Linux 4.19.133
[linux/fpc-iii.git] / net / core / dev.c
blob4b1053057ca601742088038f40e6ddffa4eb6cb5
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
191 static DEFINE_MUTEX(ifalias_mutex);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 static DECLARE_RWSEM(devnet_rename_sem);
201 static inline void dev_base_seq_inc(struct net *net)
203 while (++net->dev_base_seq == 0)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 static inline void rps_lock(struct softnet_data *sd)
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
226 static inline void rps_unlock(struct softnet_data *sd)
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
236 struct net *net = dev_net(dev);
238 ASSERT_RTNL();
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
247 dev_base_seq_inc(net);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device *dev)
255 ASSERT_RTNL();
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
264 dev_base_seq_inc(dev_net(dev));
268 * Our notifier list
271 static RAW_NOTIFIER_HEAD(netdev_chain);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
325 int i;
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
337 int i;
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 int i;
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 #endif
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type *pt)
410 struct list_head *head = ptype_head(pt);
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
416 EXPORT_SYMBOL(dev_add_pack);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type *pt)
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
436 spin_lock(&ptype_lock);
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
449 EXPORT_SYMBOL(__dev_remove_pack);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
463 void dev_remove_pack(struct packet_type *pt)
465 __dev_remove_pack(pt);
467 synchronize_net();
469 EXPORT_SYMBOL(dev_remove_pack);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload *po)
486 struct packet_offload *elem;
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
496 EXPORT_SYMBOL(dev_add_offload);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload *po)
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
516 spin_lock(&offload_lock);
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
542 void dev_remove_offload(struct packet_offload *po)
544 __dev_remove_offload(po);
546 synchronize_net();
548 EXPORT_SYMBOL(dev_remove_offload);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
570 struct netdev_boot_setup *s;
571 int i;
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device *dev)
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
610 return 0;
612 EXPORT_SYMBOL(netdev_boot_setup_check);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix, int unit)
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
631 sprintf(name, "%s%d", prefix, unit);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
647 * Saves at boot time configured settings for any netdevice.
649 int __init netdev_boot_setup(char *str)
651 int ints[5];
652 struct ifmap map;
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
673 __setup("netdev=", netdev_boot_setup);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device *dev)
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
694 return dev->ifindex;
696 EXPORT_SYMBOL(dev_get_iflink);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
709 struct ip_tunnel_info *info;
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
745 return NULL;
747 EXPORT_SYMBOL(__dev_get_by_name);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
770 return NULL;
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
788 struct net_device *dev;
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
797 EXPORT_SYMBOL(dev_get_by_name);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
820 return NULL;
822 EXPORT_SYMBOL(__dev_get_by_index);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
844 return NULL;
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
862 struct net_device *dev;
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
871 EXPORT_SYMBOL(dev_get_by_index);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
885 struct napi_struct *napi;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
892 napi = napi_by_id(napi_id);
894 return napi ? napi->dev : NULL;
896 EXPORT_SYMBOL(dev_get_by_napi_id);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 int netdev_get_name(struct net *net, char *name, int ifindex)
906 struct net_device *dev;
907 int ret;
909 down_read(&devnet_rename_sem);
910 rcu_read_lock();
912 dev = dev_get_by_index_rcu(net, ifindex);
913 if (!dev) {
914 ret = -ENODEV;
915 goto out;
918 strcpy(name, dev->name);
920 ret = 0;
921 out:
922 rcu_read_unlock();
923 up_read(&devnet_rename_sem);
924 return ret;
928 * dev_getbyhwaddr_rcu - find a device by its hardware address
929 * @net: the applicable net namespace
930 * @type: media type of device
931 * @ha: hardware address
933 * Search for an interface by MAC address. Returns NULL if the device
934 * is not found or a pointer to the device.
935 * The caller must hold RCU or RTNL.
936 * The returned device has not had its ref count increased
937 * and the caller must therefore be careful about locking
941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
942 const char *ha)
944 struct net_device *dev;
946 for_each_netdev_rcu(net, dev)
947 if (dev->type == type &&
948 !memcmp(dev->dev_addr, ha, dev->addr_len))
949 return dev;
951 return NULL;
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
955 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
957 struct net_device *dev;
959 ASSERT_RTNL();
960 for_each_netdev(net, dev)
961 if (dev->type == type)
962 return dev;
964 return NULL;
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
968 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
970 struct net_device *dev, *ret = NULL;
972 rcu_read_lock();
973 for_each_netdev_rcu(net, dev)
974 if (dev->type == type) {
975 dev_hold(dev);
976 ret = dev;
977 break;
979 rcu_read_unlock();
980 return ret;
982 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985 * __dev_get_by_flags - find any device with given flags
986 * @net: the applicable net namespace
987 * @if_flags: IFF_* values
988 * @mask: bitmask of bits in if_flags to check
990 * Search for any interface with the given flags. Returns NULL if a device
991 * is not found or a pointer to the device. Must be called inside
992 * rtnl_lock(), and result refcount is unchanged.
995 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
996 unsigned short mask)
998 struct net_device *dev, *ret;
1000 ASSERT_RTNL();
1002 ret = NULL;
1003 for_each_netdev(net, dev) {
1004 if (((dev->flags ^ if_flags) & mask) == 0) {
1005 ret = dev;
1006 break;
1009 return ret;
1011 EXPORT_SYMBOL(__dev_get_by_flags);
1014 * dev_valid_name - check if name is okay for network device
1015 * @name: name string
1017 * Network device names need to be valid file names to
1018 * to allow sysfs to work. We also disallow any kind of
1019 * whitespace.
1021 bool dev_valid_name(const char *name)
1023 if (*name == '\0')
1024 return false;
1025 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1026 return false;
1027 if (!strcmp(name, ".") || !strcmp(name, ".."))
1028 return false;
1030 while (*name) {
1031 if (*name == '/' || *name == ':' || isspace(*name))
1032 return false;
1033 name++;
1035 return true;
1037 EXPORT_SYMBOL(dev_valid_name);
1040 * __dev_alloc_name - allocate a name for a device
1041 * @net: network namespace to allocate the device name in
1042 * @name: name format string
1043 * @buf: scratch buffer and result name string
1045 * Passed a format string - eg "lt%d" it will try and find a suitable
1046 * id. It scans list of devices to build up a free map, then chooses
1047 * the first empty slot. The caller must hold the dev_base or rtnl lock
1048 * while allocating the name and adding the device in order to avoid
1049 * duplicates.
1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 * Returns the number of the unit assigned or a negative errno code.
1054 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1056 int i = 0;
1057 const char *p;
1058 const int max_netdevices = 8*PAGE_SIZE;
1059 unsigned long *inuse;
1060 struct net_device *d;
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1065 p = strchr(name, '%');
1066 if (p) {
1068 * Verify the string as this thing may have come from
1069 * the user. There must be either one "%d" and no other "%"
1070 * characters.
1072 if (p[1] != 'd' || strchr(p + 2, '%'))
1073 return -EINVAL;
1075 /* Use one page as a bit array of possible slots */
1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 if (!inuse)
1078 return -ENOMEM;
1080 for_each_netdev(net, d) {
1081 if (!sscanf(d->name, name, &i))
1082 continue;
1083 if (i < 0 || i >= max_netdevices)
1084 continue;
1086 /* avoid cases where sscanf is not exact inverse of printf */
1087 snprintf(buf, IFNAMSIZ, name, i);
1088 if (!strncmp(buf, d->name, IFNAMSIZ))
1089 set_bit(i, inuse);
1092 i = find_first_zero_bit(inuse, max_netdevices);
1093 free_page((unsigned long) inuse);
1096 snprintf(buf, IFNAMSIZ, name, i);
1097 if (!__dev_get_by_name(net, buf))
1098 return i;
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1104 return -ENFILE;
1107 static int dev_alloc_name_ns(struct net *net,
1108 struct net_device *dev,
1109 const char *name)
1111 char buf[IFNAMSIZ];
1112 int ret;
1114 BUG_ON(!net);
1115 ret = __dev_alloc_name(net, name, buf);
1116 if (ret >= 0)
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1118 return ret;
1122 * dev_alloc_name - allocate a name for a device
1123 * @dev: device
1124 * @name: name format string
1126 * Passed a format string - eg "lt%d" it will try and find a suitable
1127 * id. It scans list of devices to build up a free map, then chooses
1128 * the first empty slot. The caller must hold the dev_base or rtnl lock
1129 * while allocating the name and adding the device in order to avoid
1130 * duplicates.
1131 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132 * Returns the number of the unit assigned or a negative errno code.
1135 int dev_alloc_name(struct net_device *dev, const char *name)
1137 return dev_alloc_name_ns(dev_net(dev), dev, name);
1139 EXPORT_SYMBOL(dev_alloc_name);
1141 int dev_get_valid_name(struct net *net, struct net_device *dev,
1142 const char *name)
1144 BUG_ON(!net);
1146 if (!dev_valid_name(name))
1147 return -EINVAL;
1149 if (strchr(name, '%'))
1150 return dev_alloc_name_ns(net, dev, name);
1151 else if (__dev_get_by_name(net, name))
1152 return -EEXIST;
1153 else if (dev->name != name)
1154 strlcpy(dev->name, name, IFNAMSIZ);
1156 return 0;
1158 EXPORT_SYMBOL(dev_get_valid_name);
1161 * dev_change_name - change name of a device
1162 * @dev: device
1163 * @newname: name (or format string) must be at least IFNAMSIZ
1165 * Change name of a device, can pass format strings "eth%d".
1166 * for wildcarding.
1168 int dev_change_name(struct net_device *dev, const char *newname)
1170 unsigned char old_assign_type;
1171 char oldname[IFNAMSIZ];
1172 int err = 0;
1173 int ret;
1174 struct net *net;
1176 ASSERT_RTNL();
1177 BUG_ON(!dev_net(dev));
1179 net = dev_net(dev);
1181 /* Some auto-enslaved devices e.g. failover slaves are
1182 * special, as userspace might rename the device after
1183 * the interface had been brought up and running since
1184 * the point kernel initiated auto-enslavement. Allow
1185 * live name change even when these slave devices are
1186 * up and running.
1188 * Typically, users of these auto-enslaving devices
1189 * don't actually care about slave name change, as
1190 * they are supposed to operate on master interface
1191 * directly.
1193 if (dev->flags & IFF_UP &&
1194 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1195 return -EBUSY;
1197 down_write(&devnet_rename_sem);
1199 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200 up_write(&devnet_rename_sem);
1201 return 0;
1204 memcpy(oldname, dev->name, IFNAMSIZ);
1206 err = dev_get_valid_name(net, dev, newname);
1207 if (err < 0) {
1208 up_write(&devnet_rename_sem);
1209 return err;
1212 if (oldname[0] && !strchr(oldname, '%'))
1213 netdev_info(dev, "renamed from %s\n", oldname);
1215 old_assign_type = dev->name_assign_type;
1216 dev->name_assign_type = NET_NAME_RENAMED;
1218 rollback:
1219 ret = device_rename(&dev->dev, dev->name);
1220 if (ret) {
1221 memcpy(dev->name, oldname, IFNAMSIZ);
1222 dev->name_assign_type = old_assign_type;
1223 up_write(&devnet_rename_sem);
1224 return ret;
1227 up_write(&devnet_rename_sem);
1229 netdev_adjacent_rename_links(dev, oldname);
1231 write_lock_bh(&dev_base_lock);
1232 hlist_del_rcu(&dev->name_hlist);
1233 write_unlock_bh(&dev_base_lock);
1235 synchronize_rcu();
1237 write_lock_bh(&dev_base_lock);
1238 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1239 write_unlock_bh(&dev_base_lock);
1241 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 ret = notifier_to_errno(ret);
1244 if (ret) {
1245 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246 if (err >= 0) {
1247 err = ret;
1248 down_write(&devnet_rename_sem);
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 memcpy(oldname, newname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 old_assign_type = NET_NAME_RENAMED;
1253 goto rollback;
1254 } else {
1255 pr_err("%s: name change rollback failed: %d\n",
1256 dev->name, ret);
1260 return err;
1264 * dev_set_alias - change ifalias of a device
1265 * @dev: device
1266 * @alias: name up to IFALIASZ
1267 * @len: limit of bytes to copy from info
1269 * Set ifalias for a device,
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1273 struct dev_ifalias *new_alias = NULL;
1275 if (len >= IFALIASZ)
1276 return -EINVAL;
1278 if (len) {
1279 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 if (!new_alias)
1281 return -ENOMEM;
1283 memcpy(new_alias->ifalias, alias, len);
1284 new_alias->ifalias[len] = 0;
1287 mutex_lock(&ifalias_mutex);
1288 rcu_swap_protected(dev->ifalias, new_alias,
1289 mutex_is_locked(&ifalias_mutex));
1290 mutex_unlock(&ifalias_mutex);
1292 if (new_alias)
1293 kfree_rcu(new_alias, rcuhead);
1295 return len;
1297 EXPORT_SYMBOL(dev_set_alias);
1300 * dev_get_alias - get ifalias of a device
1301 * @dev: device
1302 * @name: buffer to store name of ifalias
1303 * @len: size of buffer
1305 * get ifalias for a device. Caller must make sure dev cannot go
1306 * away, e.g. rcu read lock or own a reference count to device.
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1310 const struct dev_ifalias *alias;
1311 int ret = 0;
1313 rcu_read_lock();
1314 alias = rcu_dereference(dev->ifalias);
1315 if (alias)
1316 ret = snprintf(name, len, "%s", alias->ifalias);
1317 rcu_read_unlock();
1319 return ret;
1323 * netdev_features_change - device changes features
1324 * @dev: device to cause notification
1326 * Called to indicate a device has changed features.
1328 void netdev_features_change(struct net_device *dev)
1330 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1332 EXPORT_SYMBOL(netdev_features_change);
1335 * netdev_state_change - device changes state
1336 * @dev: device to cause notification
1338 * Called to indicate a device has changed state. This function calls
1339 * the notifier chains for netdev_chain and sends a NEWLINK message
1340 * to the routing socket.
1342 void netdev_state_change(struct net_device *dev)
1344 if (dev->flags & IFF_UP) {
1345 struct netdev_notifier_change_info change_info = {
1346 .info.dev = dev,
1349 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 &change_info.info);
1351 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1354 EXPORT_SYMBOL(netdev_state_change);
1357 * netdev_notify_peers - notify network peers about existence of @dev
1358 * @dev: network device
1360 * Generate traffic such that interested network peers are aware of
1361 * @dev, such as by generating a gratuitous ARP. This may be used when
1362 * a device wants to inform the rest of the network about some sort of
1363 * reconfiguration such as a failover event or virtual machine
1364 * migration.
1366 void netdev_notify_peers(struct net_device *dev)
1368 rtnl_lock();
1369 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 rtnl_unlock();
1373 EXPORT_SYMBOL(netdev_notify_peers);
1375 static int __dev_open(struct net_device *dev)
1377 const struct net_device_ops *ops = dev->netdev_ops;
1378 int ret;
1380 ASSERT_RTNL();
1382 if (!netif_device_present(dev))
1383 return -ENODEV;
1385 /* Block netpoll from trying to do any rx path servicing.
1386 * If we don't do this there is a chance ndo_poll_controller
1387 * or ndo_poll may be running while we open the device
1389 netpoll_poll_disable(dev);
1391 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1392 ret = notifier_to_errno(ret);
1393 if (ret)
1394 return ret;
1396 set_bit(__LINK_STATE_START, &dev->state);
1398 if (ops->ndo_validate_addr)
1399 ret = ops->ndo_validate_addr(dev);
1401 if (!ret && ops->ndo_open)
1402 ret = ops->ndo_open(dev);
1404 netpoll_poll_enable(dev);
1406 if (ret)
1407 clear_bit(__LINK_STATE_START, &dev->state);
1408 else {
1409 dev->flags |= IFF_UP;
1410 dev_set_rx_mode(dev);
1411 dev_activate(dev);
1412 add_device_randomness(dev->dev_addr, dev->addr_len);
1415 return ret;
1419 * dev_open - prepare an interface for use.
1420 * @dev: device to open
1422 * Takes a device from down to up state. The device's private open
1423 * function is invoked and then the multicast lists are loaded. Finally
1424 * the device is moved into the up state and a %NETDEV_UP message is
1425 * sent to the netdev notifier chain.
1427 * Calling this function on an active interface is a nop. On a failure
1428 * a negative errno code is returned.
1430 int dev_open(struct net_device *dev)
1432 int ret;
1434 if (dev->flags & IFF_UP)
1435 return 0;
1437 ret = __dev_open(dev);
1438 if (ret < 0)
1439 return ret;
1441 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1442 call_netdevice_notifiers(NETDEV_UP, dev);
1444 return ret;
1446 EXPORT_SYMBOL(dev_open);
1448 static void __dev_close_many(struct list_head *head)
1450 struct net_device *dev;
1452 ASSERT_RTNL();
1453 might_sleep();
1455 list_for_each_entry(dev, head, close_list) {
1456 /* Temporarily disable netpoll until the interface is down */
1457 netpoll_poll_disable(dev);
1459 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1461 clear_bit(__LINK_STATE_START, &dev->state);
1463 /* Synchronize to scheduled poll. We cannot touch poll list, it
1464 * can be even on different cpu. So just clear netif_running().
1466 * dev->stop() will invoke napi_disable() on all of it's
1467 * napi_struct instances on this device.
1469 smp_mb__after_atomic(); /* Commit netif_running(). */
1472 dev_deactivate_many(head);
1474 list_for_each_entry(dev, head, close_list) {
1475 const struct net_device_ops *ops = dev->netdev_ops;
1478 * Call the device specific close. This cannot fail.
1479 * Only if device is UP
1481 * We allow it to be called even after a DETACH hot-plug
1482 * event.
1484 if (ops->ndo_stop)
1485 ops->ndo_stop(dev);
1487 dev->flags &= ~IFF_UP;
1488 netpoll_poll_enable(dev);
1492 static void __dev_close(struct net_device *dev)
1494 LIST_HEAD(single);
1496 list_add(&dev->close_list, &single);
1497 __dev_close_many(&single);
1498 list_del(&single);
1501 void dev_close_many(struct list_head *head, bool unlink)
1503 struct net_device *dev, *tmp;
1505 /* Remove the devices that don't need to be closed */
1506 list_for_each_entry_safe(dev, tmp, head, close_list)
1507 if (!(dev->flags & IFF_UP))
1508 list_del_init(&dev->close_list);
1510 __dev_close_many(head);
1512 list_for_each_entry_safe(dev, tmp, head, close_list) {
1513 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1514 call_netdevice_notifiers(NETDEV_DOWN, dev);
1515 if (unlink)
1516 list_del_init(&dev->close_list);
1519 EXPORT_SYMBOL(dev_close_many);
1522 * dev_close - shutdown an interface.
1523 * @dev: device to shutdown
1525 * This function moves an active device into down state. A
1526 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1528 * chain.
1530 void dev_close(struct net_device *dev)
1532 if (dev->flags & IFF_UP) {
1533 LIST_HEAD(single);
1535 list_add(&dev->close_list, &single);
1536 dev_close_many(&single, true);
1537 list_del(&single);
1540 EXPORT_SYMBOL(dev_close);
1544 * dev_disable_lro - disable Large Receive Offload on a device
1545 * @dev: device
1547 * Disable Large Receive Offload (LRO) on a net device. Must be
1548 * called under RTNL. This is needed if received packets may be
1549 * forwarded to another interface.
1551 void dev_disable_lro(struct net_device *dev)
1553 struct net_device *lower_dev;
1554 struct list_head *iter;
1556 dev->wanted_features &= ~NETIF_F_LRO;
1557 netdev_update_features(dev);
1559 if (unlikely(dev->features & NETIF_F_LRO))
1560 netdev_WARN(dev, "failed to disable LRO!\n");
1562 netdev_for_each_lower_dev(dev, lower_dev, iter)
1563 dev_disable_lro(lower_dev);
1565 EXPORT_SYMBOL(dev_disable_lro);
1568 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1569 * @dev: device
1571 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1572 * called under RTNL. This is needed if Generic XDP is installed on
1573 * the device.
1575 static void dev_disable_gro_hw(struct net_device *dev)
1577 dev->wanted_features &= ~NETIF_F_GRO_HW;
1578 netdev_update_features(dev);
1580 if (unlikely(dev->features & NETIF_F_GRO_HW))
1581 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1586 #define N(val) \
1587 case NETDEV_##val: \
1588 return "NETDEV_" __stringify(val);
1589 switch (cmd) {
1590 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1591 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1592 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1593 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1594 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1595 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1596 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1597 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1598 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1600 #undef N
1601 return "UNKNOWN_NETDEV_EVENT";
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1605 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1606 struct net_device *dev)
1608 struct netdev_notifier_info info = {
1609 .dev = dev,
1612 return nb->notifier_call(nb, val, &info);
1615 static int dev_boot_phase = 1;
1618 * register_netdevice_notifier - register a network notifier block
1619 * @nb: notifier
1621 * Register a notifier to be called when network device events occur.
1622 * The notifier passed is linked into the kernel structures and must
1623 * not be reused until it has been unregistered. A negative errno code
1624 * is returned on a failure.
1626 * When registered all registration and up events are replayed
1627 * to the new notifier to allow device to have a race free
1628 * view of the network device list.
1631 int register_netdevice_notifier(struct notifier_block *nb)
1633 struct net_device *dev;
1634 struct net_device *last;
1635 struct net *net;
1636 int err;
1638 /* Close race with setup_net() and cleanup_net() */
1639 down_write(&pernet_ops_rwsem);
1640 rtnl_lock();
1641 err = raw_notifier_chain_register(&netdev_chain, nb);
1642 if (err)
1643 goto unlock;
1644 if (dev_boot_phase)
1645 goto unlock;
1646 for_each_net(net) {
1647 for_each_netdev(net, dev) {
1648 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649 err = notifier_to_errno(err);
1650 if (err)
1651 goto rollback;
1653 if (!(dev->flags & IFF_UP))
1654 continue;
1656 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 unlock:
1661 rtnl_unlock();
1662 up_write(&pernet_ops_rwsem);
1663 return err;
1665 rollback:
1666 last = dev;
1667 for_each_net(net) {
1668 for_each_netdev(net, dev) {
1669 if (dev == last)
1670 goto outroll;
1672 if (dev->flags & IFF_UP) {
1673 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674 dev);
1675 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1677 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1681 outroll:
1682 raw_notifier_chain_unregister(&netdev_chain, nb);
1683 goto unlock;
1685 EXPORT_SYMBOL(register_netdevice_notifier);
1688 * unregister_netdevice_notifier - unregister a network notifier block
1689 * @nb: notifier
1691 * Unregister a notifier previously registered by
1692 * register_netdevice_notifier(). The notifier is unlinked into the
1693 * kernel structures and may then be reused. A negative errno code
1694 * is returned on a failure.
1696 * After unregistering unregister and down device events are synthesized
1697 * for all devices on the device list to the removed notifier to remove
1698 * the need for special case cleanup code.
1701 int unregister_netdevice_notifier(struct notifier_block *nb)
1703 struct net_device *dev;
1704 struct net *net;
1705 int err;
1707 /* Close race with setup_net() and cleanup_net() */
1708 down_write(&pernet_ops_rwsem);
1709 rtnl_lock();
1710 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1711 if (err)
1712 goto unlock;
1714 for_each_net(net) {
1715 for_each_netdev(net, dev) {
1716 if (dev->flags & IFF_UP) {
1717 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1718 dev);
1719 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1721 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1724 unlock:
1725 rtnl_unlock();
1726 up_write(&pernet_ops_rwsem);
1727 return err;
1729 EXPORT_SYMBOL(unregister_netdevice_notifier);
1732 * call_netdevice_notifiers_info - call all network notifier blocks
1733 * @val: value passed unmodified to notifier function
1734 * @info: notifier information data
1736 * Call all network notifier blocks. Parameters and return value
1737 * are as for raw_notifier_call_chain().
1740 static int call_netdevice_notifiers_info(unsigned long val,
1741 struct netdev_notifier_info *info)
1743 ASSERT_RTNL();
1744 return raw_notifier_call_chain(&netdev_chain, val, info);
1748 * call_netdevice_notifiers - call all network notifier blocks
1749 * @val: value passed unmodified to notifier function
1750 * @dev: net_device pointer passed unmodified to notifier function
1752 * Call all network notifier blocks. Parameters and return value
1753 * are as for raw_notifier_call_chain().
1756 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1758 struct netdev_notifier_info info = {
1759 .dev = dev,
1762 return call_netdevice_notifiers_info(val, &info);
1764 EXPORT_SYMBOL(call_netdevice_notifiers);
1767 * call_netdevice_notifiers_mtu - call all network notifier blocks
1768 * @val: value passed unmodified to notifier function
1769 * @dev: net_device pointer passed unmodified to notifier function
1770 * @arg: additional u32 argument passed to the notifier function
1772 * Call all network notifier blocks. Parameters and return value
1773 * are as for raw_notifier_call_chain().
1775 static int call_netdevice_notifiers_mtu(unsigned long val,
1776 struct net_device *dev, u32 arg)
1778 struct netdev_notifier_info_ext info = {
1779 .info.dev = dev,
1780 .ext.mtu = arg,
1783 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1785 return call_netdevice_notifiers_info(val, &info.info);
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1791 void net_inc_ingress_queue(void)
1793 static_branch_inc(&ingress_needed_key);
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1797 void net_dec_ingress_queue(void)
1799 static_branch_dec(&ingress_needed_key);
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1802 #endif
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1807 void net_inc_egress_queue(void)
1809 static_branch_inc(&egress_needed_key);
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1813 void net_dec_egress_queue(void)
1815 static_branch_dec(&egress_needed_key);
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1818 #endif
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred;
1823 static atomic_t netstamp_wanted;
1824 static void netstamp_clear(struct work_struct *work)
1826 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1827 int wanted;
1829 wanted = atomic_add_return(deferred, &netstamp_wanted);
1830 if (wanted > 0)
1831 static_branch_enable(&netstamp_needed_key);
1832 else
1833 static_branch_disable(&netstamp_needed_key);
1835 static DECLARE_WORK(netstamp_work, netstamp_clear);
1836 #endif
1838 void net_enable_timestamp(void)
1840 #ifdef CONFIG_JUMP_LABEL
1841 int wanted;
1843 while (1) {
1844 wanted = atomic_read(&netstamp_wanted);
1845 if (wanted <= 0)
1846 break;
1847 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1848 return;
1850 atomic_inc(&netstamp_needed_deferred);
1851 schedule_work(&netstamp_work);
1852 #else
1853 static_branch_inc(&netstamp_needed_key);
1854 #endif
1856 EXPORT_SYMBOL(net_enable_timestamp);
1858 void net_disable_timestamp(void)
1860 #ifdef CONFIG_JUMP_LABEL
1861 int wanted;
1863 while (1) {
1864 wanted = atomic_read(&netstamp_wanted);
1865 if (wanted <= 1)
1866 break;
1867 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1868 return;
1870 atomic_dec(&netstamp_needed_deferred);
1871 schedule_work(&netstamp_work);
1872 #else
1873 static_branch_dec(&netstamp_needed_key);
1874 #endif
1876 EXPORT_SYMBOL(net_disable_timestamp);
1878 static inline void net_timestamp_set(struct sk_buff *skb)
1880 skb->tstamp = 0;
1881 if (static_branch_unlikely(&netstamp_needed_key))
1882 __net_timestamp(skb);
1885 #define net_timestamp_check(COND, SKB) \
1886 if (static_branch_unlikely(&netstamp_needed_key)) { \
1887 if ((COND) && !(SKB)->tstamp) \
1888 __net_timestamp(SKB); \
1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1893 unsigned int len;
1895 if (!(dev->flags & IFF_UP))
1896 return false;
1898 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1899 if (skb->len <= len)
1900 return true;
1902 /* if TSO is enabled, we don't care about the length as the packet
1903 * could be forwarded without being segmented before
1905 if (skb_is_gso(skb))
1906 return true;
1908 return false;
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1912 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1914 int ret = ____dev_forward_skb(dev, skb);
1916 if (likely(!ret)) {
1917 skb->protocol = eth_type_trans(skb, dev);
1918 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1921 return ret;
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1926 * dev_forward_skb - loopback an skb to another netif
1928 * @dev: destination network device
1929 * @skb: buffer to forward
1931 * return values:
1932 * NET_RX_SUCCESS (no congestion)
1933 * NET_RX_DROP (packet was dropped, but freed)
1935 * dev_forward_skb can be used for injecting an skb from the
1936 * start_xmit function of one device into the receive queue
1937 * of another device.
1939 * The receiving device may be in another namespace, so
1940 * we have to clear all information in the skb that could
1941 * impact namespace isolation.
1943 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1945 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1947 EXPORT_SYMBOL_GPL(dev_forward_skb);
1949 static inline int deliver_skb(struct sk_buff *skb,
1950 struct packet_type *pt_prev,
1951 struct net_device *orig_dev)
1953 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1954 return -ENOMEM;
1955 refcount_inc(&skb->users);
1956 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1959 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1960 struct packet_type **pt,
1961 struct net_device *orig_dev,
1962 __be16 type,
1963 struct list_head *ptype_list)
1965 struct packet_type *ptype, *pt_prev = *pt;
1967 list_for_each_entry_rcu(ptype, ptype_list, list) {
1968 if (ptype->type != type)
1969 continue;
1970 if (pt_prev)
1971 deliver_skb(skb, pt_prev, orig_dev);
1972 pt_prev = ptype;
1974 *pt = pt_prev;
1977 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1979 if (!ptype->af_packet_priv || !skb->sk)
1980 return false;
1982 if (ptype->id_match)
1983 return ptype->id_match(ptype, skb->sk);
1984 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1985 return true;
1987 return false;
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1997 struct packet_type *ptype;
1998 struct sk_buff *skb2 = NULL;
1999 struct packet_type *pt_prev = NULL;
2000 struct list_head *ptype_list = &ptype_all;
2002 rcu_read_lock();
2003 again:
2004 list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 /* Never send packets back to the socket
2006 * they originated from - MvS (miquels@drinkel.ow.org)
2008 if (skb_loop_sk(ptype, skb))
2009 continue;
2011 if (pt_prev) {
2012 deliver_skb(skb2, pt_prev, skb->dev);
2013 pt_prev = ptype;
2014 continue;
2017 /* need to clone skb, done only once */
2018 skb2 = skb_clone(skb, GFP_ATOMIC);
2019 if (!skb2)
2020 goto out_unlock;
2022 net_timestamp_set(skb2);
2024 /* skb->nh should be correctly
2025 * set by sender, so that the second statement is
2026 * just protection against buggy protocols.
2028 skb_reset_mac_header(skb2);
2030 if (skb_network_header(skb2) < skb2->data ||
2031 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2032 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033 ntohs(skb2->protocol),
2034 dev->name);
2035 skb_reset_network_header(skb2);
2038 skb2->transport_header = skb2->network_header;
2039 skb2->pkt_type = PACKET_OUTGOING;
2040 pt_prev = ptype;
2043 if (ptype_list == &ptype_all) {
2044 ptype_list = &dev->ptype_all;
2045 goto again;
2047 out_unlock:
2048 if (pt_prev) {
2049 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2050 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2051 else
2052 kfree_skb(skb2);
2054 rcu_read_unlock();
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2059 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060 * @dev: Network device
2061 * @txq: number of queues available
2063 * If real_num_tx_queues is changed the tc mappings may no longer be
2064 * valid. To resolve this verify the tc mapping remains valid and if
2065 * not NULL the mapping. With no priorities mapping to this
2066 * offset/count pair it will no longer be used. In the worst case TC0
2067 * is invalid nothing can be done so disable priority mappings. If is
2068 * expected that drivers will fix this mapping if they can before
2069 * calling netif_set_real_num_tx_queues.
2071 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2073 int i;
2074 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2076 /* If TC0 is invalidated disable TC mapping */
2077 if (tc->offset + tc->count > txq) {
2078 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2079 dev->num_tc = 0;
2080 return;
2083 /* Invalidated prio to tc mappings set to TC0 */
2084 for (i = 1; i < TC_BITMASK + 1; i++) {
2085 int q = netdev_get_prio_tc_map(dev, i);
2087 tc = &dev->tc_to_txq[q];
2088 if (tc->offset + tc->count > txq) {
2089 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2090 i, q);
2091 netdev_set_prio_tc_map(dev, i, 0);
2096 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2098 if (dev->num_tc) {
2099 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2100 int i;
2102 /* walk through the TCs and see if it falls into any of them */
2103 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2104 if ((txq - tc->offset) < tc->count)
2105 return i;
2108 /* didn't find it, just return -1 to indicate no match */
2109 return -1;
2112 return 0;
2114 EXPORT_SYMBOL(netdev_txq_to_tc);
2116 #ifdef CONFIG_XPS
2117 struct static_key xps_needed __read_mostly;
2118 EXPORT_SYMBOL(xps_needed);
2119 struct static_key xps_rxqs_needed __read_mostly;
2120 EXPORT_SYMBOL(xps_rxqs_needed);
2121 static DEFINE_MUTEX(xps_map_mutex);
2122 #define xmap_dereference(P) \
2123 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2125 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2126 int tci, u16 index)
2128 struct xps_map *map = NULL;
2129 int pos;
2131 if (dev_maps)
2132 map = xmap_dereference(dev_maps->attr_map[tci]);
2133 if (!map)
2134 return false;
2136 for (pos = map->len; pos--;) {
2137 if (map->queues[pos] != index)
2138 continue;
2140 if (map->len > 1) {
2141 map->queues[pos] = map->queues[--map->len];
2142 break;
2145 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2146 kfree_rcu(map, rcu);
2147 return false;
2150 return true;
2153 static bool remove_xps_queue_cpu(struct net_device *dev,
2154 struct xps_dev_maps *dev_maps,
2155 int cpu, u16 offset, u16 count)
2157 int num_tc = dev->num_tc ? : 1;
2158 bool active = false;
2159 int tci;
2161 for (tci = cpu * num_tc; num_tc--; tci++) {
2162 int i, j;
2164 for (i = count, j = offset; i--; j++) {
2165 if (!remove_xps_queue(dev_maps, tci, j))
2166 break;
2169 active |= i < 0;
2172 return active;
2175 static void reset_xps_maps(struct net_device *dev,
2176 struct xps_dev_maps *dev_maps,
2177 bool is_rxqs_map)
2179 if (is_rxqs_map) {
2180 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2181 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2182 } else {
2183 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2185 static_key_slow_dec_cpuslocked(&xps_needed);
2186 kfree_rcu(dev_maps, rcu);
2189 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2190 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2191 u16 offset, u16 count, bool is_rxqs_map)
2193 bool active = false;
2194 int i, j;
2196 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2197 j < nr_ids;)
2198 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2199 count);
2200 if (!active)
2201 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2203 if (!is_rxqs_map) {
2204 for (i = offset + (count - 1); count--; i--) {
2205 netdev_queue_numa_node_write(
2206 netdev_get_tx_queue(dev, i),
2207 NUMA_NO_NODE);
2212 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2213 u16 count)
2215 const unsigned long *possible_mask = NULL;
2216 struct xps_dev_maps *dev_maps;
2217 unsigned int nr_ids;
2219 if (!static_key_false(&xps_needed))
2220 return;
2222 cpus_read_lock();
2223 mutex_lock(&xps_map_mutex);
2225 if (static_key_false(&xps_rxqs_needed)) {
2226 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2227 if (dev_maps) {
2228 nr_ids = dev->num_rx_queues;
2229 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2230 offset, count, true);
2234 dev_maps = xmap_dereference(dev->xps_cpus_map);
2235 if (!dev_maps)
2236 goto out_no_maps;
2238 if (num_possible_cpus() > 1)
2239 possible_mask = cpumask_bits(cpu_possible_mask);
2240 nr_ids = nr_cpu_ids;
2241 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2242 false);
2244 out_no_maps:
2245 mutex_unlock(&xps_map_mutex);
2246 cpus_read_unlock();
2249 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2251 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2254 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2255 u16 index, bool is_rxqs_map)
2257 struct xps_map *new_map;
2258 int alloc_len = XPS_MIN_MAP_ALLOC;
2259 int i, pos;
2261 for (pos = 0; map && pos < map->len; pos++) {
2262 if (map->queues[pos] != index)
2263 continue;
2264 return map;
2267 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2268 if (map) {
2269 if (pos < map->alloc_len)
2270 return map;
2272 alloc_len = map->alloc_len * 2;
2275 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2276 * map
2278 if (is_rxqs_map)
2279 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2280 else
2281 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2282 cpu_to_node(attr_index));
2283 if (!new_map)
2284 return NULL;
2286 for (i = 0; i < pos; i++)
2287 new_map->queues[i] = map->queues[i];
2288 new_map->alloc_len = alloc_len;
2289 new_map->len = pos;
2291 return new_map;
2294 /* Must be called under cpus_read_lock */
2295 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2296 u16 index, bool is_rxqs_map)
2298 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2299 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2300 int i, j, tci, numa_node_id = -2;
2301 int maps_sz, num_tc = 1, tc = 0;
2302 struct xps_map *map, *new_map;
2303 bool active = false;
2304 unsigned int nr_ids;
2306 if (dev->num_tc) {
2307 /* Do not allow XPS on subordinate device directly */
2308 num_tc = dev->num_tc;
2309 if (num_tc < 0)
2310 return -EINVAL;
2312 /* If queue belongs to subordinate dev use its map */
2313 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2315 tc = netdev_txq_to_tc(dev, index);
2316 if (tc < 0)
2317 return -EINVAL;
2320 mutex_lock(&xps_map_mutex);
2321 if (is_rxqs_map) {
2322 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2323 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2324 nr_ids = dev->num_rx_queues;
2325 } else {
2326 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2327 if (num_possible_cpus() > 1) {
2328 online_mask = cpumask_bits(cpu_online_mask);
2329 possible_mask = cpumask_bits(cpu_possible_mask);
2331 dev_maps = xmap_dereference(dev->xps_cpus_map);
2332 nr_ids = nr_cpu_ids;
2335 if (maps_sz < L1_CACHE_BYTES)
2336 maps_sz = L1_CACHE_BYTES;
2338 /* allocate memory for queue storage */
2339 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2340 j < nr_ids;) {
2341 if (!new_dev_maps)
2342 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2343 if (!new_dev_maps) {
2344 mutex_unlock(&xps_map_mutex);
2345 return -ENOMEM;
2348 tci = j * num_tc + tc;
2349 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2350 NULL;
2352 map = expand_xps_map(map, j, index, is_rxqs_map);
2353 if (!map)
2354 goto error;
2356 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359 if (!new_dev_maps)
2360 goto out_no_new_maps;
2362 if (!dev_maps) {
2363 /* Increment static keys at most once per type */
2364 static_key_slow_inc_cpuslocked(&xps_needed);
2365 if (is_rxqs_map)
2366 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2369 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2370 j < nr_ids;) {
2371 /* copy maps belonging to foreign traffic classes */
2372 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2373 /* fill in the new device map from the old device map */
2374 map = xmap_dereference(dev_maps->attr_map[tci]);
2375 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2378 /* We need to explicitly update tci as prevous loop
2379 * could break out early if dev_maps is NULL.
2381 tci = j * num_tc + tc;
2383 if (netif_attr_test_mask(j, mask, nr_ids) &&
2384 netif_attr_test_online(j, online_mask, nr_ids)) {
2385 /* add tx-queue to CPU/rx-queue maps */
2386 int pos = 0;
2388 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389 while ((pos < map->len) && (map->queues[pos] != index))
2390 pos++;
2392 if (pos == map->len)
2393 map->queues[map->len++] = index;
2394 #ifdef CONFIG_NUMA
2395 if (!is_rxqs_map) {
2396 if (numa_node_id == -2)
2397 numa_node_id = cpu_to_node(j);
2398 else if (numa_node_id != cpu_to_node(j))
2399 numa_node_id = -1;
2401 #endif
2402 } else if (dev_maps) {
2403 /* fill in the new device map from the old device map */
2404 map = xmap_dereference(dev_maps->attr_map[tci]);
2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2408 /* copy maps belonging to foreign traffic classes */
2409 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2410 /* fill in the new device map from the old device map */
2411 map = xmap_dereference(dev_maps->attr_map[tci]);
2412 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2416 if (is_rxqs_map)
2417 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2418 else
2419 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2421 /* Cleanup old maps */
2422 if (!dev_maps)
2423 goto out_no_old_maps;
2425 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426 j < nr_ids;) {
2427 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429 map = xmap_dereference(dev_maps->attr_map[tci]);
2430 if (map && map != new_map)
2431 kfree_rcu(map, rcu);
2435 kfree_rcu(dev_maps, rcu);
2437 out_no_old_maps:
2438 dev_maps = new_dev_maps;
2439 active = true;
2441 out_no_new_maps:
2442 if (!is_rxqs_map) {
2443 /* update Tx queue numa node */
2444 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2445 (numa_node_id >= 0) ?
2446 numa_node_id : NUMA_NO_NODE);
2449 if (!dev_maps)
2450 goto out_no_maps;
2452 /* removes tx-queue from unused CPUs/rx-queues */
2453 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454 j < nr_ids;) {
2455 for (i = tc, tci = j * num_tc; i--; tci++)
2456 active |= remove_xps_queue(dev_maps, tci, index);
2457 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2458 !netif_attr_test_online(j, online_mask, nr_ids))
2459 active |= remove_xps_queue(dev_maps, tci, index);
2460 for (i = num_tc - tc, tci++; --i; tci++)
2461 active |= remove_xps_queue(dev_maps, tci, index);
2464 /* free map if not active */
2465 if (!active)
2466 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2468 out_no_maps:
2469 mutex_unlock(&xps_map_mutex);
2471 return 0;
2472 error:
2473 /* remove any maps that we added */
2474 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2475 j < nr_ids;) {
2476 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2477 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2478 map = dev_maps ?
2479 xmap_dereference(dev_maps->attr_map[tci]) :
2480 NULL;
2481 if (new_map && new_map != map)
2482 kfree(new_map);
2486 mutex_unlock(&xps_map_mutex);
2488 kfree(new_dev_maps);
2489 return -ENOMEM;
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2493 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2494 u16 index)
2496 int ret;
2498 cpus_read_lock();
2499 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2500 cpus_read_unlock();
2502 return ret;
2504 EXPORT_SYMBOL(netif_set_xps_queue);
2506 #endif
2507 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2509 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2511 /* Unbind any subordinate channels */
2512 while (txq-- != &dev->_tx[0]) {
2513 if (txq->sb_dev)
2514 netdev_unbind_sb_channel(dev, txq->sb_dev);
2518 void netdev_reset_tc(struct net_device *dev)
2520 #ifdef CONFIG_XPS
2521 netif_reset_xps_queues_gt(dev, 0);
2522 #endif
2523 netdev_unbind_all_sb_channels(dev);
2525 /* Reset TC configuration of device */
2526 dev->num_tc = 0;
2527 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2528 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2530 EXPORT_SYMBOL(netdev_reset_tc);
2532 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2534 if (tc >= dev->num_tc)
2535 return -EINVAL;
2537 #ifdef CONFIG_XPS
2538 netif_reset_xps_queues(dev, offset, count);
2539 #endif
2540 dev->tc_to_txq[tc].count = count;
2541 dev->tc_to_txq[tc].offset = offset;
2542 return 0;
2544 EXPORT_SYMBOL(netdev_set_tc_queue);
2546 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2548 if (num_tc > TC_MAX_QUEUE)
2549 return -EINVAL;
2551 #ifdef CONFIG_XPS
2552 netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554 netdev_unbind_all_sb_channels(dev);
2556 dev->num_tc = num_tc;
2557 return 0;
2559 EXPORT_SYMBOL(netdev_set_num_tc);
2561 void netdev_unbind_sb_channel(struct net_device *dev,
2562 struct net_device *sb_dev)
2564 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2566 #ifdef CONFIG_XPS
2567 netif_reset_xps_queues_gt(sb_dev, 0);
2568 #endif
2569 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2570 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2572 while (txq-- != &dev->_tx[0]) {
2573 if (txq->sb_dev == sb_dev)
2574 txq->sb_dev = NULL;
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2579 int netdev_bind_sb_channel_queue(struct net_device *dev,
2580 struct net_device *sb_dev,
2581 u8 tc, u16 count, u16 offset)
2583 /* Make certain the sb_dev and dev are already configured */
2584 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2585 return -EINVAL;
2587 /* We cannot hand out queues we don't have */
2588 if ((offset + count) > dev->real_num_tx_queues)
2589 return -EINVAL;
2591 /* Record the mapping */
2592 sb_dev->tc_to_txq[tc].count = count;
2593 sb_dev->tc_to_txq[tc].offset = offset;
2595 /* Provide a way for Tx queue to find the tc_to_txq map or
2596 * XPS map for itself.
2598 while (count--)
2599 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2601 return 0;
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2605 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2607 /* Do not use a multiqueue device to represent a subordinate channel */
2608 if (netif_is_multiqueue(dev))
2609 return -ENODEV;
2611 /* We allow channels 1 - 32767 to be used for subordinate channels.
2612 * Channel 0 is meant to be "native" mode and used only to represent
2613 * the main root device. We allow writing 0 to reset the device back
2614 * to normal mode after being used as a subordinate channel.
2616 if (channel > S16_MAX)
2617 return -EINVAL;
2619 dev->num_tc = -channel;
2621 return 0;
2623 EXPORT_SYMBOL(netdev_set_sb_channel);
2626 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2631 bool disabling;
2632 int rc;
2634 disabling = txq < dev->real_num_tx_queues;
2636 if (txq < 1 || txq > dev->num_tx_queues)
2637 return -EINVAL;
2639 if (dev->reg_state == NETREG_REGISTERED ||
2640 dev->reg_state == NETREG_UNREGISTERING) {
2641 ASSERT_RTNL();
2643 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2644 txq);
2645 if (rc)
2646 return rc;
2648 if (dev->num_tc)
2649 netif_setup_tc(dev, txq);
2651 dev->real_num_tx_queues = txq;
2653 if (disabling) {
2654 synchronize_net();
2655 qdisc_reset_all_tx_gt(dev, txq);
2656 #ifdef CONFIG_XPS
2657 netif_reset_xps_queues_gt(dev, txq);
2658 #endif
2660 } else {
2661 dev->real_num_tx_queues = txq;
2664 return 0;
2666 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2668 #ifdef CONFIG_SYSFS
2670 * netif_set_real_num_rx_queues - set actual number of RX queues used
2671 * @dev: Network device
2672 * @rxq: Actual number of RX queues
2674 * This must be called either with the rtnl_lock held or before
2675 * registration of the net device. Returns 0 on success, or a
2676 * negative error code. If called before registration, it always
2677 * succeeds.
2679 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2681 int rc;
2683 if (rxq < 1 || rxq > dev->num_rx_queues)
2684 return -EINVAL;
2686 if (dev->reg_state == NETREG_REGISTERED) {
2687 ASSERT_RTNL();
2689 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2690 rxq);
2691 if (rc)
2692 return rc;
2695 dev->real_num_rx_queues = rxq;
2696 return 0;
2698 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2699 #endif
2702 * netif_get_num_default_rss_queues - default number of RSS queues
2704 * This routine should set an upper limit on the number of RSS queues
2705 * used by default by multiqueue devices.
2707 int netif_get_num_default_rss_queues(void)
2709 return is_kdump_kernel() ?
2710 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2712 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2714 static void __netif_reschedule(struct Qdisc *q)
2716 struct softnet_data *sd;
2717 unsigned long flags;
2719 local_irq_save(flags);
2720 sd = this_cpu_ptr(&softnet_data);
2721 q->next_sched = NULL;
2722 *sd->output_queue_tailp = q;
2723 sd->output_queue_tailp = &q->next_sched;
2724 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2725 local_irq_restore(flags);
2728 void __netif_schedule(struct Qdisc *q)
2730 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2731 __netif_reschedule(q);
2733 EXPORT_SYMBOL(__netif_schedule);
2735 struct dev_kfree_skb_cb {
2736 enum skb_free_reason reason;
2739 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2741 return (struct dev_kfree_skb_cb *)skb->cb;
2744 void netif_schedule_queue(struct netdev_queue *txq)
2746 rcu_read_lock();
2747 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2748 struct Qdisc *q = rcu_dereference(txq->qdisc);
2750 __netif_schedule(q);
2752 rcu_read_unlock();
2754 EXPORT_SYMBOL(netif_schedule_queue);
2756 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2758 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2759 struct Qdisc *q;
2761 rcu_read_lock();
2762 q = rcu_dereference(dev_queue->qdisc);
2763 __netif_schedule(q);
2764 rcu_read_unlock();
2767 EXPORT_SYMBOL(netif_tx_wake_queue);
2769 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2771 unsigned long flags;
2773 if (unlikely(!skb))
2774 return;
2776 if (likely(refcount_read(&skb->users) == 1)) {
2777 smp_rmb();
2778 refcount_set(&skb->users, 0);
2779 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2780 return;
2782 get_kfree_skb_cb(skb)->reason = reason;
2783 local_irq_save(flags);
2784 skb->next = __this_cpu_read(softnet_data.completion_queue);
2785 __this_cpu_write(softnet_data.completion_queue, skb);
2786 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2787 local_irq_restore(flags);
2789 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2791 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2793 if (in_irq() || irqs_disabled())
2794 __dev_kfree_skb_irq(skb, reason);
2795 else
2796 dev_kfree_skb(skb);
2798 EXPORT_SYMBOL(__dev_kfree_skb_any);
2802 * netif_device_detach - mark device as removed
2803 * @dev: network device
2805 * Mark device as removed from system and therefore no longer available.
2807 void netif_device_detach(struct net_device *dev)
2809 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2810 netif_running(dev)) {
2811 netif_tx_stop_all_queues(dev);
2814 EXPORT_SYMBOL(netif_device_detach);
2817 * netif_device_attach - mark device as attached
2818 * @dev: network device
2820 * Mark device as attached from system and restart if needed.
2822 void netif_device_attach(struct net_device *dev)
2824 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2825 netif_running(dev)) {
2826 netif_tx_wake_all_queues(dev);
2827 __netdev_watchdog_up(dev);
2830 EXPORT_SYMBOL(netif_device_attach);
2833 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2834 * to be used as a distribution range.
2836 static u16 skb_tx_hash(const struct net_device *dev,
2837 const struct net_device *sb_dev,
2838 struct sk_buff *skb)
2840 u32 hash;
2841 u16 qoffset = 0;
2842 u16 qcount = dev->real_num_tx_queues;
2844 if (dev->num_tc) {
2845 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2847 qoffset = sb_dev->tc_to_txq[tc].offset;
2848 qcount = sb_dev->tc_to_txq[tc].count;
2851 if (skb_rx_queue_recorded(skb)) {
2852 hash = skb_get_rx_queue(skb);
2853 if (hash >= qoffset)
2854 hash -= qoffset;
2855 while (unlikely(hash >= qcount))
2856 hash -= qcount;
2857 return hash + qoffset;
2860 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2863 static void skb_warn_bad_offload(const struct sk_buff *skb)
2865 static const netdev_features_t null_features;
2866 struct net_device *dev = skb->dev;
2867 const char *name = "";
2869 if (!net_ratelimit())
2870 return;
2872 if (dev) {
2873 if (dev->dev.parent)
2874 name = dev_driver_string(dev->dev.parent);
2875 else
2876 name = netdev_name(dev);
2878 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2879 "gso_type=%d ip_summed=%d\n",
2880 name, dev ? &dev->features : &null_features,
2881 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2882 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2883 skb_shinfo(skb)->gso_type, skb->ip_summed);
2887 * Invalidate hardware checksum when packet is to be mangled, and
2888 * complete checksum manually on outgoing path.
2890 int skb_checksum_help(struct sk_buff *skb)
2892 __wsum csum;
2893 int ret = 0, offset;
2895 if (skb->ip_summed == CHECKSUM_COMPLETE)
2896 goto out_set_summed;
2898 if (unlikely(skb_shinfo(skb)->gso_size)) {
2899 skb_warn_bad_offload(skb);
2900 return -EINVAL;
2903 /* Before computing a checksum, we should make sure no frag could
2904 * be modified by an external entity : checksum could be wrong.
2906 if (skb_has_shared_frag(skb)) {
2907 ret = __skb_linearize(skb);
2908 if (ret)
2909 goto out;
2912 offset = skb_checksum_start_offset(skb);
2913 BUG_ON(offset >= skb_headlen(skb));
2914 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2916 offset += skb->csum_offset;
2917 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2919 if (skb_cloned(skb) &&
2920 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2921 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922 if (ret)
2923 goto out;
2926 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2927 out_set_summed:
2928 skb->ip_summed = CHECKSUM_NONE;
2929 out:
2930 return ret;
2932 EXPORT_SYMBOL(skb_checksum_help);
2934 int skb_crc32c_csum_help(struct sk_buff *skb)
2936 __le32 crc32c_csum;
2937 int ret = 0, offset, start;
2939 if (skb->ip_summed != CHECKSUM_PARTIAL)
2940 goto out;
2942 if (unlikely(skb_is_gso(skb)))
2943 goto out;
2945 /* Before computing a checksum, we should make sure no frag could
2946 * be modified by an external entity : checksum could be wrong.
2948 if (unlikely(skb_has_shared_frag(skb))) {
2949 ret = __skb_linearize(skb);
2950 if (ret)
2951 goto out;
2953 start = skb_checksum_start_offset(skb);
2954 offset = start + offsetof(struct sctphdr, checksum);
2955 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2956 ret = -EINVAL;
2957 goto out;
2959 if (skb_cloned(skb) &&
2960 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2961 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962 if (ret)
2963 goto out;
2965 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2966 skb->len - start, ~(__u32)0,
2967 crc32c_csum_stub));
2968 *(__le32 *)(skb->data + offset) = crc32c_csum;
2969 skb->ip_summed = CHECKSUM_NONE;
2970 skb->csum_not_inet = 0;
2971 out:
2972 return ret;
2975 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2977 __be16 type = skb->protocol;
2979 /* Tunnel gso handlers can set protocol to ethernet. */
2980 if (type == htons(ETH_P_TEB)) {
2981 struct ethhdr *eth;
2983 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2984 return 0;
2986 eth = (struct ethhdr *)skb->data;
2987 type = eth->h_proto;
2990 return __vlan_get_protocol(skb, type, depth);
2994 * skb_mac_gso_segment - mac layer segmentation handler.
2995 * @skb: buffer to segment
2996 * @features: features for the output path (see dev->features)
2998 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2999 netdev_features_t features)
3001 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3002 struct packet_offload *ptype;
3003 int vlan_depth = skb->mac_len;
3004 __be16 type = skb_network_protocol(skb, &vlan_depth);
3006 if (unlikely(!type))
3007 return ERR_PTR(-EINVAL);
3009 __skb_pull(skb, vlan_depth);
3011 rcu_read_lock();
3012 list_for_each_entry_rcu(ptype, &offload_base, list) {
3013 if (ptype->type == type && ptype->callbacks.gso_segment) {
3014 segs = ptype->callbacks.gso_segment(skb, features);
3015 break;
3018 rcu_read_unlock();
3020 __skb_push(skb, skb->data - skb_mac_header(skb));
3022 return segs;
3024 EXPORT_SYMBOL(skb_mac_gso_segment);
3027 /* openvswitch calls this on rx path, so we need a different check.
3029 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3031 if (tx_path)
3032 return skb->ip_summed != CHECKSUM_PARTIAL &&
3033 skb->ip_summed != CHECKSUM_UNNECESSARY;
3035 return skb->ip_summed == CHECKSUM_NONE;
3039 * __skb_gso_segment - Perform segmentation on skb.
3040 * @skb: buffer to segment
3041 * @features: features for the output path (see dev->features)
3042 * @tx_path: whether it is called in TX path
3044 * This function segments the given skb and returns a list of segments.
3046 * It may return NULL if the skb requires no segmentation. This is
3047 * only possible when GSO is used for verifying header integrity.
3049 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3052 netdev_features_t features, bool tx_path)
3054 struct sk_buff *segs;
3056 if (unlikely(skb_needs_check(skb, tx_path))) {
3057 int err;
3059 /* We're going to init ->check field in TCP or UDP header */
3060 err = skb_cow_head(skb, 0);
3061 if (err < 0)
3062 return ERR_PTR(err);
3065 /* Only report GSO partial support if it will enable us to
3066 * support segmentation on this frame without needing additional
3067 * work.
3069 if (features & NETIF_F_GSO_PARTIAL) {
3070 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3071 struct net_device *dev = skb->dev;
3073 partial_features |= dev->features & dev->gso_partial_features;
3074 if (!skb_gso_ok(skb, features | partial_features))
3075 features &= ~NETIF_F_GSO_PARTIAL;
3078 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3079 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3081 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3082 SKB_GSO_CB(skb)->encap_level = 0;
3084 skb_reset_mac_header(skb);
3085 skb_reset_mac_len(skb);
3087 segs = skb_mac_gso_segment(skb, features);
3089 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3090 skb_warn_bad_offload(skb);
3092 return segs;
3094 EXPORT_SYMBOL(__skb_gso_segment);
3096 /* Take action when hardware reception checksum errors are detected. */
3097 #ifdef CONFIG_BUG
3098 void netdev_rx_csum_fault(struct net_device *dev)
3100 if (net_ratelimit()) {
3101 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3102 dump_stack();
3105 EXPORT_SYMBOL(netdev_rx_csum_fault);
3106 #endif
3108 /* XXX: check that highmem exists at all on the given machine. */
3109 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3111 #ifdef CONFIG_HIGHMEM
3112 int i;
3114 if (!(dev->features & NETIF_F_HIGHDMA)) {
3115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3118 if (PageHighMem(skb_frag_page(frag)))
3119 return 1;
3122 #endif
3123 return 0;
3126 /* If MPLS offload request, verify we are testing hardware MPLS features
3127 * instead of standard features for the netdev.
3129 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3130 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3131 netdev_features_t features,
3132 __be16 type)
3134 if (eth_p_mpls(type))
3135 features &= skb->dev->mpls_features;
3137 return features;
3139 #else
3140 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3141 netdev_features_t features,
3142 __be16 type)
3144 return features;
3146 #endif
3148 static netdev_features_t harmonize_features(struct sk_buff *skb,
3149 netdev_features_t features)
3151 int tmp;
3152 __be16 type;
3154 type = skb_network_protocol(skb, &tmp);
3155 features = net_mpls_features(skb, features, type);
3157 if (skb->ip_summed != CHECKSUM_NONE &&
3158 !can_checksum_protocol(features, type)) {
3159 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3161 if (illegal_highdma(skb->dev, skb))
3162 features &= ~NETIF_F_SG;
3164 return features;
3167 netdev_features_t passthru_features_check(struct sk_buff *skb,
3168 struct net_device *dev,
3169 netdev_features_t features)
3171 return features;
3173 EXPORT_SYMBOL(passthru_features_check);
3175 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3176 struct net_device *dev,
3177 netdev_features_t features)
3179 return vlan_features_check(skb, features);
3182 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3183 struct net_device *dev,
3184 netdev_features_t features)
3186 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3188 if (gso_segs > dev->gso_max_segs)
3189 return features & ~NETIF_F_GSO_MASK;
3191 /* Support for GSO partial features requires software
3192 * intervention before we can actually process the packets
3193 * so we need to strip support for any partial features now
3194 * and we can pull them back in after we have partially
3195 * segmented the frame.
3197 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3198 features &= ~dev->gso_partial_features;
3200 /* Make sure to clear the IPv4 ID mangling feature if the
3201 * IPv4 header has the potential to be fragmented.
3203 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3204 struct iphdr *iph = skb->encapsulation ?
3205 inner_ip_hdr(skb) : ip_hdr(skb);
3207 if (!(iph->frag_off & htons(IP_DF)))
3208 features &= ~NETIF_F_TSO_MANGLEID;
3211 return features;
3214 netdev_features_t netif_skb_features(struct sk_buff *skb)
3216 struct net_device *dev = skb->dev;
3217 netdev_features_t features = dev->features;
3219 if (skb_is_gso(skb))
3220 features = gso_features_check(skb, dev, features);
3222 /* If encapsulation offload request, verify we are testing
3223 * hardware encapsulation features instead of standard
3224 * features for the netdev
3226 if (skb->encapsulation)
3227 features &= dev->hw_enc_features;
3229 if (skb_vlan_tagged(skb))
3230 features = netdev_intersect_features(features,
3231 dev->vlan_features |
3232 NETIF_F_HW_VLAN_CTAG_TX |
3233 NETIF_F_HW_VLAN_STAG_TX);
3235 if (dev->netdev_ops->ndo_features_check)
3236 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3237 features);
3238 else
3239 features &= dflt_features_check(skb, dev, features);
3241 return harmonize_features(skb, features);
3243 EXPORT_SYMBOL(netif_skb_features);
3245 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3246 struct netdev_queue *txq, bool more)
3248 unsigned int len;
3249 int rc;
3251 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3252 dev_queue_xmit_nit(skb, dev);
3254 len = skb->len;
3255 trace_net_dev_start_xmit(skb, dev);
3256 rc = netdev_start_xmit(skb, dev, txq, more);
3257 trace_net_dev_xmit(skb, rc, dev, len);
3259 return rc;
3262 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3263 struct netdev_queue *txq, int *ret)
3265 struct sk_buff *skb = first;
3266 int rc = NETDEV_TX_OK;
3268 while (skb) {
3269 struct sk_buff *next = skb->next;
3271 skb->next = NULL;
3272 rc = xmit_one(skb, dev, txq, next != NULL);
3273 if (unlikely(!dev_xmit_complete(rc))) {
3274 skb->next = next;
3275 goto out;
3278 skb = next;
3279 if (netif_tx_queue_stopped(txq) && skb) {
3280 rc = NETDEV_TX_BUSY;
3281 break;
3285 out:
3286 *ret = rc;
3287 return skb;
3290 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3291 netdev_features_t features)
3293 if (skb_vlan_tag_present(skb) &&
3294 !vlan_hw_offload_capable(features, skb->vlan_proto))
3295 skb = __vlan_hwaccel_push_inside(skb);
3296 return skb;
3299 int skb_csum_hwoffload_help(struct sk_buff *skb,
3300 const netdev_features_t features)
3302 if (unlikely(skb->csum_not_inet))
3303 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3304 skb_crc32c_csum_help(skb);
3306 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3308 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3310 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3312 netdev_features_t features;
3314 features = netif_skb_features(skb);
3315 skb = validate_xmit_vlan(skb, features);
3316 if (unlikely(!skb))
3317 goto out_null;
3319 skb = sk_validate_xmit_skb(skb, dev);
3320 if (unlikely(!skb))
3321 goto out_null;
3323 if (netif_needs_gso(skb, features)) {
3324 struct sk_buff *segs;
3326 segs = skb_gso_segment(skb, features);
3327 if (IS_ERR(segs)) {
3328 goto out_kfree_skb;
3329 } else if (segs) {
3330 consume_skb(skb);
3331 skb = segs;
3333 } else {
3334 if (skb_needs_linearize(skb, features) &&
3335 __skb_linearize(skb))
3336 goto out_kfree_skb;
3338 /* If packet is not checksummed and device does not
3339 * support checksumming for this protocol, complete
3340 * checksumming here.
3342 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3343 if (skb->encapsulation)
3344 skb_set_inner_transport_header(skb,
3345 skb_checksum_start_offset(skb));
3346 else
3347 skb_set_transport_header(skb,
3348 skb_checksum_start_offset(skb));
3349 if (skb_csum_hwoffload_help(skb, features))
3350 goto out_kfree_skb;
3354 skb = validate_xmit_xfrm(skb, features, again);
3356 return skb;
3358 out_kfree_skb:
3359 kfree_skb(skb);
3360 out_null:
3361 atomic_long_inc(&dev->tx_dropped);
3362 return NULL;
3365 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3367 struct sk_buff *next, *head = NULL, *tail;
3369 for (; skb != NULL; skb = next) {
3370 next = skb->next;
3371 skb->next = NULL;
3373 /* in case skb wont be segmented, point to itself */
3374 skb->prev = skb;
3376 skb = validate_xmit_skb(skb, dev, again);
3377 if (!skb)
3378 continue;
3380 if (!head)
3381 head = skb;
3382 else
3383 tail->next = skb;
3384 /* If skb was segmented, skb->prev points to
3385 * the last segment. If not, it still contains skb.
3387 tail = skb->prev;
3389 return head;
3391 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3393 static void qdisc_pkt_len_init(struct sk_buff *skb)
3395 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3397 qdisc_skb_cb(skb)->pkt_len = skb->len;
3399 /* To get more precise estimation of bytes sent on wire,
3400 * we add to pkt_len the headers size of all segments
3402 if (shinfo->gso_size) {
3403 unsigned int hdr_len;
3404 u16 gso_segs = shinfo->gso_segs;
3406 /* mac layer + network layer */
3407 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3409 /* + transport layer */
3410 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3411 const struct tcphdr *th;
3412 struct tcphdr _tcphdr;
3414 th = skb_header_pointer(skb, skb_transport_offset(skb),
3415 sizeof(_tcphdr), &_tcphdr);
3416 if (likely(th))
3417 hdr_len += __tcp_hdrlen(th);
3418 } else {
3419 struct udphdr _udphdr;
3421 if (skb_header_pointer(skb, skb_transport_offset(skb),
3422 sizeof(_udphdr), &_udphdr))
3423 hdr_len += sizeof(struct udphdr);
3426 if (shinfo->gso_type & SKB_GSO_DODGY)
3427 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3428 shinfo->gso_size);
3430 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3434 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3435 struct net_device *dev,
3436 struct netdev_queue *txq)
3438 spinlock_t *root_lock = qdisc_lock(q);
3439 struct sk_buff *to_free = NULL;
3440 bool contended;
3441 int rc;
3443 qdisc_calculate_pkt_len(skb, q);
3445 if (q->flags & TCQ_F_NOLOCK) {
3446 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3447 __qdisc_drop(skb, &to_free);
3448 rc = NET_XMIT_DROP;
3449 } else {
3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 qdisc_run(q);
3454 if (unlikely(to_free))
3455 kfree_skb_list(to_free);
3456 return rc;
3460 * Heuristic to force contended enqueues to serialize on a
3461 * separate lock before trying to get qdisc main lock.
3462 * This permits qdisc->running owner to get the lock more
3463 * often and dequeue packets faster.
3465 contended = qdisc_is_running(q);
3466 if (unlikely(contended))
3467 spin_lock(&q->busylock);
3469 spin_lock(root_lock);
3470 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471 __qdisc_drop(skb, &to_free);
3472 rc = NET_XMIT_DROP;
3473 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3474 qdisc_run_begin(q)) {
3476 * This is a work-conserving queue; there are no old skbs
3477 * waiting to be sent out; and the qdisc is not running -
3478 * xmit the skb directly.
3481 qdisc_bstats_update(q, skb);
3483 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3484 if (unlikely(contended)) {
3485 spin_unlock(&q->busylock);
3486 contended = false;
3488 __qdisc_run(q);
3491 qdisc_run_end(q);
3492 rc = NET_XMIT_SUCCESS;
3493 } else {
3494 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3495 if (qdisc_run_begin(q)) {
3496 if (unlikely(contended)) {
3497 spin_unlock(&q->busylock);
3498 contended = false;
3500 __qdisc_run(q);
3501 qdisc_run_end(q);
3504 spin_unlock(root_lock);
3505 if (unlikely(to_free))
3506 kfree_skb_list(to_free);
3507 if (unlikely(contended))
3508 spin_unlock(&q->busylock);
3509 return rc;
3512 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3513 static void skb_update_prio(struct sk_buff *skb)
3515 const struct netprio_map *map;
3516 const struct sock *sk;
3517 unsigned int prioidx;
3519 if (skb->priority)
3520 return;
3521 map = rcu_dereference_bh(skb->dev->priomap);
3522 if (!map)
3523 return;
3524 sk = skb_to_full_sk(skb);
3525 if (!sk)
3526 return;
3528 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3530 if (prioidx < map->priomap_len)
3531 skb->priority = map->priomap[prioidx];
3533 #else
3534 #define skb_update_prio(skb)
3535 #endif
3538 * dev_loopback_xmit - loop back @skb
3539 * @net: network namespace this loopback is happening in
3540 * @sk: sk needed to be a netfilter okfn
3541 * @skb: buffer to transmit
3543 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3545 skb_reset_mac_header(skb);
3546 __skb_pull(skb, skb_network_offset(skb));
3547 skb->pkt_type = PACKET_LOOPBACK;
3548 skb->ip_summed = CHECKSUM_UNNECESSARY;
3549 WARN_ON(!skb_dst(skb));
3550 skb_dst_force(skb);
3551 netif_rx_ni(skb);
3552 return 0;
3554 EXPORT_SYMBOL(dev_loopback_xmit);
3556 #ifdef CONFIG_NET_EGRESS
3557 static struct sk_buff *
3558 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3560 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3561 struct tcf_result cl_res;
3563 if (!miniq)
3564 return skb;
3566 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3567 mini_qdisc_bstats_cpu_update(miniq, skb);
3569 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3570 case TC_ACT_OK:
3571 case TC_ACT_RECLASSIFY:
3572 skb->tc_index = TC_H_MIN(cl_res.classid);
3573 break;
3574 case TC_ACT_SHOT:
3575 mini_qdisc_qstats_cpu_drop(miniq);
3576 *ret = NET_XMIT_DROP;
3577 kfree_skb(skb);
3578 return NULL;
3579 case TC_ACT_STOLEN:
3580 case TC_ACT_QUEUED:
3581 case TC_ACT_TRAP:
3582 *ret = NET_XMIT_SUCCESS;
3583 consume_skb(skb);
3584 return NULL;
3585 case TC_ACT_REDIRECT:
3586 /* No need to push/pop skb's mac_header here on egress! */
3587 skb_do_redirect(skb);
3588 *ret = NET_XMIT_SUCCESS;
3589 return NULL;
3590 default:
3591 break;
3594 return skb;
3596 #endif /* CONFIG_NET_EGRESS */
3598 #ifdef CONFIG_XPS
3599 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3600 struct xps_dev_maps *dev_maps, unsigned int tci)
3602 struct xps_map *map;
3603 int queue_index = -1;
3605 if (dev->num_tc) {
3606 tci *= dev->num_tc;
3607 tci += netdev_get_prio_tc_map(dev, skb->priority);
3610 map = rcu_dereference(dev_maps->attr_map[tci]);
3611 if (map) {
3612 if (map->len == 1)
3613 queue_index = map->queues[0];
3614 else
3615 queue_index = map->queues[reciprocal_scale(
3616 skb_get_hash(skb), map->len)];
3617 if (unlikely(queue_index >= dev->real_num_tx_queues))
3618 queue_index = -1;
3620 return queue_index;
3622 #endif
3624 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3625 struct sk_buff *skb)
3627 #ifdef CONFIG_XPS
3628 struct xps_dev_maps *dev_maps;
3629 struct sock *sk = skb->sk;
3630 int queue_index = -1;
3632 if (!static_key_false(&xps_needed))
3633 return -1;
3635 rcu_read_lock();
3636 if (!static_key_false(&xps_rxqs_needed))
3637 goto get_cpus_map;
3639 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3640 if (dev_maps) {
3641 int tci = sk_rx_queue_get(sk);
3643 if (tci >= 0 && tci < dev->num_rx_queues)
3644 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3645 tci);
3648 get_cpus_map:
3649 if (queue_index < 0) {
3650 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3651 if (dev_maps) {
3652 unsigned int tci = skb->sender_cpu - 1;
3654 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3655 tci);
3658 rcu_read_unlock();
3660 return queue_index;
3661 #else
3662 return -1;
3663 #endif
3666 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3667 struct net_device *sb_dev,
3668 select_queue_fallback_t fallback)
3670 return 0;
3672 EXPORT_SYMBOL(dev_pick_tx_zero);
3674 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3675 struct net_device *sb_dev,
3676 select_queue_fallback_t fallback)
3678 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3680 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3682 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3683 struct net_device *sb_dev)
3685 struct sock *sk = skb->sk;
3686 int queue_index = sk_tx_queue_get(sk);
3688 sb_dev = sb_dev ? : dev;
3690 if (queue_index < 0 || skb->ooo_okay ||
3691 queue_index >= dev->real_num_tx_queues) {
3692 int new_index = get_xps_queue(dev, sb_dev, skb);
3694 if (new_index < 0)
3695 new_index = skb_tx_hash(dev, sb_dev, skb);
3697 if (queue_index != new_index && sk &&
3698 sk_fullsock(sk) &&
3699 rcu_access_pointer(sk->sk_dst_cache))
3700 sk_tx_queue_set(sk, new_index);
3702 queue_index = new_index;
3705 return queue_index;
3708 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3709 struct sk_buff *skb,
3710 struct net_device *sb_dev)
3712 int queue_index = 0;
3714 #ifdef CONFIG_XPS
3715 u32 sender_cpu = skb->sender_cpu - 1;
3717 if (sender_cpu >= (u32)NR_CPUS)
3718 skb->sender_cpu = raw_smp_processor_id() + 1;
3719 #endif
3721 if (dev->real_num_tx_queues != 1) {
3722 const struct net_device_ops *ops = dev->netdev_ops;
3724 if (ops->ndo_select_queue)
3725 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3726 __netdev_pick_tx);
3727 else
3728 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3730 queue_index = netdev_cap_txqueue(dev, queue_index);
3733 skb_set_queue_mapping(skb, queue_index);
3734 return netdev_get_tx_queue(dev, queue_index);
3738 * __dev_queue_xmit - transmit a buffer
3739 * @skb: buffer to transmit
3740 * @sb_dev: suboordinate device used for L2 forwarding offload
3742 * Queue a buffer for transmission to a network device. The caller must
3743 * have set the device and priority and built the buffer before calling
3744 * this function. The function can be called from an interrupt.
3746 * A negative errno code is returned on a failure. A success does not
3747 * guarantee the frame will be transmitted as it may be dropped due
3748 * to congestion or traffic shaping.
3750 * -----------------------------------------------------------------------------------
3751 * I notice this method can also return errors from the queue disciplines,
3752 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3753 * be positive.
3755 * Regardless of the return value, the skb is consumed, so it is currently
3756 * difficult to retry a send to this method. (You can bump the ref count
3757 * before sending to hold a reference for retry if you are careful.)
3759 * When calling this method, interrupts MUST be enabled. This is because
3760 * the BH enable code must have IRQs enabled so that it will not deadlock.
3761 * --BLG
3763 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3765 struct net_device *dev = skb->dev;
3766 struct netdev_queue *txq;
3767 struct Qdisc *q;
3768 int rc = -ENOMEM;
3769 bool again = false;
3771 skb_reset_mac_header(skb);
3773 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3774 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3776 /* Disable soft irqs for various locks below. Also
3777 * stops preemption for RCU.
3779 rcu_read_lock_bh();
3781 skb_update_prio(skb);
3783 qdisc_pkt_len_init(skb);
3784 #ifdef CONFIG_NET_CLS_ACT
3785 skb->tc_at_ingress = 0;
3786 # ifdef CONFIG_NET_EGRESS
3787 if (static_branch_unlikely(&egress_needed_key)) {
3788 skb = sch_handle_egress(skb, &rc, dev);
3789 if (!skb)
3790 goto out;
3792 # endif
3793 #endif
3794 /* If device/qdisc don't need skb->dst, release it right now while
3795 * its hot in this cpu cache.
3797 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3798 skb_dst_drop(skb);
3799 else
3800 skb_dst_force(skb);
3802 txq = netdev_pick_tx(dev, skb, sb_dev);
3803 q = rcu_dereference_bh(txq->qdisc);
3805 trace_net_dev_queue(skb);
3806 if (q->enqueue) {
3807 rc = __dev_xmit_skb(skb, q, dev, txq);
3808 goto out;
3811 /* The device has no queue. Common case for software devices:
3812 * loopback, all the sorts of tunnels...
3814 * Really, it is unlikely that netif_tx_lock protection is necessary
3815 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3816 * counters.)
3817 * However, it is possible, that they rely on protection
3818 * made by us here.
3820 * Check this and shot the lock. It is not prone from deadlocks.
3821 *Either shot noqueue qdisc, it is even simpler 8)
3823 if (dev->flags & IFF_UP) {
3824 int cpu = smp_processor_id(); /* ok because BHs are off */
3826 if (txq->xmit_lock_owner != cpu) {
3827 if (dev_xmit_recursion())
3828 goto recursion_alert;
3830 skb = validate_xmit_skb(skb, dev, &again);
3831 if (!skb)
3832 goto out;
3834 HARD_TX_LOCK(dev, txq, cpu);
3836 if (!netif_xmit_stopped(txq)) {
3837 dev_xmit_recursion_inc();
3838 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839 dev_xmit_recursion_dec();
3840 if (dev_xmit_complete(rc)) {
3841 HARD_TX_UNLOCK(dev, txq);
3842 goto out;
3845 HARD_TX_UNLOCK(dev, txq);
3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847 dev->name);
3848 } else {
3849 /* Recursion is detected! It is possible,
3850 * unfortunately
3852 recursion_alert:
3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854 dev->name);
3858 rc = -ENETDOWN;
3859 rcu_read_unlock_bh();
3861 atomic_long_inc(&dev->tx_dropped);
3862 kfree_skb_list(skb);
3863 return rc;
3864 out:
3865 rcu_read_unlock_bh();
3866 return rc;
3869 int dev_queue_xmit(struct sk_buff *skb)
3871 return __dev_queue_xmit(skb, NULL);
3873 EXPORT_SYMBOL(dev_queue_xmit);
3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3877 return __dev_queue_xmit(skb, sb_dev);
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3883 struct net_device *dev = skb->dev;
3884 struct sk_buff *orig_skb = skb;
3885 struct netdev_queue *txq;
3886 int ret = NETDEV_TX_BUSY;
3887 bool again = false;
3889 if (unlikely(!netif_running(dev) ||
3890 !netif_carrier_ok(dev)))
3891 goto drop;
3893 skb = validate_xmit_skb_list(skb, dev, &again);
3894 if (skb != orig_skb)
3895 goto drop;
3897 skb_set_queue_mapping(skb, queue_id);
3898 txq = skb_get_tx_queue(dev, skb);
3900 local_bh_disable();
3902 dev_xmit_recursion_inc();
3903 HARD_TX_LOCK(dev, txq, smp_processor_id());
3904 if (!netif_xmit_frozen_or_drv_stopped(txq))
3905 ret = netdev_start_xmit(skb, dev, txq, false);
3906 HARD_TX_UNLOCK(dev, txq);
3907 dev_xmit_recursion_dec();
3909 local_bh_enable();
3911 if (!dev_xmit_complete(ret))
3912 kfree_skb(skb);
3914 return ret;
3915 drop:
3916 atomic_long_inc(&dev->tx_dropped);
3917 kfree_skb_list(skb);
3918 return NET_XMIT_DROP;
3920 EXPORT_SYMBOL(dev_direct_xmit);
3922 /*************************************************************************
3923 * Receiver routines
3924 *************************************************************************/
3926 int netdev_max_backlog __read_mostly = 1000;
3927 EXPORT_SYMBOL(netdev_max_backlog);
3929 int netdev_tstamp_prequeue __read_mostly = 1;
3930 int netdev_budget __read_mostly = 300;
3931 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3932 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3933 int weight_p __read_mostly = 64; /* old backlog weight */
3934 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3935 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3936 int dev_rx_weight __read_mostly = 64;
3937 int dev_tx_weight __read_mostly = 64;
3939 /* Called with irq disabled */
3940 static inline void ____napi_schedule(struct softnet_data *sd,
3941 struct napi_struct *napi)
3943 list_add_tail(&napi->poll_list, &sd->poll_list);
3944 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3947 #ifdef CONFIG_RPS
3949 /* One global table that all flow-based protocols share. */
3950 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3951 EXPORT_SYMBOL(rps_sock_flow_table);
3952 u32 rps_cpu_mask __read_mostly;
3953 EXPORT_SYMBOL(rps_cpu_mask);
3955 struct static_key rps_needed __read_mostly;
3956 EXPORT_SYMBOL(rps_needed);
3957 struct static_key rfs_needed __read_mostly;
3958 EXPORT_SYMBOL(rfs_needed);
3960 static struct rps_dev_flow *
3961 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3962 struct rps_dev_flow *rflow, u16 next_cpu)
3964 if (next_cpu < nr_cpu_ids) {
3965 #ifdef CONFIG_RFS_ACCEL
3966 struct netdev_rx_queue *rxqueue;
3967 struct rps_dev_flow_table *flow_table;
3968 struct rps_dev_flow *old_rflow;
3969 u32 flow_id;
3970 u16 rxq_index;
3971 int rc;
3973 /* Should we steer this flow to a different hardware queue? */
3974 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3975 !(dev->features & NETIF_F_NTUPLE))
3976 goto out;
3977 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3978 if (rxq_index == skb_get_rx_queue(skb))
3979 goto out;
3981 rxqueue = dev->_rx + rxq_index;
3982 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3983 if (!flow_table)
3984 goto out;
3985 flow_id = skb_get_hash(skb) & flow_table->mask;
3986 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3987 rxq_index, flow_id);
3988 if (rc < 0)
3989 goto out;
3990 old_rflow = rflow;
3991 rflow = &flow_table->flows[flow_id];
3992 rflow->filter = rc;
3993 if (old_rflow->filter == rflow->filter)
3994 old_rflow->filter = RPS_NO_FILTER;
3995 out:
3996 #endif
3997 rflow->last_qtail =
3998 per_cpu(softnet_data, next_cpu).input_queue_head;
4001 rflow->cpu = next_cpu;
4002 return rflow;
4006 * get_rps_cpu is called from netif_receive_skb and returns the target
4007 * CPU from the RPS map of the receiving queue for a given skb.
4008 * rcu_read_lock must be held on entry.
4010 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4011 struct rps_dev_flow **rflowp)
4013 const struct rps_sock_flow_table *sock_flow_table;
4014 struct netdev_rx_queue *rxqueue = dev->_rx;
4015 struct rps_dev_flow_table *flow_table;
4016 struct rps_map *map;
4017 int cpu = -1;
4018 u32 tcpu;
4019 u32 hash;
4021 if (skb_rx_queue_recorded(skb)) {
4022 u16 index = skb_get_rx_queue(skb);
4024 if (unlikely(index >= dev->real_num_rx_queues)) {
4025 WARN_ONCE(dev->real_num_rx_queues > 1,
4026 "%s received packet on queue %u, but number "
4027 "of RX queues is %u\n",
4028 dev->name, index, dev->real_num_rx_queues);
4029 goto done;
4031 rxqueue += index;
4034 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4036 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4037 map = rcu_dereference(rxqueue->rps_map);
4038 if (!flow_table && !map)
4039 goto done;
4041 skb_reset_network_header(skb);
4042 hash = skb_get_hash(skb);
4043 if (!hash)
4044 goto done;
4046 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4047 if (flow_table && sock_flow_table) {
4048 struct rps_dev_flow *rflow;
4049 u32 next_cpu;
4050 u32 ident;
4052 /* First check into global flow table if there is a match */
4053 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4054 if ((ident ^ hash) & ~rps_cpu_mask)
4055 goto try_rps;
4057 next_cpu = ident & rps_cpu_mask;
4059 /* OK, now we know there is a match,
4060 * we can look at the local (per receive queue) flow table
4062 rflow = &flow_table->flows[hash & flow_table->mask];
4063 tcpu = rflow->cpu;
4066 * If the desired CPU (where last recvmsg was done) is
4067 * different from current CPU (one in the rx-queue flow
4068 * table entry), switch if one of the following holds:
4069 * - Current CPU is unset (>= nr_cpu_ids).
4070 * - Current CPU is offline.
4071 * - The current CPU's queue tail has advanced beyond the
4072 * last packet that was enqueued using this table entry.
4073 * This guarantees that all previous packets for the flow
4074 * have been dequeued, thus preserving in order delivery.
4076 if (unlikely(tcpu != next_cpu) &&
4077 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4078 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4079 rflow->last_qtail)) >= 0)) {
4080 tcpu = next_cpu;
4081 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4084 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4085 *rflowp = rflow;
4086 cpu = tcpu;
4087 goto done;
4091 try_rps:
4093 if (map) {
4094 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4095 if (cpu_online(tcpu)) {
4096 cpu = tcpu;
4097 goto done;
4101 done:
4102 return cpu;
4105 #ifdef CONFIG_RFS_ACCEL
4108 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4109 * @dev: Device on which the filter was set
4110 * @rxq_index: RX queue index
4111 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4112 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4114 * Drivers that implement ndo_rx_flow_steer() should periodically call
4115 * this function for each installed filter and remove the filters for
4116 * which it returns %true.
4118 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4119 u32 flow_id, u16 filter_id)
4121 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4122 struct rps_dev_flow_table *flow_table;
4123 struct rps_dev_flow *rflow;
4124 bool expire = true;
4125 unsigned int cpu;
4127 rcu_read_lock();
4128 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4129 if (flow_table && flow_id <= flow_table->mask) {
4130 rflow = &flow_table->flows[flow_id];
4131 cpu = READ_ONCE(rflow->cpu);
4132 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4133 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4134 rflow->last_qtail) <
4135 (int)(10 * flow_table->mask)))
4136 expire = false;
4138 rcu_read_unlock();
4139 return expire;
4141 EXPORT_SYMBOL(rps_may_expire_flow);
4143 #endif /* CONFIG_RFS_ACCEL */
4145 /* Called from hardirq (IPI) context */
4146 static void rps_trigger_softirq(void *data)
4148 struct softnet_data *sd = data;
4150 ____napi_schedule(sd, &sd->backlog);
4151 sd->received_rps++;
4154 #endif /* CONFIG_RPS */
4157 * Check if this softnet_data structure is another cpu one
4158 * If yes, queue it to our IPI list and return 1
4159 * If no, return 0
4161 static int rps_ipi_queued(struct softnet_data *sd)
4163 #ifdef CONFIG_RPS
4164 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4166 if (sd != mysd) {
4167 sd->rps_ipi_next = mysd->rps_ipi_list;
4168 mysd->rps_ipi_list = sd;
4170 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4171 return 1;
4173 #endif /* CONFIG_RPS */
4174 return 0;
4177 #ifdef CONFIG_NET_FLOW_LIMIT
4178 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4179 #endif
4181 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4183 #ifdef CONFIG_NET_FLOW_LIMIT
4184 struct sd_flow_limit *fl;
4185 struct softnet_data *sd;
4186 unsigned int old_flow, new_flow;
4188 if (qlen < (netdev_max_backlog >> 1))
4189 return false;
4191 sd = this_cpu_ptr(&softnet_data);
4193 rcu_read_lock();
4194 fl = rcu_dereference(sd->flow_limit);
4195 if (fl) {
4196 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4197 old_flow = fl->history[fl->history_head];
4198 fl->history[fl->history_head] = new_flow;
4200 fl->history_head++;
4201 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4203 if (likely(fl->buckets[old_flow]))
4204 fl->buckets[old_flow]--;
4206 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4207 fl->count++;
4208 rcu_read_unlock();
4209 return true;
4212 rcu_read_unlock();
4213 #endif
4214 return false;
4218 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4219 * queue (may be a remote CPU queue).
4221 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4222 unsigned int *qtail)
4224 struct softnet_data *sd;
4225 unsigned long flags;
4226 unsigned int qlen;
4228 sd = &per_cpu(softnet_data, cpu);
4230 local_irq_save(flags);
4232 rps_lock(sd);
4233 if (!netif_running(skb->dev))
4234 goto drop;
4235 qlen = skb_queue_len(&sd->input_pkt_queue);
4236 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4237 if (qlen) {
4238 enqueue:
4239 __skb_queue_tail(&sd->input_pkt_queue, skb);
4240 input_queue_tail_incr_save(sd, qtail);
4241 rps_unlock(sd);
4242 local_irq_restore(flags);
4243 return NET_RX_SUCCESS;
4246 /* Schedule NAPI for backlog device
4247 * We can use non atomic operation since we own the queue lock
4249 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4250 if (!rps_ipi_queued(sd))
4251 ____napi_schedule(sd, &sd->backlog);
4253 goto enqueue;
4256 drop:
4257 sd->dropped++;
4258 rps_unlock(sd);
4260 local_irq_restore(flags);
4262 atomic_long_inc(&skb->dev->rx_dropped);
4263 kfree_skb(skb);
4264 return NET_RX_DROP;
4267 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4269 struct net_device *dev = skb->dev;
4270 struct netdev_rx_queue *rxqueue;
4272 rxqueue = dev->_rx;
4274 if (skb_rx_queue_recorded(skb)) {
4275 u16 index = skb_get_rx_queue(skb);
4277 if (unlikely(index >= dev->real_num_rx_queues)) {
4278 WARN_ONCE(dev->real_num_rx_queues > 1,
4279 "%s received packet on queue %u, but number "
4280 "of RX queues is %u\n",
4281 dev->name, index, dev->real_num_rx_queues);
4283 return rxqueue; /* Return first rxqueue */
4285 rxqueue += index;
4287 return rxqueue;
4290 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4291 struct xdp_buff *xdp,
4292 struct bpf_prog *xdp_prog)
4294 struct netdev_rx_queue *rxqueue;
4295 void *orig_data, *orig_data_end;
4296 u32 metalen, act = XDP_DROP;
4297 __be16 orig_eth_type;
4298 struct ethhdr *eth;
4299 bool orig_bcast;
4300 int hlen, off;
4301 u32 mac_len;
4303 /* Reinjected packets coming from act_mirred or similar should
4304 * not get XDP generic processing.
4306 if (skb_is_tc_redirected(skb))
4307 return XDP_PASS;
4309 /* XDP packets must be linear and must have sufficient headroom
4310 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4311 * native XDP provides, thus we need to do it here as well.
4313 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4314 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4315 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4316 int troom = skb->tail + skb->data_len - skb->end;
4318 /* In case we have to go down the path and also linearize,
4319 * then lets do the pskb_expand_head() work just once here.
4321 if (pskb_expand_head(skb,
4322 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4323 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4324 goto do_drop;
4325 if (skb_linearize(skb))
4326 goto do_drop;
4329 /* The XDP program wants to see the packet starting at the MAC
4330 * header.
4332 mac_len = skb->data - skb_mac_header(skb);
4333 hlen = skb_headlen(skb) + mac_len;
4334 xdp->data = skb->data - mac_len;
4335 xdp->data_meta = xdp->data;
4336 xdp->data_end = xdp->data + hlen;
4337 xdp->data_hard_start = skb->data - skb_headroom(skb);
4338 orig_data_end = xdp->data_end;
4339 orig_data = xdp->data;
4340 eth = (struct ethhdr *)xdp->data;
4341 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4342 orig_eth_type = eth->h_proto;
4344 rxqueue = netif_get_rxqueue(skb);
4345 xdp->rxq = &rxqueue->xdp_rxq;
4347 act = bpf_prog_run_xdp(xdp_prog, xdp);
4349 /* check if bpf_xdp_adjust_head was used */
4350 off = xdp->data - orig_data;
4351 if (off) {
4352 if (off > 0)
4353 __skb_pull(skb, off);
4354 else if (off < 0)
4355 __skb_push(skb, -off);
4357 skb->mac_header += off;
4358 skb_reset_network_header(skb);
4361 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4362 * pckt.
4364 off = orig_data_end - xdp->data_end;
4365 if (off != 0) {
4366 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4367 skb->len -= off;
4371 /* check if XDP changed eth hdr such SKB needs update */
4372 eth = (struct ethhdr *)xdp->data;
4373 if ((orig_eth_type != eth->h_proto) ||
4374 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4375 __skb_push(skb, ETH_HLEN);
4376 skb->protocol = eth_type_trans(skb, skb->dev);
4379 switch (act) {
4380 case XDP_REDIRECT:
4381 case XDP_TX:
4382 __skb_push(skb, mac_len);
4383 break;
4384 case XDP_PASS:
4385 metalen = xdp->data - xdp->data_meta;
4386 if (metalen)
4387 skb_metadata_set(skb, metalen);
4388 break;
4389 default:
4390 bpf_warn_invalid_xdp_action(act);
4391 /* fall through */
4392 case XDP_ABORTED:
4393 trace_xdp_exception(skb->dev, xdp_prog, act);
4394 /* fall through */
4395 case XDP_DROP:
4396 do_drop:
4397 kfree_skb(skb);
4398 break;
4401 return act;
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405 * network taps in order to match in-driver-XDP behavior.
4407 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4409 struct net_device *dev = skb->dev;
4410 struct netdev_queue *txq;
4411 bool free_skb = true;
4412 int cpu, rc;
4414 txq = netdev_pick_tx(dev, skb, NULL);
4415 cpu = smp_processor_id();
4416 HARD_TX_LOCK(dev, txq, cpu);
4417 if (!netif_xmit_stopped(txq)) {
4418 rc = netdev_start_xmit(skb, dev, txq, 0);
4419 if (dev_xmit_complete(rc))
4420 free_skb = false;
4422 HARD_TX_UNLOCK(dev, txq);
4423 if (free_skb) {
4424 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4425 kfree_skb(skb);
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4432 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4434 if (xdp_prog) {
4435 struct xdp_buff xdp;
4436 u32 act;
4437 int err;
4439 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4440 if (act != XDP_PASS) {
4441 switch (act) {
4442 case XDP_REDIRECT:
4443 err = xdp_do_generic_redirect(skb->dev, skb,
4444 &xdp, xdp_prog);
4445 if (err)
4446 goto out_redir;
4447 break;
4448 case XDP_TX:
4449 generic_xdp_tx(skb, xdp_prog);
4450 break;
4452 return XDP_DROP;
4455 return XDP_PASS;
4456 out_redir:
4457 kfree_skb(skb);
4458 return XDP_DROP;
4460 EXPORT_SYMBOL_GPL(do_xdp_generic);
4462 static int netif_rx_internal(struct sk_buff *skb)
4464 int ret;
4466 net_timestamp_check(netdev_tstamp_prequeue, skb);
4468 trace_netif_rx(skb);
4470 #ifdef CONFIG_RPS
4471 if (static_key_false(&rps_needed)) {
4472 struct rps_dev_flow voidflow, *rflow = &voidflow;
4473 int cpu;
4475 preempt_disable();
4476 rcu_read_lock();
4478 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4479 if (cpu < 0)
4480 cpu = smp_processor_id();
4482 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4484 rcu_read_unlock();
4485 preempt_enable();
4486 } else
4487 #endif
4489 unsigned int qtail;
4491 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4492 put_cpu();
4494 return ret;
4498 * netif_rx - post buffer to the network code
4499 * @skb: buffer to post
4501 * This function receives a packet from a device driver and queues it for
4502 * the upper (protocol) levels to process. It always succeeds. The buffer
4503 * may be dropped during processing for congestion control or by the
4504 * protocol layers.
4506 * return values:
4507 * NET_RX_SUCCESS (no congestion)
4508 * NET_RX_DROP (packet was dropped)
4512 int netif_rx(struct sk_buff *skb)
4514 trace_netif_rx_entry(skb);
4516 return netif_rx_internal(skb);
4518 EXPORT_SYMBOL(netif_rx);
4520 int netif_rx_ni(struct sk_buff *skb)
4522 int err;
4524 trace_netif_rx_ni_entry(skb);
4526 preempt_disable();
4527 err = netif_rx_internal(skb);
4528 if (local_softirq_pending())
4529 do_softirq();
4530 preempt_enable();
4532 return err;
4534 EXPORT_SYMBOL(netif_rx_ni);
4536 static __latent_entropy void net_tx_action(struct softirq_action *h)
4538 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4540 if (sd->completion_queue) {
4541 struct sk_buff *clist;
4543 local_irq_disable();
4544 clist = sd->completion_queue;
4545 sd->completion_queue = NULL;
4546 local_irq_enable();
4548 while (clist) {
4549 struct sk_buff *skb = clist;
4551 clist = clist->next;
4553 WARN_ON(refcount_read(&skb->users));
4554 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4555 trace_consume_skb(skb);
4556 else
4557 trace_kfree_skb(skb, net_tx_action);
4559 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4560 __kfree_skb(skb);
4561 else
4562 __kfree_skb_defer(skb);
4565 __kfree_skb_flush();
4568 if (sd->output_queue) {
4569 struct Qdisc *head;
4571 local_irq_disable();
4572 head = sd->output_queue;
4573 sd->output_queue = NULL;
4574 sd->output_queue_tailp = &sd->output_queue;
4575 local_irq_enable();
4577 while (head) {
4578 struct Qdisc *q = head;
4579 spinlock_t *root_lock = NULL;
4581 head = head->next_sched;
4583 if (!(q->flags & TCQ_F_NOLOCK)) {
4584 root_lock = qdisc_lock(q);
4585 spin_lock(root_lock);
4587 /* We need to make sure head->next_sched is read
4588 * before clearing __QDISC_STATE_SCHED
4590 smp_mb__before_atomic();
4591 clear_bit(__QDISC_STATE_SCHED, &q->state);
4592 qdisc_run(q);
4593 if (root_lock)
4594 spin_unlock(root_lock);
4598 xfrm_dev_backlog(sd);
4601 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4602 /* This hook is defined here for ATM LANE */
4603 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4604 unsigned char *addr) __read_mostly;
4605 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4606 #endif
4608 static inline struct sk_buff *
4609 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4610 struct net_device *orig_dev)
4612 #ifdef CONFIG_NET_CLS_ACT
4613 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4614 struct tcf_result cl_res;
4616 /* If there's at least one ingress present somewhere (so
4617 * we get here via enabled static key), remaining devices
4618 * that are not configured with an ingress qdisc will bail
4619 * out here.
4621 if (!miniq)
4622 return skb;
4624 if (*pt_prev) {
4625 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4626 *pt_prev = NULL;
4629 qdisc_skb_cb(skb)->pkt_len = skb->len;
4630 skb->tc_at_ingress = 1;
4631 mini_qdisc_bstats_cpu_update(miniq, skb);
4633 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4634 case TC_ACT_OK:
4635 case TC_ACT_RECLASSIFY:
4636 skb->tc_index = TC_H_MIN(cl_res.classid);
4637 break;
4638 case TC_ACT_SHOT:
4639 mini_qdisc_qstats_cpu_drop(miniq);
4640 kfree_skb(skb);
4641 return NULL;
4642 case TC_ACT_STOLEN:
4643 case TC_ACT_QUEUED:
4644 case TC_ACT_TRAP:
4645 consume_skb(skb);
4646 return NULL;
4647 case TC_ACT_REDIRECT:
4648 /* skb_mac_header check was done by cls/act_bpf, so
4649 * we can safely push the L2 header back before
4650 * redirecting to another netdev
4652 __skb_push(skb, skb->mac_len);
4653 skb_do_redirect(skb);
4654 return NULL;
4655 case TC_ACT_REINSERT:
4656 /* this does not scrub the packet, and updates stats on error */
4657 skb_tc_reinsert(skb, &cl_res);
4658 return NULL;
4659 default:
4660 break;
4662 #endif /* CONFIG_NET_CLS_ACT */
4663 return skb;
4667 * netdev_is_rx_handler_busy - check if receive handler is registered
4668 * @dev: device to check
4670 * Check if a receive handler is already registered for a given device.
4671 * Return true if there one.
4673 * The caller must hold the rtnl_mutex.
4675 bool netdev_is_rx_handler_busy(struct net_device *dev)
4677 ASSERT_RTNL();
4678 return dev && rtnl_dereference(dev->rx_handler);
4680 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4683 * netdev_rx_handler_register - register receive handler
4684 * @dev: device to register a handler for
4685 * @rx_handler: receive handler to register
4686 * @rx_handler_data: data pointer that is used by rx handler
4688 * Register a receive handler for a device. This handler will then be
4689 * called from __netif_receive_skb. A negative errno code is returned
4690 * on a failure.
4692 * The caller must hold the rtnl_mutex.
4694 * For a general description of rx_handler, see enum rx_handler_result.
4696 int netdev_rx_handler_register(struct net_device *dev,
4697 rx_handler_func_t *rx_handler,
4698 void *rx_handler_data)
4700 if (netdev_is_rx_handler_busy(dev))
4701 return -EBUSY;
4703 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4704 return -EINVAL;
4706 /* Note: rx_handler_data must be set before rx_handler */
4707 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4708 rcu_assign_pointer(dev->rx_handler, rx_handler);
4710 return 0;
4712 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4715 * netdev_rx_handler_unregister - unregister receive handler
4716 * @dev: device to unregister a handler from
4718 * Unregister a receive handler from a device.
4720 * The caller must hold the rtnl_mutex.
4722 void netdev_rx_handler_unregister(struct net_device *dev)
4725 ASSERT_RTNL();
4726 RCU_INIT_POINTER(dev->rx_handler, NULL);
4727 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4728 * section has a guarantee to see a non NULL rx_handler_data
4729 * as well.
4731 synchronize_net();
4732 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4737 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4738 * the special handling of PFMEMALLOC skbs.
4740 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4742 switch (skb->protocol) {
4743 case htons(ETH_P_ARP):
4744 case htons(ETH_P_IP):
4745 case htons(ETH_P_IPV6):
4746 case htons(ETH_P_8021Q):
4747 case htons(ETH_P_8021AD):
4748 return true;
4749 default:
4750 return false;
4754 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4755 int *ret, struct net_device *orig_dev)
4757 #ifdef CONFIG_NETFILTER_INGRESS
4758 if (nf_hook_ingress_active(skb)) {
4759 int ingress_retval;
4761 if (*pt_prev) {
4762 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4763 *pt_prev = NULL;
4766 rcu_read_lock();
4767 ingress_retval = nf_hook_ingress(skb);
4768 rcu_read_unlock();
4769 return ingress_retval;
4771 #endif /* CONFIG_NETFILTER_INGRESS */
4772 return 0;
4775 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4776 struct packet_type **ppt_prev)
4778 struct packet_type *ptype, *pt_prev;
4779 rx_handler_func_t *rx_handler;
4780 struct sk_buff *skb = *pskb;
4781 struct net_device *orig_dev;
4782 bool deliver_exact = false;
4783 int ret = NET_RX_DROP;
4784 __be16 type;
4786 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4788 trace_netif_receive_skb(skb);
4790 orig_dev = skb->dev;
4792 skb_reset_network_header(skb);
4793 if (!skb_transport_header_was_set(skb))
4794 skb_reset_transport_header(skb);
4795 skb_reset_mac_len(skb);
4797 pt_prev = NULL;
4799 another_round:
4800 skb->skb_iif = skb->dev->ifindex;
4802 __this_cpu_inc(softnet_data.processed);
4804 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4805 int ret2;
4807 preempt_disable();
4808 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4809 preempt_enable();
4811 if (ret2 != XDP_PASS) {
4812 ret = NET_RX_DROP;
4813 goto out;
4815 skb_reset_mac_len(skb);
4818 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4819 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4820 skb = skb_vlan_untag(skb);
4821 if (unlikely(!skb))
4822 goto out;
4825 if (skb_skip_tc_classify(skb))
4826 goto skip_classify;
4828 if (pfmemalloc)
4829 goto skip_taps;
4831 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4832 if (pt_prev)
4833 ret = deliver_skb(skb, pt_prev, orig_dev);
4834 pt_prev = ptype;
4837 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4838 if (pt_prev)
4839 ret = deliver_skb(skb, pt_prev, orig_dev);
4840 pt_prev = ptype;
4843 skip_taps:
4844 #ifdef CONFIG_NET_INGRESS
4845 if (static_branch_unlikely(&ingress_needed_key)) {
4846 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4847 if (!skb)
4848 goto out;
4850 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4851 goto out;
4853 #endif
4854 skb_reset_tc(skb);
4855 skip_classify:
4856 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4857 goto drop;
4859 if (skb_vlan_tag_present(skb)) {
4860 if (pt_prev) {
4861 ret = deliver_skb(skb, pt_prev, orig_dev);
4862 pt_prev = NULL;
4864 if (vlan_do_receive(&skb))
4865 goto another_round;
4866 else if (unlikely(!skb))
4867 goto out;
4870 rx_handler = rcu_dereference(skb->dev->rx_handler);
4871 if (rx_handler) {
4872 if (pt_prev) {
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = NULL;
4876 switch (rx_handler(&skb)) {
4877 case RX_HANDLER_CONSUMED:
4878 ret = NET_RX_SUCCESS;
4879 goto out;
4880 case RX_HANDLER_ANOTHER:
4881 goto another_round;
4882 case RX_HANDLER_EXACT:
4883 deliver_exact = true;
4884 case RX_HANDLER_PASS:
4885 break;
4886 default:
4887 BUG();
4891 if (unlikely(skb_vlan_tag_present(skb))) {
4892 if (skb_vlan_tag_get_id(skb))
4893 skb->pkt_type = PACKET_OTHERHOST;
4894 /* Note: we might in the future use prio bits
4895 * and set skb->priority like in vlan_do_receive()
4896 * For the time being, just ignore Priority Code Point
4898 skb->vlan_tci = 0;
4901 type = skb->protocol;
4903 /* deliver only exact match when indicated */
4904 if (likely(!deliver_exact)) {
4905 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4906 &ptype_base[ntohs(type) &
4907 PTYPE_HASH_MASK]);
4910 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4911 &orig_dev->ptype_specific);
4913 if (unlikely(skb->dev != orig_dev)) {
4914 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4915 &skb->dev->ptype_specific);
4918 if (pt_prev) {
4919 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4920 goto drop;
4921 *ppt_prev = pt_prev;
4922 } else {
4923 drop:
4924 if (!deliver_exact)
4925 atomic_long_inc(&skb->dev->rx_dropped);
4926 else
4927 atomic_long_inc(&skb->dev->rx_nohandler);
4928 kfree_skb(skb);
4929 /* Jamal, now you will not able to escape explaining
4930 * me how you were going to use this. :-)
4932 ret = NET_RX_DROP;
4935 out:
4936 /* The invariant here is that if *ppt_prev is not NULL
4937 * then skb should also be non-NULL.
4939 * Apparently *ppt_prev assignment above holds this invariant due to
4940 * skb dereferencing near it.
4942 *pskb = skb;
4943 return ret;
4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4948 struct net_device *orig_dev = skb->dev;
4949 struct packet_type *pt_prev = NULL;
4950 int ret;
4952 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4953 if (pt_prev)
4954 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4955 return ret;
4959 * netif_receive_skb_core - special purpose version of netif_receive_skb
4960 * @skb: buffer to process
4962 * More direct receive version of netif_receive_skb(). It should
4963 * only be used by callers that have a need to skip RPS and Generic XDP.
4964 * Caller must also take care of handling if (page_is_)pfmemalloc.
4966 * This function may only be called from softirq context and interrupts
4967 * should be enabled.
4969 * Return values (usually ignored):
4970 * NET_RX_SUCCESS: no congestion
4971 * NET_RX_DROP: packet was dropped
4973 int netif_receive_skb_core(struct sk_buff *skb)
4975 int ret;
4977 rcu_read_lock();
4978 ret = __netif_receive_skb_one_core(skb, false);
4979 rcu_read_unlock();
4981 return ret;
4983 EXPORT_SYMBOL(netif_receive_skb_core);
4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4986 struct packet_type *pt_prev,
4987 struct net_device *orig_dev)
4989 struct sk_buff *skb, *next;
4991 if (!pt_prev)
4992 return;
4993 if (list_empty(head))
4994 return;
4995 if (pt_prev->list_func != NULL)
4996 pt_prev->list_func(head, pt_prev, orig_dev);
4997 else
4998 list_for_each_entry_safe(skb, next, head, list) {
4999 skb_list_del_init(skb);
5000 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5006 /* Fast-path assumptions:
5007 * - There is no RX handler.
5008 * - Only one packet_type matches.
5009 * If either of these fails, we will end up doing some per-packet
5010 * processing in-line, then handling the 'last ptype' for the whole
5011 * sublist. This can't cause out-of-order delivery to any single ptype,
5012 * because the 'last ptype' must be constant across the sublist, and all
5013 * other ptypes are handled per-packet.
5015 /* Current (common) ptype of sublist */
5016 struct packet_type *pt_curr = NULL;
5017 /* Current (common) orig_dev of sublist */
5018 struct net_device *od_curr = NULL;
5019 struct list_head sublist;
5020 struct sk_buff *skb, *next;
5022 INIT_LIST_HEAD(&sublist);
5023 list_for_each_entry_safe(skb, next, head, list) {
5024 struct net_device *orig_dev = skb->dev;
5025 struct packet_type *pt_prev = NULL;
5027 skb_list_del_init(skb);
5028 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029 if (!pt_prev)
5030 continue;
5031 if (pt_curr != pt_prev || od_curr != orig_dev) {
5032 /* dispatch old sublist */
5033 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 /* start new sublist */
5035 INIT_LIST_HEAD(&sublist);
5036 pt_curr = pt_prev;
5037 od_curr = orig_dev;
5039 list_add_tail(&skb->list, &sublist);
5042 /* dispatch final sublist */
5043 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5046 static int __netif_receive_skb(struct sk_buff *skb)
5048 int ret;
5050 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051 unsigned int noreclaim_flag;
5054 * PFMEMALLOC skbs are special, they should
5055 * - be delivered to SOCK_MEMALLOC sockets only
5056 * - stay away from userspace
5057 * - have bounded memory usage
5059 * Use PF_MEMALLOC as this saves us from propagating the allocation
5060 * context down to all allocation sites.
5062 noreclaim_flag = memalloc_noreclaim_save();
5063 ret = __netif_receive_skb_one_core(skb, true);
5064 memalloc_noreclaim_restore(noreclaim_flag);
5065 } else
5066 ret = __netif_receive_skb_one_core(skb, false);
5068 return ret;
5071 static void __netif_receive_skb_list(struct list_head *head)
5073 unsigned long noreclaim_flag = 0;
5074 struct sk_buff *skb, *next;
5075 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5077 list_for_each_entry_safe(skb, next, head, list) {
5078 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079 struct list_head sublist;
5081 /* Handle the previous sublist */
5082 list_cut_before(&sublist, head, &skb->list);
5083 if (!list_empty(&sublist))
5084 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5085 pfmemalloc = !pfmemalloc;
5086 /* See comments in __netif_receive_skb */
5087 if (pfmemalloc)
5088 noreclaim_flag = memalloc_noreclaim_save();
5089 else
5090 memalloc_noreclaim_restore(noreclaim_flag);
5093 /* Handle the remaining sublist */
5094 if (!list_empty(head))
5095 __netif_receive_skb_list_core(head, pfmemalloc);
5096 /* Restore pflags */
5097 if (pfmemalloc)
5098 memalloc_noreclaim_restore(noreclaim_flag);
5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5103 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104 struct bpf_prog *new = xdp->prog;
5105 int ret = 0;
5107 switch (xdp->command) {
5108 case XDP_SETUP_PROG:
5109 rcu_assign_pointer(dev->xdp_prog, new);
5110 if (old)
5111 bpf_prog_put(old);
5113 if (old && !new) {
5114 static_branch_dec(&generic_xdp_needed_key);
5115 } else if (new && !old) {
5116 static_branch_inc(&generic_xdp_needed_key);
5117 dev_disable_lro(dev);
5118 dev_disable_gro_hw(dev);
5120 break;
5122 case XDP_QUERY_PROG:
5123 xdp->prog_id = old ? old->aux->id : 0;
5124 break;
5126 default:
5127 ret = -EINVAL;
5128 break;
5131 return ret;
5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5136 int ret;
5138 net_timestamp_check(netdev_tstamp_prequeue, skb);
5140 if (skb_defer_rx_timestamp(skb))
5141 return NET_RX_SUCCESS;
5143 rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145 if (static_key_false(&rps_needed)) {
5146 struct rps_dev_flow voidflow, *rflow = &voidflow;
5147 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5149 if (cpu >= 0) {
5150 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151 rcu_read_unlock();
5152 return ret;
5155 #endif
5156 ret = __netif_receive_skb(skb);
5157 rcu_read_unlock();
5158 return ret;
5161 static void netif_receive_skb_list_internal(struct list_head *head)
5163 struct sk_buff *skb, *next;
5164 struct list_head sublist;
5166 INIT_LIST_HEAD(&sublist);
5167 list_for_each_entry_safe(skb, next, head, list) {
5168 net_timestamp_check(netdev_tstamp_prequeue, skb);
5169 skb_list_del_init(skb);
5170 if (!skb_defer_rx_timestamp(skb))
5171 list_add_tail(&skb->list, &sublist);
5173 list_splice_init(&sublist, head);
5175 rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177 if (static_key_false(&rps_needed)) {
5178 list_for_each_entry_safe(skb, next, head, list) {
5179 struct rps_dev_flow voidflow, *rflow = &voidflow;
5180 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5182 if (cpu >= 0) {
5183 /* Will be handled, remove from list */
5184 skb_list_del_init(skb);
5185 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5189 #endif
5190 __netif_receive_skb_list(head);
5191 rcu_read_unlock();
5195 * netif_receive_skb - process receive buffer from network
5196 * @skb: buffer to process
5198 * netif_receive_skb() is the main receive data processing function.
5199 * It always succeeds. The buffer may be dropped during processing
5200 * for congestion control or by the protocol layers.
5202 * This function may only be called from softirq context and interrupts
5203 * should be enabled.
5205 * Return values (usually ignored):
5206 * NET_RX_SUCCESS: no congestion
5207 * NET_RX_DROP: packet was dropped
5209 int netif_receive_skb(struct sk_buff *skb)
5211 trace_netif_receive_skb_entry(skb);
5213 return netif_receive_skb_internal(skb);
5215 EXPORT_SYMBOL(netif_receive_skb);
5218 * netif_receive_skb_list - process many receive buffers from network
5219 * @head: list of skbs to process.
5221 * Since return value of netif_receive_skb() is normally ignored, and
5222 * wouldn't be meaningful for a list, this function returns void.
5224 * This function may only be called from softirq context and interrupts
5225 * should be enabled.
5227 void netif_receive_skb_list(struct list_head *head)
5229 struct sk_buff *skb;
5231 if (list_empty(head))
5232 return;
5233 list_for_each_entry(skb, head, list)
5234 trace_netif_receive_skb_list_entry(skb);
5235 netif_receive_skb_list_internal(head);
5237 EXPORT_SYMBOL(netif_receive_skb_list);
5239 DEFINE_PER_CPU(struct work_struct, flush_works);
5241 /* Network device is going away, flush any packets still pending */
5242 static void flush_backlog(struct work_struct *work)
5244 struct sk_buff *skb, *tmp;
5245 struct softnet_data *sd;
5247 local_bh_disable();
5248 sd = this_cpu_ptr(&softnet_data);
5250 local_irq_disable();
5251 rps_lock(sd);
5252 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5253 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5254 __skb_unlink(skb, &sd->input_pkt_queue);
5255 kfree_skb(skb);
5256 input_queue_head_incr(sd);
5259 rps_unlock(sd);
5260 local_irq_enable();
5262 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5263 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5264 __skb_unlink(skb, &sd->process_queue);
5265 kfree_skb(skb);
5266 input_queue_head_incr(sd);
5269 local_bh_enable();
5272 static void flush_all_backlogs(void)
5274 unsigned int cpu;
5276 get_online_cpus();
5278 for_each_online_cpu(cpu)
5279 queue_work_on(cpu, system_highpri_wq,
5280 per_cpu_ptr(&flush_works, cpu));
5282 for_each_online_cpu(cpu)
5283 flush_work(per_cpu_ptr(&flush_works, cpu));
5285 put_online_cpus();
5288 static int napi_gro_complete(struct sk_buff *skb)
5290 struct packet_offload *ptype;
5291 __be16 type = skb->protocol;
5292 struct list_head *head = &offload_base;
5293 int err = -ENOENT;
5295 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5297 if (NAPI_GRO_CB(skb)->count == 1) {
5298 skb_shinfo(skb)->gso_size = 0;
5299 goto out;
5302 rcu_read_lock();
5303 list_for_each_entry_rcu(ptype, head, list) {
5304 if (ptype->type != type || !ptype->callbacks.gro_complete)
5305 continue;
5307 err = ptype->callbacks.gro_complete(skb, 0);
5308 break;
5310 rcu_read_unlock();
5312 if (err) {
5313 WARN_ON(&ptype->list == head);
5314 kfree_skb(skb);
5315 return NET_RX_SUCCESS;
5318 out:
5319 return netif_receive_skb_internal(skb);
5322 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5323 bool flush_old)
5325 struct list_head *head = &napi->gro_hash[index].list;
5326 struct sk_buff *skb, *p;
5328 list_for_each_entry_safe_reverse(skb, p, head, list) {
5329 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5330 return;
5331 list_del(&skb->list);
5332 skb->next = NULL;
5333 napi_gro_complete(skb);
5334 napi->gro_hash[index].count--;
5337 if (!napi->gro_hash[index].count)
5338 __clear_bit(index, &napi->gro_bitmask);
5341 /* napi->gro_hash[].list contains packets ordered by age.
5342 * youngest packets at the head of it.
5343 * Complete skbs in reverse order to reduce latencies.
5345 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5347 u32 i;
5349 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5350 if (test_bit(i, &napi->gro_bitmask))
5351 __napi_gro_flush_chain(napi, i, flush_old);
5354 EXPORT_SYMBOL(napi_gro_flush);
5356 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5357 struct sk_buff *skb)
5359 unsigned int maclen = skb->dev->hard_header_len;
5360 u32 hash = skb_get_hash_raw(skb);
5361 struct list_head *head;
5362 struct sk_buff *p;
5364 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5365 list_for_each_entry(p, head, list) {
5366 unsigned long diffs;
5368 NAPI_GRO_CB(p)->flush = 0;
5370 if (hash != skb_get_hash_raw(p)) {
5371 NAPI_GRO_CB(p)->same_flow = 0;
5372 continue;
5375 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5376 diffs |= p->vlan_tci ^ skb->vlan_tci;
5377 diffs |= skb_metadata_dst_cmp(p, skb);
5378 diffs |= skb_metadata_differs(p, skb);
5379 if (maclen == ETH_HLEN)
5380 diffs |= compare_ether_header(skb_mac_header(p),
5381 skb_mac_header(skb));
5382 else if (!diffs)
5383 diffs = memcmp(skb_mac_header(p),
5384 skb_mac_header(skb),
5385 maclen);
5386 NAPI_GRO_CB(p)->same_flow = !diffs;
5389 return head;
5392 static void skb_gro_reset_offset(struct sk_buff *skb)
5394 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5395 const skb_frag_t *frag0 = &pinfo->frags[0];
5397 NAPI_GRO_CB(skb)->data_offset = 0;
5398 NAPI_GRO_CB(skb)->frag0 = NULL;
5399 NAPI_GRO_CB(skb)->frag0_len = 0;
5401 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5402 pinfo->nr_frags &&
5403 !PageHighMem(skb_frag_page(frag0))) {
5404 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5405 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5406 skb_frag_size(frag0),
5407 skb->end - skb->tail);
5411 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5413 struct skb_shared_info *pinfo = skb_shinfo(skb);
5415 BUG_ON(skb->end - skb->tail < grow);
5417 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5419 skb->data_len -= grow;
5420 skb->tail += grow;
5422 pinfo->frags[0].page_offset += grow;
5423 skb_frag_size_sub(&pinfo->frags[0], grow);
5425 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5426 skb_frag_unref(skb, 0);
5427 memmove(pinfo->frags, pinfo->frags + 1,
5428 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5432 static void gro_flush_oldest(struct list_head *head)
5434 struct sk_buff *oldest;
5436 oldest = list_last_entry(head, struct sk_buff, list);
5438 /* We are called with head length >= MAX_GRO_SKBS, so this is
5439 * impossible.
5441 if (WARN_ON_ONCE(!oldest))
5442 return;
5444 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5445 * SKB to the chain.
5447 list_del(&oldest->list);
5448 oldest->next = NULL;
5449 napi_gro_complete(oldest);
5452 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5454 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5455 struct list_head *head = &offload_base;
5456 struct packet_offload *ptype;
5457 __be16 type = skb->protocol;
5458 struct list_head *gro_head;
5459 struct sk_buff *pp = NULL;
5460 enum gro_result ret;
5461 int same_flow;
5462 int grow;
5464 if (netif_elide_gro(skb->dev))
5465 goto normal;
5467 gro_head = gro_list_prepare(napi, skb);
5469 rcu_read_lock();
5470 list_for_each_entry_rcu(ptype, head, list) {
5471 if (ptype->type != type || !ptype->callbacks.gro_receive)
5472 continue;
5474 skb_set_network_header(skb, skb_gro_offset(skb));
5475 skb_reset_mac_len(skb);
5476 NAPI_GRO_CB(skb)->same_flow = 0;
5477 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5478 NAPI_GRO_CB(skb)->free = 0;
5479 NAPI_GRO_CB(skb)->encap_mark = 0;
5480 NAPI_GRO_CB(skb)->recursion_counter = 0;
5481 NAPI_GRO_CB(skb)->is_fou = 0;
5482 NAPI_GRO_CB(skb)->is_atomic = 1;
5483 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5485 /* Setup for GRO checksum validation */
5486 switch (skb->ip_summed) {
5487 case CHECKSUM_COMPLETE:
5488 NAPI_GRO_CB(skb)->csum = skb->csum;
5489 NAPI_GRO_CB(skb)->csum_valid = 1;
5490 NAPI_GRO_CB(skb)->csum_cnt = 0;
5491 break;
5492 case CHECKSUM_UNNECESSARY:
5493 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5494 NAPI_GRO_CB(skb)->csum_valid = 0;
5495 break;
5496 default:
5497 NAPI_GRO_CB(skb)->csum_cnt = 0;
5498 NAPI_GRO_CB(skb)->csum_valid = 0;
5501 pp = ptype->callbacks.gro_receive(gro_head, skb);
5502 break;
5504 rcu_read_unlock();
5506 if (&ptype->list == head)
5507 goto normal;
5509 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5510 ret = GRO_CONSUMED;
5511 goto ok;
5514 same_flow = NAPI_GRO_CB(skb)->same_flow;
5515 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5517 if (pp) {
5518 list_del(&pp->list);
5519 pp->next = NULL;
5520 napi_gro_complete(pp);
5521 napi->gro_hash[hash].count--;
5524 if (same_flow)
5525 goto ok;
5527 if (NAPI_GRO_CB(skb)->flush)
5528 goto normal;
5530 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5531 gro_flush_oldest(gro_head);
5532 } else {
5533 napi->gro_hash[hash].count++;
5535 NAPI_GRO_CB(skb)->count = 1;
5536 NAPI_GRO_CB(skb)->age = jiffies;
5537 NAPI_GRO_CB(skb)->last = skb;
5538 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5539 list_add(&skb->list, gro_head);
5540 ret = GRO_HELD;
5542 pull:
5543 grow = skb_gro_offset(skb) - skb_headlen(skb);
5544 if (grow > 0)
5545 gro_pull_from_frag0(skb, grow);
5547 if (napi->gro_hash[hash].count) {
5548 if (!test_bit(hash, &napi->gro_bitmask))
5549 __set_bit(hash, &napi->gro_bitmask);
5550 } else if (test_bit(hash, &napi->gro_bitmask)) {
5551 __clear_bit(hash, &napi->gro_bitmask);
5554 return ret;
5556 normal:
5557 ret = GRO_NORMAL;
5558 goto pull;
5561 struct packet_offload *gro_find_receive_by_type(__be16 type)
5563 struct list_head *offload_head = &offload_base;
5564 struct packet_offload *ptype;
5566 list_for_each_entry_rcu(ptype, offload_head, list) {
5567 if (ptype->type != type || !ptype->callbacks.gro_receive)
5568 continue;
5569 return ptype;
5571 return NULL;
5573 EXPORT_SYMBOL(gro_find_receive_by_type);
5575 struct packet_offload *gro_find_complete_by_type(__be16 type)
5577 struct list_head *offload_head = &offload_base;
5578 struct packet_offload *ptype;
5580 list_for_each_entry_rcu(ptype, offload_head, list) {
5581 if (ptype->type != type || !ptype->callbacks.gro_complete)
5582 continue;
5583 return ptype;
5585 return NULL;
5587 EXPORT_SYMBOL(gro_find_complete_by_type);
5589 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5591 skb_dst_drop(skb);
5592 secpath_reset(skb);
5593 kmem_cache_free(skbuff_head_cache, skb);
5596 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5598 switch (ret) {
5599 case GRO_NORMAL:
5600 if (netif_receive_skb_internal(skb))
5601 ret = GRO_DROP;
5602 break;
5604 case GRO_DROP:
5605 kfree_skb(skb);
5606 break;
5608 case GRO_MERGED_FREE:
5609 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5610 napi_skb_free_stolen_head(skb);
5611 else
5612 __kfree_skb(skb);
5613 break;
5615 case GRO_HELD:
5616 case GRO_MERGED:
5617 case GRO_CONSUMED:
5618 break;
5621 return ret;
5624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5626 skb_mark_napi_id(skb, napi);
5627 trace_napi_gro_receive_entry(skb);
5629 skb_gro_reset_offset(skb);
5631 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5633 EXPORT_SYMBOL(napi_gro_receive);
5635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5637 if (unlikely(skb->pfmemalloc)) {
5638 consume_skb(skb);
5639 return;
5641 __skb_pull(skb, skb_headlen(skb));
5642 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5643 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5644 skb->vlan_tci = 0;
5645 skb->dev = napi->dev;
5646 skb->skb_iif = 0;
5648 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5649 skb->pkt_type = PACKET_HOST;
5651 skb->encapsulation = 0;
5652 skb_shinfo(skb)->gso_type = 0;
5653 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5654 secpath_reset(skb);
5656 napi->skb = skb;
5659 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5661 struct sk_buff *skb = napi->skb;
5663 if (!skb) {
5664 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5665 if (skb) {
5666 napi->skb = skb;
5667 skb_mark_napi_id(skb, napi);
5670 return skb;
5672 EXPORT_SYMBOL(napi_get_frags);
5674 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5675 struct sk_buff *skb,
5676 gro_result_t ret)
5678 switch (ret) {
5679 case GRO_NORMAL:
5680 case GRO_HELD:
5681 __skb_push(skb, ETH_HLEN);
5682 skb->protocol = eth_type_trans(skb, skb->dev);
5683 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5684 ret = GRO_DROP;
5685 break;
5687 case GRO_DROP:
5688 napi_reuse_skb(napi, skb);
5689 break;
5691 case GRO_MERGED_FREE:
5692 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5693 napi_skb_free_stolen_head(skb);
5694 else
5695 napi_reuse_skb(napi, skb);
5696 break;
5698 case GRO_MERGED:
5699 case GRO_CONSUMED:
5700 break;
5703 return ret;
5706 /* Upper GRO stack assumes network header starts at gro_offset=0
5707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5708 * We copy ethernet header into skb->data to have a common layout.
5710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5712 struct sk_buff *skb = napi->skb;
5713 const struct ethhdr *eth;
5714 unsigned int hlen = sizeof(*eth);
5716 napi->skb = NULL;
5718 skb_reset_mac_header(skb);
5719 skb_gro_reset_offset(skb);
5721 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5722 eth = skb_gro_header_slow(skb, hlen, 0);
5723 if (unlikely(!eth)) {
5724 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5725 __func__, napi->dev->name);
5726 napi_reuse_skb(napi, skb);
5727 return NULL;
5729 } else {
5730 eth = (const struct ethhdr *)skb->data;
5731 gro_pull_from_frag0(skb, hlen);
5732 NAPI_GRO_CB(skb)->frag0 += hlen;
5733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5735 __skb_pull(skb, hlen);
5738 * This works because the only protocols we care about don't require
5739 * special handling.
5740 * We'll fix it up properly in napi_frags_finish()
5742 skb->protocol = eth->h_proto;
5744 return skb;
5747 gro_result_t napi_gro_frags(struct napi_struct *napi)
5749 struct sk_buff *skb = napi_frags_skb(napi);
5751 if (!skb)
5752 return GRO_DROP;
5754 trace_napi_gro_frags_entry(skb);
5756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5758 EXPORT_SYMBOL(napi_gro_frags);
5760 /* Compute the checksum from gro_offset and return the folded value
5761 * after adding in any pseudo checksum.
5763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5765 __wsum wsum;
5766 __sum16 sum;
5768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5772 if (likely(!sum)) {
5773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5774 !skb->csum_complete_sw)
5775 netdev_rx_csum_fault(skb->dev);
5778 NAPI_GRO_CB(skb)->csum = wsum;
5779 NAPI_GRO_CB(skb)->csum_valid = 1;
5781 return sum;
5783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5785 static void net_rps_send_ipi(struct softnet_data *remsd)
5787 #ifdef CONFIG_RPS
5788 while (remsd) {
5789 struct softnet_data *next = remsd->rps_ipi_next;
5791 if (cpu_online(remsd->cpu))
5792 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5793 remsd = next;
5795 #endif
5799 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5800 * Note: called with local irq disabled, but exits with local irq enabled.
5802 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5804 #ifdef CONFIG_RPS
5805 struct softnet_data *remsd = sd->rps_ipi_list;
5807 if (remsd) {
5808 sd->rps_ipi_list = NULL;
5810 local_irq_enable();
5812 /* Send pending IPI's to kick RPS processing on remote cpus. */
5813 net_rps_send_ipi(remsd);
5814 } else
5815 #endif
5816 local_irq_enable();
5819 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5821 #ifdef CONFIG_RPS
5822 return sd->rps_ipi_list != NULL;
5823 #else
5824 return false;
5825 #endif
5828 static int process_backlog(struct napi_struct *napi, int quota)
5830 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5831 bool again = true;
5832 int work = 0;
5834 /* Check if we have pending ipi, its better to send them now,
5835 * not waiting net_rx_action() end.
5837 if (sd_has_rps_ipi_waiting(sd)) {
5838 local_irq_disable();
5839 net_rps_action_and_irq_enable(sd);
5842 napi->weight = dev_rx_weight;
5843 while (again) {
5844 struct sk_buff *skb;
5846 while ((skb = __skb_dequeue(&sd->process_queue))) {
5847 rcu_read_lock();
5848 __netif_receive_skb(skb);
5849 rcu_read_unlock();
5850 input_queue_head_incr(sd);
5851 if (++work >= quota)
5852 return work;
5856 local_irq_disable();
5857 rps_lock(sd);
5858 if (skb_queue_empty(&sd->input_pkt_queue)) {
5860 * Inline a custom version of __napi_complete().
5861 * only current cpu owns and manipulates this napi,
5862 * and NAPI_STATE_SCHED is the only possible flag set
5863 * on backlog.
5864 * We can use a plain write instead of clear_bit(),
5865 * and we dont need an smp_mb() memory barrier.
5867 napi->state = 0;
5868 again = false;
5869 } else {
5870 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5871 &sd->process_queue);
5873 rps_unlock(sd);
5874 local_irq_enable();
5877 return work;
5881 * __napi_schedule - schedule for receive
5882 * @n: entry to schedule
5884 * The entry's receive function will be scheduled to run.
5885 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5887 void __napi_schedule(struct napi_struct *n)
5889 unsigned long flags;
5891 local_irq_save(flags);
5892 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5893 local_irq_restore(flags);
5895 EXPORT_SYMBOL(__napi_schedule);
5898 * napi_schedule_prep - check if napi can be scheduled
5899 * @n: napi context
5901 * Test if NAPI routine is already running, and if not mark
5902 * it as running. This is used as a condition variable
5903 * insure only one NAPI poll instance runs. We also make
5904 * sure there is no pending NAPI disable.
5906 bool napi_schedule_prep(struct napi_struct *n)
5908 unsigned long val, new;
5910 do {
5911 val = READ_ONCE(n->state);
5912 if (unlikely(val & NAPIF_STATE_DISABLE))
5913 return false;
5914 new = val | NAPIF_STATE_SCHED;
5916 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5917 * This was suggested by Alexander Duyck, as compiler
5918 * emits better code than :
5919 * if (val & NAPIF_STATE_SCHED)
5920 * new |= NAPIF_STATE_MISSED;
5922 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5923 NAPIF_STATE_MISSED;
5924 } while (cmpxchg(&n->state, val, new) != val);
5926 return !(val & NAPIF_STATE_SCHED);
5928 EXPORT_SYMBOL(napi_schedule_prep);
5931 * __napi_schedule_irqoff - schedule for receive
5932 * @n: entry to schedule
5934 * Variant of __napi_schedule() assuming hard irqs are masked
5936 void __napi_schedule_irqoff(struct napi_struct *n)
5938 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5940 EXPORT_SYMBOL(__napi_schedule_irqoff);
5942 bool napi_complete_done(struct napi_struct *n, int work_done)
5944 unsigned long flags, val, new;
5947 * 1) Don't let napi dequeue from the cpu poll list
5948 * just in case its running on a different cpu.
5949 * 2) If we are busy polling, do nothing here, we have
5950 * the guarantee we will be called later.
5952 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5953 NAPIF_STATE_IN_BUSY_POLL)))
5954 return false;
5956 if (n->gro_bitmask) {
5957 unsigned long timeout = 0;
5959 if (work_done)
5960 timeout = n->dev->gro_flush_timeout;
5962 /* When the NAPI instance uses a timeout and keeps postponing
5963 * it, we need to bound somehow the time packets are kept in
5964 * the GRO layer
5966 napi_gro_flush(n, !!timeout);
5967 if (timeout)
5968 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5969 HRTIMER_MODE_REL_PINNED);
5971 if (unlikely(!list_empty(&n->poll_list))) {
5972 /* If n->poll_list is not empty, we need to mask irqs */
5973 local_irq_save(flags);
5974 list_del_init(&n->poll_list);
5975 local_irq_restore(flags);
5978 do {
5979 val = READ_ONCE(n->state);
5981 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5983 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5985 /* If STATE_MISSED was set, leave STATE_SCHED set,
5986 * because we will call napi->poll() one more time.
5987 * This C code was suggested by Alexander Duyck to help gcc.
5989 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5990 NAPIF_STATE_SCHED;
5991 } while (cmpxchg(&n->state, val, new) != val);
5993 if (unlikely(val & NAPIF_STATE_MISSED)) {
5994 __napi_schedule(n);
5995 return false;
5998 return true;
6000 EXPORT_SYMBOL(napi_complete_done);
6002 /* must be called under rcu_read_lock(), as we dont take a reference */
6003 static struct napi_struct *napi_by_id(unsigned int napi_id)
6005 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6006 struct napi_struct *napi;
6008 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6009 if (napi->napi_id == napi_id)
6010 return napi;
6012 return NULL;
6015 #if defined(CONFIG_NET_RX_BUSY_POLL)
6017 #define BUSY_POLL_BUDGET 8
6019 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6021 int rc;
6023 /* Busy polling means there is a high chance device driver hard irq
6024 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6025 * set in napi_schedule_prep().
6026 * Since we are about to call napi->poll() once more, we can safely
6027 * clear NAPI_STATE_MISSED.
6029 * Note: x86 could use a single "lock and ..." instruction
6030 * to perform these two clear_bit()
6032 clear_bit(NAPI_STATE_MISSED, &napi->state);
6033 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6035 local_bh_disable();
6037 /* All we really want here is to re-enable device interrupts.
6038 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6040 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6041 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6042 netpoll_poll_unlock(have_poll_lock);
6043 if (rc == BUSY_POLL_BUDGET)
6044 __napi_schedule(napi);
6045 local_bh_enable();
6048 void napi_busy_loop(unsigned int napi_id,
6049 bool (*loop_end)(void *, unsigned long),
6050 void *loop_end_arg)
6052 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6053 int (*napi_poll)(struct napi_struct *napi, int budget);
6054 void *have_poll_lock = NULL;
6055 struct napi_struct *napi;
6057 restart:
6058 napi_poll = NULL;
6060 rcu_read_lock();
6062 napi = napi_by_id(napi_id);
6063 if (!napi)
6064 goto out;
6066 preempt_disable();
6067 for (;;) {
6068 int work = 0;
6070 local_bh_disable();
6071 if (!napi_poll) {
6072 unsigned long val = READ_ONCE(napi->state);
6074 /* If multiple threads are competing for this napi,
6075 * we avoid dirtying napi->state as much as we can.
6077 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6078 NAPIF_STATE_IN_BUSY_POLL))
6079 goto count;
6080 if (cmpxchg(&napi->state, val,
6081 val | NAPIF_STATE_IN_BUSY_POLL |
6082 NAPIF_STATE_SCHED) != val)
6083 goto count;
6084 have_poll_lock = netpoll_poll_lock(napi);
6085 napi_poll = napi->poll;
6087 work = napi_poll(napi, BUSY_POLL_BUDGET);
6088 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6089 count:
6090 if (work > 0)
6091 __NET_ADD_STATS(dev_net(napi->dev),
6092 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6093 local_bh_enable();
6095 if (!loop_end || loop_end(loop_end_arg, start_time))
6096 break;
6098 if (unlikely(need_resched())) {
6099 if (napi_poll)
6100 busy_poll_stop(napi, have_poll_lock);
6101 preempt_enable();
6102 rcu_read_unlock();
6103 cond_resched();
6104 if (loop_end(loop_end_arg, start_time))
6105 return;
6106 goto restart;
6108 cpu_relax();
6110 if (napi_poll)
6111 busy_poll_stop(napi, have_poll_lock);
6112 preempt_enable();
6113 out:
6114 rcu_read_unlock();
6116 EXPORT_SYMBOL(napi_busy_loop);
6118 #endif /* CONFIG_NET_RX_BUSY_POLL */
6120 static void napi_hash_add(struct napi_struct *napi)
6122 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6123 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6124 return;
6126 spin_lock(&napi_hash_lock);
6128 /* 0..NR_CPUS range is reserved for sender_cpu use */
6129 do {
6130 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6131 napi_gen_id = MIN_NAPI_ID;
6132 } while (napi_by_id(napi_gen_id));
6133 napi->napi_id = napi_gen_id;
6135 hlist_add_head_rcu(&napi->napi_hash_node,
6136 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6138 spin_unlock(&napi_hash_lock);
6141 /* Warning : caller is responsible to make sure rcu grace period
6142 * is respected before freeing memory containing @napi
6144 bool napi_hash_del(struct napi_struct *napi)
6146 bool rcu_sync_needed = false;
6148 spin_lock(&napi_hash_lock);
6150 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6151 rcu_sync_needed = true;
6152 hlist_del_rcu(&napi->napi_hash_node);
6154 spin_unlock(&napi_hash_lock);
6155 return rcu_sync_needed;
6157 EXPORT_SYMBOL_GPL(napi_hash_del);
6159 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6161 struct napi_struct *napi;
6163 napi = container_of(timer, struct napi_struct, timer);
6165 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6166 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6168 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6169 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6170 __napi_schedule_irqoff(napi);
6172 return HRTIMER_NORESTART;
6175 static void init_gro_hash(struct napi_struct *napi)
6177 int i;
6179 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6180 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6181 napi->gro_hash[i].count = 0;
6183 napi->gro_bitmask = 0;
6186 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6187 int (*poll)(struct napi_struct *, int), int weight)
6189 INIT_LIST_HEAD(&napi->poll_list);
6190 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6191 napi->timer.function = napi_watchdog;
6192 init_gro_hash(napi);
6193 napi->skb = NULL;
6194 napi->poll = poll;
6195 if (weight > NAPI_POLL_WEIGHT)
6196 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6197 weight, dev->name);
6198 napi->weight = weight;
6199 list_add(&napi->dev_list, &dev->napi_list);
6200 napi->dev = dev;
6201 #ifdef CONFIG_NETPOLL
6202 napi->poll_owner = -1;
6203 #endif
6204 set_bit(NAPI_STATE_SCHED, &napi->state);
6205 napi_hash_add(napi);
6207 EXPORT_SYMBOL(netif_napi_add);
6209 void napi_disable(struct napi_struct *n)
6211 might_sleep();
6212 set_bit(NAPI_STATE_DISABLE, &n->state);
6214 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6215 msleep(1);
6216 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6217 msleep(1);
6219 hrtimer_cancel(&n->timer);
6221 clear_bit(NAPI_STATE_DISABLE, &n->state);
6223 EXPORT_SYMBOL(napi_disable);
6225 static void flush_gro_hash(struct napi_struct *napi)
6227 int i;
6229 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6230 struct sk_buff *skb, *n;
6232 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6233 kfree_skb(skb);
6234 napi->gro_hash[i].count = 0;
6238 /* Must be called in process context */
6239 void netif_napi_del(struct napi_struct *napi)
6241 might_sleep();
6242 if (napi_hash_del(napi))
6243 synchronize_net();
6244 list_del_init(&napi->dev_list);
6245 napi_free_frags(napi);
6247 flush_gro_hash(napi);
6248 napi->gro_bitmask = 0;
6250 EXPORT_SYMBOL(netif_napi_del);
6252 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6254 void *have;
6255 int work, weight;
6257 list_del_init(&n->poll_list);
6259 have = netpoll_poll_lock(n);
6261 weight = n->weight;
6263 /* This NAPI_STATE_SCHED test is for avoiding a race
6264 * with netpoll's poll_napi(). Only the entity which
6265 * obtains the lock and sees NAPI_STATE_SCHED set will
6266 * actually make the ->poll() call. Therefore we avoid
6267 * accidentally calling ->poll() when NAPI is not scheduled.
6269 work = 0;
6270 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6271 work = n->poll(n, weight);
6272 trace_napi_poll(n, work, weight);
6275 WARN_ON_ONCE(work > weight);
6277 if (likely(work < weight))
6278 goto out_unlock;
6280 /* Drivers must not modify the NAPI state if they
6281 * consume the entire weight. In such cases this code
6282 * still "owns" the NAPI instance and therefore can
6283 * move the instance around on the list at-will.
6285 if (unlikely(napi_disable_pending(n))) {
6286 napi_complete(n);
6287 goto out_unlock;
6290 if (n->gro_bitmask) {
6291 /* flush too old packets
6292 * If HZ < 1000, flush all packets.
6294 napi_gro_flush(n, HZ >= 1000);
6297 /* Some drivers may have called napi_schedule
6298 * prior to exhausting their budget.
6300 if (unlikely(!list_empty(&n->poll_list))) {
6301 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6302 n->dev ? n->dev->name : "backlog");
6303 goto out_unlock;
6306 list_add_tail(&n->poll_list, repoll);
6308 out_unlock:
6309 netpoll_poll_unlock(have);
6311 return work;
6314 static __latent_entropy void net_rx_action(struct softirq_action *h)
6316 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6317 unsigned long time_limit = jiffies +
6318 usecs_to_jiffies(netdev_budget_usecs);
6319 int budget = netdev_budget;
6320 LIST_HEAD(list);
6321 LIST_HEAD(repoll);
6323 local_irq_disable();
6324 list_splice_init(&sd->poll_list, &list);
6325 local_irq_enable();
6327 for (;;) {
6328 struct napi_struct *n;
6330 if (list_empty(&list)) {
6331 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6332 goto out;
6333 break;
6336 n = list_first_entry(&list, struct napi_struct, poll_list);
6337 budget -= napi_poll(n, &repoll);
6339 /* If softirq window is exhausted then punt.
6340 * Allow this to run for 2 jiffies since which will allow
6341 * an average latency of 1.5/HZ.
6343 if (unlikely(budget <= 0 ||
6344 time_after_eq(jiffies, time_limit))) {
6345 sd->time_squeeze++;
6346 break;
6350 local_irq_disable();
6352 list_splice_tail_init(&sd->poll_list, &list);
6353 list_splice_tail(&repoll, &list);
6354 list_splice(&list, &sd->poll_list);
6355 if (!list_empty(&sd->poll_list))
6356 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6358 net_rps_action_and_irq_enable(sd);
6359 out:
6360 __kfree_skb_flush();
6363 struct netdev_adjacent {
6364 struct net_device *dev;
6366 /* upper master flag, there can only be one master device per list */
6367 bool master;
6369 /* counter for the number of times this device was added to us */
6370 u16 ref_nr;
6372 /* private field for the users */
6373 void *private;
6375 struct list_head list;
6376 struct rcu_head rcu;
6379 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6380 struct list_head *adj_list)
6382 struct netdev_adjacent *adj;
6384 list_for_each_entry(adj, adj_list, list) {
6385 if (adj->dev == adj_dev)
6386 return adj;
6388 return NULL;
6391 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6393 struct net_device *dev = data;
6395 return upper_dev == dev;
6399 * netdev_has_upper_dev - Check if device is linked to an upper device
6400 * @dev: device
6401 * @upper_dev: upper device to check
6403 * Find out if a device is linked to specified upper device and return true
6404 * in case it is. Note that this checks only immediate upper device,
6405 * not through a complete stack of devices. The caller must hold the RTNL lock.
6407 bool netdev_has_upper_dev(struct net_device *dev,
6408 struct net_device *upper_dev)
6410 ASSERT_RTNL();
6412 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6413 upper_dev);
6415 EXPORT_SYMBOL(netdev_has_upper_dev);
6418 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6419 * @dev: device
6420 * @upper_dev: upper device to check
6422 * Find out if a device is linked to specified upper device and return true
6423 * in case it is. Note that this checks the entire upper device chain.
6424 * The caller must hold rcu lock.
6427 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6428 struct net_device *upper_dev)
6430 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6431 upper_dev);
6433 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6436 * netdev_has_any_upper_dev - Check if device is linked to some device
6437 * @dev: device
6439 * Find out if a device is linked to an upper device and return true in case
6440 * it is. The caller must hold the RTNL lock.
6442 bool netdev_has_any_upper_dev(struct net_device *dev)
6444 ASSERT_RTNL();
6446 return !list_empty(&dev->adj_list.upper);
6448 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6451 * netdev_master_upper_dev_get - Get master upper device
6452 * @dev: device
6454 * Find a master upper device and return pointer to it or NULL in case
6455 * it's not there. The caller must hold the RTNL lock.
6457 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6459 struct netdev_adjacent *upper;
6461 ASSERT_RTNL();
6463 if (list_empty(&dev->adj_list.upper))
6464 return NULL;
6466 upper = list_first_entry(&dev->adj_list.upper,
6467 struct netdev_adjacent, list);
6468 if (likely(upper->master))
6469 return upper->dev;
6470 return NULL;
6472 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6475 * netdev_has_any_lower_dev - Check if device is linked to some device
6476 * @dev: device
6478 * Find out if a device is linked to a lower device and return true in case
6479 * it is. The caller must hold the RTNL lock.
6481 static bool netdev_has_any_lower_dev(struct net_device *dev)
6483 ASSERT_RTNL();
6485 return !list_empty(&dev->adj_list.lower);
6488 void *netdev_adjacent_get_private(struct list_head *adj_list)
6490 struct netdev_adjacent *adj;
6492 adj = list_entry(adj_list, struct netdev_adjacent, list);
6494 return adj->private;
6496 EXPORT_SYMBOL(netdev_adjacent_get_private);
6499 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6500 * @dev: device
6501 * @iter: list_head ** of the current position
6503 * Gets the next device from the dev's upper list, starting from iter
6504 * position. The caller must hold RCU read lock.
6506 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6507 struct list_head **iter)
6509 struct netdev_adjacent *upper;
6511 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6513 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6515 if (&upper->list == &dev->adj_list.upper)
6516 return NULL;
6518 *iter = &upper->list;
6520 return upper->dev;
6522 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6524 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6525 struct list_head **iter)
6527 struct netdev_adjacent *upper;
6529 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6531 if (&upper->list == &dev->adj_list.upper)
6532 return NULL;
6534 *iter = &upper->list;
6536 return upper->dev;
6539 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6540 struct list_head **iter)
6542 struct netdev_adjacent *upper;
6544 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548 if (&upper->list == &dev->adj_list.upper)
6549 return NULL;
6551 *iter = &upper->list;
6553 return upper->dev;
6556 static int netdev_walk_all_upper_dev(struct net_device *dev,
6557 int (*fn)(struct net_device *dev,
6558 void *data),
6559 void *data)
6561 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6562 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6563 int ret, cur = 0;
6565 now = dev;
6566 iter = &dev->adj_list.upper;
6568 while (1) {
6569 if (now != dev) {
6570 ret = fn(now, data);
6571 if (ret)
6572 return ret;
6575 next = NULL;
6576 while (1) {
6577 udev = netdev_next_upper_dev(now, &iter);
6578 if (!udev)
6579 break;
6581 next = udev;
6582 niter = &udev->adj_list.upper;
6583 dev_stack[cur] = now;
6584 iter_stack[cur++] = iter;
6585 break;
6588 if (!next) {
6589 if (!cur)
6590 return 0;
6591 next = dev_stack[--cur];
6592 niter = iter_stack[cur];
6595 now = next;
6596 iter = niter;
6599 return 0;
6602 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6603 int (*fn)(struct net_device *dev,
6604 void *data),
6605 void *data)
6607 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6608 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6609 int ret, cur = 0;
6611 now = dev;
6612 iter = &dev->adj_list.upper;
6614 while (1) {
6615 if (now != dev) {
6616 ret = fn(now, data);
6617 if (ret)
6618 return ret;
6621 next = NULL;
6622 while (1) {
6623 udev = netdev_next_upper_dev_rcu(now, &iter);
6624 if (!udev)
6625 break;
6627 next = udev;
6628 niter = &udev->adj_list.upper;
6629 dev_stack[cur] = now;
6630 iter_stack[cur++] = iter;
6631 break;
6634 if (!next) {
6635 if (!cur)
6636 return 0;
6637 next = dev_stack[--cur];
6638 niter = iter_stack[cur];
6641 now = next;
6642 iter = niter;
6645 return 0;
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6650 * netdev_lower_get_next_private - Get the next ->private from the
6651 * lower neighbour list
6652 * @dev: device
6653 * @iter: list_head ** of the current position
6655 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6656 * list, starting from iter position. The caller must hold either hold the
6657 * RTNL lock or its own locking that guarantees that the neighbour lower
6658 * list will remain unchanged.
6660 void *netdev_lower_get_next_private(struct net_device *dev,
6661 struct list_head **iter)
6663 struct netdev_adjacent *lower;
6665 lower = list_entry(*iter, struct netdev_adjacent, list);
6667 if (&lower->list == &dev->adj_list.lower)
6668 return NULL;
6670 *iter = lower->list.next;
6672 return lower->private;
6674 EXPORT_SYMBOL(netdev_lower_get_next_private);
6677 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6678 * lower neighbour list, RCU
6679 * variant
6680 * @dev: device
6681 * @iter: list_head ** of the current position
6683 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6684 * list, starting from iter position. The caller must hold RCU read lock.
6686 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6687 struct list_head **iter)
6689 struct netdev_adjacent *lower;
6691 WARN_ON_ONCE(!rcu_read_lock_held());
6693 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6695 if (&lower->list == &dev->adj_list.lower)
6696 return NULL;
6698 *iter = &lower->list;
6700 return lower->private;
6702 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6705 * netdev_lower_get_next - Get the next device from the lower neighbour
6706 * list
6707 * @dev: device
6708 * @iter: list_head ** of the current position
6710 * Gets the next netdev_adjacent from the dev's lower neighbour
6711 * list, starting from iter position. The caller must hold RTNL lock or
6712 * its own locking that guarantees that the neighbour lower
6713 * list will remain unchanged.
6715 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6717 struct netdev_adjacent *lower;
6719 lower = list_entry(*iter, struct netdev_adjacent, list);
6721 if (&lower->list == &dev->adj_list.lower)
6722 return NULL;
6724 *iter = lower->list.next;
6726 return lower->dev;
6728 EXPORT_SYMBOL(netdev_lower_get_next);
6730 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6731 struct list_head **iter)
6733 struct netdev_adjacent *lower;
6735 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6737 if (&lower->list == &dev->adj_list.lower)
6738 return NULL;
6740 *iter = &lower->list;
6742 return lower->dev;
6745 int netdev_walk_all_lower_dev(struct net_device *dev,
6746 int (*fn)(struct net_device *dev,
6747 void *data),
6748 void *data)
6750 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6751 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6752 int ret, cur = 0;
6754 now = dev;
6755 iter = &dev->adj_list.lower;
6757 while (1) {
6758 if (now != dev) {
6759 ret = fn(now, data);
6760 if (ret)
6761 return ret;
6764 next = NULL;
6765 while (1) {
6766 ldev = netdev_next_lower_dev(now, &iter);
6767 if (!ldev)
6768 break;
6770 next = ldev;
6771 niter = &ldev->adj_list.lower;
6772 dev_stack[cur] = now;
6773 iter_stack[cur++] = iter;
6774 break;
6777 if (!next) {
6778 if (!cur)
6779 return 0;
6780 next = dev_stack[--cur];
6781 niter = iter_stack[cur];
6784 now = next;
6785 iter = niter;
6788 return 0;
6790 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6792 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6793 struct list_head **iter)
6795 struct netdev_adjacent *lower;
6797 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6798 if (&lower->list == &dev->adj_list.lower)
6799 return NULL;
6801 *iter = &lower->list;
6803 return lower->dev;
6806 static u8 __netdev_upper_depth(struct net_device *dev)
6808 struct net_device *udev;
6809 struct list_head *iter;
6810 u8 max_depth = 0;
6812 for (iter = &dev->adj_list.upper,
6813 udev = netdev_next_upper_dev(dev, &iter);
6814 udev;
6815 udev = netdev_next_upper_dev(dev, &iter)) {
6816 if (max_depth < udev->upper_level)
6817 max_depth = udev->upper_level;
6820 return max_depth;
6823 static u8 __netdev_lower_depth(struct net_device *dev)
6825 struct net_device *ldev;
6826 struct list_head *iter;
6827 u8 max_depth = 0;
6829 for (iter = &dev->adj_list.lower,
6830 ldev = netdev_next_lower_dev(dev, &iter);
6831 ldev;
6832 ldev = netdev_next_lower_dev(dev, &iter)) {
6833 if (max_depth < ldev->lower_level)
6834 max_depth = ldev->lower_level;
6837 return max_depth;
6840 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6842 dev->upper_level = __netdev_upper_depth(dev) + 1;
6843 return 0;
6846 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6848 dev->lower_level = __netdev_lower_depth(dev) + 1;
6849 return 0;
6852 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6853 int (*fn)(struct net_device *dev,
6854 void *data),
6855 void *data)
6857 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6858 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6859 int ret, cur = 0;
6861 now = dev;
6862 iter = &dev->adj_list.lower;
6864 while (1) {
6865 if (now != dev) {
6866 ret = fn(now, data);
6867 if (ret)
6868 return ret;
6871 next = NULL;
6872 while (1) {
6873 ldev = netdev_next_lower_dev_rcu(now, &iter);
6874 if (!ldev)
6875 break;
6877 next = ldev;
6878 niter = &ldev->adj_list.lower;
6879 dev_stack[cur] = now;
6880 iter_stack[cur++] = iter;
6881 break;
6884 if (!next) {
6885 if (!cur)
6886 return 0;
6887 next = dev_stack[--cur];
6888 niter = iter_stack[cur];
6891 now = next;
6892 iter = niter;
6895 return 0;
6897 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6900 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6901 * lower neighbour list, RCU
6902 * variant
6903 * @dev: device
6905 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6906 * list. The caller must hold RCU read lock.
6908 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6910 struct netdev_adjacent *lower;
6912 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6913 struct netdev_adjacent, list);
6914 if (lower)
6915 return lower->private;
6916 return NULL;
6918 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6921 * netdev_master_upper_dev_get_rcu - Get master upper device
6922 * @dev: device
6924 * Find a master upper device and return pointer to it or NULL in case
6925 * it's not there. The caller must hold the RCU read lock.
6927 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6929 struct netdev_adjacent *upper;
6931 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6932 struct netdev_adjacent, list);
6933 if (upper && likely(upper->master))
6934 return upper->dev;
6935 return NULL;
6937 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6939 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6940 struct net_device *adj_dev,
6941 struct list_head *dev_list)
6943 char linkname[IFNAMSIZ+7];
6945 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6946 "upper_%s" : "lower_%s", adj_dev->name);
6947 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6948 linkname);
6950 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6951 char *name,
6952 struct list_head *dev_list)
6954 char linkname[IFNAMSIZ+7];
6956 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6957 "upper_%s" : "lower_%s", name);
6958 sysfs_remove_link(&(dev->dev.kobj), linkname);
6961 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6962 struct net_device *adj_dev,
6963 struct list_head *dev_list)
6965 return (dev_list == &dev->adj_list.upper ||
6966 dev_list == &dev->adj_list.lower) &&
6967 net_eq(dev_net(dev), dev_net(adj_dev));
6970 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6971 struct net_device *adj_dev,
6972 struct list_head *dev_list,
6973 void *private, bool master)
6975 struct netdev_adjacent *adj;
6976 int ret;
6978 adj = __netdev_find_adj(adj_dev, dev_list);
6980 if (adj) {
6981 adj->ref_nr += 1;
6982 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6983 dev->name, adj_dev->name, adj->ref_nr);
6985 return 0;
6988 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6989 if (!adj)
6990 return -ENOMEM;
6992 adj->dev = adj_dev;
6993 adj->master = master;
6994 adj->ref_nr = 1;
6995 adj->private = private;
6996 dev_hold(adj_dev);
6998 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6999 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7001 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7002 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7003 if (ret)
7004 goto free_adj;
7007 /* Ensure that master link is always the first item in list. */
7008 if (master) {
7009 ret = sysfs_create_link(&(dev->dev.kobj),
7010 &(adj_dev->dev.kobj), "master");
7011 if (ret)
7012 goto remove_symlinks;
7014 list_add_rcu(&adj->list, dev_list);
7015 } else {
7016 list_add_tail_rcu(&adj->list, dev_list);
7019 return 0;
7021 remove_symlinks:
7022 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7023 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7024 free_adj:
7025 kfree(adj);
7026 dev_put(adj_dev);
7028 return ret;
7031 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7032 struct net_device *adj_dev,
7033 u16 ref_nr,
7034 struct list_head *dev_list)
7036 struct netdev_adjacent *adj;
7038 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7039 dev->name, adj_dev->name, ref_nr);
7041 adj = __netdev_find_adj(adj_dev, dev_list);
7043 if (!adj) {
7044 pr_err("Adjacency does not exist for device %s from %s\n",
7045 dev->name, adj_dev->name);
7046 WARN_ON(1);
7047 return;
7050 if (adj->ref_nr > ref_nr) {
7051 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7052 dev->name, adj_dev->name, ref_nr,
7053 adj->ref_nr - ref_nr);
7054 adj->ref_nr -= ref_nr;
7055 return;
7058 if (adj->master)
7059 sysfs_remove_link(&(dev->dev.kobj), "master");
7061 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7062 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7064 list_del_rcu(&adj->list);
7065 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7066 adj_dev->name, dev->name, adj_dev->name);
7067 dev_put(adj_dev);
7068 kfree_rcu(adj, rcu);
7071 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7072 struct net_device *upper_dev,
7073 struct list_head *up_list,
7074 struct list_head *down_list,
7075 void *private, bool master)
7077 int ret;
7079 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7080 private, master);
7081 if (ret)
7082 return ret;
7084 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7085 private, false);
7086 if (ret) {
7087 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7088 return ret;
7091 return 0;
7094 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7095 struct net_device *upper_dev,
7096 u16 ref_nr,
7097 struct list_head *up_list,
7098 struct list_head *down_list)
7100 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7101 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7104 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7105 struct net_device *upper_dev,
7106 void *private, bool master)
7108 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7109 &dev->adj_list.upper,
7110 &upper_dev->adj_list.lower,
7111 private, master);
7114 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7115 struct net_device *upper_dev)
7117 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7118 &dev->adj_list.upper,
7119 &upper_dev->adj_list.lower);
7122 static int __netdev_upper_dev_link(struct net_device *dev,
7123 struct net_device *upper_dev, bool master,
7124 void *upper_priv, void *upper_info,
7125 struct netlink_ext_ack *extack)
7127 struct netdev_notifier_changeupper_info changeupper_info = {
7128 .info = {
7129 .dev = dev,
7130 .extack = extack,
7132 .upper_dev = upper_dev,
7133 .master = master,
7134 .linking = true,
7135 .upper_info = upper_info,
7137 struct net_device *master_dev;
7138 int ret = 0;
7140 ASSERT_RTNL();
7142 if (dev == upper_dev)
7143 return -EBUSY;
7145 /* To prevent loops, check if dev is not upper device to upper_dev. */
7146 if (netdev_has_upper_dev(upper_dev, dev))
7147 return -EBUSY;
7149 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7150 return -EMLINK;
7152 if (!master) {
7153 if (netdev_has_upper_dev(dev, upper_dev))
7154 return -EEXIST;
7155 } else {
7156 master_dev = netdev_master_upper_dev_get(dev);
7157 if (master_dev)
7158 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7161 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7162 &changeupper_info.info);
7163 ret = notifier_to_errno(ret);
7164 if (ret)
7165 return ret;
7167 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7168 master);
7169 if (ret)
7170 return ret;
7172 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7173 &changeupper_info.info);
7174 ret = notifier_to_errno(ret);
7175 if (ret)
7176 goto rollback;
7178 __netdev_update_upper_level(dev, NULL);
7179 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7181 __netdev_update_lower_level(upper_dev, NULL);
7182 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7184 return 0;
7186 rollback:
7187 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7189 return ret;
7193 * netdev_upper_dev_link - Add a link to the upper device
7194 * @dev: device
7195 * @upper_dev: new upper device
7196 * @extack: netlink extended ack
7198 * Adds a link to device which is upper to this one. The caller must hold
7199 * the RTNL lock. On a failure a negative errno code is returned.
7200 * On success the reference counts are adjusted and the function
7201 * returns zero.
7203 int netdev_upper_dev_link(struct net_device *dev,
7204 struct net_device *upper_dev,
7205 struct netlink_ext_ack *extack)
7207 return __netdev_upper_dev_link(dev, upper_dev, false,
7208 NULL, NULL, extack);
7210 EXPORT_SYMBOL(netdev_upper_dev_link);
7213 * netdev_master_upper_dev_link - Add a master link to the upper device
7214 * @dev: device
7215 * @upper_dev: new upper device
7216 * @upper_priv: upper device private
7217 * @upper_info: upper info to be passed down via notifier
7218 * @extack: netlink extended ack
7220 * Adds a link to device which is upper to this one. In this case, only
7221 * one master upper device can be linked, although other non-master devices
7222 * might be linked as well. The caller must hold the RTNL lock.
7223 * On a failure a negative errno code is returned. On success the reference
7224 * counts are adjusted and the function returns zero.
7226 int netdev_master_upper_dev_link(struct net_device *dev,
7227 struct net_device *upper_dev,
7228 void *upper_priv, void *upper_info,
7229 struct netlink_ext_ack *extack)
7231 return __netdev_upper_dev_link(dev, upper_dev, true,
7232 upper_priv, upper_info, extack);
7234 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7237 * netdev_upper_dev_unlink - Removes a link to upper device
7238 * @dev: device
7239 * @upper_dev: new upper device
7241 * Removes a link to device which is upper to this one. The caller must hold
7242 * the RTNL lock.
7244 void netdev_upper_dev_unlink(struct net_device *dev,
7245 struct net_device *upper_dev)
7247 struct netdev_notifier_changeupper_info changeupper_info = {
7248 .info = {
7249 .dev = dev,
7251 .upper_dev = upper_dev,
7252 .linking = false,
7255 ASSERT_RTNL();
7257 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7259 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7260 &changeupper_info.info);
7262 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7264 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7265 &changeupper_info.info);
7267 __netdev_update_upper_level(dev, NULL);
7268 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7270 __netdev_update_lower_level(upper_dev, NULL);
7271 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7273 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7276 * netdev_bonding_info_change - Dispatch event about slave change
7277 * @dev: device
7278 * @bonding_info: info to dispatch
7280 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7281 * The caller must hold the RTNL lock.
7283 void netdev_bonding_info_change(struct net_device *dev,
7284 struct netdev_bonding_info *bonding_info)
7286 struct netdev_notifier_bonding_info info = {
7287 .info.dev = dev,
7290 memcpy(&info.bonding_info, bonding_info,
7291 sizeof(struct netdev_bonding_info));
7292 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7293 &info.info);
7295 EXPORT_SYMBOL(netdev_bonding_info_change);
7297 static void netdev_adjacent_add_links(struct net_device *dev)
7299 struct netdev_adjacent *iter;
7301 struct net *net = dev_net(dev);
7303 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7304 if (!net_eq(net, dev_net(iter->dev)))
7305 continue;
7306 netdev_adjacent_sysfs_add(iter->dev, dev,
7307 &iter->dev->adj_list.lower);
7308 netdev_adjacent_sysfs_add(dev, iter->dev,
7309 &dev->adj_list.upper);
7312 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7313 if (!net_eq(net, dev_net(iter->dev)))
7314 continue;
7315 netdev_adjacent_sysfs_add(iter->dev, dev,
7316 &iter->dev->adj_list.upper);
7317 netdev_adjacent_sysfs_add(dev, iter->dev,
7318 &dev->adj_list.lower);
7322 static void netdev_adjacent_del_links(struct net_device *dev)
7324 struct netdev_adjacent *iter;
7326 struct net *net = dev_net(dev);
7328 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7329 if (!net_eq(net, dev_net(iter->dev)))
7330 continue;
7331 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7332 &iter->dev->adj_list.lower);
7333 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7334 &dev->adj_list.upper);
7337 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7338 if (!net_eq(net, dev_net(iter->dev)))
7339 continue;
7340 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7341 &iter->dev->adj_list.upper);
7342 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7343 &dev->adj_list.lower);
7347 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7349 struct netdev_adjacent *iter;
7351 struct net *net = dev_net(dev);
7353 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7354 if (!net_eq(net, dev_net(iter->dev)))
7355 continue;
7356 netdev_adjacent_sysfs_del(iter->dev, oldname,
7357 &iter->dev->adj_list.lower);
7358 netdev_adjacent_sysfs_add(iter->dev, dev,
7359 &iter->dev->adj_list.lower);
7362 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7363 if (!net_eq(net, dev_net(iter->dev)))
7364 continue;
7365 netdev_adjacent_sysfs_del(iter->dev, oldname,
7366 &iter->dev->adj_list.upper);
7367 netdev_adjacent_sysfs_add(iter->dev, dev,
7368 &iter->dev->adj_list.upper);
7372 void *netdev_lower_dev_get_private(struct net_device *dev,
7373 struct net_device *lower_dev)
7375 struct netdev_adjacent *lower;
7377 if (!lower_dev)
7378 return NULL;
7379 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7380 if (!lower)
7381 return NULL;
7383 return lower->private;
7385 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7388 int dev_get_nest_level(struct net_device *dev)
7390 struct net_device *lower = NULL;
7391 struct list_head *iter;
7392 int max_nest = -1;
7393 int nest;
7395 ASSERT_RTNL();
7397 netdev_for_each_lower_dev(dev, lower, iter) {
7398 nest = dev_get_nest_level(lower);
7399 if (max_nest < nest)
7400 max_nest = nest;
7403 return max_nest + 1;
7405 EXPORT_SYMBOL(dev_get_nest_level);
7408 * netdev_lower_change - Dispatch event about lower device state change
7409 * @lower_dev: device
7410 * @lower_state_info: state to dispatch
7412 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7413 * The caller must hold the RTNL lock.
7415 void netdev_lower_state_changed(struct net_device *lower_dev,
7416 void *lower_state_info)
7418 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7419 .info.dev = lower_dev,
7422 ASSERT_RTNL();
7423 changelowerstate_info.lower_state_info = lower_state_info;
7424 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7425 &changelowerstate_info.info);
7427 EXPORT_SYMBOL(netdev_lower_state_changed);
7429 static void dev_change_rx_flags(struct net_device *dev, int flags)
7431 const struct net_device_ops *ops = dev->netdev_ops;
7433 if (ops->ndo_change_rx_flags)
7434 ops->ndo_change_rx_flags(dev, flags);
7437 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7439 unsigned int old_flags = dev->flags;
7440 kuid_t uid;
7441 kgid_t gid;
7443 ASSERT_RTNL();
7445 dev->flags |= IFF_PROMISC;
7446 dev->promiscuity += inc;
7447 if (dev->promiscuity == 0) {
7449 * Avoid overflow.
7450 * If inc causes overflow, untouch promisc and return error.
7452 if (inc < 0)
7453 dev->flags &= ~IFF_PROMISC;
7454 else {
7455 dev->promiscuity -= inc;
7456 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7457 dev->name);
7458 return -EOVERFLOW;
7461 if (dev->flags != old_flags) {
7462 pr_info("device %s %s promiscuous mode\n",
7463 dev->name,
7464 dev->flags & IFF_PROMISC ? "entered" : "left");
7465 if (audit_enabled) {
7466 current_uid_gid(&uid, &gid);
7467 audit_log(audit_context(), GFP_ATOMIC,
7468 AUDIT_ANOM_PROMISCUOUS,
7469 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7470 dev->name, (dev->flags & IFF_PROMISC),
7471 (old_flags & IFF_PROMISC),
7472 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7473 from_kuid(&init_user_ns, uid),
7474 from_kgid(&init_user_ns, gid),
7475 audit_get_sessionid(current));
7478 dev_change_rx_flags(dev, IFF_PROMISC);
7480 if (notify)
7481 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7482 return 0;
7486 * dev_set_promiscuity - update promiscuity count on a device
7487 * @dev: device
7488 * @inc: modifier
7490 * Add or remove promiscuity from a device. While the count in the device
7491 * remains above zero the interface remains promiscuous. Once it hits zero
7492 * the device reverts back to normal filtering operation. A negative inc
7493 * value is used to drop promiscuity on the device.
7494 * Return 0 if successful or a negative errno code on error.
7496 int dev_set_promiscuity(struct net_device *dev, int inc)
7498 unsigned int old_flags = dev->flags;
7499 int err;
7501 err = __dev_set_promiscuity(dev, inc, true);
7502 if (err < 0)
7503 return err;
7504 if (dev->flags != old_flags)
7505 dev_set_rx_mode(dev);
7506 return err;
7508 EXPORT_SYMBOL(dev_set_promiscuity);
7510 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7512 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7514 ASSERT_RTNL();
7516 dev->flags |= IFF_ALLMULTI;
7517 dev->allmulti += inc;
7518 if (dev->allmulti == 0) {
7520 * Avoid overflow.
7521 * If inc causes overflow, untouch allmulti and return error.
7523 if (inc < 0)
7524 dev->flags &= ~IFF_ALLMULTI;
7525 else {
7526 dev->allmulti -= inc;
7527 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7528 dev->name);
7529 return -EOVERFLOW;
7532 if (dev->flags ^ old_flags) {
7533 dev_change_rx_flags(dev, IFF_ALLMULTI);
7534 dev_set_rx_mode(dev);
7535 if (notify)
7536 __dev_notify_flags(dev, old_flags,
7537 dev->gflags ^ old_gflags);
7539 return 0;
7543 * dev_set_allmulti - update allmulti count on a device
7544 * @dev: device
7545 * @inc: modifier
7547 * Add or remove reception of all multicast frames to a device. While the
7548 * count in the device remains above zero the interface remains listening
7549 * to all interfaces. Once it hits zero the device reverts back to normal
7550 * filtering operation. A negative @inc value is used to drop the counter
7551 * when releasing a resource needing all multicasts.
7552 * Return 0 if successful or a negative errno code on error.
7555 int dev_set_allmulti(struct net_device *dev, int inc)
7557 return __dev_set_allmulti(dev, inc, true);
7559 EXPORT_SYMBOL(dev_set_allmulti);
7562 * Upload unicast and multicast address lists to device and
7563 * configure RX filtering. When the device doesn't support unicast
7564 * filtering it is put in promiscuous mode while unicast addresses
7565 * are present.
7567 void __dev_set_rx_mode(struct net_device *dev)
7569 const struct net_device_ops *ops = dev->netdev_ops;
7571 /* dev_open will call this function so the list will stay sane. */
7572 if (!(dev->flags&IFF_UP))
7573 return;
7575 if (!netif_device_present(dev))
7576 return;
7578 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7579 /* Unicast addresses changes may only happen under the rtnl,
7580 * therefore calling __dev_set_promiscuity here is safe.
7582 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7583 __dev_set_promiscuity(dev, 1, false);
7584 dev->uc_promisc = true;
7585 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7586 __dev_set_promiscuity(dev, -1, false);
7587 dev->uc_promisc = false;
7591 if (ops->ndo_set_rx_mode)
7592 ops->ndo_set_rx_mode(dev);
7595 void dev_set_rx_mode(struct net_device *dev)
7597 netif_addr_lock_bh(dev);
7598 __dev_set_rx_mode(dev);
7599 netif_addr_unlock_bh(dev);
7603 * dev_get_flags - get flags reported to userspace
7604 * @dev: device
7606 * Get the combination of flag bits exported through APIs to userspace.
7608 unsigned int dev_get_flags(const struct net_device *dev)
7610 unsigned int flags;
7612 flags = (dev->flags & ~(IFF_PROMISC |
7613 IFF_ALLMULTI |
7614 IFF_RUNNING |
7615 IFF_LOWER_UP |
7616 IFF_DORMANT)) |
7617 (dev->gflags & (IFF_PROMISC |
7618 IFF_ALLMULTI));
7620 if (netif_running(dev)) {
7621 if (netif_oper_up(dev))
7622 flags |= IFF_RUNNING;
7623 if (netif_carrier_ok(dev))
7624 flags |= IFF_LOWER_UP;
7625 if (netif_dormant(dev))
7626 flags |= IFF_DORMANT;
7629 return flags;
7631 EXPORT_SYMBOL(dev_get_flags);
7633 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7635 unsigned int old_flags = dev->flags;
7636 int ret;
7638 ASSERT_RTNL();
7641 * Set the flags on our device.
7644 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7645 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7646 IFF_AUTOMEDIA)) |
7647 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7648 IFF_ALLMULTI));
7651 * Load in the correct multicast list now the flags have changed.
7654 if ((old_flags ^ flags) & IFF_MULTICAST)
7655 dev_change_rx_flags(dev, IFF_MULTICAST);
7657 dev_set_rx_mode(dev);
7660 * Have we downed the interface. We handle IFF_UP ourselves
7661 * according to user attempts to set it, rather than blindly
7662 * setting it.
7665 ret = 0;
7666 if ((old_flags ^ flags) & IFF_UP) {
7667 if (old_flags & IFF_UP)
7668 __dev_close(dev);
7669 else
7670 ret = __dev_open(dev);
7673 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7674 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7675 unsigned int old_flags = dev->flags;
7677 dev->gflags ^= IFF_PROMISC;
7679 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7680 if (dev->flags != old_flags)
7681 dev_set_rx_mode(dev);
7684 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7685 * is important. Some (broken) drivers set IFF_PROMISC, when
7686 * IFF_ALLMULTI is requested not asking us and not reporting.
7688 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7689 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7691 dev->gflags ^= IFF_ALLMULTI;
7692 __dev_set_allmulti(dev, inc, false);
7695 return ret;
7698 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7699 unsigned int gchanges)
7701 unsigned int changes = dev->flags ^ old_flags;
7703 if (gchanges)
7704 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7706 if (changes & IFF_UP) {
7707 if (dev->flags & IFF_UP)
7708 call_netdevice_notifiers(NETDEV_UP, dev);
7709 else
7710 call_netdevice_notifiers(NETDEV_DOWN, dev);
7713 if (dev->flags & IFF_UP &&
7714 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7715 struct netdev_notifier_change_info change_info = {
7716 .info = {
7717 .dev = dev,
7719 .flags_changed = changes,
7722 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7727 * dev_change_flags - change device settings
7728 * @dev: device
7729 * @flags: device state flags
7731 * Change settings on device based state flags. The flags are
7732 * in the userspace exported format.
7734 int dev_change_flags(struct net_device *dev, unsigned int flags)
7736 int ret;
7737 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7739 ret = __dev_change_flags(dev, flags);
7740 if (ret < 0)
7741 return ret;
7743 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7744 __dev_notify_flags(dev, old_flags, changes);
7745 return ret;
7747 EXPORT_SYMBOL(dev_change_flags);
7749 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7751 const struct net_device_ops *ops = dev->netdev_ops;
7753 if (ops->ndo_change_mtu)
7754 return ops->ndo_change_mtu(dev, new_mtu);
7756 /* Pairs with all the lockless reads of dev->mtu in the stack */
7757 WRITE_ONCE(dev->mtu, new_mtu);
7758 return 0;
7760 EXPORT_SYMBOL(__dev_set_mtu);
7762 int dev_validate_mtu(struct net_device *dev, int new_mtu,
7763 struct netlink_ext_ack *extack)
7765 /* MTU must be positive, and in range */
7766 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7767 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7768 return -EINVAL;
7771 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7772 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7773 return -EINVAL;
7775 return 0;
7779 * dev_set_mtu_ext - Change maximum transfer unit
7780 * @dev: device
7781 * @new_mtu: new transfer unit
7782 * @extack: netlink extended ack
7784 * Change the maximum transfer size of the network device.
7786 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7787 struct netlink_ext_ack *extack)
7789 int err, orig_mtu;
7791 if (new_mtu == dev->mtu)
7792 return 0;
7794 err = dev_validate_mtu(dev, new_mtu, extack);
7795 if (err)
7796 return err;
7798 if (!netif_device_present(dev))
7799 return -ENODEV;
7801 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7802 err = notifier_to_errno(err);
7803 if (err)
7804 return err;
7806 orig_mtu = dev->mtu;
7807 err = __dev_set_mtu(dev, new_mtu);
7809 if (!err) {
7810 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7811 orig_mtu);
7812 err = notifier_to_errno(err);
7813 if (err) {
7814 /* setting mtu back and notifying everyone again,
7815 * so that they have a chance to revert changes.
7817 __dev_set_mtu(dev, orig_mtu);
7818 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7819 new_mtu);
7822 return err;
7825 int dev_set_mtu(struct net_device *dev, int new_mtu)
7827 struct netlink_ext_ack extack;
7828 int err;
7830 memset(&extack, 0, sizeof(extack));
7831 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7832 if (err && extack._msg)
7833 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7834 return err;
7836 EXPORT_SYMBOL(dev_set_mtu);
7839 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7840 * @dev: device
7841 * @new_len: new tx queue length
7843 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7845 unsigned int orig_len = dev->tx_queue_len;
7846 int res;
7848 if (new_len != (unsigned int)new_len)
7849 return -ERANGE;
7851 if (new_len != orig_len) {
7852 dev->tx_queue_len = new_len;
7853 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7854 res = notifier_to_errno(res);
7855 if (res)
7856 goto err_rollback;
7857 res = dev_qdisc_change_tx_queue_len(dev);
7858 if (res)
7859 goto err_rollback;
7862 return 0;
7864 err_rollback:
7865 netdev_err(dev, "refused to change device tx_queue_len\n");
7866 dev->tx_queue_len = orig_len;
7867 return res;
7871 * dev_set_group - Change group this device belongs to
7872 * @dev: device
7873 * @new_group: group this device should belong to
7875 void dev_set_group(struct net_device *dev, int new_group)
7877 dev->group = new_group;
7879 EXPORT_SYMBOL(dev_set_group);
7882 * dev_set_mac_address - Change Media Access Control Address
7883 * @dev: device
7884 * @sa: new address
7886 * Change the hardware (MAC) address of the device
7888 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7890 const struct net_device_ops *ops = dev->netdev_ops;
7891 int err;
7893 if (!ops->ndo_set_mac_address)
7894 return -EOPNOTSUPP;
7895 if (sa->sa_family != dev->type)
7896 return -EINVAL;
7897 if (!netif_device_present(dev))
7898 return -ENODEV;
7899 err = ops->ndo_set_mac_address(dev, sa);
7900 if (err)
7901 return err;
7902 dev->addr_assign_type = NET_ADDR_SET;
7903 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7904 add_device_randomness(dev->dev_addr, dev->addr_len);
7905 return 0;
7907 EXPORT_SYMBOL(dev_set_mac_address);
7910 * dev_change_carrier - Change device carrier
7911 * @dev: device
7912 * @new_carrier: new value
7914 * Change device carrier
7916 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7918 const struct net_device_ops *ops = dev->netdev_ops;
7920 if (!ops->ndo_change_carrier)
7921 return -EOPNOTSUPP;
7922 if (!netif_device_present(dev))
7923 return -ENODEV;
7924 return ops->ndo_change_carrier(dev, new_carrier);
7926 EXPORT_SYMBOL(dev_change_carrier);
7929 * dev_get_phys_port_id - Get device physical port ID
7930 * @dev: device
7931 * @ppid: port ID
7933 * Get device physical port ID
7935 int dev_get_phys_port_id(struct net_device *dev,
7936 struct netdev_phys_item_id *ppid)
7938 const struct net_device_ops *ops = dev->netdev_ops;
7940 if (!ops->ndo_get_phys_port_id)
7941 return -EOPNOTSUPP;
7942 return ops->ndo_get_phys_port_id(dev, ppid);
7944 EXPORT_SYMBOL(dev_get_phys_port_id);
7947 * dev_get_phys_port_name - Get device physical port name
7948 * @dev: device
7949 * @name: port name
7950 * @len: limit of bytes to copy to name
7952 * Get device physical port name
7954 int dev_get_phys_port_name(struct net_device *dev,
7955 char *name, size_t len)
7957 const struct net_device_ops *ops = dev->netdev_ops;
7959 if (!ops->ndo_get_phys_port_name)
7960 return -EOPNOTSUPP;
7961 return ops->ndo_get_phys_port_name(dev, name, len);
7963 EXPORT_SYMBOL(dev_get_phys_port_name);
7966 * dev_change_proto_down - update protocol port state information
7967 * @dev: device
7968 * @proto_down: new value
7970 * This info can be used by switch drivers to set the phys state of the
7971 * port.
7973 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7975 const struct net_device_ops *ops = dev->netdev_ops;
7977 if (!ops->ndo_change_proto_down)
7978 return -EOPNOTSUPP;
7979 if (!netif_device_present(dev))
7980 return -ENODEV;
7981 return ops->ndo_change_proto_down(dev, proto_down);
7983 EXPORT_SYMBOL(dev_change_proto_down);
7985 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7986 enum bpf_netdev_command cmd)
7988 struct netdev_bpf xdp;
7990 if (!bpf_op)
7991 return 0;
7993 memset(&xdp, 0, sizeof(xdp));
7994 xdp.command = cmd;
7996 /* Query must always succeed. */
7997 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7999 return xdp.prog_id;
8002 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8003 struct netlink_ext_ack *extack, u32 flags,
8004 struct bpf_prog *prog)
8006 struct netdev_bpf xdp;
8008 memset(&xdp, 0, sizeof(xdp));
8009 if (flags & XDP_FLAGS_HW_MODE)
8010 xdp.command = XDP_SETUP_PROG_HW;
8011 else
8012 xdp.command = XDP_SETUP_PROG;
8013 xdp.extack = extack;
8014 xdp.flags = flags;
8015 xdp.prog = prog;
8017 return bpf_op(dev, &xdp);
8020 static void dev_xdp_uninstall(struct net_device *dev)
8022 struct netdev_bpf xdp;
8023 bpf_op_t ndo_bpf;
8025 /* Remove generic XDP */
8026 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8028 /* Remove from the driver */
8029 ndo_bpf = dev->netdev_ops->ndo_bpf;
8030 if (!ndo_bpf)
8031 return;
8033 memset(&xdp, 0, sizeof(xdp));
8034 xdp.command = XDP_QUERY_PROG;
8035 WARN_ON(ndo_bpf(dev, &xdp));
8036 if (xdp.prog_id)
8037 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8038 NULL));
8040 /* Remove HW offload */
8041 memset(&xdp, 0, sizeof(xdp));
8042 xdp.command = XDP_QUERY_PROG_HW;
8043 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8044 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8045 NULL));
8049 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8050 * @dev: device
8051 * @extack: netlink extended ack
8052 * @fd: new program fd or negative value to clear
8053 * @flags: xdp-related flags
8055 * Set or clear a bpf program for a device
8057 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8058 int fd, u32 flags)
8060 const struct net_device_ops *ops = dev->netdev_ops;
8061 enum bpf_netdev_command query;
8062 struct bpf_prog *prog = NULL;
8063 bpf_op_t bpf_op, bpf_chk;
8064 int err;
8066 ASSERT_RTNL();
8068 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8070 bpf_op = bpf_chk = ops->ndo_bpf;
8071 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
8072 return -EOPNOTSUPP;
8073 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8074 bpf_op = generic_xdp_install;
8075 if (bpf_op == bpf_chk)
8076 bpf_chk = generic_xdp_install;
8078 if (fd >= 0) {
8079 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
8080 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
8081 return -EEXIST;
8082 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8083 __dev_xdp_query(dev, bpf_op, query))
8084 return -EBUSY;
8086 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8087 bpf_op == ops->ndo_bpf);
8088 if (IS_ERR(prog))
8089 return PTR_ERR(prog);
8091 if (!(flags & XDP_FLAGS_HW_MODE) &&
8092 bpf_prog_is_dev_bound(prog->aux)) {
8093 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8094 bpf_prog_put(prog);
8095 return -EINVAL;
8099 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8100 if (err < 0 && prog)
8101 bpf_prog_put(prog);
8103 return err;
8107 * dev_new_index - allocate an ifindex
8108 * @net: the applicable net namespace
8110 * Returns a suitable unique value for a new device interface
8111 * number. The caller must hold the rtnl semaphore or the
8112 * dev_base_lock to be sure it remains unique.
8114 static int dev_new_index(struct net *net)
8116 int ifindex = net->ifindex;
8118 for (;;) {
8119 if (++ifindex <= 0)
8120 ifindex = 1;
8121 if (!__dev_get_by_index(net, ifindex))
8122 return net->ifindex = ifindex;
8126 /* Delayed registration/unregisteration */
8127 static LIST_HEAD(net_todo_list);
8128 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8130 static void net_set_todo(struct net_device *dev)
8132 list_add_tail(&dev->todo_list, &net_todo_list);
8133 dev_net(dev)->dev_unreg_count++;
8136 static void rollback_registered_many(struct list_head *head)
8138 struct net_device *dev, *tmp;
8139 LIST_HEAD(close_head);
8141 BUG_ON(dev_boot_phase);
8142 ASSERT_RTNL();
8144 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8145 /* Some devices call without registering
8146 * for initialization unwind. Remove those
8147 * devices and proceed with the remaining.
8149 if (dev->reg_state == NETREG_UNINITIALIZED) {
8150 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8151 dev->name, dev);
8153 WARN_ON(1);
8154 list_del(&dev->unreg_list);
8155 continue;
8157 dev->dismantle = true;
8158 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8161 /* If device is running, close it first. */
8162 list_for_each_entry(dev, head, unreg_list)
8163 list_add_tail(&dev->close_list, &close_head);
8164 dev_close_many(&close_head, true);
8166 list_for_each_entry(dev, head, unreg_list) {
8167 /* And unlink it from device chain. */
8168 unlist_netdevice(dev);
8170 dev->reg_state = NETREG_UNREGISTERING;
8172 flush_all_backlogs();
8174 synchronize_net();
8176 list_for_each_entry(dev, head, unreg_list) {
8177 struct sk_buff *skb = NULL;
8179 /* Shutdown queueing discipline. */
8180 dev_shutdown(dev);
8182 dev_xdp_uninstall(dev);
8184 /* Notify protocols, that we are about to destroy
8185 * this device. They should clean all the things.
8187 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8189 if (!dev->rtnl_link_ops ||
8190 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8191 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8192 GFP_KERNEL, NULL, 0);
8195 * Flush the unicast and multicast chains
8197 dev_uc_flush(dev);
8198 dev_mc_flush(dev);
8200 if (dev->netdev_ops->ndo_uninit)
8201 dev->netdev_ops->ndo_uninit(dev);
8203 if (skb)
8204 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8206 /* Notifier chain MUST detach us all upper devices. */
8207 WARN_ON(netdev_has_any_upper_dev(dev));
8208 WARN_ON(netdev_has_any_lower_dev(dev));
8210 /* Remove entries from kobject tree */
8211 netdev_unregister_kobject(dev);
8212 #ifdef CONFIG_XPS
8213 /* Remove XPS queueing entries */
8214 netif_reset_xps_queues_gt(dev, 0);
8215 #endif
8218 synchronize_net();
8220 list_for_each_entry(dev, head, unreg_list)
8221 dev_put(dev);
8224 static void rollback_registered(struct net_device *dev)
8226 LIST_HEAD(single);
8228 list_add(&dev->unreg_list, &single);
8229 rollback_registered_many(&single);
8230 list_del(&single);
8233 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8234 struct net_device *upper, netdev_features_t features)
8236 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8237 netdev_features_t feature;
8238 int feature_bit;
8240 for_each_netdev_feature(upper_disables, feature_bit) {
8241 feature = __NETIF_F_BIT(feature_bit);
8242 if (!(upper->wanted_features & feature)
8243 && (features & feature)) {
8244 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8245 &feature, upper->name);
8246 features &= ~feature;
8250 return features;
8253 static void netdev_sync_lower_features(struct net_device *upper,
8254 struct net_device *lower, netdev_features_t features)
8256 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8257 netdev_features_t feature;
8258 int feature_bit;
8260 for_each_netdev_feature(upper_disables, feature_bit) {
8261 feature = __NETIF_F_BIT(feature_bit);
8262 if (!(features & feature) && (lower->features & feature)) {
8263 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8264 &feature, lower->name);
8265 lower->wanted_features &= ~feature;
8266 __netdev_update_features(lower);
8268 if (unlikely(lower->features & feature))
8269 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8270 &feature, lower->name);
8271 else
8272 netdev_features_change(lower);
8277 static netdev_features_t netdev_fix_features(struct net_device *dev,
8278 netdev_features_t features)
8280 /* Fix illegal checksum combinations */
8281 if ((features & NETIF_F_HW_CSUM) &&
8282 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8283 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8284 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8287 /* TSO requires that SG is present as well. */
8288 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8289 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8290 features &= ~NETIF_F_ALL_TSO;
8293 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8294 !(features & NETIF_F_IP_CSUM)) {
8295 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8296 features &= ~NETIF_F_TSO;
8297 features &= ~NETIF_F_TSO_ECN;
8300 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8301 !(features & NETIF_F_IPV6_CSUM)) {
8302 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8303 features &= ~NETIF_F_TSO6;
8306 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8307 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8308 features &= ~NETIF_F_TSO_MANGLEID;
8310 /* TSO ECN requires that TSO is present as well. */
8311 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8312 features &= ~NETIF_F_TSO_ECN;
8314 /* Software GSO depends on SG. */
8315 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8316 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8317 features &= ~NETIF_F_GSO;
8320 /* GSO partial features require GSO partial be set */
8321 if ((features & dev->gso_partial_features) &&
8322 !(features & NETIF_F_GSO_PARTIAL)) {
8323 netdev_dbg(dev,
8324 "Dropping partially supported GSO features since no GSO partial.\n");
8325 features &= ~dev->gso_partial_features;
8328 if (!(features & NETIF_F_RXCSUM)) {
8329 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8330 * successfully merged by hardware must also have the
8331 * checksum verified by hardware. If the user does not
8332 * want to enable RXCSUM, logically, we should disable GRO_HW.
8334 if (features & NETIF_F_GRO_HW) {
8335 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8336 features &= ~NETIF_F_GRO_HW;
8340 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8341 if (features & NETIF_F_RXFCS) {
8342 if (features & NETIF_F_LRO) {
8343 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8344 features &= ~NETIF_F_LRO;
8347 if (features & NETIF_F_GRO_HW) {
8348 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8349 features &= ~NETIF_F_GRO_HW;
8353 return features;
8356 int __netdev_update_features(struct net_device *dev)
8358 struct net_device *upper, *lower;
8359 netdev_features_t features;
8360 struct list_head *iter;
8361 int err = -1;
8363 ASSERT_RTNL();
8365 features = netdev_get_wanted_features(dev);
8367 if (dev->netdev_ops->ndo_fix_features)
8368 features = dev->netdev_ops->ndo_fix_features(dev, features);
8370 /* driver might be less strict about feature dependencies */
8371 features = netdev_fix_features(dev, features);
8373 /* some features can't be enabled if they're off an an upper device */
8374 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8375 features = netdev_sync_upper_features(dev, upper, features);
8377 if (dev->features == features)
8378 goto sync_lower;
8380 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8381 &dev->features, &features);
8383 if (dev->netdev_ops->ndo_set_features)
8384 err = dev->netdev_ops->ndo_set_features(dev, features);
8385 else
8386 err = 0;
8388 if (unlikely(err < 0)) {
8389 netdev_err(dev,
8390 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8391 err, &features, &dev->features);
8392 /* return non-0 since some features might have changed and
8393 * it's better to fire a spurious notification than miss it
8395 return -1;
8398 sync_lower:
8399 /* some features must be disabled on lower devices when disabled
8400 * on an upper device (think: bonding master or bridge)
8402 netdev_for_each_lower_dev(dev, lower, iter)
8403 netdev_sync_lower_features(dev, lower, features);
8405 if (!err) {
8406 netdev_features_t diff = features ^ dev->features;
8408 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8409 /* udp_tunnel_{get,drop}_rx_info both need
8410 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8411 * device, or they won't do anything.
8412 * Thus we need to update dev->features
8413 * *before* calling udp_tunnel_get_rx_info,
8414 * but *after* calling udp_tunnel_drop_rx_info.
8416 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8417 dev->features = features;
8418 udp_tunnel_get_rx_info(dev);
8419 } else {
8420 udp_tunnel_drop_rx_info(dev);
8424 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8425 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8426 dev->features = features;
8427 err |= vlan_get_rx_ctag_filter_info(dev);
8428 } else {
8429 vlan_drop_rx_ctag_filter_info(dev);
8433 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8434 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8435 dev->features = features;
8436 err |= vlan_get_rx_stag_filter_info(dev);
8437 } else {
8438 vlan_drop_rx_stag_filter_info(dev);
8442 dev->features = features;
8445 return err < 0 ? 0 : 1;
8449 * netdev_update_features - recalculate device features
8450 * @dev: the device to check
8452 * Recalculate dev->features set and send notifications if it
8453 * has changed. Should be called after driver or hardware dependent
8454 * conditions might have changed that influence the features.
8456 void netdev_update_features(struct net_device *dev)
8458 if (__netdev_update_features(dev))
8459 netdev_features_change(dev);
8461 EXPORT_SYMBOL(netdev_update_features);
8464 * netdev_change_features - recalculate device features
8465 * @dev: the device to check
8467 * Recalculate dev->features set and send notifications even
8468 * if they have not changed. Should be called instead of
8469 * netdev_update_features() if also dev->vlan_features might
8470 * have changed to allow the changes to be propagated to stacked
8471 * VLAN devices.
8473 void netdev_change_features(struct net_device *dev)
8475 __netdev_update_features(dev);
8476 netdev_features_change(dev);
8478 EXPORT_SYMBOL(netdev_change_features);
8481 * netif_stacked_transfer_operstate - transfer operstate
8482 * @rootdev: the root or lower level device to transfer state from
8483 * @dev: the device to transfer operstate to
8485 * Transfer operational state from root to device. This is normally
8486 * called when a stacking relationship exists between the root
8487 * device and the device(a leaf device).
8489 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8490 struct net_device *dev)
8492 if (rootdev->operstate == IF_OPER_DORMANT)
8493 netif_dormant_on(dev);
8494 else
8495 netif_dormant_off(dev);
8497 if (netif_carrier_ok(rootdev))
8498 netif_carrier_on(dev);
8499 else
8500 netif_carrier_off(dev);
8502 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8504 static int netif_alloc_rx_queues(struct net_device *dev)
8506 unsigned int i, count = dev->num_rx_queues;
8507 struct netdev_rx_queue *rx;
8508 size_t sz = count * sizeof(*rx);
8509 int err = 0;
8511 BUG_ON(count < 1);
8513 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8514 if (!rx)
8515 return -ENOMEM;
8517 dev->_rx = rx;
8519 for (i = 0; i < count; i++) {
8520 rx[i].dev = dev;
8522 /* XDP RX-queue setup */
8523 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8524 if (err < 0)
8525 goto err_rxq_info;
8527 return 0;
8529 err_rxq_info:
8530 /* Rollback successful reg's and free other resources */
8531 while (i--)
8532 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8533 kvfree(dev->_rx);
8534 dev->_rx = NULL;
8535 return err;
8538 static void netif_free_rx_queues(struct net_device *dev)
8540 unsigned int i, count = dev->num_rx_queues;
8542 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8543 if (!dev->_rx)
8544 return;
8546 for (i = 0; i < count; i++)
8547 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8549 kvfree(dev->_rx);
8552 static void netdev_init_one_queue(struct net_device *dev,
8553 struct netdev_queue *queue, void *_unused)
8555 /* Initialize queue lock */
8556 spin_lock_init(&queue->_xmit_lock);
8557 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8558 queue->xmit_lock_owner = -1;
8559 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8560 queue->dev = dev;
8561 #ifdef CONFIG_BQL
8562 dql_init(&queue->dql, HZ);
8563 #endif
8566 static void netif_free_tx_queues(struct net_device *dev)
8568 kvfree(dev->_tx);
8571 static int netif_alloc_netdev_queues(struct net_device *dev)
8573 unsigned int count = dev->num_tx_queues;
8574 struct netdev_queue *tx;
8575 size_t sz = count * sizeof(*tx);
8577 if (count < 1 || count > 0xffff)
8578 return -EINVAL;
8580 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8581 if (!tx)
8582 return -ENOMEM;
8584 dev->_tx = tx;
8586 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8587 spin_lock_init(&dev->tx_global_lock);
8589 return 0;
8592 void netif_tx_stop_all_queues(struct net_device *dev)
8594 unsigned int i;
8596 for (i = 0; i < dev->num_tx_queues; i++) {
8597 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8599 netif_tx_stop_queue(txq);
8602 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8605 * register_netdevice - register a network device
8606 * @dev: device to register
8608 * Take a completed network device structure and add it to the kernel
8609 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8610 * chain. 0 is returned on success. A negative errno code is returned
8611 * on a failure to set up the device, or if the name is a duplicate.
8613 * Callers must hold the rtnl semaphore. You may want
8614 * register_netdev() instead of this.
8616 * BUGS:
8617 * The locking appears insufficient to guarantee two parallel registers
8618 * will not get the same name.
8621 int register_netdevice(struct net_device *dev)
8623 int ret;
8624 struct net *net = dev_net(dev);
8626 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8627 NETDEV_FEATURE_COUNT);
8628 BUG_ON(dev_boot_phase);
8629 ASSERT_RTNL();
8631 might_sleep();
8633 /* When net_device's are persistent, this will be fatal. */
8634 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8635 BUG_ON(!net);
8637 spin_lock_init(&dev->addr_list_lock);
8638 netdev_set_addr_lockdep_class(dev);
8640 ret = dev_get_valid_name(net, dev, dev->name);
8641 if (ret < 0)
8642 goto out;
8644 /* Init, if this function is available */
8645 if (dev->netdev_ops->ndo_init) {
8646 ret = dev->netdev_ops->ndo_init(dev);
8647 if (ret) {
8648 if (ret > 0)
8649 ret = -EIO;
8650 goto out;
8654 if (((dev->hw_features | dev->features) &
8655 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8656 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8657 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8658 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8659 ret = -EINVAL;
8660 goto err_uninit;
8663 ret = -EBUSY;
8664 if (!dev->ifindex)
8665 dev->ifindex = dev_new_index(net);
8666 else if (__dev_get_by_index(net, dev->ifindex))
8667 goto err_uninit;
8669 /* Transfer changeable features to wanted_features and enable
8670 * software offloads (GSO and GRO).
8672 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8673 dev->features |= NETIF_F_SOFT_FEATURES;
8675 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8676 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8677 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8680 dev->wanted_features = dev->features & dev->hw_features;
8682 if (!(dev->flags & IFF_LOOPBACK))
8683 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8685 /* If IPv4 TCP segmentation offload is supported we should also
8686 * allow the device to enable segmenting the frame with the option
8687 * of ignoring a static IP ID value. This doesn't enable the
8688 * feature itself but allows the user to enable it later.
8690 if (dev->hw_features & NETIF_F_TSO)
8691 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8692 if (dev->vlan_features & NETIF_F_TSO)
8693 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8694 if (dev->mpls_features & NETIF_F_TSO)
8695 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8696 if (dev->hw_enc_features & NETIF_F_TSO)
8697 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8699 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8701 dev->vlan_features |= NETIF_F_HIGHDMA;
8703 /* Make NETIF_F_SG inheritable to tunnel devices.
8705 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8707 /* Make NETIF_F_SG inheritable to MPLS.
8709 dev->mpls_features |= NETIF_F_SG;
8711 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8712 ret = notifier_to_errno(ret);
8713 if (ret)
8714 goto err_uninit;
8716 ret = netdev_register_kobject(dev);
8717 if (ret) {
8718 dev->reg_state = NETREG_UNREGISTERED;
8719 goto err_uninit;
8721 dev->reg_state = NETREG_REGISTERED;
8723 __netdev_update_features(dev);
8726 * Default initial state at registry is that the
8727 * device is present.
8730 set_bit(__LINK_STATE_PRESENT, &dev->state);
8732 linkwatch_init_dev(dev);
8734 dev_init_scheduler(dev);
8735 dev_hold(dev);
8736 list_netdevice(dev);
8737 add_device_randomness(dev->dev_addr, dev->addr_len);
8739 /* If the device has permanent device address, driver should
8740 * set dev_addr and also addr_assign_type should be set to
8741 * NET_ADDR_PERM (default value).
8743 if (dev->addr_assign_type == NET_ADDR_PERM)
8744 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8746 /* Notify protocols, that a new device appeared. */
8747 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8748 ret = notifier_to_errno(ret);
8749 if (ret) {
8750 rollback_registered(dev);
8751 rcu_barrier();
8753 dev->reg_state = NETREG_UNREGISTERED;
8754 /* We should put the kobject that hold in
8755 * netdev_unregister_kobject(), otherwise
8756 * the net device cannot be freed when
8757 * driver calls free_netdev(), because the
8758 * kobject is being hold.
8760 kobject_put(&dev->dev.kobj);
8763 * Prevent userspace races by waiting until the network
8764 * device is fully setup before sending notifications.
8766 if (!dev->rtnl_link_ops ||
8767 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8768 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8770 out:
8771 return ret;
8773 err_uninit:
8774 if (dev->netdev_ops->ndo_uninit)
8775 dev->netdev_ops->ndo_uninit(dev);
8776 if (dev->priv_destructor)
8777 dev->priv_destructor(dev);
8778 goto out;
8780 EXPORT_SYMBOL(register_netdevice);
8783 * init_dummy_netdev - init a dummy network device for NAPI
8784 * @dev: device to init
8786 * This takes a network device structure and initialize the minimum
8787 * amount of fields so it can be used to schedule NAPI polls without
8788 * registering a full blown interface. This is to be used by drivers
8789 * that need to tie several hardware interfaces to a single NAPI
8790 * poll scheduler due to HW limitations.
8792 int init_dummy_netdev(struct net_device *dev)
8794 /* Clear everything. Note we don't initialize spinlocks
8795 * are they aren't supposed to be taken by any of the
8796 * NAPI code and this dummy netdev is supposed to be
8797 * only ever used for NAPI polls
8799 memset(dev, 0, sizeof(struct net_device));
8801 /* make sure we BUG if trying to hit standard
8802 * register/unregister code path
8804 dev->reg_state = NETREG_DUMMY;
8806 /* NAPI wants this */
8807 INIT_LIST_HEAD(&dev->napi_list);
8809 /* a dummy interface is started by default */
8810 set_bit(__LINK_STATE_PRESENT, &dev->state);
8811 set_bit(__LINK_STATE_START, &dev->state);
8813 /* napi_busy_loop stats accounting wants this */
8814 dev_net_set(dev, &init_net);
8816 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8817 * because users of this 'device' dont need to change
8818 * its refcount.
8821 return 0;
8823 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8827 * register_netdev - register a network device
8828 * @dev: device to register
8830 * Take a completed network device structure and add it to the kernel
8831 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8832 * chain. 0 is returned on success. A negative errno code is returned
8833 * on a failure to set up the device, or if the name is a duplicate.
8835 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8836 * and expands the device name if you passed a format string to
8837 * alloc_netdev.
8839 int register_netdev(struct net_device *dev)
8841 int err;
8843 if (rtnl_lock_killable())
8844 return -EINTR;
8845 err = register_netdevice(dev);
8846 rtnl_unlock();
8847 return err;
8849 EXPORT_SYMBOL(register_netdev);
8851 int netdev_refcnt_read(const struct net_device *dev)
8853 int i, refcnt = 0;
8855 for_each_possible_cpu(i)
8856 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8857 return refcnt;
8859 EXPORT_SYMBOL(netdev_refcnt_read);
8862 * netdev_wait_allrefs - wait until all references are gone.
8863 * @dev: target net_device
8865 * This is called when unregistering network devices.
8867 * Any protocol or device that holds a reference should register
8868 * for netdevice notification, and cleanup and put back the
8869 * reference if they receive an UNREGISTER event.
8870 * We can get stuck here if buggy protocols don't correctly
8871 * call dev_put.
8873 static void netdev_wait_allrefs(struct net_device *dev)
8875 unsigned long rebroadcast_time, warning_time;
8876 int refcnt;
8878 linkwatch_forget_dev(dev);
8880 rebroadcast_time = warning_time = jiffies;
8881 refcnt = netdev_refcnt_read(dev);
8883 while (refcnt != 0) {
8884 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8885 rtnl_lock();
8887 /* Rebroadcast unregister notification */
8888 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8890 __rtnl_unlock();
8891 rcu_barrier();
8892 rtnl_lock();
8894 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8895 &dev->state)) {
8896 /* We must not have linkwatch events
8897 * pending on unregister. If this
8898 * happens, we simply run the queue
8899 * unscheduled, resulting in a noop
8900 * for this device.
8902 linkwatch_run_queue();
8905 __rtnl_unlock();
8907 rebroadcast_time = jiffies;
8910 msleep(250);
8912 refcnt = netdev_refcnt_read(dev);
8914 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8915 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8916 dev->name, refcnt);
8917 warning_time = jiffies;
8922 /* The sequence is:
8924 * rtnl_lock();
8925 * ...
8926 * register_netdevice(x1);
8927 * register_netdevice(x2);
8928 * ...
8929 * unregister_netdevice(y1);
8930 * unregister_netdevice(y2);
8931 * ...
8932 * rtnl_unlock();
8933 * free_netdev(y1);
8934 * free_netdev(y2);
8936 * We are invoked by rtnl_unlock().
8937 * This allows us to deal with problems:
8938 * 1) We can delete sysfs objects which invoke hotplug
8939 * without deadlocking with linkwatch via keventd.
8940 * 2) Since we run with the RTNL semaphore not held, we can sleep
8941 * safely in order to wait for the netdev refcnt to drop to zero.
8943 * We must not return until all unregister events added during
8944 * the interval the lock was held have been completed.
8946 void netdev_run_todo(void)
8948 struct list_head list;
8950 /* Snapshot list, allow later requests */
8951 list_replace_init(&net_todo_list, &list);
8953 __rtnl_unlock();
8956 /* Wait for rcu callbacks to finish before next phase */
8957 if (!list_empty(&list))
8958 rcu_barrier();
8960 while (!list_empty(&list)) {
8961 struct net_device *dev
8962 = list_first_entry(&list, struct net_device, todo_list);
8963 list_del(&dev->todo_list);
8965 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8966 pr_err("network todo '%s' but state %d\n",
8967 dev->name, dev->reg_state);
8968 dump_stack();
8969 continue;
8972 dev->reg_state = NETREG_UNREGISTERED;
8974 netdev_wait_allrefs(dev);
8976 /* paranoia */
8977 BUG_ON(netdev_refcnt_read(dev));
8978 BUG_ON(!list_empty(&dev->ptype_all));
8979 BUG_ON(!list_empty(&dev->ptype_specific));
8980 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8981 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8982 #if IS_ENABLED(CONFIG_DECNET)
8983 WARN_ON(dev->dn_ptr);
8984 #endif
8985 if (dev->priv_destructor)
8986 dev->priv_destructor(dev);
8987 if (dev->needs_free_netdev)
8988 free_netdev(dev);
8990 /* Report a network device has been unregistered */
8991 rtnl_lock();
8992 dev_net(dev)->dev_unreg_count--;
8993 __rtnl_unlock();
8994 wake_up(&netdev_unregistering_wq);
8996 /* Free network device */
8997 kobject_put(&dev->dev.kobj);
9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9002 * all the same fields in the same order as net_device_stats, with only
9003 * the type differing, but rtnl_link_stats64 may have additional fields
9004 * at the end for newer counters.
9006 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9007 const struct net_device_stats *netdev_stats)
9009 #if BITS_PER_LONG == 64
9010 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9011 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9012 /* zero out counters that only exist in rtnl_link_stats64 */
9013 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9014 sizeof(*stats64) - sizeof(*netdev_stats));
9015 #else
9016 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9017 const unsigned long *src = (const unsigned long *)netdev_stats;
9018 u64 *dst = (u64 *)stats64;
9020 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9021 for (i = 0; i < n; i++)
9022 dst[i] = src[i];
9023 /* zero out counters that only exist in rtnl_link_stats64 */
9024 memset((char *)stats64 + n * sizeof(u64), 0,
9025 sizeof(*stats64) - n * sizeof(u64));
9026 #endif
9028 EXPORT_SYMBOL(netdev_stats_to_stats64);
9031 * dev_get_stats - get network device statistics
9032 * @dev: device to get statistics from
9033 * @storage: place to store stats
9035 * Get network statistics from device. Return @storage.
9036 * The device driver may provide its own method by setting
9037 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9038 * otherwise the internal statistics structure is used.
9040 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9041 struct rtnl_link_stats64 *storage)
9043 const struct net_device_ops *ops = dev->netdev_ops;
9045 if (ops->ndo_get_stats64) {
9046 memset(storage, 0, sizeof(*storage));
9047 ops->ndo_get_stats64(dev, storage);
9048 } else if (ops->ndo_get_stats) {
9049 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9050 } else {
9051 netdev_stats_to_stats64(storage, &dev->stats);
9053 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9054 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9055 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9056 return storage;
9058 EXPORT_SYMBOL(dev_get_stats);
9060 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9062 struct netdev_queue *queue = dev_ingress_queue(dev);
9064 #ifdef CONFIG_NET_CLS_ACT
9065 if (queue)
9066 return queue;
9067 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9068 if (!queue)
9069 return NULL;
9070 netdev_init_one_queue(dev, queue, NULL);
9071 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9072 queue->qdisc_sleeping = &noop_qdisc;
9073 rcu_assign_pointer(dev->ingress_queue, queue);
9074 #endif
9075 return queue;
9078 static const struct ethtool_ops default_ethtool_ops;
9080 void netdev_set_default_ethtool_ops(struct net_device *dev,
9081 const struct ethtool_ops *ops)
9083 if (dev->ethtool_ops == &default_ethtool_ops)
9084 dev->ethtool_ops = ops;
9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9088 void netdev_freemem(struct net_device *dev)
9090 char *addr = (char *)dev - dev->padded;
9092 kvfree(addr);
9096 * alloc_netdev_mqs - allocate network device
9097 * @sizeof_priv: size of private data to allocate space for
9098 * @name: device name format string
9099 * @name_assign_type: origin of device name
9100 * @setup: callback to initialize device
9101 * @txqs: the number of TX subqueues to allocate
9102 * @rxqs: the number of RX subqueues to allocate
9104 * Allocates a struct net_device with private data area for driver use
9105 * and performs basic initialization. Also allocates subqueue structs
9106 * for each queue on the device.
9108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9109 unsigned char name_assign_type,
9110 void (*setup)(struct net_device *),
9111 unsigned int txqs, unsigned int rxqs)
9113 struct net_device *dev;
9114 unsigned int alloc_size;
9115 struct net_device *p;
9117 BUG_ON(strlen(name) >= sizeof(dev->name));
9119 if (txqs < 1) {
9120 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9121 return NULL;
9124 if (rxqs < 1) {
9125 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9126 return NULL;
9129 alloc_size = sizeof(struct net_device);
9130 if (sizeof_priv) {
9131 /* ensure 32-byte alignment of private area */
9132 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9133 alloc_size += sizeof_priv;
9135 /* ensure 32-byte alignment of whole construct */
9136 alloc_size += NETDEV_ALIGN - 1;
9138 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139 if (!p)
9140 return NULL;
9142 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9143 dev->padded = (char *)dev - (char *)p;
9145 dev->pcpu_refcnt = alloc_percpu(int);
9146 if (!dev->pcpu_refcnt)
9147 goto free_dev;
9149 if (dev_addr_init(dev))
9150 goto free_pcpu;
9152 dev_mc_init(dev);
9153 dev_uc_init(dev);
9155 dev_net_set(dev, &init_net);
9157 dev->gso_max_size = GSO_MAX_SIZE;
9158 dev->gso_max_segs = GSO_MAX_SEGS;
9159 dev->upper_level = 1;
9160 dev->lower_level = 1;
9162 INIT_LIST_HEAD(&dev->napi_list);
9163 INIT_LIST_HEAD(&dev->unreg_list);
9164 INIT_LIST_HEAD(&dev->close_list);
9165 INIT_LIST_HEAD(&dev->link_watch_list);
9166 INIT_LIST_HEAD(&dev->adj_list.upper);
9167 INIT_LIST_HEAD(&dev->adj_list.lower);
9168 INIT_LIST_HEAD(&dev->ptype_all);
9169 INIT_LIST_HEAD(&dev->ptype_specific);
9170 #ifdef CONFIG_NET_SCHED
9171 hash_init(dev->qdisc_hash);
9172 #endif
9173 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9174 setup(dev);
9176 if (!dev->tx_queue_len) {
9177 dev->priv_flags |= IFF_NO_QUEUE;
9178 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9181 dev->num_tx_queues = txqs;
9182 dev->real_num_tx_queues = txqs;
9183 if (netif_alloc_netdev_queues(dev))
9184 goto free_all;
9186 dev->num_rx_queues = rxqs;
9187 dev->real_num_rx_queues = rxqs;
9188 if (netif_alloc_rx_queues(dev))
9189 goto free_all;
9191 strcpy(dev->name, name);
9192 dev->name_assign_type = name_assign_type;
9193 dev->group = INIT_NETDEV_GROUP;
9194 if (!dev->ethtool_ops)
9195 dev->ethtool_ops = &default_ethtool_ops;
9197 nf_hook_ingress_init(dev);
9199 return dev;
9201 free_all:
9202 free_netdev(dev);
9203 return NULL;
9205 free_pcpu:
9206 free_percpu(dev->pcpu_refcnt);
9207 free_dev:
9208 netdev_freemem(dev);
9209 return NULL;
9211 EXPORT_SYMBOL(alloc_netdev_mqs);
9214 * free_netdev - free network device
9215 * @dev: device
9217 * This function does the last stage of destroying an allocated device
9218 * interface. The reference to the device object is released. If this
9219 * is the last reference then it will be freed.Must be called in process
9220 * context.
9222 void free_netdev(struct net_device *dev)
9224 struct napi_struct *p, *n;
9226 might_sleep();
9227 netif_free_tx_queues(dev);
9228 netif_free_rx_queues(dev);
9230 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9232 /* Flush device addresses */
9233 dev_addr_flush(dev);
9235 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9236 netif_napi_del(p);
9238 free_percpu(dev->pcpu_refcnt);
9239 dev->pcpu_refcnt = NULL;
9241 /* Compatibility with error handling in drivers */
9242 if (dev->reg_state == NETREG_UNINITIALIZED) {
9243 netdev_freemem(dev);
9244 return;
9247 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9248 dev->reg_state = NETREG_RELEASED;
9250 /* will free via device release */
9251 put_device(&dev->dev);
9253 EXPORT_SYMBOL(free_netdev);
9256 * synchronize_net - Synchronize with packet receive processing
9258 * Wait for packets currently being received to be done.
9259 * Does not block later packets from starting.
9261 void synchronize_net(void)
9263 might_sleep();
9264 if (rtnl_is_locked())
9265 synchronize_rcu_expedited();
9266 else
9267 synchronize_rcu();
9269 EXPORT_SYMBOL(synchronize_net);
9272 * unregister_netdevice_queue - remove device from the kernel
9273 * @dev: device
9274 * @head: list
9276 * This function shuts down a device interface and removes it
9277 * from the kernel tables.
9278 * If head not NULL, device is queued to be unregistered later.
9280 * Callers must hold the rtnl semaphore. You may want
9281 * unregister_netdev() instead of this.
9284 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9286 ASSERT_RTNL();
9288 if (head) {
9289 list_move_tail(&dev->unreg_list, head);
9290 } else {
9291 rollback_registered(dev);
9292 /* Finish processing unregister after unlock */
9293 net_set_todo(dev);
9296 EXPORT_SYMBOL(unregister_netdevice_queue);
9299 * unregister_netdevice_many - unregister many devices
9300 * @head: list of devices
9302 * Note: As most callers use a stack allocated list_head,
9303 * we force a list_del() to make sure stack wont be corrupted later.
9305 void unregister_netdevice_many(struct list_head *head)
9307 struct net_device *dev;
9309 if (!list_empty(head)) {
9310 rollback_registered_many(head);
9311 list_for_each_entry(dev, head, unreg_list)
9312 net_set_todo(dev);
9313 list_del(head);
9316 EXPORT_SYMBOL(unregister_netdevice_many);
9319 * unregister_netdev - remove device from the kernel
9320 * @dev: device
9322 * This function shuts down a device interface and removes it
9323 * from the kernel tables.
9325 * This is just a wrapper for unregister_netdevice that takes
9326 * the rtnl semaphore. In general you want to use this and not
9327 * unregister_netdevice.
9329 void unregister_netdev(struct net_device *dev)
9331 rtnl_lock();
9332 unregister_netdevice(dev);
9333 rtnl_unlock();
9335 EXPORT_SYMBOL(unregister_netdev);
9338 * dev_change_net_namespace - move device to different nethost namespace
9339 * @dev: device
9340 * @net: network namespace
9341 * @pat: If not NULL name pattern to try if the current device name
9342 * is already taken in the destination network namespace.
9344 * This function shuts down a device interface and moves it
9345 * to a new network namespace. On success 0 is returned, on
9346 * a failure a netagive errno code is returned.
9348 * Callers must hold the rtnl semaphore.
9351 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9353 int err, new_nsid, new_ifindex;
9355 ASSERT_RTNL();
9357 /* Don't allow namespace local devices to be moved. */
9358 err = -EINVAL;
9359 if (dev->features & NETIF_F_NETNS_LOCAL)
9360 goto out;
9362 /* Ensure the device has been registrered */
9363 if (dev->reg_state != NETREG_REGISTERED)
9364 goto out;
9366 /* Get out if there is nothing todo */
9367 err = 0;
9368 if (net_eq(dev_net(dev), net))
9369 goto out;
9371 /* Pick the destination device name, and ensure
9372 * we can use it in the destination network namespace.
9374 err = -EEXIST;
9375 if (__dev_get_by_name(net, dev->name)) {
9376 /* We get here if we can't use the current device name */
9377 if (!pat)
9378 goto out;
9379 err = dev_get_valid_name(net, dev, pat);
9380 if (err < 0)
9381 goto out;
9385 * And now a mini version of register_netdevice unregister_netdevice.
9388 /* If device is running close it first. */
9389 dev_close(dev);
9391 /* And unlink it from device chain */
9392 unlist_netdevice(dev);
9394 synchronize_net();
9396 /* Shutdown queueing discipline. */
9397 dev_shutdown(dev);
9399 /* Notify protocols, that we are about to destroy
9400 * this device. They should clean all the things.
9402 * Note that dev->reg_state stays at NETREG_REGISTERED.
9403 * This is wanted because this way 8021q and macvlan know
9404 * the device is just moving and can keep their slaves up.
9406 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9407 rcu_barrier();
9409 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9410 /* If there is an ifindex conflict assign a new one */
9411 if (__dev_get_by_index(net, dev->ifindex))
9412 new_ifindex = dev_new_index(net);
9413 else
9414 new_ifindex = dev->ifindex;
9416 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9417 new_ifindex);
9420 * Flush the unicast and multicast chains
9422 dev_uc_flush(dev);
9423 dev_mc_flush(dev);
9425 /* Send a netdev-removed uevent to the old namespace */
9426 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9427 netdev_adjacent_del_links(dev);
9429 /* Actually switch the network namespace */
9430 dev_net_set(dev, net);
9431 dev->ifindex = new_ifindex;
9433 /* Send a netdev-add uevent to the new namespace */
9434 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9435 netdev_adjacent_add_links(dev);
9437 /* Fixup kobjects */
9438 err = device_rename(&dev->dev, dev->name);
9439 WARN_ON(err);
9441 /* Add the device back in the hashes */
9442 list_netdevice(dev);
9444 /* Notify protocols, that a new device appeared. */
9445 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9448 * Prevent userspace races by waiting until the network
9449 * device is fully setup before sending notifications.
9451 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9453 synchronize_net();
9454 err = 0;
9455 out:
9456 return err;
9458 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9460 static int dev_cpu_dead(unsigned int oldcpu)
9462 struct sk_buff **list_skb;
9463 struct sk_buff *skb;
9464 unsigned int cpu;
9465 struct softnet_data *sd, *oldsd, *remsd = NULL;
9467 local_irq_disable();
9468 cpu = smp_processor_id();
9469 sd = &per_cpu(softnet_data, cpu);
9470 oldsd = &per_cpu(softnet_data, oldcpu);
9472 /* Find end of our completion_queue. */
9473 list_skb = &sd->completion_queue;
9474 while (*list_skb)
9475 list_skb = &(*list_skb)->next;
9476 /* Append completion queue from offline CPU. */
9477 *list_skb = oldsd->completion_queue;
9478 oldsd->completion_queue = NULL;
9480 /* Append output queue from offline CPU. */
9481 if (oldsd->output_queue) {
9482 *sd->output_queue_tailp = oldsd->output_queue;
9483 sd->output_queue_tailp = oldsd->output_queue_tailp;
9484 oldsd->output_queue = NULL;
9485 oldsd->output_queue_tailp = &oldsd->output_queue;
9487 /* Append NAPI poll list from offline CPU, with one exception :
9488 * process_backlog() must be called by cpu owning percpu backlog.
9489 * We properly handle process_queue & input_pkt_queue later.
9491 while (!list_empty(&oldsd->poll_list)) {
9492 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9493 struct napi_struct,
9494 poll_list);
9496 list_del_init(&napi->poll_list);
9497 if (napi->poll == process_backlog)
9498 napi->state = 0;
9499 else
9500 ____napi_schedule(sd, napi);
9503 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9504 local_irq_enable();
9506 #ifdef CONFIG_RPS
9507 remsd = oldsd->rps_ipi_list;
9508 oldsd->rps_ipi_list = NULL;
9509 #endif
9510 /* send out pending IPI's on offline CPU */
9511 net_rps_send_ipi(remsd);
9513 /* Process offline CPU's input_pkt_queue */
9514 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9515 netif_rx_ni(skb);
9516 input_queue_head_incr(oldsd);
9518 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9519 netif_rx_ni(skb);
9520 input_queue_head_incr(oldsd);
9523 return 0;
9527 * netdev_increment_features - increment feature set by one
9528 * @all: current feature set
9529 * @one: new feature set
9530 * @mask: mask feature set
9532 * Computes a new feature set after adding a device with feature set
9533 * @one to the master device with current feature set @all. Will not
9534 * enable anything that is off in @mask. Returns the new feature set.
9536 netdev_features_t netdev_increment_features(netdev_features_t all,
9537 netdev_features_t one, netdev_features_t mask)
9539 if (mask & NETIF_F_HW_CSUM)
9540 mask |= NETIF_F_CSUM_MASK;
9541 mask |= NETIF_F_VLAN_CHALLENGED;
9543 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9544 all &= one | ~NETIF_F_ALL_FOR_ALL;
9546 /* If one device supports hw checksumming, set for all. */
9547 if (all & NETIF_F_HW_CSUM)
9548 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9550 return all;
9552 EXPORT_SYMBOL(netdev_increment_features);
9554 static struct hlist_head * __net_init netdev_create_hash(void)
9556 int i;
9557 struct hlist_head *hash;
9559 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9560 if (hash != NULL)
9561 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9562 INIT_HLIST_HEAD(&hash[i]);
9564 return hash;
9567 /* Initialize per network namespace state */
9568 static int __net_init netdev_init(struct net *net)
9570 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9571 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9573 if (net != &init_net)
9574 INIT_LIST_HEAD(&net->dev_base_head);
9576 net->dev_name_head = netdev_create_hash();
9577 if (net->dev_name_head == NULL)
9578 goto err_name;
9580 net->dev_index_head = netdev_create_hash();
9581 if (net->dev_index_head == NULL)
9582 goto err_idx;
9584 return 0;
9586 err_idx:
9587 kfree(net->dev_name_head);
9588 err_name:
9589 return -ENOMEM;
9593 * netdev_drivername - network driver for the device
9594 * @dev: network device
9596 * Determine network driver for device.
9598 const char *netdev_drivername(const struct net_device *dev)
9600 const struct device_driver *driver;
9601 const struct device *parent;
9602 const char *empty = "";
9604 parent = dev->dev.parent;
9605 if (!parent)
9606 return empty;
9608 driver = parent->driver;
9609 if (driver && driver->name)
9610 return driver->name;
9611 return empty;
9614 static void __netdev_printk(const char *level, const struct net_device *dev,
9615 struct va_format *vaf)
9617 if (dev && dev->dev.parent) {
9618 dev_printk_emit(level[1] - '0',
9619 dev->dev.parent,
9620 "%s %s %s%s: %pV",
9621 dev_driver_string(dev->dev.parent),
9622 dev_name(dev->dev.parent),
9623 netdev_name(dev), netdev_reg_state(dev),
9624 vaf);
9625 } else if (dev) {
9626 printk("%s%s%s: %pV",
9627 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9628 } else {
9629 printk("%s(NULL net_device): %pV", level, vaf);
9633 void netdev_printk(const char *level, const struct net_device *dev,
9634 const char *format, ...)
9636 struct va_format vaf;
9637 va_list args;
9639 va_start(args, format);
9641 vaf.fmt = format;
9642 vaf.va = &args;
9644 __netdev_printk(level, dev, &vaf);
9646 va_end(args);
9648 EXPORT_SYMBOL(netdev_printk);
9650 #define define_netdev_printk_level(func, level) \
9651 void func(const struct net_device *dev, const char *fmt, ...) \
9653 struct va_format vaf; \
9654 va_list args; \
9656 va_start(args, fmt); \
9658 vaf.fmt = fmt; \
9659 vaf.va = &args; \
9661 __netdev_printk(level, dev, &vaf); \
9663 va_end(args); \
9665 EXPORT_SYMBOL(func);
9667 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9668 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9669 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9670 define_netdev_printk_level(netdev_err, KERN_ERR);
9671 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9672 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9673 define_netdev_printk_level(netdev_info, KERN_INFO);
9675 static void __net_exit netdev_exit(struct net *net)
9677 kfree(net->dev_name_head);
9678 kfree(net->dev_index_head);
9679 if (net != &init_net)
9680 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9683 static struct pernet_operations __net_initdata netdev_net_ops = {
9684 .init = netdev_init,
9685 .exit = netdev_exit,
9688 static void __net_exit default_device_exit(struct net *net)
9690 struct net_device *dev, *aux;
9692 * Push all migratable network devices back to the
9693 * initial network namespace
9695 rtnl_lock();
9696 for_each_netdev_safe(net, dev, aux) {
9697 int err;
9698 char fb_name[IFNAMSIZ];
9700 /* Ignore unmoveable devices (i.e. loopback) */
9701 if (dev->features & NETIF_F_NETNS_LOCAL)
9702 continue;
9704 /* Leave virtual devices for the generic cleanup */
9705 if (dev->rtnl_link_ops)
9706 continue;
9708 /* Push remaining network devices to init_net */
9709 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9710 if (__dev_get_by_name(&init_net, fb_name))
9711 snprintf(fb_name, IFNAMSIZ, "dev%%d");
9712 err = dev_change_net_namespace(dev, &init_net, fb_name);
9713 if (err) {
9714 pr_emerg("%s: failed to move %s to init_net: %d\n",
9715 __func__, dev->name, err);
9716 BUG();
9719 rtnl_unlock();
9722 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9724 /* Return with the rtnl_lock held when there are no network
9725 * devices unregistering in any network namespace in net_list.
9727 struct net *net;
9728 bool unregistering;
9729 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9731 add_wait_queue(&netdev_unregistering_wq, &wait);
9732 for (;;) {
9733 unregistering = false;
9734 rtnl_lock();
9735 list_for_each_entry(net, net_list, exit_list) {
9736 if (net->dev_unreg_count > 0) {
9737 unregistering = true;
9738 break;
9741 if (!unregistering)
9742 break;
9743 __rtnl_unlock();
9745 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9747 remove_wait_queue(&netdev_unregistering_wq, &wait);
9750 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9752 /* At exit all network devices most be removed from a network
9753 * namespace. Do this in the reverse order of registration.
9754 * Do this across as many network namespaces as possible to
9755 * improve batching efficiency.
9757 struct net_device *dev;
9758 struct net *net;
9759 LIST_HEAD(dev_kill_list);
9761 /* To prevent network device cleanup code from dereferencing
9762 * loopback devices or network devices that have been freed
9763 * wait here for all pending unregistrations to complete,
9764 * before unregistring the loopback device and allowing the
9765 * network namespace be freed.
9767 * The netdev todo list containing all network devices
9768 * unregistrations that happen in default_device_exit_batch
9769 * will run in the rtnl_unlock() at the end of
9770 * default_device_exit_batch.
9772 rtnl_lock_unregistering(net_list);
9773 list_for_each_entry(net, net_list, exit_list) {
9774 for_each_netdev_reverse(net, dev) {
9775 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9776 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9777 else
9778 unregister_netdevice_queue(dev, &dev_kill_list);
9781 unregister_netdevice_many(&dev_kill_list);
9782 rtnl_unlock();
9785 static struct pernet_operations __net_initdata default_device_ops = {
9786 .exit = default_device_exit,
9787 .exit_batch = default_device_exit_batch,
9791 * Initialize the DEV module. At boot time this walks the device list and
9792 * unhooks any devices that fail to initialise (normally hardware not
9793 * present) and leaves us with a valid list of present and active devices.
9798 * This is called single threaded during boot, so no need
9799 * to take the rtnl semaphore.
9801 static int __init net_dev_init(void)
9803 int i, rc = -ENOMEM;
9805 BUG_ON(!dev_boot_phase);
9807 if (dev_proc_init())
9808 goto out;
9810 if (netdev_kobject_init())
9811 goto out;
9813 INIT_LIST_HEAD(&ptype_all);
9814 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9815 INIT_LIST_HEAD(&ptype_base[i]);
9817 INIT_LIST_HEAD(&offload_base);
9819 if (register_pernet_subsys(&netdev_net_ops))
9820 goto out;
9823 * Initialise the packet receive queues.
9826 for_each_possible_cpu(i) {
9827 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9828 struct softnet_data *sd = &per_cpu(softnet_data, i);
9830 INIT_WORK(flush, flush_backlog);
9832 skb_queue_head_init(&sd->input_pkt_queue);
9833 skb_queue_head_init(&sd->process_queue);
9834 #ifdef CONFIG_XFRM_OFFLOAD
9835 skb_queue_head_init(&sd->xfrm_backlog);
9836 #endif
9837 INIT_LIST_HEAD(&sd->poll_list);
9838 sd->output_queue_tailp = &sd->output_queue;
9839 #ifdef CONFIG_RPS
9840 sd->csd.func = rps_trigger_softirq;
9841 sd->csd.info = sd;
9842 sd->cpu = i;
9843 #endif
9845 init_gro_hash(&sd->backlog);
9846 sd->backlog.poll = process_backlog;
9847 sd->backlog.weight = weight_p;
9850 dev_boot_phase = 0;
9852 /* The loopback device is special if any other network devices
9853 * is present in a network namespace the loopback device must
9854 * be present. Since we now dynamically allocate and free the
9855 * loopback device ensure this invariant is maintained by
9856 * keeping the loopback device as the first device on the
9857 * list of network devices. Ensuring the loopback devices
9858 * is the first device that appears and the last network device
9859 * that disappears.
9861 if (register_pernet_device(&loopback_net_ops))
9862 goto out;
9864 if (register_pernet_device(&default_device_ops))
9865 goto out;
9867 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9868 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9870 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9871 NULL, dev_cpu_dead);
9872 WARN_ON(rc < 0);
9873 rc = 0;
9874 out:
9875 return rc;
9878 subsys_initcall(net_dev_init);