sock_create_kern() allocates with GFP_KERNEL */
473 noio_flag
= memalloc_noio_save();
474 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
475 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
476 memalloc_noio_restore(noio_flag
);
479 sock
->sk
->sk_allocation
= GFP_NOFS
;
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
485 set_sock_callbacks(sock
, con
);
487 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
489 con_sock_state_connecting(con
);
490 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
492 if (ret
== -EINPROGRESS
) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con
->peer_addr
.in_addr
),
496 } else if (ret
< 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
503 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
506 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
507 (char *)&optval
, sizeof(optval
));
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 * If @buf is NULL, discard up to @len bytes.
520 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
522 struct kvec iov
= {buf
, len
};
523 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
527 msg
.msg_flags
|= MSG_TRUNC
;
529 iov_iter_kvec(&msg
.msg_iter
, READ
| ITER_KVEC
, &iov
, 1, len
);
530 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
536 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
537 int page_offset
, size_t length
)
539 struct bio_vec bvec
= {
541 .bv_offset
= page_offset
,
544 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
547 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
548 iov_iter_bvec(&msg
.msg_iter
, READ
| ITER_BVEC
, &bvec
, 1, length
);
549 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
556 * write something. @more is true if caller will be sending more data
559 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
560 size_t kvlen
, size_t len
, int more
)
562 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
566 msg
.msg_flags
|= MSG_MORE
;
568 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
570 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
576 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
577 int offset
, size_t size
, bool more
)
579 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
582 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
589 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
590 int offset
, size_t size
, bool more
)
592 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
597 * sendpage cannot properly handle pages with page_count == 0,
598 * we need to fall back to sendmsg if that's the case.
600 * Same goes for slab pages: skb_can_coalesce() allows
601 * coalescing neighboring slab objects into a single frag which
602 * triggers one of hardened usercopy checks.
604 if (page_count(page
) >= 1 && !PageSlab(page
))
605 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
608 bvec
.bv_offset
= offset
;
612 msg
.msg_flags
|= MSG_MORE
;
614 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
616 iov_iter_bvec(&msg
.msg_iter
, WRITE
| ITER_BVEC
, &bvec
, 1, size
);
617 ret
= sock_sendmsg(sock
, &msg
);
625 * Shutdown/close the socket for the given connection.
627 static int con_close_socket(struct ceph_connection
*con
)
631 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
633 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
634 sock_release(con
->sock
);
639 * Forcibly clear the SOCK_CLOSED flag. It gets set
640 * independent of the connection mutex, and we could have
641 * received a socket close event before we had the chance to
642 * shut the socket down.
644 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
646 con_sock_state_closed(con
);
651 * Reset a connection. Discard all incoming and outgoing messages
652 * and clear *_seq state.
654 static void ceph_msg_remove(struct ceph_msg
*msg
)
656 list_del_init(&msg
->list_head
);
660 static void ceph_msg_remove_list(struct list_head
*head
)
662 while (!list_empty(head
)) {
663 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
665 ceph_msg_remove(msg
);
669 static void reset_connection(struct ceph_connection
*con
)
671 /* reset connection, out_queue, msg_ and connect_seq */
672 /* discard existing out_queue and msg_seq */
673 dout("reset_connection %p\n", con
);
674 ceph_msg_remove_list(&con
->out_queue
);
675 ceph_msg_remove_list(&con
->out_sent
);
678 BUG_ON(con
->in_msg
->con
!= con
);
679 ceph_msg_put(con
->in_msg
);
683 con
->connect_seq
= 0;
686 BUG_ON(con
->out_msg
->con
!= con
);
687 ceph_msg_put(con
->out_msg
);
691 con
->in_seq_acked
= 0;
697 * mark a peer down. drop any open connections.
699 void ceph_con_close(struct ceph_connection
*con
)
701 mutex_lock(&con
->mutex
);
702 dout("con_close %p peer %s\n", con
,
703 ceph_pr_addr(&con
->peer_addr
.in_addr
));
704 con
->state
= CON_STATE_CLOSED
;
706 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
707 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
708 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
709 con_flag_clear(con
, CON_FLAG_BACKOFF
);
711 reset_connection(con
);
712 con
->peer_global_seq
= 0;
714 con_close_socket(con
);
715 mutex_unlock(&con
->mutex
);
717 EXPORT_SYMBOL(ceph_con_close
);
720 * Reopen a closed connection, with a new peer address.
722 void ceph_con_open(struct ceph_connection
*con
,
723 __u8 entity_type
, __u64 entity_num
,
724 struct ceph_entity_addr
*addr
)
726 mutex_lock(&con
->mutex
);
727 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
729 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
730 con
->state
= CON_STATE_PREOPEN
;
732 con
->peer_name
.type
= (__u8
) entity_type
;
733 con
->peer_name
.num
= cpu_to_le64(entity_num
);
735 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
736 con
->delay
= 0; /* reset backoff memory */
737 mutex_unlock(&con
->mutex
);
740 EXPORT_SYMBOL(ceph_con_open
);
743 * return true if this connection ever successfully opened
745 bool ceph_con_opened(struct ceph_connection
*con
)
747 return con
->connect_seq
> 0;
751 * initialize a new connection.
753 void ceph_con_init(struct ceph_connection
*con
, void *private,
754 const struct ceph_connection_operations
*ops
,
755 struct ceph_messenger
*msgr
)
757 dout("con_init %p\n", con
);
758 memset(con
, 0, sizeof(*con
));
759 con
->private = private;
763 con_sock_state_init(con
);
765 mutex_init(&con
->mutex
);
766 INIT_LIST_HEAD(&con
->out_queue
);
767 INIT_LIST_HEAD(&con
->out_sent
);
768 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
770 con
->state
= CON_STATE_CLOSED
;
772 EXPORT_SYMBOL(ceph_con_init
);
776 * We maintain a global counter to order connection attempts. Get
777 * a unique seq greater than @gt.
779 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
783 spin_lock(&msgr
->global_seq_lock
);
784 if (msgr
->global_seq
< gt
)
785 msgr
->global_seq
= gt
;
786 ret
= ++msgr
->global_seq
;
787 spin_unlock(&msgr
->global_seq_lock
);
791 static void con_out_kvec_reset(struct ceph_connection
*con
)
793 BUG_ON(con
->out_skip
);
795 con
->out_kvec_left
= 0;
796 con
->out_kvec_bytes
= 0;
797 con
->out_kvec_cur
= &con
->out_kvec
[0];
800 static void con_out_kvec_add(struct ceph_connection
*con
,
801 size_t size
, void *data
)
803 int index
= con
->out_kvec_left
;
805 BUG_ON(con
->out_skip
);
806 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
808 con
->out_kvec
[index
].iov_len
= size
;
809 con
->out_kvec
[index
].iov_base
= data
;
810 con
->out_kvec_left
++;
811 con
->out_kvec_bytes
+= size
;
815 * Chop off a kvec from the end. Return residual number of bytes for
816 * that kvec, i.e. how many bytes would have been written if the kvec
819 static int con_out_kvec_skip(struct ceph_connection
*con
)
821 int off
= con
->out_kvec_cur
- con
->out_kvec
;
824 if (con
->out_kvec_bytes
> 0) {
825 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
826 BUG_ON(con
->out_kvec_bytes
< skip
);
827 BUG_ON(!con
->out_kvec_left
);
828 con
->out_kvec_bytes
-= skip
;
829 con
->out_kvec_left
--;
838 * For a bio data item, a piece is whatever remains of the next
839 * entry in the current bio iovec, or the first entry in the next
842 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
845 struct ceph_msg_data
*data
= cursor
->data
;
846 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
848 cursor
->resid
= min_t(size_t, length
, data
->bio_length
);
850 if (cursor
->resid
< it
->iter
.bi_size
)
851 it
->iter
.bi_size
= cursor
->resid
;
853 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
854 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
857 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
861 struct bio_vec bv
= bio_iter_iovec(cursor
->bio_iter
.bio
,
862 cursor
->bio_iter
.iter
);
864 *page_offset
= bv
.bv_offset
;
869 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
872 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
874 BUG_ON(bytes
> cursor
->resid
);
875 BUG_ON(bytes
> bio_iter_len(it
->bio
, it
->iter
));
876 cursor
->resid
-= bytes
;
877 bio_advance_iter(it
->bio
, &it
->iter
, bytes
);
879 if (!cursor
->resid
) {
880 BUG_ON(!cursor
->last_piece
);
881 return false; /* no more data */
884 if (!bytes
|| (it
->iter
.bi_size
&& it
->iter
.bi_bvec_done
))
885 return false; /* more bytes to process in this segment */
887 if (!it
->iter
.bi_size
) {
888 it
->bio
= it
->bio
->bi_next
;
889 it
->iter
= it
->bio
->bi_iter
;
890 if (cursor
->resid
< it
->iter
.bi_size
)
891 it
->iter
.bi_size
= cursor
->resid
;
894 BUG_ON(cursor
->last_piece
);
895 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
896 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
899 #endif /* CONFIG_BLOCK */
901 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor
*cursor
,
904 struct ceph_msg_data
*data
= cursor
->data
;
905 struct bio_vec
*bvecs
= data
->bvec_pos
.bvecs
;
907 cursor
->resid
= min_t(size_t, length
, data
->bvec_pos
.iter
.bi_size
);
908 cursor
->bvec_iter
= data
->bvec_pos
.iter
;
909 cursor
->bvec_iter
.bi_size
= cursor
->resid
;
911 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
913 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
916 static struct page
*ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor
*cursor
,
920 struct bio_vec bv
= bvec_iter_bvec(cursor
->data
->bvec_pos
.bvecs
,
923 *page_offset
= bv
.bv_offset
;
928 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor
*cursor
,
931 struct bio_vec
*bvecs
= cursor
->data
->bvec_pos
.bvecs
;
933 BUG_ON(bytes
> cursor
->resid
);
934 BUG_ON(bytes
> bvec_iter_len(bvecs
, cursor
->bvec_iter
));
935 cursor
->resid
-= bytes
;
936 bvec_iter_advance(bvecs
, &cursor
->bvec_iter
, bytes
);
938 if (!cursor
->resid
) {
939 BUG_ON(!cursor
->last_piece
);
940 return false; /* no more data */
943 if (!bytes
|| cursor
->bvec_iter
.bi_bvec_done
)
944 return false; /* more bytes to process in this segment */
946 BUG_ON(cursor
->last_piece
);
947 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
949 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
954 * For a page array, a piece comes from the first page in the array
955 * that has not already been fully consumed.
957 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
960 struct ceph_msg_data
*data
= cursor
->data
;
963 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
965 BUG_ON(!data
->pages
);
966 BUG_ON(!data
->length
);
968 cursor
->resid
= min(length
, data
->length
);
969 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
970 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
971 cursor
->page_index
= 0;
972 BUG_ON(page_count
> (int)USHRT_MAX
);
973 cursor
->page_count
= (unsigned short)page_count
;
974 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
975 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
979 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
980 size_t *page_offset
, size_t *length
)
982 struct ceph_msg_data
*data
= cursor
->data
;
984 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
986 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
987 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
989 *page_offset
= cursor
->page_offset
;
990 if (cursor
->last_piece
)
991 *length
= cursor
->resid
;
993 *length
= PAGE_SIZE
- *page_offset
;
995 return data
->pages
[cursor
->page_index
];
998 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
1001 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
1003 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
1005 /* Advance the cursor page offset */
1007 cursor
->resid
-= bytes
;
1008 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
1009 if (!bytes
|| cursor
->page_offset
)
1010 return false; /* more bytes to process in the current page */
1013 return false; /* no more data */
1015 /* Move on to the next page; offset is already at 0 */
1017 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
1018 cursor
->page_index
++;
1019 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1025 * For a pagelist, a piece is whatever remains to be consumed in the
1026 * first page in the list, or the front of the next page.
1029 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1032 struct ceph_msg_data
*data
= cursor
->data
;
1033 struct ceph_pagelist
*pagelist
;
1036 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1038 pagelist
= data
->pagelist
;
1042 return; /* pagelist can be assigned but empty */
1044 BUG_ON(list_empty(&pagelist
->head
));
1045 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1047 cursor
->resid
= min(length
, pagelist
->length
);
1048 cursor
->page
= page
;
1050 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1053 static struct page
*
1054 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1055 size_t *page_offset
, size_t *length
)
1057 struct ceph_msg_data
*data
= cursor
->data
;
1058 struct ceph_pagelist
*pagelist
;
1060 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1062 pagelist
= data
->pagelist
;
1065 BUG_ON(!cursor
->page
);
1066 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1068 /* offset of first page in pagelist is always 0 */
1069 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1070 if (cursor
->last_piece
)
1071 *length
= cursor
->resid
;
1073 *length
= PAGE_SIZE
- *page_offset
;
1075 return cursor
->page
;
1078 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1081 struct ceph_msg_data
*data
= cursor
->data
;
1082 struct ceph_pagelist
*pagelist
;
1084 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1086 pagelist
= data
->pagelist
;
1089 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1090 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1092 /* Advance the cursor offset */
1094 cursor
->resid
-= bytes
;
1095 cursor
->offset
+= bytes
;
1096 /* offset of first page in pagelist is always 0 */
1097 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1098 return false; /* more bytes to process in the current page */
1101 return false; /* no more data */
1103 /* Move on to the next page */
1105 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1106 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1107 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1113 * Message data is handled (sent or received) in pieces, where each
1114 * piece resides on a single page. The network layer might not
1115 * consume an entire piece at once. A data item's cursor keeps
1116 * track of which piece is next to process and how much remains to
1117 * be processed in that piece. It also tracks whether the current
1118 * piece is the last one in the data item.
1120 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1122 size_t length
= cursor
->total_resid
;
1124 switch (cursor
->data
->type
) {
1125 case CEPH_MSG_DATA_PAGELIST
:
1126 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1128 case CEPH_MSG_DATA_PAGES
:
1129 ceph_msg_data_pages_cursor_init(cursor
, length
);
1132 case CEPH_MSG_DATA_BIO
:
1133 ceph_msg_data_bio_cursor_init(cursor
, length
);
1135 #endif /* CONFIG_BLOCK */
1136 case CEPH_MSG_DATA_BVECS
:
1137 ceph_msg_data_bvecs_cursor_init(cursor
, length
);
1139 case CEPH_MSG_DATA_NONE
:
1144 cursor
->need_crc
= true;
1147 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1149 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1150 struct ceph_msg_data
*data
;
1153 BUG_ON(length
> msg
->data_length
);
1154 BUG_ON(list_empty(&msg
->data
));
1156 cursor
->data_head
= &msg
->data
;
1157 cursor
->total_resid
= length
;
1158 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1159 cursor
->data
= data
;
1161 __ceph_msg_data_cursor_init(cursor
);
1165 * Return the page containing the next piece to process for a given
1166 * data item, and supply the page offset and length of that piece.
1167 * Indicate whether this is the last piece in this data item.
1169 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1170 size_t *page_offset
, size_t *length
,
1175 switch (cursor
->data
->type
) {
1176 case CEPH_MSG_DATA_PAGELIST
:
1177 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1179 case CEPH_MSG_DATA_PAGES
:
1180 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1183 case CEPH_MSG_DATA_BIO
:
1184 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1186 #endif /* CONFIG_BLOCK */
1187 case CEPH_MSG_DATA_BVECS
:
1188 page
= ceph_msg_data_bvecs_next(cursor
, page_offset
, length
);
1190 case CEPH_MSG_DATA_NONE
:
1197 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1199 BUG_ON(*length
> cursor
->resid
);
1201 *last_piece
= cursor
->last_piece
;
1207 * Returns true if the result moves the cursor on to the next piece
1210 static void ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1215 BUG_ON(bytes
> cursor
->resid
);
1216 switch (cursor
->data
->type
) {
1217 case CEPH_MSG_DATA_PAGELIST
:
1218 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1220 case CEPH_MSG_DATA_PAGES
:
1221 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1224 case CEPH_MSG_DATA_BIO
:
1225 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1227 #endif /* CONFIG_BLOCK */
1228 case CEPH_MSG_DATA_BVECS
:
1229 new_piece
= ceph_msg_data_bvecs_advance(cursor
, bytes
);
1231 case CEPH_MSG_DATA_NONE
:
1236 cursor
->total_resid
-= bytes
;
1238 if (!cursor
->resid
&& cursor
->total_resid
) {
1239 WARN_ON(!cursor
->last_piece
);
1240 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1241 cursor
->data
= list_next_entry(cursor
->data
, links
);
1242 __ceph_msg_data_cursor_init(cursor
);
1245 cursor
->need_crc
= new_piece
;
1248 static size_t sizeof_footer(struct ceph_connection
*con
)
1250 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1251 sizeof(struct ceph_msg_footer
) :
1252 sizeof(struct ceph_msg_footer_old
);
1255 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1260 /* Initialize data cursor */
1262 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1266 * Prepare footer for currently outgoing message, and finish things
1267 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1269 static void prepare_write_message_footer(struct ceph_connection
*con
)
1271 struct ceph_msg
*m
= con
->out_msg
;
1273 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1275 dout("prepare_write_message_footer %p\n", con
);
1276 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1277 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1278 if (con
->ops
->sign_message
)
1279 con
->ops
->sign_message(m
);
1283 m
->old_footer
.flags
= m
->footer
.flags
;
1285 con
->out_more
= m
->more_to_follow
;
1286 con
->out_msg_done
= true;
1290 * Prepare headers for the next outgoing message.
1292 static void prepare_write_message(struct ceph_connection
*con
)
1297 con_out_kvec_reset(con
);
1298 con
->out_msg_done
= false;
1300 /* Sneak an ack in there first? If we can get it into the same
1301 * TCP packet that's a good thing. */
1302 if (con
->in_seq
> con
->in_seq_acked
) {
1303 con
->in_seq_acked
= con
->in_seq
;
1304 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1305 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1306 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1307 &con
->out_temp_ack
);
1310 BUG_ON(list_empty(&con
->out_queue
));
1311 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1313 BUG_ON(m
->con
!= con
);
1315 /* put message on sent list */
1317 list_move_tail(&m
->list_head
, &con
->out_sent
);
1320 * only assign outgoing seq # if we haven't sent this message
1321 * yet. if it is requeued, resend with it's original seq.
1323 if (m
->needs_out_seq
) {
1324 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1325 m
->needs_out_seq
= false;
1327 if (con
->ops
->reencode_message
)
1328 con
->ops
->reencode_message(m
);
1331 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1332 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1333 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1335 WARN_ON(m
->front
.iov_len
!= le32_to_cpu(m
->hdr
.front_len
));
1336 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1338 /* tag + hdr + front + middle */
1339 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1340 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1341 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1344 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1345 m
->middle
->vec
.iov_base
);
1347 /* fill in hdr crc and finalize hdr */
1348 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1349 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1350 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1352 /* fill in front and middle crc, footer */
1353 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1354 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1356 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1357 m
->middle
->vec
.iov_len
);
1358 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1360 con
->out_msg
->footer
.middle_crc
= 0;
1361 dout("%s front_crc %u middle_crc %u\n", __func__
,
1362 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1363 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1364 con
->out_msg
->footer
.flags
= 0;
1366 /* is there a data payload? */
1367 con
->out_msg
->footer
.data_crc
= 0;
1368 if (m
->data_length
) {
1369 prepare_message_data(con
->out_msg
, m
->data_length
);
1370 con
->out_more
= 1; /* data + footer will follow */
1372 /* no, queue up footer too and be done */
1373 prepare_write_message_footer(con
);
1376 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1382 static void prepare_write_ack(struct ceph_connection
*con
)
1384 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1385 con
->in_seq_acked
, con
->in_seq
);
1386 con
->in_seq_acked
= con
->in_seq
;
1388 con_out_kvec_reset(con
);
1390 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1392 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1393 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1394 &con
->out_temp_ack
);
1396 con
->out_more
= 1; /* more will follow.. eventually.. */
1397 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1401 * Prepare to share the seq during handshake
1403 static void prepare_write_seq(struct ceph_connection
*con
)
1405 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1406 con
->in_seq_acked
, con
->in_seq
);
1407 con
->in_seq_acked
= con
->in_seq
;
1409 con_out_kvec_reset(con
);
1411 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1412 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1413 &con
->out_temp_ack
);
1415 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1419 * Prepare to write keepalive byte.
1421 static void prepare_write_keepalive(struct ceph_connection
*con
)
1423 dout("prepare_write_keepalive %p\n", con
);
1424 con_out_kvec_reset(con
);
1425 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1426 struct timespec64 now
;
1428 ktime_get_real_ts64(&now
);
1429 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1430 ceph_encode_timespec64(&con
->out_temp_keepalive2
, &now
);
1431 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1432 &con
->out_temp_keepalive2
);
1434 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1436 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1440 * Connection negotiation.
1443 static int get_connect_authorizer(struct ceph_connection
*con
)
1445 struct ceph_auth_handshake
*auth
;
1448 if (!con
->ops
->get_authorizer
) {
1450 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1451 con
->out_connect
.authorizer_len
= 0;
1455 auth
= con
->ops
->get_authorizer(con
, &auth_proto
, con
->auth_retry
);
1457 return PTR_ERR(auth
);
1460 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1461 con
->out_connect
.authorizer_len
= cpu_to_le32(auth
->authorizer_buf_len
);
1466 * We connected to a peer and are saying hello.
1468 static void prepare_write_banner(struct ceph_connection
*con
)
1470 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1471 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1472 &con
->msgr
->my_enc_addr
);
1475 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1478 static void __prepare_write_connect(struct ceph_connection
*con
)
1480 con_out_kvec_add(con
, sizeof(con
->out_connect
), &con
->out_connect
);
1482 con_out_kvec_add(con
, con
->auth
->authorizer_buf_len
,
1483 con
->auth
->authorizer_buf
);
1486 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1489 static int prepare_write_connect(struct ceph_connection
*con
)
1491 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1495 switch (con
->peer_name
.type
) {
1496 case CEPH_ENTITY_TYPE_MON
:
1497 proto
= CEPH_MONC_PROTOCOL
;
1499 case CEPH_ENTITY_TYPE_OSD
:
1500 proto
= CEPH_OSDC_PROTOCOL
;
1502 case CEPH_ENTITY_TYPE_MDS
:
1503 proto
= CEPH_MDSC_PROTOCOL
;
1509 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1510 con
->connect_seq
, global_seq
, proto
);
1512 con
->out_connect
.features
=
1513 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1514 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1515 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1516 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1517 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1518 con
->out_connect
.flags
= 0;
1520 ret
= get_connect_authorizer(con
);
1524 __prepare_write_connect(con
);
1529 * write as much of pending kvecs to the socket as we can.
1531 * 0 -> socket full, but more to do
1534 static int write_partial_kvec(struct ceph_connection
*con
)
1538 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1539 while (con
->out_kvec_bytes
> 0) {
1540 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1541 con
->out_kvec_left
, con
->out_kvec_bytes
,
1545 con
->out_kvec_bytes
-= ret
;
1546 if (con
->out_kvec_bytes
== 0)
1549 /* account for full iov entries consumed */
1550 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1551 BUG_ON(!con
->out_kvec_left
);
1552 ret
-= con
->out_kvec_cur
->iov_len
;
1553 con
->out_kvec_cur
++;
1554 con
->out_kvec_left
--;
1556 /* and for a partially-consumed entry */
1558 con
->out_kvec_cur
->iov_len
-= ret
;
1559 con
->out_kvec_cur
->iov_base
+= ret
;
1562 con
->out_kvec_left
= 0;
1565 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1566 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1567 return ret
; /* done! */
1570 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1571 unsigned int page_offset
,
1572 unsigned int length
)
1577 BUG_ON(kaddr
== NULL
);
1578 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1584 * Write as much message data payload as we can. If we finish, queue
1586 * 1 -> done, footer is now queued in out_kvec[].
1587 * 0 -> socket full, but more to do
1590 static int write_partial_message_data(struct ceph_connection
*con
)
1592 struct ceph_msg
*msg
= con
->out_msg
;
1593 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1594 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1597 dout("%s %p msg %p\n", __func__
, con
, msg
);
1599 if (list_empty(&msg
->data
))
1603 * Iterate through each page that contains data to be
1604 * written, and send as much as possible for each.
1606 * If we are calculating the data crc (the default), we will
1607 * need to map the page. If we have no pages, they have
1608 * been revoked, so use the zero page.
1610 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1611 while (cursor
->total_resid
) {
1618 if (!cursor
->resid
) {
1619 ceph_msg_data_advance(cursor
, 0);
1623 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1625 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1626 length
, !last_piece
);
1629 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1633 if (do_datacrc
&& cursor
->need_crc
)
1634 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1635 ceph_msg_data_advance(cursor
, (size_t)ret
);
1638 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1640 /* prepare and queue up footer, too */
1642 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1644 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1645 con_out_kvec_reset(con
);
1646 prepare_write_message_footer(con
);
1648 return 1; /* must return > 0 to indicate success */
1654 static int write_partial_skip(struct ceph_connection
*con
)
1658 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1659 while (con
->out_skip
> 0) {
1660 size_t size
= min(con
->out_skip
, (int) PAGE_SIZE
);
1662 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1665 con
->out_skip
-= ret
;
1673 * Prepare to read connection handshake, or an ack.
1675 static void prepare_read_banner(struct ceph_connection
*con
)
1677 dout("prepare_read_banner %p\n", con
);
1678 con
->in_base_pos
= 0;
1681 static void prepare_read_connect(struct ceph_connection
*con
)
1683 dout("prepare_read_connect %p\n", con
);
1684 con
->in_base_pos
= 0;
1687 static void prepare_read_ack(struct ceph_connection
*con
)
1689 dout("prepare_read_ack %p\n", con
);
1690 con
->in_base_pos
= 0;
1693 static void prepare_read_seq(struct ceph_connection
*con
)
1695 dout("prepare_read_seq %p\n", con
);
1696 con
->in_base_pos
= 0;
1697 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1700 static void prepare_read_tag(struct ceph_connection
*con
)
1702 dout("prepare_read_tag %p\n", con
);
1703 con
->in_base_pos
= 0;
1704 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1707 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1709 dout("prepare_read_keepalive_ack %p\n", con
);
1710 con
->in_base_pos
= 0;
1714 * Prepare to read a message.
1716 static int prepare_read_message(struct ceph_connection
*con
)
1718 dout("prepare_read_message %p\n", con
);
1719 BUG_ON(con
->in_msg
!= NULL
);
1720 con
->in_base_pos
= 0;
1721 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1726 static int read_partial(struct ceph_connection
*con
,
1727 int end
, int size
, void *object
)
1729 while (con
->in_base_pos
< end
) {
1730 int left
= end
- con
->in_base_pos
;
1731 int have
= size
- left
;
1732 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1735 con
->in_base_pos
+= ret
;
1742 * Read all or part of the connect-side handshake on a new connection
1744 static int read_partial_banner(struct ceph_connection
*con
)
1750 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1753 size
= strlen(CEPH_BANNER
);
1755 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1759 size
= sizeof (con
->actual_peer_addr
);
1761 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1765 size
= sizeof (con
->peer_addr_for_me
);
1767 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1775 static int read_partial_connect(struct ceph_connection
*con
)
1781 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1783 size
= sizeof (con
->in_reply
);
1785 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1790 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1791 if (size
> con
->auth
->authorizer_reply_buf_len
) {
1792 pr_err("authorizer reply too big: %d > %zu\n", size
,
1793 con
->auth
->authorizer_reply_buf_len
);
1799 ret
= read_partial(con
, end
, size
,
1800 con
->auth
->authorizer_reply_buf
);
1805 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1806 con
, (int)con
->in_reply
.tag
,
1807 le32_to_cpu(con
->in_reply
.connect_seq
),
1808 le32_to_cpu(con
->in_reply
.global_seq
));
1814 * Verify the hello banner looks okay.
1816 static int verify_hello(struct ceph_connection
*con
)
1818 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1819 pr_err("connect to %s got bad banner\n",
1820 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1821 con
->error_msg
= "protocol error, bad banner";
1827 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1829 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1830 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1832 switch (ss
->ss_family
) {
1834 return addr
->s_addr
== htonl(INADDR_ANY
);
1836 return ipv6_addr_any(addr6
);
1842 static int addr_port(struct sockaddr_storage
*ss
)
1844 switch (ss
->ss_family
) {
1846 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1848 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1853 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1855 switch (ss
->ss_family
) {
1857 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1860 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1866 * Unlike other *_pton function semantics, zero indicates success.
1868 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1869 char delim
, const char **ipend
)
1871 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1872 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1874 memset(ss
, 0, sizeof(*ss
));
1876 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1877 ss
->ss_family
= AF_INET
;
1881 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1882 ss
->ss_family
= AF_INET6
;
1890 * Extract hostname string and resolve using kernel DNS facility.
1892 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1893 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1894 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1896 const char *end
, *delim_p
;
1897 char *colon_p
, *ip_addr
= NULL
;
1901 * The end of the hostname occurs immediately preceding the delimiter or
1902 * the port marker (':') where the delimiter takes precedence.
1904 delim_p
= memchr(name
, delim
, namelen
);
1905 colon_p
= memchr(name
, ':', namelen
);
1907 if (delim_p
&& colon_p
)
1908 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1909 else if (!delim_p
&& colon_p
)
1913 if (!end
) /* case: hostname:/ */
1914 end
= name
+ namelen
;
1920 /* do dns_resolve upcall */
1921 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1923 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1931 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1932 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1937 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1938 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1945 * Parse a server name (IP or hostname). If a valid IP address is not found
1946 * then try to extract a hostname to resolve using userspace DNS upcall.
1948 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1949 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1953 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1955 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1961 * Parse an ip[:port] list into an addr array. Use the default
1962 * monitor port if a port isn't specified.
1964 int ceph_parse_ips(const char *c
, const char *end
,
1965 struct ceph_entity_addr
*addr
,
1966 int max_count
, int *count
)
1968 int i
, ret
= -EINVAL
;
1971 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1972 for (i
= 0; i
< max_count
; i
++) {
1974 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1983 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1992 dout("missing matching ']'\n");
1999 if (p
< end
&& *p
== ':') {
2002 while (p
< end
&& *p
>= '0' && *p
<= '9') {
2003 port
= (port
* 10) + (*p
- '0');
2007 port
= CEPH_MON_PORT
;
2008 else if (port
> 65535)
2011 port
= CEPH_MON_PORT
;
2014 addr_set_port(ss
, port
);
2016 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
2033 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
2036 EXPORT_SYMBOL(ceph_parse_ips
);
2038 static int process_banner(struct ceph_connection
*con
)
2040 dout("process_banner on %p\n", con
);
2042 if (verify_hello(con
) < 0)
2045 ceph_decode_addr(&con
->actual_peer_addr
);
2046 ceph_decode_addr(&con
->peer_addr_for_me
);
2049 * Make sure the other end is who we wanted. note that the other
2050 * end may not yet know their ip address, so if it's 0.0.0.0, give
2051 * them the benefit of the doubt.
2053 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
2054 sizeof(con
->peer_addr
)) != 0 &&
2055 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
2056 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
2057 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2058 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2059 (int)le32_to_cpu(con
->peer_addr
.nonce
),
2060 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
2061 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
2062 con
->error_msg
= "wrong peer at address";
2067 * did we learn our address?
2069 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2070 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2072 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2073 &con
->peer_addr_for_me
.in_addr
,
2074 sizeof(con
->peer_addr_for_me
.in_addr
));
2075 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2076 encode_my_addr(con
->msgr
);
2077 dout("process_banner learned my addr is %s\n",
2078 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2084 static int process_connect(struct ceph_connection
*con
)
2086 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2087 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2088 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
2091 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2094 int len
= le32_to_cpu(con
->in_reply
.authorizer_len
);
2097 * Any connection that defines ->get_authorizer()
2098 * should also define ->add_authorizer_challenge() and
2099 * ->verify_authorizer_reply().
2101 * See get_connect_authorizer().
2103 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER
) {
2104 ret
= con
->ops
->add_authorizer_challenge(
2105 con
, con
->auth
->authorizer_reply_buf
, len
);
2109 con_out_kvec_reset(con
);
2110 __prepare_write_connect(con
);
2111 prepare_read_connect(con
);
2116 ret
= con
->ops
->verify_authorizer_reply(con
);
2118 con
->error_msg
= "bad authorize reply";
2124 switch (con
->in_reply
.tag
) {
2125 case CEPH_MSGR_TAG_FEATURES
:
2126 pr_err("%s%lld %s feature set mismatch,"
2127 " my %llx < server's %llx, missing %llx\n",
2128 ENTITY_NAME(con
->peer_name
),
2129 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2130 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2131 con
->error_msg
= "missing required protocol features";
2132 reset_connection(con
);
2135 case CEPH_MSGR_TAG_BADPROTOVER
:
2136 pr_err("%s%lld %s protocol version mismatch,"
2137 " my %d != server's %d\n",
2138 ENTITY_NAME(con
->peer_name
),
2139 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2140 le32_to_cpu(con
->out_connect
.protocol_version
),
2141 le32_to_cpu(con
->in_reply
.protocol_version
));
2142 con
->error_msg
= "protocol version mismatch";
2143 reset_connection(con
);
2146 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2148 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2150 if (con
->auth_retry
== 2) {
2151 con
->error_msg
= "connect authorization failure";
2154 con_out_kvec_reset(con
);
2155 ret
= prepare_write_connect(con
);
2158 prepare_read_connect(con
);
2161 case CEPH_MSGR_TAG_RESETSESSION
:
2163 * If we connected with a large connect_seq but the peer
2164 * has no record of a session with us (no connection, or
2165 * connect_seq == 0), they will send RESETSESION to indicate
2166 * that they must have reset their session, and may have
2169 dout("process_connect got RESET peer seq %u\n",
2170 le32_to_cpu(con
->in_reply
.connect_seq
));
2171 pr_err("%s%lld %s connection reset\n",
2172 ENTITY_NAME(con
->peer_name
),
2173 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2174 reset_connection(con
);
2175 con_out_kvec_reset(con
);
2176 ret
= prepare_write_connect(con
);
2179 prepare_read_connect(con
);
2181 /* Tell ceph about it. */
2182 mutex_unlock(&con
->mutex
);
2183 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2184 if (con
->ops
->peer_reset
)
2185 con
->ops
->peer_reset(con
);
2186 mutex_lock(&con
->mutex
);
2187 if (con
->state
!= CON_STATE_NEGOTIATING
)
2191 case CEPH_MSGR_TAG_RETRY_SESSION
:
2193 * If we sent a smaller connect_seq than the peer has, try
2194 * again with a larger value.
2196 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2197 le32_to_cpu(con
->out_connect
.connect_seq
),
2198 le32_to_cpu(con
->in_reply
.connect_seq
));
2199 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2200 con_out_kvec_reset(con
);
2201 ret
= prepare_write_connect(con
);
2204 prepare_read_connect(con
);
2207 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2209 * If we sent a smaller global_seq than the peer has, try
2210 * again with a larger value.
2212 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2213 con
->peer_global_seq
,
2214 le32_to_cpu(con
->in_reply
.global_seq
));
2215 get_global_seq(con
->msgr
,
2216 le32_to_cpu(con
->in_reply
.global_seq
));
2217 con_out_kvec_reset(con
);
2218 ret
= prepare_write_connect(con
);
2221 prepare_read_connect(con
);
2224 case CEPH_MSGR_TAG_SEQ
:
2225 case CEPH_MSGR_TAG_READY
:
2226 if (req_feat
& ~server_feat
) {
2227 pr_err("%s%lld %s protocol feature mismatch,"
2228 " my required %llx > server's %llx, need %llx\n",
2229 ENTITY_NAME(con
->peer_name
),
2230 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2231 req_feat
, server_feat
, req_feat
& ~server_feat
);
2232 con
->error_msg
= "missing required protocol features";
2233 reset_connection(con
);
2237 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2238 con
->state
= CON_STATE_OPEN
;
2239 con
->auth_retry
= 0; /* we authenticated; clear flag */
2240 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2242 con
->peer_features
= server_feat
;
2243 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2244 con
->peer_global_seq
,
2245 le32_to_cpu(con
->in_reply
.connect_seq
),
2247 WARN_ON(con
->connect_seq
!=
2248 le32_to_cpu(con
->in_reply
.connect_seq
));
2250 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2251 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2253 con
->delay
= 0; /* reset backoff memory */
2255 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2256 prepare_write_seq(con
);
2257 prepare_read_seq(con
);
2259 prepare_read_tag(con
);
2263 case CEPH_MSGR_TAG_WAIT
:
2265 * If there is a connection race (we are opening
2266 * connections to each other), one of us may just have
2267 * to WAIT. This shouldn't happen if we are the
2270 con
->error_msg
= "protocol error, got WAIT as client";
2274 con
->error_msg
= "protocol error, garbage tag during connect";
2282 * read (part of) an ack
2284 static int read_partial_ack(struct ceph_connection
*con
)
2286 int size
= sizeof (con
->in_temp_ack
);
2289 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2293 * We can finally discard anything that's been acked.
2295 static void process_ack(struct ceph_connection
*con
)
2298 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2300 bool reconnect
= (con
->in_tag
== CEPH_MSGR_TAG_SEQ
);
2301 struct list_head
*list
= reconnect
? &con
->out_queue
: &con
->out_sent
;
2304 * In the reconnect case, con_fault() has requeued messages
2305 * in out_sent. We should cleanup old messages according to
2306 * the reconnect seq.
2308 while (!list_empty(list
)) {
2309 m
= list_first_entry(list
, struct ceph_msg
, list_head
);
2310 if (reconnect
&& m
->needs_out_seq
)
2312 seq
= le64_to_cpu(m
->hdr
.seq
);
2315 dout("got ack for seq %llu type %d at %p\n", seq
,
2316 le16_to_cpu(m
->hdr
.type
), m
);
2317 m
->ack_stamp
= jiffies
;
2321 prepare_read_tag(con
);
2325 static int read_partial_message_section(struct ceph_connection
*con
,
2326 struct kvec
*section
,
2327 unsigned int sec_len
, u32
*crc
)
2333 while (section
->iov_len
< sec_len
) {
2334 BUG_ON(section
->iov_base
== NULL
);
2335 left
= sec_len
- section
->iov_len
;
2336 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2337 section
->iov_len
, left
);
2340 section
->iov_len
+= ret
;
2342 if (section
->iov_len
== sec_len
)
2343 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2348 static int read_partial_msg_data(struct ceph_connection
*con
)
2350 struct ceph_msg
*msg
= con
->in_msg
;
2351 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2352 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2360 if (list_empty(&msg
->data
))
2364 crc
= con
->in_data_crc
;
2365 while (cursor
->total_resid
) {
2366 if (!cursor
->resid
) {
2367 ceph_msg_data_advance(cursor
, 0);
2371 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2372 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2375 con
->in_data_crc
= crc
;
2381 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2382 ceph_msg_data_advance(cursor
, (size_t)ret
);
2385 con
->in_data_crc
= crc
;
2387 return 1; /* must return > 0 to indicate success */
2391 * read (part of) a message.
2393 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2395 static int read_partial_message(struct ceph_connection
*con
)
2397 struct ceph_msg
*m
= con
->in_msg
;
2401 unsigned int front_len
, middle_len
, data_len
;
2402 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2403 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2407 dout("read_partial_message con %p msg %p\n", con
, m
);
2410 size
= sizeof (con
->in_hdr
);
2412 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2416 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2417 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2418 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2419 crc
, con
->in_hdr
.crc
);
2423 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2424 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2426 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2427 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2429 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2430 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2434 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2435 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2436 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2437 ENTITY_NAME(con
->peer_name
),
2438 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2439 seq
, con
->in_seq
+ 1);
2440 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2442 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2444 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2445 pr_err("read_partial_message bad seq %lld expected %lld\n",
2446 seq
, con
->in_seq
+ 1);
2447 con
->error_msg
= "bad message sequence # for incoming message";
2451 /* allocate message? */
2455 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2456 front_len
, data_len
);
2457 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2461 BUG_ON(!con
->in_msg
^ skip
);
2463 /* skip this message */
2464 dout("alloc_msg said skip message\n");
2465 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2467 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2472 BUG_ON(!con
->in_msg
);
2473 BUG_ON(con
->in_msg
->con
!= con
);
2475 m
->front
.iov_len
= 0; /* haven't read it yet */
2477 m
->middle
->vec
.iov_len
= 0;
2479 /* prepare for data payload, if any */
2482 prepare_message_data(con
->in_msg
, data_len
);
2486 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2487 &con
->in_front_crc
);
2493 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2495 &con
->in_middle_crc
);
2502 ret
= read_partial_msg_data(con
);
2508 size
= sizeof_footer(con
);
2510 ret
= read_partial(con
, end
, size
, &m
->footer
);
2515 m
->footer
.flags
= m
->old_footer
.flags
;
2519 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2520 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2521 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2524 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2525 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2526 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2529 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2530 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2531 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2535 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2536 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2537 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2538 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2542 if (need_sign
&& con
->ops
->check_message_signature
&&
2543 con
->ops
->check_message_signature(m
)) {
2544 pr_err("read_partial_message %p signature check failed\n", m
);
2548 return 1; /* done! */
2552 * Process message. This happens in the worker thread. The callback should
2553 * be careful not to do anything that waits on other incoming messages or it
2556 static void process_message(struct ceph_connection
*con
)
2558 struct ceph_msg
*msg
= con
->in_msg
;
2560 BUG_ON(con
->in_msg
->con
!= con
);
2563 /* if first message, set peer_name */
2564 if (con
->peer_name
.type
== 0)
2565 con
->peer_name
= msg
->hdr
.src
;
2568 mutex_unlock(&con
->mutex
);
2570 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2571 msg
, le64_to_cpu(msg
->hdr
.seq
),
2572 ENTITY_NAME(msg
->hdr
.src
),
2573 le16_to_cpu(msg
->hdr
.type
),
2574 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2575 le32_to_cpu(msg
->hdr
.front_len
),
2576 le32_to_cpu(msg
->hdr
.data_len
),
2577 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2578 con
->ops
->dispatch(con
, msg
);
2580 mutex_lock(&con
->mutex
);
2583 static int read_keepalive_ack(struct ceph_connection
*con
)
2585 struct ceph_timespec ceph_ts
;
2586 size_t size
= sizeof(ceph_ts
);
2587 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2590 ceph_decode_timespec64(&con
->last_keepalive_ack
, &ceph_ts
);
2591 prepare_read_tag(con
);
2596 * Write something to the socket. Called in a worker thread when the
2597 * socket appears to be writeable and we have something ready to send.
2599 static int try_write(struct ceph_connection
*con
)
2603 dout("try_write start %p state %lu\n", con
, con
->state
);
2604 if (con
->state
!= CON_STATE_PREOPEN
&&
2605 con
->state
!= CON_STATE_CONNECTING
&&
2606 con
->state
!= CON_STATE_NEGOTIATING
&&
2607 con
->state
!= CON_STATE_OPEN
)
2610 /* open the socket first? */
2611 if (con
->state
== CON_STATE_PREOPEN
) {
2613 con
->state
= CON_STATE_CONNECTING
;
2615 con_out_kvec_reset(con
);
2616 prepare_write_banner(con
);
2617 prepare_read_banner(con
);
2619 BUG_ON(con
->in_msg
);
2620 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2621 dout("try_write initiating connect on %p new state %lu\n",
2623 ret
= ceph_tcp_connect(con
);
2625 con
->error_msg
= "connect error";
2631 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2634 /* kvec data queued? */
2635 if (con
->out_kvec_left
) {
2636 ret
= write_partial_kvec(con
);
2640 if (con
->out_skip
) {
2641 ret
= write_partial_skip(con
);
2648 if (con
->out_msg_done
) {
2649 ceph_msg_put(con
->out_msg
);
2650 con
->out_msg
= NULL
; /* we're done with this one */
2654 ret
= write_partial_message_data(con
);
2656 goto more
; /* we need to send the footer, too! */
2660 dout("try_write write_partial_message_data err %d\n",
2667 if (con
->state
== CON_STATE_OPEN
) {
2668 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2669 prepare_write_keepalive(con
);
2672 /* is anything else pending? */
2673 if (!list_empty(&con
->out_queue
)) {
2674 prepare_write_message(con
);
2677 if (con
->in_seq
> con
->in_seq_acked
) {
2678 prepare_write_ack(con
);
2683 /* Nothing to do! */
2684 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2685 dout("try_write nothing else to write.\n");
2688 dout("try_write done on %p ret %d\n", con
, ret
);
2693 * Read what we can from the socket.
2695 static int try_read(struct ceph_connection
*con
)
2700 dout("try_read start on %p state %lu\n", con
, con
->state
);
2701 if (con
->state
!= CON_STATE_CONNECTING
&&
2702 con
->state
!= CON_STATE_NEGOTIATING
&&
2703 con
->state
!= CON_STATE_OPEN
)
2708 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2711 if (con
->state
== CON_STATE_CONNECTING
) {
2712 dout("try_read connecting\n");
2713 ret
= read_partial_banner(con
);
2716 ret
= process_banner(con
);
2720 con
->state
= CON_STATE_NEGOTIATING
;
2723 * Received banner is good, exchange connection info.
2724 * Do not reset out_kvec, as sending our banner raced
2725 * with receiving peer banner after connect completed.
2727 ret
= prepare_write_connect(con
);
2730 prepare_read_connect(con
);
2732 /* Send connection info before awaiting response */
2736 if (con
->state
== CON_STATE_NEGOTIATING
) {
2737 dout("try_read negotiating\n");
2738 ret
= read_partial_connect(con
);
2741 ret
= process_connect(con
);
2747 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2749 if (con
->in_base_pos
< 0) {
2751 * skipping + discarding content.
2753 ret
= ceph_tcp_recvmsg(con
->sock
, NULL
, -con
->in_base_pos
);
2756 dout("skipped %d / %d bytes\n", ret
, -con
->in_base_pos
);
2757 con
->in_base_pos
+= ret
;
2758 if (con
->in_base_pos
)
2761 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2765 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2768 dout("try_read got tag %d\n", (int)con
->in_tag
);
2769 switch (con
->in_tag
) {
2770 case CEPH_MSGR_TAG_MSG
:
2771 prepare_read_message(con
);
2773 case CEPH_MSGR_TAG_ACK
:
2774 prepare_read_ack(con
);
2776 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2777 prepare_read_keepalive_ack(con
);
2779 case CEPH_MSGR_TAG_CLOSE
:
2780 con_close_socket(con
);
2781 con
->state
= CON_STATE_CLOSED
;
2787 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2788 ret
= read_partial_message(con
);
2792 con
->error_msg
= "bad crc/signature";
2798 con
->error_msg
= "io error";
2803 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2805 process_message(con
);
2806 if (con
->state
== CON_STATE_OPEN
)
2807 prepare_read_tag(con
);
2810 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2811 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2813 * the final handshake seq exchange is semantically
2814 * equivalent to an ACK
2816 ret
= read_partial_ack(con
);
2822 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2823 ret
= read_keepalive_ack(con
);
2830 dout("try_read done on %p ret %d\n", con
, ret
);
2834 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2835 con
->error_msg
= "protocol error, garbage tag";
2842 * Atomically queue work on a connection after the specified delay.
2843 * Bump @con reference to avoid races with connection teardown.
2844 * Returns 0 if work was queued, or an error code otherwise.
2846 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2848 if (!con
->ops
->get(con
)) {
2849 dout("%s %p ref count 0\n", __func__
, con
);
2853 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2854 dout("%s %p - already queued\n", __func__
, con
);
2859 dout("%s %p %lu\n", __func__
, con
, delay
);
2863 static void queue_con(struct ceph_connection
*con
)
2865 (void) queue_con_delay(con
, 0);
2868 static void cancel_con(struct ceph_connection
*con
)
2870 if (cancel_delayed_work(&con
->work
)) {
2871 dout("%s %p\n", __func__
, con
);
2876 static bool con_sock_closed(struct ceph_connection
*con
)
2878 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2882 case CON_STATE_ ## x: \
2883 con->error_msg = "socket closed (con state " #x ")"; \
2886 switch (con
->state
) {
2894 pr_warn("%s con %p unrecognized state %lu\n",
2895 __func__
, con
, con
->state
);
2896 con
->error_msg
= "unrecognized con state";
2905 static bool con_backoff(struct ceph_connection
*con
)
2909 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2912 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2914 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2916 BUG_ON(ret
== -ENOENT
);
2917 con_flag_set(con
, CON_FLAG_BACKOFF
);
2923 /* Finish fault handling; con->mutex must *not* be held here */
2925 static void con_fault_finish(struct ceph_connection
*con
)
2927 dout("%s %p\n", __func__
, con
);
2930 * in case we faulted due to authentication, invalidate our
2931 * current tickets so that we can get new ones.
2933 if (con
->auth_retry
) {
2934 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2935 if (con
->ops
->invalidate_authorizer
)
2936 con
->ops
->invalidate_authorizer(con
);
2937 con
->auth_retry
= 0;
2940 if (con
->ops
->fault
)
2941 con
->ops
->fault(con
);
2945 * Do some work on a connection. Drop a connection ref when we're done.
2947 static void ceph_con_workfn(struct work_struct
*work
)
2949 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2953 mutex_lock(&con
->mutex
);
2957 if ((fault
= con_sock_closed(con
))) {
2958 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2961 if (con_backoff(con
)) {
2962 dout("%s: con %p BACKOFF\n", __func__
, con
);
2965 if (con
->state
== CON_STATE_STANDBY
) {
2966 dout("%s: con %p STANDBY\n", __func__
, con
);
2969 if (con
->state
== CON_STATE_CLOSED
) {
2970 dout("%s: con %p CLOSED\n", __func__
, con
);
2974 if (con
->state
== CON_STATE_PREOPEN
) {
2975 dout("%s: con %p PREOPEN\n", __func__
, con
);
2979 ret
= try_read(con
);
2983 if (!con
->error_msg
)
2984 con
->error_msg
= "socket error on read";
2989 ret
= try_write(con
);
2993 if (!con
->error_msg
)
2994 con
->error_msg
= "socket error on write";
2998 break; /* If we make it to here, we're done */
3002 mutex_unlock(&con
->mutex
);
3005 con_fault_finish(con
);
3011 * Generic error/fault handler. A retry mechanism is used with
3012 * exponential backoff
3014 static void con_fault(struct ceph_connection
*con
)
3016 dout("fault %p state %lu to peer %s\n",
3017 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
3019 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
3020 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
3021 con
->error_msg
= NULL
;
3023 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
3024 con
->state
!= CON_STATE_NEGOTIATING
&&
3025 con
->state
!= CON_STATE_OPEN
);
3027 con_close_socket(con
);
3029 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
3030 dout("fault on LOSSYTX channel, marking CLOSED\n");
3031 con
->state
= CON_STATE_CLOSED
;
3036 BUG_ON(con
->in_msg
->con
!= con
);
3037 ceph_msg_put(con
->in_msg
);
3041 /* Requeue anything that hasn't been acked */
3042 list_splice_init(&con
->out_sent
, &con
->out_queue
);
3044 /* If there are no messages queued or keepalive pending, place
3045 * the connection in a STANDBY state */
3046 if (list_empty(&con
->out_queue
) &&
3047 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
3048 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
3049 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
3050 con
->state
= CON_STATE_STANDBY
;
3052 /* retry after a delay. */
3053 con
->state
= CON_STATE_PREOPEN
;
3054 if (con
->delay
== 0)
3055 con
->delay
= BASE_DELAY_INTERVAL
;
3056 else if (con
->delay
< MAX_DELAY_INTERVAL
)
3058 con_flag_set(con
, CON_FLAG_BACKOFF
);
3066 * initialize a new messenger instance
3068 void ceph_messenger_init(struct ceph_messenger
*msgr
,
3069 struct ceph_entity_addr
*myaddr
)
3071 spin_lock_init(&msgr
->global_seq_lock
);
3074 msgr
->inst
.addr
= *myaddr
;
3076 /* select a random nonce */
3077 msgr
->inst
.addr
.type
= 0;
3078 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
3079 encode_my_addr(msgr
);
3081 atomic_set(&msgr
->stopping
, 0);
3082 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
3084 dout("%s %p\n", __func__
, msgr
);
3086 EXPORT_SYMBOL(ceph_messenger_init
);
3088 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
3090 put_net(read_pnet(&msgr
->net
));
3092 EXPORT_SYMBOL(ceph_messenger_fini
);
3094 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
3097 msg
->con
->ops
->put(msg
->con
);
3099 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
3100 BUG_ON(msg
->con
!= con
);
3103 static void clear_standby(struct ceph_connection
*con
)
3105 /* come back from STANDBY? */
3106 if (con
->state
== CON_STATE_STANDBY
) {
3107 dout("clear_standby %p and ++connect_seq\n", con
);
3108 con
->state
= CON_STATE_PREOPEN
;
3110 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3111 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3116 * Queue up an outgoing message on the given connection.
3118 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3121 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3122 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3123 msg
->needs_out_seq
= true;
3125 mutex_lock(&con
->mutex
);
3127 if (con
->state
== CON_STATE_CLOSED
) {
3128 dout("con_send %p closed, dropping %p\n", con
, msg
);
3130 mutex_unlock(&con
->mutex
);
3134 msg_con_set(msg
, con
);
3136 BUG_ON(!list_empty(&msg
->list_head
));
3137 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3138 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3139 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3140 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3141 le32_to_cpu(msg
->hdr
.front_len
),
3142 le32_to_cpu(msg
->hdr
.middle_len
),
3143 le32_to_cpu(msg
->hdr
.data_len
));
3146 mutex_unlock(&con
->mutex
);
3148 /* if there wasn't anything waiting to send before, queue
3150 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3153 EXPORT_SYMBOL(ceph_con_send
);
3156 * Revoke a message that was previously queued for send
3158 void ceph_msg_revoke(struct ceph_msg
*msg
)
3160 struct ceph_connection
*con
= msg
->con
;
3163 dout("%s msg %p null con\n", __func__
, msg
);
3164 return; /* Message not in our possession */
3167 mutex_lock(&con
->mutex
);
3168 if (!list_empty(&msg
->list_head
)) {
3169 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3170 list_del_init(&msg
->list_head
);
3175 if (con
->out_msg
== msg
) {
3176 BUG_ON(con
->out_skip
);
3178 if (con
->out_msg_done
) {
3179 con
->out_skip
+= con_out_kvec_skip(con
);
3181 BUG_ON(!msg
->data_length
);
3182 con
->out_skip
+= sizeof_footer(con
);
3184 /* data, middle, front */
3185 if (msg
->data_length
)
3186 con
->out_skip
+= msg
->cursor
.total_resid
;
3188 con
->out_skip
+= con_out_kvec_skip(con
);
3189 con
->out_skip
+= con_out_kvec_skip(con
);
3191 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3192 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3194 con
->out_msg
= NULL
;
3198 mutex_unlock(&con
->mutex
);
3202 * Revoke a message that we may be reading data into
3204 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3206 struct ceph_connection
*con
= msg
->con
;
3209 dout("%s msg %p null con\n", __func__
, msg
);
3210 return; /* Message not in our possession */
3213 mutex_lock(&con
->mutex
);
3214 if (con
->in_msg
== msg
) {
3215 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3216 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3217 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3219 /* skip rest of message */
3220 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3221 con
->in_base_pos
= con
->in_base_pos
-
3222 sizeof(struct ceph_msg_header
) -
3226 sizeof(struct ceph_msg_footer
);
3227 ceph_msg_put(con
->in_msg
);
3229 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3232 dout("%s %p in_msg %p msg %p no-op\n",
3233 __func__
, con
, con
->in_msg
, msg
);
3235 mutex_unlock(&con
->mutex
);
3239 * Queue a keepalive byte to ensure the tcp connection is alive.
3241 void ceph_con_keepalive(struct ceph_connection
*con
)
3243 dout("con_keepalive %p\n", con
);
3244 mutex_lock(&con
->mutex
);
3246 con_flag_set(con
, CON_FLAG_KEEPALIVE_PENDING
);
3247 mutex_unlock(&con
->mutex
);
3249 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3252 EXPORT_SYMBOL(ceph_con_keepalive
);
3254 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3255 unsigned long interval
)
3258 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3259 struct timespec64 now
;
3260 struct timespec64 ts
;
3261 ktime_get_real_ts64(&now
);
3262 jiffies_to_timespec64(interval
, &ts
);
3263 ts
= timespec64_add(con
->last_keepalive_ack
, ts
);
3264 return timespec64_compare(&now
, &ts
) >= 0;
3269 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3271 struct ceph_msg_data
*data
;
3273 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3276 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3281 INIT_LIST_HEAD(&data
->links
);
3286 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3291 WARN_ON(!list_empty(&data
->links
));
3292 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3293 ceph_pagelist_release(data
->pagelist
);
3294 kmem_cache_free(ceph_msg_data_cache
, data
);
3297 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3298 size_t length
, size_t alignment
)
3300 struct ceph_msg_data
*data
;
3305 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3307 data
->pages
= pages
;
3308 data
->length
= length
;
3309 data
->alignment
= alignment
& ~PAGE_MASK
;
3311 list_add_tail(&data
->links
, &msg
->data
);
3312 msg
->data_length
+= length
;
3314 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3316 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3317 struct ceph_pagelist
*pagelist
)
3319 struct ceph_msg_data
*data
;
3322 BUG_ON(!pagelist
->length
);
3324 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3326 data
->pagelist
= pagelist
;
3328 list_add_tail(&data
->links
, &msg
->data
);
3329 msg
->data_length
+= pagelist
->length
;
3331 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3334 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct ceph_bio_iter
*bio_pos
,
3337 struct ceph_msg_data
*data
;
3339 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3341 data
->bio_pos
= *bio_pos
;
3342 data
->bio_length
= length
;
3344 list_add_tail(&data
->links
, &msg
->data
);
3345 msg
->data_length
+= length
;
3347 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3348 #endif /* CONFIG_BLOCK */
3350 void ceph_msg_data_add_bvecs(struct ceph_msg
*msg
,
3351 struct ceph_bvec_iter
*bvec_pos
)
3353 struct ceph_msg_data
*data
;
3355 data
= ceph_msg_data_create(CEPH_MSG_DATA_BVECS
);
3357 data
->bvec_pos
= *bvec_pos
;
3359 list_add_tail(&data
->links
, &msg
->data
);
3360 msg
->data_length
+= bvec_pos
->iter
.bi_size
;
3362 EXPORT_SYMBOL(ceph_msg_data_add_bvecs
);
3365 * construct a new message with given type, size
3366 * the new msg has a ref count of 1.
3368 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3373 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3377 m
->hdr
.type
= cpu_to_le16(type
);
3378 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3379 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3381 INIT_LIST_HEAD(&m
->list_head
);
3382 kref_init(&m
->kref
);
3383 INIT_LIST_HEAD(&m
->data
);
3387 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3388 if (m
->front
.iov_base
== NULL
) {
3389 dout("ceph_msg_new can't allocate %d bytes\n",
3394 m
->front
.iov_base
= NULL
;
3396 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3398 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3405 pr_err("msg_new can't create type %d front %d\n", type
,
3409 dout("msg_new can't create type %d front %d\n", type
,
3414 EXPORT_SYMBOL(ceph_msg_new
);
3417 * Allocate "middle" portion of a message, if it is needed and wasn't
3418 * allocated by alloc_msg. This allows us to read a small fixed-size
3419 * per-type header in the front and then gracefully fail (i.e.,
3420 * propagate the error to the caller based on info in the front) when
3421 * the middle is too large.
3423 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3425 int type
= le16_to_cpu(msg
->hdr
.type
);
3426 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3428 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3429 ceph_msg_type_name(type
), middle_len
);
3430 BUG_ON(!middle_len
);
3431 BUG_ON(msg
->middle
);
3433 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3440 * Allocate a message for receiving an incoming message on a
3441 * connection, and save the result in con->in_msg. Uses the
3442 * connection's private alloc_msg op if available.
3444 * Returns 0 on success, or a negative error code.
3446 * On success, if we set *skip = 1:
3447 * - the next message should be skipped and ignored.
3448 * - con->in_msg == NULL
3449 * or if we set *skip = 0:
3450 * - con->in_msg is non-null.
3451 * On error (ENOMEM, EAGAIN, ...),
3452 * - con->in_msg == NULL
3454 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3456 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3457 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3458 struct ceph_msg
*msg
;
3461 BUG_ON(con
->in_msg
!= NULL
);
3462 BUG_ON(!con
->ops
->alloc_msg
);
3464 mutex_unlock(&con
->mutex
);
3465 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3466 mutex_lock(&con
->mutex
);
3467 if (con
->state
!= CON_STATE_OPEN
) {
3474 msg_con_set(msg
, con
);
3478 * Null message pointer means either we should skip
3479 * this message or we couldn't allocate memory. The
3480 * former is not an error.
3485 con
->error_msg
= "error allocating memory for incoming message";
3488 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3490 if (middle_len
&& !con
->in_msg
->middle
) {
3491 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3493 ceph_msg_put(con
->in_msg
);
3503 * Free a generically kmalloc'd message.
3505 static void ceph_msg_free(struct ceph_msg
*m
)
3507 dout("%s %p\n", __func__
, m
);
3508 kvfree(m
->front
.iov_base
);
3509 kmem_cache_free(ceph_msg_cache
, m
);
3512 static void ceph_msg_release(struct kref
*kref
)
3514 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3515 struct ceph_msg_data
*data
, *next
;
3517 dout("%s %p\n", __func__
, m
);
3518 WARN_ON(!list_empty(&m
->list_head
));
3520 msg_con_set(m
, NULL
);
3522 /* drop middle, data, if any */
3524 ceph_buffer_put(m
->middle
);
3528 list_for_each_entry_safe(data
, next
, &m
->data
, links
) {
3529 list_del_init(&data
->links
);
3530 ceph_msg_data_destroy(data
);
3535 ceph_msgpool_put(m
->pool
, m
);
3540 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3542 dout("%s %p (was %d)\n", __func__
, msg
,
3543 kref_read(&msg
->kref
));
3544 kref_get(&msg
->kref
);
3547 EXPORT_SYMBOL(ceph_msg_get
);
3549 void ceph_msg_put(struct ceph_msg
*msg
)
3551 dout("%s %p (was %d)\n", __func__
, msg
,
3552 kref_read(&msg
->kref
));
3553 kref_put(&msg
->kref
, ceph_msg_release
);
3555 EXPORT_SYMBOL(ceph_msg_put
);
3557 void ceph_msg_dump(struct ceph_msg
*msg
)
3559 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3560 msg
->front_alloc_len
, msg
->data_length
);
3561 print_hex_dump(KERN_DEBUG
, "header: ",
3562 DUMP_PREFIX_OFFSET
, 16, 1,
3563 &msg
->hdr
, sizeof(msg
->hdr
), true);
3564 print_hex_dump(KERN_DEBUG
, " front: ",
3565 DUMP_PREFIX_OFFSET
, 16, 1,
3566 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3568 print_hex_dump(KERN_DEBUG
, "middle: ",
3569 DUMP_PREFIX_OFFSET
, 16, 1,
3570 msg
->middle
->vec
.iov_base
,
3571 msg
->middle
->vec
.iov_len
, true);
3572 print_hex_dump(KERN_DEBUG
, "footer: ",
3573 DUMP_PREFIX_OFFSET
, 16, 1,
3574 &msg
->footer
, sizeof(msg
->footer
), true);
3576 EXPORT_SYMBOL(ceph_msg_dump
);