2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock
);
159 static DEFINE_SPINLOCK(offload_lock
);
160 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
161 struct list_head ptype_all __read_mostly
; /* Taps */
162 static struct list_head offload_base __read_mostly
;
164 static int netif_rx_internal(struct sk_buff
*skb
);
165 static int call_netdevice_notifiers_info(unsigned long val
,
166 struct netdev_notifier_info
*info
);
167 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
188 DEFINE_RWLOCK(dev_base_lock
);
189 EXPORT_SYMBOL(dev_base_lock
);
191 static DEFINE_MUTEX(ifalias_mutex
);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock
);
196 static unsigned int napi_gen_id
= NR_CPUS
;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
199 static DECLARE_RWSEM(devnet_rename_sem
);
201 static inline void dev_base_seq_inc(struct net
*net
)
203 while (++net
->dev_base_seq
== 0)
207 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
209 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
211 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
214 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
216 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
219 static inline void rps_lock(struct softnet_data
*sd
)
222 spin_lock(&sd
->input_pkt_queue
.lock
);
226 static inline void rps_unlock(struct softnet_data
*sd
)
229 spin_unlock(&sd
->input_pkt_queue
.lock
);
233 /* Device list insertion */
234 static void list_netdevice(struct net_device
*dev
)
236 struct net
*net
= dev_net(dev
);
240 write_lock_bh(&dev_base_lock
);
241 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
242 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
243 hlist_add_head_rcu(&dev
->index_hlist
,
244 dev_index_hash(net
, dev
->ifindex
));
245 write_unlock_bh(&dev_base_lock
);
247 dev_base_seq_inc(net
);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device
*dev
)
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock
);
259 list_del_rcu(&dev
->dev_list
);
260 hlist_del_rcu(&dev
->name_hlist
);
261 hlist_del_rcu(&dev
->index_hlist
);
262 write_unlock_bh(&dev_base_lock
);
264 dev_base_seq_inc(dev_net(dev
));
271 static RAW_NOTIFIER_HEAD(netdev_chain
);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
279 EXPORT_PER_CPU_SYMBOL(softnet_data
);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type
[] = {
287 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
288 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
289 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
290 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
291 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
292 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
293 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
294 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
295 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
296 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
297 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
298 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
299 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
300 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
301 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
303 static const char *const netdev_lock_name
[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
321 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
327 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
328 if (netdev_lock_type
[i
] == dev_type
)
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type
) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
335 unsigned short dev_type
)
339 i
= netdev_lock_pos(dev_type
);
340 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
341 netdev_lock_name
[i
]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
348 i
= netdev_lock_pos(dev
->type
);
349 lockdep_set_class_and_name(&dev
->addr_list_lock
,
350 &netdev_addr_lock_key
[i
],
351 netdev_lock_name
[i
]);
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
355 unsigned short dev_type
)
358 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
386 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
388 if (pt
->type
== htons(ETH_P_ALL
))
389 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
391 return pt
->dev
? &pt
->dev
->ptype_specific
:
392 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type
*pt
)
410 struct list_head
*head
= ptype_head(pt
);
412 spin_lock(&ptype_lock
);
413 list_add_rcu(&pt
->list
, head
);
414 spin_unlock(&ptype_lock
);
416 EXPORT_SYMBOL(dev_add_pack
);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type
*pt
)
433 struct list_head
*head
= ptype_head(pt
);
434 struct packet_type
*pt1
;
436 spin_lock(&ptype_lock
);
438 list_for_each_entry(pt1
, head
, list
) {
440 list_del_rcu(&pt
->list
);
445 pr_warn("dev_remove_pack: %p not found\n", pt
);
447 spin_unlock(&ptype_lock
);
449 EXPORT_SYMBOL(__dev_remove_pack
);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
460 * This call sleeps to guarantee that no CPU is looking at the packet
463 void dev_remove_pack(struct packet_type
*pt
)
465 __dev_remove_pack(pt
);
469 EXPORT_SYMBOL(dev_remove_pack
);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload
*po
)
486 struct packet_offload
*elem
;
488 spin_lock(&offload_lock
);
489 list_for_each_entry(elem
, &offload_base
, list
) {
490 if (po
->priority
< elem
->priority
)
493 list_add_rcu(&po
->list
, elem
->list
.prev
);
494 spin_unlock(&offload_lock
);
496 EXPORT_SYMBOL(dev_add_offload
);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload
*po
)
513 struct list_head
*head
= &offload_base
;
514 struct packet_offload
*po1
;
516 spin_lock(&offload_lock
);
518 list_for_each_entry(po1
, head
, list
) {
520 list_del_rcu(&po
->list
);
525 pr_warn("dev_remove_offload: %p not found\n", po
);
527 spin_unlock(&offload_lock
);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
539 * This call sleeps to guarantee that no CPU is looking at the packet
542 void dev_remove_offload(struct packet_offload
*po
)
544 __dev_remove_offload(po
);
548 EXPORT_SYMBOL(dev_remove_offload
);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
568 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
570 struct netdev_boot_setup
*s
;
574 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
575 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
576 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
577 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
578 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
583 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device
*dev
)
597 struct netdev_boot_setup
*s
= dev_boot_setup
;
600 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
601 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
602 !strcmp(dev
->name
, s
[i
].name
)) {
603 dev
->irq
= s
[i
].map
.irq
;
604 dev
->base_addr
= s
[i
].map
.base_addr
;
605 dev
->mem_start
= s
[i
].map
.mem_start
;
606 dev
->mem_end
= s
[i
].map
.mem_end
;
612 EXPORT_SYMBOL(netdev_boot_setup_check
);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix
, int unit
)
627 const struct netdev_boot_setup
*s
= dev_boot_setup
;
631 sprintf(name
, "%s%d", prefix
, unit
);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net
, name
))
640 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
641 if (!strcmp(name
, s
[i
].name
))
642 return s
[i
].map
.base_addr
;
647 * Saves at boot time configured settings for any netdevice.
649 int __init
netdev_boot_setup(char *str
)
654 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
659 memset(&map
, 0, sizeof(map
));
663 map
.base_addr
= ints
[2];
665 map
.mem_start
= ints
[3];
667 map
.mem_end
= ints
[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str
, &map
);
673 __setup("netdev=", netdev_boot_setup
);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device
*dev
)
691 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
692 return dev
->netdev_ops
->ndo_get_iflink(dev
);
696 EXPORT_SYMBOL(dev_get_iflink
);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
709 struct ip_tunnel_info
*info
;
711 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
714 info
= skb_tunnel_info_unclone(skb
);
717 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
720 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
738 struct net_device
*dev
;
739 struct hlist_head
*head
= dev_name_hash(net
, name
);
741 hlist_for_each_entry(dev
, head
, name_hlist
)
742 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
747 EXPORT_SYMBOL(__dev_get_by_name
);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
763 struct net_device
*dev
;
764 struct hlist_head
*head
= dev_name_hash(net
, name
);
766 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
767 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
772 EXPORT_SYMBOL(dev_get_by_name_rcu
);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
788 struct net_device
*dev
;
791 dev
= dev_get_by_name_rcu(net
, name
);
797 EXPORT_SYMBOL(dev_get_by_name
);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
811 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
813 struct net_device
*dev
;
814 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
816 hlist_for_each_entry(dev
, head
, index_hlist
)
817 if (dev
->ifindex
== ifindex
)
822 EXPORT_SYMBOL(__dev_get_by_index
);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
837 struct net_device
*dev
;
838 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
840 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
841 if (dev
->ifindex
== ifindex
)
846 EXPORT_SYMBOL(dev_get_by_index_rcu
);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
862 struct net_device
*dev
;
865 dev
= dev_get_by_index_rcu(net
, ifindex
);
871 EXPORT_SYMBOL(dev_get_by_index
);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
885 struct napi_struct
*napi
;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id
< MIN_NAPI_ID
)
892 napi
= napi_by_id(napi_id
);
894 return napi
? napi
->dev
: NULL
;
896 EXPORT_SYMBOL(dev_get_by_napi_id
);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
906 struct net_device
*dev
;
909 down_read(&devnet_rename_sem
);
912 dev
= dev_get_by_index_rcu(net
, ifindex
);
918 strcpy(name
, dev
->name
);
923 up_read(&devnet_rename_sem
);
928 * dev_getbyhwaddr_rcu - find a device by its hardware address
929 * @net: the applicable net namespace
930 * @type: media type of device
931 * @ha: hardware address
933 * Search for an interface by MAC address. Returns NULL if the device
934 * is not found or a pointer to the device.
935 * The caller must hold RCU or RTNL.
936 * The returned device has not had its ref count increased
937 * and the caller must therefore be careful about locking
941 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
944 struct net_device
*dev
;
946 for_each_netdev_rcu(net
, dev
)
947 if (dev
->type
== type
&&
948 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
955 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
957 struct net_device
*dev
;
960 for_each_netdev(net
, dev
)
961 if (dev
->type
== type
)
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
968 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
970 struct net_device
*dev
, *ret
= NULL
;
973 for_each_netdev_rcu(net
, dev
)
974 if (dev
->type
== type
) {
982 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
985 * __dev_get_by_flags - find any device with given flags
986 * @net: the applicable net namespace
987 * @if_flags: IFF_* values
988 * @mask: bitmask of bits in if_flags to check
990 * Search for any interface with the given flags. Returns NULL if a device
991 * is not found or a pointer to the device. Must be called inside
992 * rtnl_lock(), and result refcount is unchanged.
995 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
998 struct net_device
*dev
, *ret
;
1003 for_each_netdev(net
, dev
) {
1004 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1011 EXPORT_SYMBOL(__dev_get_by_flags
);
1014 * dev_valid_name - check if name is okay for network device
1015 * @name: name string
1017 * Network device names need to be valid file names to
1018 * to allow sysfs to work. We also disallow any kind of
1021 bool dev_valid_name(const char *name
)
1025 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1027 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1031 if (*name
== '/' || *name
== ':' || isspace(*name
))
1037 EXPORT_SYMBOL(dev_valid_name
);
1040 * __dev_alloc_name - allocate a name for a device
1041 * @net: network namespace to allocate the device name in
1042 * @name: name format string
1043 * @buf: scratch buffer and result name string
1045 * Passed a format string - eg "lt%d" it will try and find a suitable
1046 * id. It scans list of devices to build up a free map, then chooses
1047 * the first empty slot. The caller must hold the dev_base or rtnl lock
1048 * while allocating the name and adding the device in order to avoid
1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 * Returns the number of the unit assigned or a negative errno code.
1054 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1058 const int max_netdevices
= 8*PAGE_SIZE
;
1059 unsigned long *inuse
;
1060 struct net_device
*d
;
1062 if (!dev_valid_name(name
))
1065 p
= strchr(name
, '%');
1068 * Verify the string as this thing may have come from
1069 * the user. There must be either one "%d" and no other "%"
1072 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1075 /* Use one page as a bit array of possible slots */
1076 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1080 for_each_netdev(net
, d
) {
1081 if (!sscanf(d
->name
, name
, &i
))
1083 if (i
< 0 || i
>= max_netdevices
)
1086 /* avoid cases where sscanf is not exact inverse of printf */
1087 snprintf(buf
, IFNAMSIZ
, name
, i
);
1088 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1092 i
= find_first_zero_bit(inuse
, max_netdevices
);
1093 free_page((unsigned long) inuse
);
1096 snprintf(buf
, IFNAMSIZ
, name
, i
);
1097 if (!__dev_get_by_name(net
, buf
))
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1107 static int dev_alloc_name_ns(struct net
*net
,
1108 struct net_device
*dev
,
1115 ret
= __dev_alloc_name(net
, name
, buf
);
1117 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1122 * dev_alloc_name - allocate a name for a device
1124 * @name: name format string
1126 * Passed a format string - eg "lt%d" it will try and find a suitable
1127 * id. It scans list of devices to build up a free map, then chooses
1128 * the first empty slot. The caller must hold the dev_base or rtnl lock
1129 * while allocating the name and adding the device in order to avoid
1131 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132 * Returns the number of the unit assigned or a negative errno code.
1135 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1137 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1139 EXPORT_SYMBOL(dev_alloc_name
);
1141 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1146 if (!dev_valid_name(name
))
1149 if (strchr(name
, '%'))
1150 return dev_alloc_name_ns(net
, dev
, name
);
1151 else if (__dev_get_by_name(net
, name
))
1153 else if (dev
->name
!= name
)
1154 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1158 EXPORT_SYMBOL(dev_get_valid_name
);
1161 * dev_change_name - change name of a device
1163 * @newname: name (or format string) must be at least IFNAMSIZ
1165 * Change name of a device, can pass format strings "eth%d".
1168 int dev_change_name(struct net_device
*dev
, const char *newname
)
1170 unsigned char old_assign_type
;
1171 char oldname
[IFNAMSIZ
];
1177 BUG_ON(!dev_net(dev
));
1181 /* Some auto-enslaved devices e.g. failover slaves are
1182 * special, as userspace might rename the device after
1183 * the interface had been brought up and running since
1184 * the point kernel initiated auto-enslavement. Allow
1185 * live name change even when these slave devices are
1188 * Typically, users of these auto-enslaving devices
1189 * don't actually care about slave name change, as
1190 * they are supposed to operate on master interface
1193 if (dev
->flags
& IFF_UP
&&
1194 likely(!(dev
->priv_flags
& IFF_LIVE_RENAME_OK
)))
1197 down_write(&devnet_rename_sem
);
1199 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1200 up_write(&devnet_rename_sem
);
1204 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1206 err
= dev_get_valid_name(net
, dev
, newname
);
1208 up_write(&devnet_rename_sem
);
1212 if (oldname
[0] && !strchr(oldname
, '%'))
1213 netdev_info(dev
, "renamed from %s\n", oldname
);
1215 old_assign_type
= dev
->name_assign_type
;
1216 dev
->name_assign_type
= NET_NAME_RENAMED
;
1219 ret
= device_rename(&dev
->dev
, dev
->name
);
1221 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1222 dev
->name_assign_type
= old_assign_type
;
1223 up_write(&devnet_rename_sem
);
1227 up_write(&devnet_rename_sem
);
1229 netdev_adjacent_rename_links(dev
, oldname
);
1231 write_lock_bh(&dev_base_lock
);
1232 hlist_del_rcu(&dev
->name_hlist
);
1233 write_unlock_bh(&dev_base_lock
);
1237 write_lock_bh(&dev_base_lock
);
1238 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1239 write_unlock_bh(&dev_base_lock
);
1241 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1242 ret
= notifier_to_errno(ret
);
1245 /* err >= 0 after dev_alloc_name() or stores the first errno */
1248 down_write(&devnet_rename_sem
);
1249 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1250 memcpy(oldname
, newname
, IFNAMSIZ
);
1251 dev
->name_assign_type
= old_assign_type
;
1252 old_assign_type
= NET_NAME_RENAMED
;
1255 pr_err("%s: name change rollback failed: %d\n",
1264 * dev_set_alias - change ifalias of a device
1266 * @alias: name up to IFALIASZ
1267 * @len: limit of bytes to copy from info
1269 * Set ifalias for a device,
1271 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1273 struct dev_ifalias
*new_alias
= NULL
;
1275 if (len
>= IFALIASZ
)
1279 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1283 memcpy(new_alias
->ifalias
, alias
, len
);
1284 new_alias
->ifalias
[len
] = 0;
1287 mutex_lock(&ifalias_mutex
);
1288 rcu_swap_protected(dev
->ifalias
, new_alias
,
1289 mutex_is_locked(&ifalias_mutex
));
1290 mutex_unlock(&ifalias_mutex
);
1293 kfree_rcu(new_alias
, rcuhead
);
1297 EXPORT_SYMBOL(dev_set_alias
);
1300 * dev_get_alias - get ifalias of a device
1302 * @name: buffer to store name of ifalias
1303 * @len: size of buffer
1305 * get ifalias for a device. Caller must make sure dev cannot go
1306 * away, e.g. rcu read lock or own a reference count to device.
1308 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1310 const struct dev_ifalias
*alias
;
1314 alias
= rcu_dereference(dev
->ifalias
);
1316 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1323 * netdev_features_change - device changes features
1324 * @dev: device to cause notification
1326 * Called to indicate a device has changed features.
1328 void netdev_features_change(struct net_device
*dev
)
1330 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1332 EXPORT_SYMBOL(netdev_features_change
);
1335 * netdev_state_change - device changes state
1336 * @dev: device to cause notification
1338 * Called to indicate a device has changed state. This function calls
1339 * the notifier chains for netdev_chain and sends a NEWLINK message
1340 * to the routing socket.
1342 void netdev_state_change(struct net_device
*dev
)
1344 if (dev
->flags
& IFF_UP
) {
1345 struct netdev_notifier_change_info change_info
= {
1349 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1351 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1354 EXPORT_SYMBOL(netdev_state_change
);
1357 * netdev_notify_peers - notify network peers about existence of @dev
1358 * @dev: network device
1360 * Generate traffic such that interested network peers are aware of
1361 * @dev, such as by generating a gratuitous ARP. This may be used when
1362 * a device wants to inform the rest of the network about some sort of
1363 * reconfiguration such as a failover event or virtual machine
1366 void netdev_notify_peers(struct net_device
*dev
)
1369 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1370 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1373 EXPORT_SYMBOL(netdev_notify_peers
);
1375 static int __dev_open(struct net_device
*dev
)
1377 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1382 if (!netif_device_present(dev
))
1385 /* Block netpoll from trying to do any rx path servicing.
1386 * If we don't do this there is a chance ndo_poll_controller
1387 * or ndo_poll may be running while we open the device
1389 netpoll_poll_disable(dev
);
1391 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1392 ret
= notifier_to_errno(ret
);
1396 set_bit(__LINK_STATE_START
, &dev
->state
);
1398 if (ops
->ndo_validate_addr
)
1399 ret
= ops
->ndo_validate_addr(dev
);
1401 if (!ret
&& ops
->ndo_open
)
1402 ret
= ops
->ndo_open(dev
);
1404 netpoll_poll_enable(dev
);
1407 clear_bit(__LINK_STATE_START
, &dev
->state
);
1409 dev
->flags
|= IFF_UP
;
1410 dev_set_rx_mode(dev
);
1412 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1419 * dev_open - prepare an interface for use.
1420 * @dev: device to open
1422 * Takes a device from down to up state. The device's private open
1423 * function is invoked and then the multicast lists are loaded. Finally
1424 * the device is moved into the up state and a %NETDEV_UP message is
1425 * sent to the netdev notifier chain.
1427 * Calling this function on an active interface is a nop. On a failure
1428 * a negative errno code is returned.
1430 int dev_open(struct net_device
*dev
)
1434 if (dev
->flags
& IFF_UP
)
1437 ret
= __dev_open(dev
);
1441 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1442 call_netdevice_notifiers(NETDEV_UP
, dev
);
1446 EXPORT_SYMBOL(dev_open
);
1448 static void __dev_close_many(struct list_head
*head
)
1450 struct net_device
*dev
;
1455 list_for_each_entry(dev
, head
, close_list
) {
1456 /* Temporarily disable netpoll until the interface is down */
1457 netpoll_poll_disable(dev
);
1459 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1461 clear_bit(__LINK_STATE_START
, &dev
->state
);
1463 /* Synchronize to scheduled poll. We cannot touch poll list, it
1464 * can be even on different cpu. So just clear netif_running().
1466 * dev->stop() will invoke napi_disable() on all of it's
1467 * napi_struct instances on this device.
1469 smp_mb__after_atomic(); /* Commit netif_running(). */
1472 dev_deactivate_many(head
);
1474 list_for_each_entry(dev
, head
, close_list
) {
1475 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1478 * Call the device specific close. This cannot fail.
1479 * Only if device is UP
1481 * We allow it to be called even after a DETACH hot-plug
1487 dev
->flags
&= ~IFF_UP
;
1488 netpoll_poll_enable(dev
);
1492 static void __dev_close(struct net_device
*dev
)
1496 list_add(&dev
->close_list
, &single
);
1497 __dev_close_many(&single
);
1501 void dev_close_many(struct list_head
*head
, bool unlink
)
1503 struct net_device
*dev
, *tmp
;
1505 /* Remove the devices that don't need to be closed */
1506 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1507 if (!(dev
->flags
& IFF_UP
))
1508 list_del_init(&dev
->close_list
);
1510 __dev_close_many(head
);
1512 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1513 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1514 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1516 list_del_init(&dev
->close_list
);
1519 EXPORT_SYMBOL(dev_close_many
);
1522 * dev_close - shutdown an interface.
1523 * @dev: device to shutdown
1525 * This function moves an active device into down state. A
1526 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1530 void dev_close(struct net_device
*dev
)
1532 if (dev
->flags
& IFF_UP
) {
1535 list_add(&dev
->close_list
, &single
);
1536 dev_close_many(&single
, true);
1540 EXPORT_SYMBOL(dev_close
);
1544 * dev_disable_lro - disable Large Receive Offload on a device
1547 * Disable Large Receive Offload (LRO) on a net device. Must be
1548 * called under RTNL. This is needed if received packets may be
1549 * forwarded to another interface.
1551 void dev_disable_lro(struct net_device
*dev
)
1553 struct net_device
*lower_dev
;
1554 struct list_head
*iter
;
1556 dev
->wanted_features
&= ~NETIF_F_LRO
;
1557 netdev_update_features(dev
);
1559 if (unlikely(dev
->features
& NETIF_F_LRO
))
1560 netdev_WARN(dev
, "failed to disable LRO!\n");
1562 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1563 dev_disable_lro(lower_dev
);
1565 EXPORT_SYMBOL(dev_disable_lro
);
1568 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1571 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1572 * called under RTNL. This is needed if Generic XDP is installed on
1575 static void dev_disable_gro_hw(struct net_device
*dev
)
1577 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1578 netdev_update_features(dev
);
1580 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1581 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1587 case NETDEV_##val: \
1588 return "NETDEV_" __stringify(val);
1590 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1591 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1592 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1593 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1594 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1595 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1596 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1597 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1598 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1601 return "UNKNOWN_NETDEV_EVENT";
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1605 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1606 struct net_device
*dev
)
1608 struct netdev_notifier_info info
= {
1612 return nb
->notifier_call(nb
, val
, &info
);
1615 static int dev_boot_phase
= 1;
1618 * register_netdevice_notifier - register a network notifier block
1621 * Register a notifier to be called when network device events occur.
1622 * The notifier passed is linked into the kernel structures and must
1623 * not be reused until it has been unregistered. A negative errno code
1624 * is returned on a failure.
1626 * When registered all registration and up events are replayed
1627 * to the new notifier to allow device to have a race free
1628 * view of the network device list.
1631 int register_netdevice_notifier(struct notifier_block
*nb
)
1633 struct net_device
*dev
;
1634 struct net_device
*last
;
1638 /* Close race with setup_net() and cleanup_net() */
1639 down_write(&pernet_ops_rwsem
);
1641 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1647 for_each_netdev(net
, dev
) {
1648 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1649 err
= notifier_to_errno(err
);
1653 if (!(dev
->flags
& IFF_UP
))
1656 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1662 up_write(&pernet_ops_rwsem
);
1668 for_each_netdev(net
, dev
) {
1672 if (dev
->flags
& IFF_UP
) {
1673 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1675 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1677 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1682 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1685 EXPORT_SYMBOL(register_netdevice_notifier
);
1688 * unregister_netdevice_notifier - unregister a network notifier block
1691 * Unregister a notifier previously registered by
1692 * register_netdevice_notifier(). The notifier is unlinked into the
1693 * kernel structures and may then be reused. A negative errno code
1694 * is returned on a failure.
1696 * After unregistering unregister and down device events are synthesized
1697 * for all devices on the device list to the removed notifier to remove
1698 * the need for special case cleanup code.
1701 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1703 struct net_device
*dev
;
1707 /* Close race with setup_net() and cleanup_net() */
1708 down_write(&pernet_ops_rwsem
);
1710 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1715 for_each_netdev(net
, dev
) {
1716 if (dev
->flags
& IFF_UP
) {
1717 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1719 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1721 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1726 up_write(&pernet_ops_rwsem
);
1729 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1732 * call_netdevice_notifiers_info - call all network notifier blocks
1733 * @val: value passed unmodified to notifier function
1734 * @info: notifier information data
1736 * Call all network notifier blocks. Parameters and return value
1737 * are as for raw_notifier_call_chain().
1740 static int call_netdevice_notifiers_info(unsigned long val
,
1741 struct netdev_notifier_info
*info
)
1744 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1748 * call_netdevice_notifiers - call all network notifier blocks
1749 * @val: value passed unmodified to notifier function
1750 * @dev: net_device pointer passed unmodified to notifier function
1752 * Call all network notifier blocks. Parameters and return value
1753 * are as for raw_notifier_call_chain().
1756 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1758 struct netdev_notifier_info info
= {
1762 return call_netdevice_notifiers_info(val
, &info
);
1764 EXPORT_SYMBOL(call_netdevice_notifiers
);
1767 * call_netdevice_notifiers_mtu - call all network notifier blocks
1768 * @val: value passed unmodified to notifier function
1769 * @dev: net_device pointer passed unmodified to notifier function
1770 * @arg: additional u32 argument passed to the notifier function
1772 * Call all network notifier blocks. Parameters and return value
1773 * are as for raw_notifier_call_chain().
1775 static int call_netdevice_notifiers_mtu(unsigned long val
,
1776 struct net_device
*dev
, u32 arg
)
1778 struct netdev_notifier_info_ext info
= {
1783 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
1785 return call_netdevice_notifiers_info(val
, &info
.info
);
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
1791 void net_inc_ingress_queue(void)
1793 static_branch_inc(&ingress_needed_key
);
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1797 void net_dec_ingress_queue(void)
1799 static_branch_dec(&ingress_needed_key
);
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
1807 void net_inc_egress_queue(void)
1809 static_branch_inc(&egress_needed_key
);
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1813 void net_dec_egress_queue(void)
1815 static_branch_dec(&egress_needed_key
);
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred
;
1823 static atomic_t netstamp_wanted
;
1824 static void netstamp_clear(struct work_struct
*work
)
1826 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1829 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1831 static_branch_enable(&netstamp_needed_key
);
1833 static_branch_disable(&netstamp_needed_key
);
1835 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1838 void net_enable_timestamp(void)
1840 #ifdef CONFIG_JUMP_LABEL
1844 wanted
= atomic_read(&netstamp_wanted
);
1847 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1850 atomic_inc(&netstamp_needed_deferred
);
1851 schedule_work(&netstamp_work
);
1853 static_branch_inc(&netstamp_needed_key
);
1856 EXPORT_SYMBOL(net_enable_timestamp
);
1858 void net_disable_timestamp(void)
1860 #ifdef CONFIG_JUMP_LABEL
1864 wanted
= atomic_read(&netstamp_wanted
);
1867 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1870 atomic_dec(&netstamp_needed_deferred
);
1871 schedule_work(&netstamp_work
);
1873 static_branch_dec(&netstamp_needed_key
);
1876 EXPORT_SYMBOL(net_disable_timestamp
);
1878 static inline void net_timestamp_set(struct sk_buff
*skb
)
1881 if (static_branch_unlikely(&netstamp_needed_key
))
1882 __net_timestamp(skb
);
1885 #define net_timestamp_check(COND, SKB) \
1886 if (static_branch_unlikely(&netstamp_needed_key)) { \
1887 if ((COND) && !(SKB)->tstamp) \
1888 __net_timestamp(SKB); \
1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 if (!(dev
->flags
& IFF_UP
))
1898 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1899 if (skb
->len
<= len
)
1902 /* if TSO is enabled, we don't care about the length as the packet
1903 * could be forwarded without being segmented before
1905 if (skb_is_gso(skb
))
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1912 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1914 int ret
= ____dev_forward_skb(dev
, skb
);
1917 skb
->protocol
= eth_type_trans(skb
, dev
);
1918 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1926 * dev_forward_skb - loopback an skb to another netif
1928 * @dev: destination network device
1929 * @skb: buffer to forward
1932 * NET_RX_SUCCESS (no congestion)
1933 * NET_RX_DROP (packet was dropped, but freed)
1935 * dev_forward_skb can be used for injecting an skb from the
1936 * start_xmit function of one device into the receive queue
1937 * of another device.
1939 * The receiving device may be in another namespace, so
1940 * we have to clear all information in the skb that could
1941 * impact namespace isolation.
1943 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1945 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1947 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1949 static inline int deliver_skb(struct sk_buff
*skb
,
1950 struct packet_type
*pt_prev
,
1951 struct net_device
*orig_dev
)
1953 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1955 refcount_inc(&skb
->users
);
1956 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1959 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1960 struct packet_type
**pt
,
1961 struct net_device
*orig_dev
,
1963 struct list_head
*ptype_list
)
1965 struct packet_type
*ptype
, *pt_prev
= *pt
;
1967 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1968 if (ptype
->type
!= type
)
1971 deliver_skb(skb
, pt_prev
, orig_dev
);
1977 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1979 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1982 if (ptype
->id_match
)
1983 return ptype
->id_match(ptype
, skb
->sk
);
1984 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1995 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1997 struct packet_type
*ptype
;
1998 struct sk_buff
*skb2
= NULL
;
1999 struct packet_type
*pt_prev
= NULL
;
2000 struct list_head
*ptype_list
= &ptype_all
;
2004 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2005 /* Never send packets back to the socket
2006 * they originated from - MvS (miquels@drinkel.ow.org)
2008 if (skb_loop_sk(ptype
, skb
))
2012 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2017 /* need to clone skb, done only once */
2018 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2022 net_timestamp_set(skb2
);
2024 /* skb->nh should be correctly
2025 * set by sender, so that the second statement is
2026 * just protection against buggy protocols.
2028 skb_reset_mac_header(skb2
);
2030 if (skb_network_header(skb2
) < skb2
->data
||
2031 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2032 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033 ntohs(skb2
->protocol
),
2035 skb_reset_network_header(skb2
);
2038 skb2
->transport_header
= skb2
->network_header
;
2039 skb2
->pkt_type
= PACKET_OUTGOING
;
2043 if (ptype_list
== &ptype_all
) {
2044 ptype_list
= &dev
->ptype_all
;
2049 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2050 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2059 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060 * @dev: Network device
2061 * @txq: number of queues available
2063 * If real_num_tx_queues is changed the tc mappings may no longer be
2064 * valid. To resolve this verify the tc mapping remains valid and if
2065 * not NULL the mapping. With no priorities mapping to this
2066 * offset/count pair it will no longer be used. In the worst case TC0
2067 * is invalid nothing can be done so disable priority mappings. If is
2068 * expected that drivers will fix this mapping if they can before
2069 * calling netif_set_real_num_tx_queues.
2071 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2074 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2076 /* If TC0 is invalidated disable TC mapping */
2077 if (tc
->offset
+ tc
->count
> txq
) {
2078 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2083 /* Invalidated prio to tc mappings set to TC0 */
2084 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2085 int q
= netdev_get_prio_tc_map(dev
, i
);
2087 tc
= &dev
->tc_to_txq
[q
];
2088 if (tc
->offset
+ tc
->count
> txq
) {
2089 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2091 netdev_set_prio_tc_map(dev
, i
, 0);
2096 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2099 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2102 /* walk through the TCs and see if it falls into any of them */
2103 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2104 if ((txq
- tc
->offset
) < tc
->count
)
2108 /* didn't find it, just return -1 to indicate no match */
2114 EXPORT_SYMBOL(netdev_txq_to_tc
);
2117 struct static_key xps_needed __read_mostly
;
2118 EXPORT_SYMBOL(xps_needed
);
2119 struct static_key xps_rxqs_needed __read_mostly
;
2120 EXPORT_SYMBOL(xps_rxqs_needed
);
2121 static DEFINE_MUTEX(xps_map_mutex
);
2122 #define xmap_dereference(P) \
2123 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2125 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2128 struct xps_map
*map
= NULL
;
2132 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2136 for (pos
= map
->len
; pos
--;) {
2137 if (map
->queues
[pos
] != index
)
2141 map
->queues
[pos
] = map
->queues
[--map
->len
];
2145 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2146 kfree_rcu(map
, rcu
);
2153 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2154 struct xps_dev_maps
*dev_maps
,
2155 int cpu
, u16 offset
, u16 count
)
2157 int num_tc
= dev
->num_tc
? : 1;
2158 bool active
= false;
2161 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2164 for (i
= count
, j
= offset
; i
--; j
++) {
2165 if (!remove_xps_queue(dev_maps
, tci
, j
))
2175 static void reset_xps_maps(struct net_device
*dev
,
2176 struct xps_dev_maps
*dev_maps
,
2180 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2181 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2183 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2185 static_key_slow_dec_cpuslocked(&xps_needed
);
2186 kfree_rcu(dev_maps
, rcu
);
2189 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2190 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2191 u16 offset
, u16 count
, bool is_rxqs_map
)
2193 bool active
= false;
2196 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2198 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2201 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2204 for (i
= offset
+ (count
- 1); count
--; i
--) {
2205 netdev_queue_numa_node_write(
2206 netdev_get_tx_queue(dev
, i
),
2212 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2215 const unsigned long *possible_mask
= NULL
;
2216 struct xps_dev_maps
*dev_maps
;
2217 unsigned int nr_ids
;
2219 if (!static_key_false(&xps_needed
))
2223 mutex_lock(&xps_map_mutex
);
2225 if (static_key_false(&xps_rxqs_needed
)) {
2226 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2228 nr_ids
= dev
->num_rx_queues
;
2229 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2230 offset
, count
, true);
2234 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2238 if (num_possible_cpus() > 1)
2239 possible_mask
= cpumask_bits(cpu_possible_mask
);
2240 nr_ids
= nr_cpu_ids
;
2241 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2245 mutex_unlock(&xps_map_mutex
);
2249 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2251 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2254 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2255 u16 index
, bool is_rxqs_map
)
2257 struct xps_map
*new_map
;
2258 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2261 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2262 if (map
->queues
[pos
] != index
)
2267 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2269 if (pos
< map
->alloc_len
)
2272 alloc_len
= map
->alloc_len
* 2;
2275 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2279 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2281 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2282 cpu_to_node(attr_index
));
2286 for (i
= 0; i
< pos
; i
++)
2287 new_map
->queues
[i
] = map
->queues
[i
];
2288 new_map
->alloc_len
= alloc_len
;
2294 /* Must be called under cpus_read_lock */
2295 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2296 u16 index
, bool is_rxqs_map
)
2298 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2299 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2300 int i
, j
, tci
, numa_node_id
= -2;
2301 int maps_sz
, num_tc
= 1, tc
= 0;
2302 struct xps_map
*map
, *new_map
;
2303 bool active
= false;
2304 unsigned int nr_ids
;
2307 /* Do not allow XPS on subordinate device directly */
2308 num_tc
= dev
->num_tc
;
2312 /* If queue belongs to subordinate dev use its map */
2313 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2315 tc
= netdev_txq_to_tc(dev
, index
);
2320 mutex_lock(&xps_map_mutex
);
2322 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2323 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2324 nr_ids
= dev
->num_rx_queues
;
2326 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2327 if (num_possible_cpus() > 1) {
2328 online_mask
= cpumask_bits(cpu_online_mask
);
2329 possible_mask
= cpumask_bits(cpu_possible_mask
);
2331 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2332 nr_ids
= nr_cpu_ids
;
2335 if (maps_sz
< L1_CACHE_BYTES
)
2336 maps_sz
= L1_CACHE_BYTES
;
2338 /* allocate memory for queue storage */
2339 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2342 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2343 if (!new_dev_maps
) {
2344 mutex_unlock(&xps_map_mutex
);
2348 tci
= j
* num_tc
+ tc
;
2349 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2352 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2356 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2360 goto out_no_new_maps
;
2363 /* Increment static keys at most once per type */
2364 static_key_slow_inc_cpuslocked(&xps_needed
);
2366 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2369 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2371 /* copy maps belonging to foreign traffic classes */
2372 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2373 /* fill in the new device map from the old device map */
2374 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2375 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2378 /* We need to explicitly update tci as prevous loop
2379 * could break out early if dev_maps is NULL.
2381 tci
= j
* num_tc
+ tc
;
2383 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2384 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2385 /* add tx-queue to CPU/rx-queue maps */
2388 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2389 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2392 if (pos
== map
->len
)
2393 map
->queues
[map
->len
++] = index
;
2396 if (numa_node_id
== -2)
2397 numa_node_id
= cpu_to_node(j
);
2398 else if (numa_node_id
!= cpu_to_node(j
))
2402 } else if (dev_maps
) {
2403 /* fill in the new device map from the old device map */
2404 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2405 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2408 /* copy maps belonging to foreign traffic classes */
2409 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2410 /* fill in the new device map from the old device map */
2411 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2412 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2417 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2419 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2421 /* Cleanup old maps */
2423 goto out_no_old_maps
;
2425 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2427 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2428 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2429 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2430 if (map
&& map
!= new_map
)
2431 kfree_rcu(map
, rcu
);
2435 kfree_rcu(dev_maps
, rcu
);
2438 dev_maps
= new_dev_maps
;
2443 /* update Tx queue numa node */
2444 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2445 (numa_node_id
>= 0) ?
2446 numa_node_id
: NUMA_NO_NODE
);
2452 /* removes tx-queue from unused CPUs/rx-queues */
2453 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2455 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2456 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2457 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2458 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2459 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2460 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2461 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2464 /* free map if not active */
2466 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2469 mutex_unlock(&xps_map_mutex
);
2473 /* remove any maps that we added */
2474 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2476 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2477 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2479 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2481 if (new_map
&& new_map
!= map
)
2486 mutex_unlock(&xps_map_mutex
);
2488 kfree(new_dev_maps
);
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2493 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2499 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2504 EXPORT_SYMBOL(netif_set_xps_queue
);
2507 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2509 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2511 /* Unbind any subordinate channels */
2512 while (txq
-- != &dev
->_tx
[0]) {
2514 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2518 void netdev_reset_tc(struct net_device
*dev
)
2521 netif_reset_xps_queues_gt(dev
, 0);
2523 netdev_unbind_all_sb_channels(dev
);
2525 /* Reset TC configuration of device */
2527 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2528 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2530 EXPORT_SYMBOL(netdev_reset_tc
);
2532 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2534 if (tc
>= dev
->num_tc
)
2538 netif_reset_xps_queues(dev
, offset
, count
);
2540 dev
->tc_to_txq
[tc
].count
= count
;
2541 dev
->tc_to_txq
[tc
].offset
= offset
;
2544 EXPORT_SYMBOL(netdev_set_tc_queue
);
2546 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2548 if (num_tc
> TC_MAX_QUEUE
)
2552 netif_reset_xps_queues_gt(dev
, 0);
2554 netdev_unbind_all_sb_channels(dev
);
2556 dev
->num_tc
= num_tc
;
2559 EXPORT_SYMBOL(netdev_set_num_tc
);
2561 void netdev_unbind_sb_channel(struct net_device
*dev
,
2562 struct net_device
*sb_dev
)
2564 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2567 netif_reset_xps_queues_gt(sb_dev
, 0);
2569 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2570 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2572 while (txq
-- != &dev
->_tx
[0]) {
2573 if (txq
->sb_dev
== sb_dev
)
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2579 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2580 struct net_device
*sb_dev
,
2581 u8 tc
, u16 count
, u16 offset
)
2583 /* Make certain the sb_dev and dev are already configured */
2584 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2587 /* We cannot hand out queues we don't have */
2588 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2591 /* Record the mapping */
2592 sb_dev
->tc_to_txq
[tc
].count
= count
;
2593 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2595 /* Provide a way for Tx queue to find the tc_to_txq map or
2596 * XPS map for itself.
2599 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2605 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2607 /* Do not use a multiqueue device to represent a subordinate channel */
2608 if (netif_is_multiqueue(dev
))
2611 /* We allow channels 1 - 32767 to be used for subordinate channels.
2612 * Channel 0 is meant to be "native" mode and used only to represent
2613 * the main root device. We allow writing 0 to reset the device back
2614 * to normal mode after being used as a subordinate channel.
2616 if (channel
> S16_MAX
)
2619 dev
->num_tc
= -channel
;
2623 EXPORT_SYMBOL(netdev_set_sb_channel
);
2626 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2629 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2634 disabling
= txq
< dev
->real_num_tx_queues
;
2636 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2639 if (dev
->reg_state
== NETREG_REGISTERED
||
2640 dev
->reg_state
== NETREG_UNREGISTERING
) {
2643 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2649 netif_setup_tc(dev
, txq
);
2651 dev
->real_num_tx_queues
= txq
;
2655 qdisc_reset_all_tx_gt(dev
, txq
);
2657 netif_reset_xps_queues_gt(dev
, txq
);
2661 dev
->real_num_tx_queues
= txq
;
2666 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2670 * netif_set_real_num_rx_queues - set actual number of RX queues used
2671 * @dev: Network device
2672 * @rxq: Actual number of RX queues
2674 * This must be called either with the rtnl_lock held or before
2675 * registration of the net device. Returns 0 on success, or a
2676 * negative error code. If called before registration, it always
2679 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2683 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2686 if (dev
->reg_state
== NETREG_REGISTERED
) {
2689 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2695 dev
->real_num_rx_queues
= rxq
;
2698 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2702 * netif_get_num_default_rss_queues - default number of RSS queues
2704 * This routine should set an upper limit on the number of RSS queues
2705 * used by default by multiqueue devices.
2707 int netif_get_num_default_rss_queues(void)
2709 return is_kdump_kernel() ?
2710 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2712 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2714 static void __netif_reschedule(struct Qdisc
*q
)
2716 struct softnet_data
*sd
;
2717 unsigned long flags
;
2719 local_irq_save(flags
);
2720 sd
= this_cpu_ptr(&softnet_data
);
2721 q
->next_sched
= NULL
;
2722 *sd
->output_queue_tailp
= q
;
2723 sd
->output_queue_tailp
= &q
->next_sched
;
2724 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2725 local_irq_restore(flags
);
2728 void __netif_schedule(struct Qdisc
*q
)
2730 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2731 __netif_reschedule(q
);
2733 EXPORT_SYMBOL(__netif_schedule
);
2735 struct dev_kfree_skb_cb
{
2736 enum skb_free_reason reason
;
2739 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2741 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2744 void netif_schedule_queue(struct netdev_queue
*txq
)
2747 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2748 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2750 __netif_schedule(q
);
2754 EXPORT_SYMBOL(netif_schedule_queue
);
2756 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2758 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2762 q
= rcu_dereference(dev_queue
->qdisc
);
2763 __netif_schedule(q
);
2767 EXPORT_SYMBOL(netif_tx_wake_queue
);
2769 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2771 unsigned long flags
;
2776 if (likely(refcount_read(&skb
->users
) == 1)) {
2778 refcount_set(&skb
->users
, 0);
2779 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2782 get_kfree_skb_cb(skb
)->reason
= reason
;
2783 local_irq_save(flags
);
2784 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2785 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2786 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2787 local_irq_restore(flags
);
2789 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2791 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2793 if (in_irq() || irqs_disabled())
2794 __dev_kfree_skb_irq(skb
, reason
);
2798 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2802 * netif_device_detach - mark device as removed
2803 * @dev: network device
2805 * Mark device as removed from system and therefore no longer available.
2807 void netif_device_detach(struct net_device
*dev
)
2809 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2810 netif_running(dev
)) {
2811 netif_tx_stop_all_queues(dev
);
2814 EXPORT_SYMBOL(netif_device_detach
);
2817 * netif_device_attach - mark device as attached
2818 * @dev: network device
2820 * Mark device as attached from system and restart if needed.
2822 void netif_device_attach(struct net_device
*dev
)
2824 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2825 netif_running(dev
)) {
2826 netif_tx_wake_all_queues(dev
);
2827 __netdev_watchdog_up(dev
);
2830 EXPORT_SYMBOL(netif_device_attach
);
2833 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2834 * to be used as a distribution range.
2836 static u16
skb_tx_hash(const struct net_device
*dev
,
2837 const struct net_device
*sb_dev
,
2838 struct sk_buff
*skb
)
2842 u16 qcount
= dev
->real_num_tx_queues
;
2845 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2847 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
2848 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
2851 if (skb_rx_queue_recorded(skb
)) {
2852 hash
= skb_get_rx_queue(skb
);
2853 if (hash
>= qoffset
)
2855 while (unlikely(hash
>= qcount
))
2857 return hash
+ qoffset
;
2860 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2863 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2865 static const netdev_features_t null_features
;
2866 struct net_device
*dev
= skb
->dev
;
2867 const char *name
= "";
2869 if (!net_ratelimit())
2873 if (dev
->dev
.parent
)
2874 name
= dev_driver_string(dev
->dev
.parent
);
2876 name
= netdev_name(dev
);
2878 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2879 "gso_type=%d ip_summed=%d\n",
2880 name
, dev
? &dev
->features
: &null_features
,
2881 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2882 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2883 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2887 * Invalidate hardware checksum when packet is to be mangled, and
2888 * complete checksum manually on outgoing path.
2890 int skb_checksum_help(struct sk_buff
*skb
)
2893 int ret
= 0, offset
;
2895 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2896 goto out_set_summed
;
2898 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2899 skb_warn_bad_offload(skb
);
2903 /* Before computing a checksum, we should make sure no frag could
2904 * be modified by an external entity : checksum could be wrong.
2906 if (skb_has_shared_frag(skb
)) {
2907 ret
= __skb_linearize(skb
);
2912 offset
= skb_checksum_start_offset(skb
);
2913 BUG_ON(offset
>= skb_headlen(skb
));
2914 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2916 offset
+= skb
->csum_offset
;
2917 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2919 if (skb_cloned(skb
) &&
2920 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2921 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2926 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2928 skb
->ip_summed
= CHECKSUM_NONE
;
2932 EXPORT_SYMBOL(skb_checksum_help
);
2934 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2937 int ret
= 0, offset
, start
;
2939 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2942 if (unlikely(skb_is_gso(skb
)))
2945 /* Before computing a checksum, we should make sure no frag could
2946 * be modified by an external entity : checksum could be wrong.
2948 if (unlikely(skb_has_shared_frag(skb
))) {
2949 ret
= __skb_linearize(skb
);
2953 start
= skb_checksum_start_offset(skb
);
2954 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2955 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2959 if (skb_cloned(skb
) &&
2960 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2961 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2965 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2966 skb
->len
- start
, ~(__u32
)0,
2968 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2969 skb
->ip_summed
= CHECKSUM_NONE
;
2970 skb
->csum_not_inet
= 0;
2975 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2977 __be16 type
= skb
->protocol
;
2979 /* Tunnel gso handlers can set protocol to ethernet. */
2980 if (type
== htons(ETH_P_TEB
)) {
2983 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2986 eth
= (struct ethhdr
*)skb
->data
;
2987 type
= eth
->h_proto
;
2990 return __vlan_get_protocol(skb
, type
, depth
);
2994 * skb_mac_gso_segment - mac layer segmentation handler.
2995 * @skb: buffer to segment
2996 * @features: features for the output path (see dev->features)
2998 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
2999 netdev_features_t features
)
3001 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
3002 struct packet_offload
*ptype
;
3003 int vlan_depth
= skb
->mac_len
;
3004 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
3006 if (unlikely(!type
))
3007 return ERR_PTR(-EINVAL
);
3009 __skb_pull(skb
, vlan_depth
);
3012 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
3013 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
3014 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
3020 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
3024 EXPORT_SYMBOL(skb_mac_gso_segment
);
3027 /* openvswitch calls this on rx path, so we need a different check.
3029 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
3032 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
3033 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
3035 return skb
->ip_summed
== CHECKSUM_NONE
;
3039 * __skb_gso_segment - Perform segmentation on skb.
3040 * @skb: buffer to segment
3041 * @features: features for the output path (see dev->features)
3042 * @tx_path: whether it is called in TX path
3044 * This function segments the given skb and returns a list of segments.
3046 * It may return NULL if the skb requires no segmentation. This is
3047 * only possible when GSO is used for verifying header integrity.
3049 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3052 netdev_features_t features
, bool tx_path
)
3054 struct sk_buff
*segs
;
3056 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3059 /* We're going to init ->check field in TCP or UDP header */
3060 err
= skb_cow_head(skb
, 0);
3062 return ERR_PTR(err
);
3065 /* Only report GSO partial support if it will enable us to
3066 * support segmentation on this frame without needing additional
3069 if (features
& NETIF_F_GSO_PARTIAL
) {
3070 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3071 struct net_device
*dev
= skb
->dev
;
3073 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3074 if (!skb_gso_ok(skb
, features
| partial_features
))
3075 features
&= ~NETIF_F_GSO_PARTIAL
;
3078 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
3079 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3081 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3082 SKB_GSO_CB(skb
)->encap_level
= 0;
3084 skb_reset_mac_header(skb
);
3085 skb_reset_mac_len(skb
);
3087 segs
= skb_mac_gso_segment(skb
, features
);
3089 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3090 skb_warn_bad_offload(skb
);
3094 EXPORT_SYMBOL(__skb_gso_segment
);
3096 /* Take action when hardware reception checksum errors are detected. */
3098 void netdev_rx_csum_fault(struct net_device
*dev
)
3100 if (net_ratelimit()) {
3101 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3105 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3108 /* XXX: check that highmem exists at all on the given machine. */
3109 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3111 #ifdef CONFIG_HIGHMEM
3114 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3115 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3116 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3118 if (PageHighMem(skb_frag_page(frag
)))
3126 /* If MPLS offload request, verify we are testing hardware MPLS features
3127 * instead of standard features for the netdev.
3129 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3130 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3131 netdev_features_t features
,
3134 if (eth_p_mpls(type
))
3135 features
&= skb
->dev
->mpls_features
;
3140 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3141 netdev_features_t features
,
3148 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3149 netdev_features_t features
)
3154 type
= skb_network_protocol(skb
, &tmp
);
3155 features
= net_mpls_features(skb
, features
, type
);
3157 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3158 !can_checksum_protocol(features
, type
)) {
3159 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3161 if (illegal_highdma(skb
->dev
, skb
))
3162 features
&= ~NETIF_F_SG
;
3167 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3168 struct net_device
*dev
,
3169 netdev_features_t features
)
3173 EXPORT_SYMBOL(passthru_features_check
);
3175 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3176 struct net_device
*dev
,
3177 netdev_features_t features
)
3179 return vlan_features_check(skb
, features
);
3182 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3183 struct net_device
*dev
,
3184 netdev_features_t features
)
3186 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3188 if (gso_segs
> dev
->gso_max_segs
)
3189 return features
& ~NETIF_F_GSO_MASK
;
3191 /* Support for GSO partial features requires software
3192 * intervention before we can actually process the packets
3193 * so we need to strip support for any partial features now
3194 * and we can pull them back in after we have partially
3195 * segmented the frame.
3197 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3198 features
&= ~dev
->gso_partial_features
;
3200 /* Make sure to clear the IPv4 ID mangling feature if the
3201 * IPv4 header has the potential to be fragmented.
3203 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3204 struct iphdr
*iph
= skb
->encapsulation
?
3205 inner_ip_hdr(skb
) : ip_hdr(skb
);
3207 if (!(iph
->frag_off
& htons(IP_DF
)))
3208 features
&= ~NETIF_F_TSO_MANGLEID
;
3214 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3216 struct net_device
*dev
= skb
->dev
;
3217 netdev_features_t features
= dev
->features
;
3219 if (skb_is_gso(skb
))
3220 features
= gso_features_check(skb
, dev
, features
);
3222 /* If encapsulation offload request, verify we are testing
3223 * hardware encapsulation features instead of standard
3224 * features for the netdev
3226 if (skb
->encapsulation
)
3227 features
&= dev
->hw_enc_features
;
3229 if (skb_vlan_tagged(skb
))
3230 features
= netdev_intersect_features(features
,
3231 dev
->vlan_features
|
3232 NETIF_F_HW_VLAN_CTAG_TX
|
3233 NETIF_F_HW_VLAN_STAG_TX
);
3235 if (dev
->netdev_ops
->ndo_features_check
)
3236 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3239 features
&= dflt_features_check(skb
, dev
, features
);
3241 return harmonize_features(skb
, features
);
3243 EXPORT_SYMBOL(netif_skb_features
);
3245 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3246 struct netdev_queue
*txq
, bool more
)
3251 if (!list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
))
3252 dev_queue_xmit_nit(skb
, dev
);
3255 trace_net_dev_start_xmit(skb
, dev
);
3256 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3257 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3262 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3263 struct netdev_queue
*txq
, int *ret
)
3265 struct sk_buff
*skb
= first
;
3266 int rc
= NETDEV_TX_OK
;
3269 struct sk_buff
*next
= skb
->next
;
3272 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3273 if (unlikely(!dev_xmit_complete(rc
))) {
3279 if (netif_tx_queue_stopped(txq
) && skb
) {
3280 rc
= NETDEV_TX_BUSY
;
3290 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3291 netdev_features_t features
)
3293 if (skb_vlan_tag_present(skb
) &&
3294 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3295 skb
= __vlan_hwaccel_push_inside(skb
);
3299 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3300 const netdev_features_t features
)
3302 if (unlikely(skb
->csum_not_inet
))
3303 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3304 skb_crc32c_csum_help(skb
);
3306 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3308 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3310 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3312 netdev_features_t features
;
3314 features
= netif_skb_features(skb
);
3315 skb
= validate_xmit_vlan(skb
, features
);
3319 skb
= sk_validate_xmit_skb(skb
, dev
);
3323 if (netif_needs_gso(skb
, features
)) {
3324 struct sk_buff
*segs
;
3326 segs
= skb_gso_segment(skb
, features
);
3334 if (skb_needs_linearize(skb
, features
) &&
3335 __skb_linearize(skb
))
3338 /* If packet is not checksummed and device does not
3339 * support checksumming for this protocol, complete
3340 * checksumming here.
3342 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3343 if (skb
->encapsulation
)
3344 skb_set_inner_transport_header(skb
,
3345 skb_checksum_start_offset(skb
));
3347 skb_set_transport_header(skb
,
3348 skb_checksum_start_offset(skb
));
3349 if (skb_csum_hwoffload_help(skb
, features
))
3354 skb
= validate_xmit_xfrm(skb
, features
, again
);
3361 atomic_long_inc(&dev
->tx_dropped
);
3365 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3367 struct sk_buff
*next
, *head
= NULL
, *tail
;
3369 for (; skb
!= NULL
; skb
= next
) {
3373 /* in case skb wont be segmented, point to itself */
3376 skb
= validate_xmit_skb(skb
, dev
, again
);
3384 /* If skb was segmented, skb->prev points to
3385 * the last segment. If not, it still contains skb.
3391 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3393 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3395 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3397 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3399 /* To get more precise estimation of bytes sent on wire,
3400 * we add to pkt_len the headers size of all segments
3402 if (shinfo
->gso_size
) {
3403 unsigned int hdr_len
;
3404 u16 gso_segs
= shinfo
->gso_segs
;
3406 /* mac layer + network layer */
3407 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3409 /* + transport layer */
3410 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3411 const struct tcphdr
*th
;
3412 struct tcphdr _tcphdr
;
3414 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3415 sizeof(_tcphdr
), &_tcphdr
);
3417 hdr_len
+= __tcp_hdrlen(th
);
3419 struct udphdr _udphdr
;
3421 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3422 sizeof(_udphdr
), &_udphdr
))
3423 hdr_len
+= sizeof(struct udphdr
);
3426 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3427 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3430 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3434 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3435 struct net_device
*dev
,
3436 struct netdev_queue
*txq
)
3438 spinlock_t
*root_lock
= qdisc_lock(q
);
3439 struct sk_buff
*to_free
= NULL
;
3443 qdisc_calculate_pkt_len(skb
, q
);
3445 if (q
->flags
& TCQ_F_NOLOCK
) {
3446 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3447 __qdisc_drop(skb
, &to_free
);
3450 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3454 if (unlikely(to_free
))
3455 kfree_skb_list(to_free
);
3460 * Heuristic to force contended enqueues to serialize on a
3461 * separate lock before trying to get qdisc main lock.
3462 * This permits qdisc->running owner to get the lock more
3463 * often and dequeue packets faster.
3465 contended
= qdisc_is_running(q
);
3466 if (unlikely(contended
))
3467 spin_lock(&q
->busylock
);
3469 spin_lock(root_lock
);
3470 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3471 __qdisc_drop(skb
, &to_free
);
3473 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3474 qdisc_run_begin(q
)) {
3476 * This is a work-conserving queue; there are no old skbs
3477 * waiting to be sent out; and the qdisc is not running -
3478 * xmit the skb directly.
3481 qdisc_bstats_update(q
, skb
);
3483 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3484 if (unlikely(contended
)) {
3485 spin_unlock(&q
->busylock
);
3492 rc
= NET_XMIT_SUCCESS
;
3494 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3495 if (qdisc_run_begin(q
)) {
3496 if (unlikely(contended
)) {
3497 spin_unlock(&q
->busylock
);
3504 spin_unlock(root_lock
);
3505 if (unlikely(to_free
))
3506 kfree_skb_list(to_free
);
3507 if (unlikely(contended
))
3508 spin_unlock(&q
->busylock
);
3512 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3513 static void skb_update_prio(struct sk_buff
*skb
)
3515 const struct netprio_map
*map
;
3516 const struct sock
*sk
;
3517 unsigned int prioidx
;
3521 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3524 sk
= skb_to_full_sk(skb
);
3528 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3530 if (prioidx
< map
->priomap_len
)
3531 skb
->priority
= map
->priomap
[prioidx
];
3534 #define skb_update_prio(skb)
3538 * dev_loopback_xmit - loop back @skb
3539 * @net: network namespace this loopback is happening in
3540 * @sk: sk needed to be a netfilter okfn
3541 * @skb: buffer to transmit
3543 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3545 skb_reset_mac_header(skb
);
3546 __skb_pull(skb
, skb_network_offset(skb
));
3547 skb
->pkt_type
= PACKET_LOOPBACK
;
3548 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3549 WARN_ON(!skb_dst(skb
));
3554 EXPORT_SYMBOL(dev_loopback_xmit
);
3556 #ifdef CONFIG_NET_EGRESS
3557 static struct sk_buff
*
3558 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3560 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3561 struct tcf_result cl_res
;
3566 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3567 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3569 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3571 case TC_ACT_RECLASSIFY
:
3572 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3575 mini_qdisc_qstats_cpu_drop(miniq
);
3576 *ret
= NET_XMIT_DROP
;
3582 *ret
= NET_XMIT_SUCCESS
;
3585 case TC_ACT_REDIRECT
:
3586 /* No need to push/pop skb's mac_header here on egress! */
3587 skb_do_redirect(skb
);
3588 *ret
= NET_XMIT_SUCCESS
;
3596 #endif /* CONFIG_NET_EGRESS */
3599 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3600 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3602 struct xps_map
*map
;
3603 int queue_index
= -1;
3607 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3610 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3613 queue_index
= map
->queues
[0];
3615 queue_index
= map
->queues
[reciprocal_scale(
3616 skb_get_hash(skb
), map
->len
)];
3617 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3624 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3625 struct sk_buff
*skb
)
3628 struct xps_dev_maps
*dev_maps
;
3629 struct sock
*sk
= skb
->sk
;
3630 int queue_index
= -1;
3632 if (!static_key_false(&xps_needed
))
3636 if (!static_key_false(&xps_rxqs_needed
))
3639 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3641 int tci
= sk_rx_queue_get(sk
);
3643 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3644 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3649 if (queue_index
< 0) {
3650 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3652 unsigned int tci
= skb
->sender_cpu
- 1;
3654 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3666 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3667 struct net_device
*sb_dev
,
3668 select_queue_fallback_t fallback
)
3672 EXPORT_SYMBOL(dev_pick_tx_zero
);
3674 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3675 struct net_device
*sb_dev
,
3676 select_queue_fallback_t fallback
)
3678 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3680 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3682 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3683 struct net_device
*sb_dev
)
3685 struct sock
*sk
= skb
->sk
;
3686 int queue_index
= sk_tx_queue_get(sk
);
3688 sb_dev
= sb_dev
? : dev
;
3690 if (queue_index
< 0 || skb
->ooo_okay
||
3691 queue_index
>= dev
->real_num_tx_queues
) {
3692 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3695 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3697 if (queue_index
!= new_index
&& sk
&&
3699 rcu_access_pointer(sk
->sk_dst_cache
))
3700 sk_tx_queue_set(sk
, new_index
);
3702 queue_index
= new_index
;
3708 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3709 struct sk_buff
*skb
,
3710 struct net_device
*sb_dev
)
3712 int queue_index
= 0;
3715 u32 sender_cpu
= skb
->sender_cpu
- 1;
3717 if (sender_cpu
>= (u32
)NR_CPUS
)
3718 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3721 if (dev
->real_num_tx_queues
!= 1) {
3722 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3724 if (ops
->ndo_select_queue
)
3725 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
,
3728 queue_index
= __netdev_pick_tx(dev
, skb
, sb_dev
);
3730 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3733 skb_set_queue_mapping(skb
, queue_index
);
3734 return netdev_get_tx_queue(dev
, queue_index
);
3738 * __dev_queue_xmit - transmit a buffer
3739 * @skb: buffer to transmit
3740 * @sb_dev: suboordinate device used for L2 forwarding offload
3742 * Queue a buffer for transmission to a network device. The caller must
3743 * have set the device and priority and built the buffer before calling
3744 * this function. The function can be called from an interrupt.
3746 * A negative errno code is returned on a failure. A success does not
3747 * guarantee the frame will be transmitted as it may be dropped due
3748 * to congestion or traffic shaping.
3750 * -----------------------------------------------------------------------------------
3751 * I notice this method can also return errors from the queue disciplines,
3752 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3755 * Regardless of the return value, the skb is consumed, so it is currently
3756 * difficult to retry a send to this method. (You can bump the ref count
3757 * before sending to hold a reference for retry if you are careful.)
3759 * When calling this method, interrupts MUST be enabled. This is because
3760 * the BH enable code must have IRQs enabled so that it will not deadlock.
3763 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3765 struct net_device
*dev
= skb
->dev
;
3766 struct netdev_queue
*txq
;
3771 skb_reset_mac_header(skb
);
3773 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3774 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3776 /* Disable soft irqs for various locks below. Also
3777 * stops preemption for RCU.
3781 skb_update_prio(skb
);
3783 qdisc_pkt_len_init(skb
);
3784 #ifdef CONFIG_NET_CLS_ACT
3785 skb
->tc_at_ingress
= 0;
3786 # ifdef CONFIG_NET_EGRESS
3787 if (static_branch_unlikely(&egress_needed_key
)) {
3788 skb
= sch_handle_egress(skb
, &rc
, dev
);
3794 /* If device/qdisc don't need skb->dst, release it right now while
3795 * its hot in this cpu cache.
3797 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3802 txq
= netdev_pick_tx(dev
, skb
, sb_dev
);
3803 q
= rcu_dereference_bh(txq
->qdisc
);
3805 trace_net_dev_queue(skb
);
3807 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3811 /* The device has no queue. Common case for software devices:
3812 * loopback, all the sorts of tunnels...
3814 * Really, it is unlikely that netif_tx_lock protection is necessary
3815 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3817 * However, it is possible, that they rely on protection
3820 * Check this and shot the lock. It is not prone from deadlocks.
3821 *Either shot noqueue qdisc, it is even simpler 8)
3823 if (dev
->flags
& IFF_UP
) {
3824 int cpu
= smp_processor_id(); /* ok because BHs are off */
3826 if (txq
->xmit_lock_owner
!= cpu
) {
3827 if (dev_xmit_recursion())
3828 goto recursion_alert
;
3830 skb
= validate_xmit_skb(skb
, dev
, &again
);
3834 HARD_TX_LOCK(dev
, txq
, cpu
);
3836 if (!netif_xmit_stopped(txq
)) {
3837 dev_xmit_recursion_inc();
3838 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3839 dev_xmit_recursion_dec();
3840 if (dev_xmit_complete(rc
)) {
3841 HARD_TX_UNLOCK(dev
, txq
);
3845 HARD_TX_UNLOCK(dev
, txq
);
3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3849 /* Recursion is detected! It is possible,
3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3859 rcu_read_unlock_bh();
3861 atomic_long_inc(&dev
->tx_dropped
);
3862 kfree_skb_list(skb
);
3865 rcu_read_unlock_bh();
3869 int dev_queue_xmit(struct sk_buff
*skb
)
3871 return __dev_queue_xmit(skb
, NULL
);
3873 EXPORT_SYMBOL(dev_queue_xmit
);
3875 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3877 return __dev_queue_xmit(skb
, sb_dev
);
3879 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3881 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
3883 struct net_device
*dev
= skb
->dev
;
3884 struct sk_buff
*orig_skb
= skb
;
3885 struct netdev_queue
*txq
;
3886 int ret
= NETDEV_TX_BUSY
;
3889 if (unlikely(!netif_running(dev
) ||
3890 !netif_carrier_ok(dev
)))
3893 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
3894 if (skb
!= orig_skb
)
3897 skb_set_queue_mapping(skb
, queue_id
);
3898 txq
= skb_get_tx_queue(dev
, skb
);
3902 dev_xmit_recursion_inc();
3903 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
3904 if (!netif_xmit_frozen_or_drv_stopped(txq
))
3905 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
3906 HARD_TX_UNLOCK(dev
, txq
);
3907 dev_xmit_recursion_dec();
3911 if (!dev_xmit_complete(ret
))
3916 atomic_long_inc(&dev
->tx_dropped
);
3917 kfree_skb_list(skb
);
3918 return NET_XMIT_DROP
;
3920 EXPORT_SYMBOL(dev_direct_xmit
);
3922 /*************************************************************************
3924 *************************************************************************/
3926 int netdev_max_backlog __read_mostly
= 1000;
3927 EXPORT_SYMBOL(netdev_max_backlog
);
3929 int netdev_tstamp_prequeue __read_mostly
= 1;
3930 int netdev_budget __read_mostly
= 300;
3931 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3932 unsigned int __read_mostly netdev_budget_usecs
= 2 * USEC_PER_SEC
/ HZ
;
3933 int weight_p __read_mostly
= 64; /* old backlog weight */
3934 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3935 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3936 int dev_rx_weight __read_mostly
= 64;
3937 int dev_tx_weight __read_mostly
= 64;
3939 /* Called with irq disabled */
3940 static inline void ____napi_schedule(struct softnet_data
*sd
,
3941 struct napi_struct
*napi
)
3943 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3944 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3949 /* One global table that all flow-based protocols share. */
3950 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3951 EXPORT_SYMBOL(rps_sock_flow_table
);
3952 u32 rps_cpu_mask __read_mostly
;
3953 EXPORT_SYMBOL(rps_cpu_mask
);
3955 struct static_key rps_needed __read_mostly
;
3956 EXPORT_SYMBOL(rps_needed
);
3957 struct static_key rfs_needed __read_mostly
;
3958 EXPORT_SYMBOL(rfs_needed
);
3960 static struct rps_dev_flow
*
3961 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3962 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3964 if (next_cpu
< nr_cpu_ids
) {
3965 #ifdef CONFIG_RFS_ACCEL
3966 struct netdev_rx_queue
*rxqueue
;
3967 struct rps_dev_flow_table
*flow_table
;
3968 struct rps_dev_flow
*old_rflow
;
3973 /* Should we steer this flow to a different hardware queue? */
3974 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3975 !(dev
->features
& NETIF_F_NTUPLE
))
3977 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3978 if (rxq_index
== skb_get_rx_queue(skb
))
3981 rxqueue
= dev
->_rx
+ rxq_index
;
3982 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3985 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3986 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3987 rxq_index
, flow_id
);
3991 rflow
= &flow_table
->flows
[flow_id
];
3993 if (old_rflow
->filter
== rflow
->filter
)
3994 old_rflow
->filter
= RPS_NO_FILTER
;
3998 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
4001 rflow
->cpu
= next_cpu
;
4006 * get_rps_cpu is called from netif_receive_skb and returns the target
4007 * CPU from the RPS map of the receiving queue for a given skb.
4008 * rcu_read_lock must be held on entry.
4010 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4011 struct rps_dev_flow
**rflowp
)
4013 const struct rps_sock_flow_table
*sock_flow_table
;
4014 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4015 struct rps_dev_flow_table
*flow_table
;
4016 struct rps_map
*map
;
4021 if (skb_rx_queue_recorded(skb
)) {
4022 u16 index
= skb_get_rx_queue(skb
);
4024 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4025 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4026 "%s received packet on queue %u, but number "
4027 "of RX queues is %u\n",
4028 dev
->name
, index
, dev
->real_num_rx_queues
);
4034 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4036 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4037 map
= rcu_dereference(rxqueue
->rps_map
);
4038 if (!flow_table
&& !map
)
4041 skb_reset_network_header(skb
);
4042 hash
= skb_get_hash(skb
);
4046 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4047 if (flow_table
&& sock_flow_table
) {
4048 struct rps_dev_flow
*rflow
;
4052 /* First check into global flow table if there is a match */
4053 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4054 if ((ident
^ hash
) & ~rps_cpu_mask
)
4057 next_cpu
= ident
& rps_cpu_mask
;
4059 /* OK, now we know there is a match,
4060 * we can look at the local (per receive queue) flow table
4062 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4066 * If the desired CPU (where last recvmsg was done) is
4067 * different from current CPU (one in the rx-queue flow
4068 * table entry), switch if one of the following holds:
4069 * - Current CPU is unset (>= nr_cpu_ids).
4070 * - Current CPU is offline.
4071 * - The current CPU's queue tail has advanced beyond the
4072 * last packet that was enqueued using this table entry.
4073 * This guarantees that all previous packets for the flow
4074 * have been dequeued, thus preserving in order delivery.
4076 if (unlikely(tcpu
!= next_cpu
) &&
4077 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4078 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4079 rflow
->last_qtail
)) >= 0)) {
4081 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4084 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4094 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4095 if (cpu_online(tcpu
)) {
4105 #ifdef CONFIG_RFS_ACCEL
4108 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4109 * @dev: Device on which the filter was set
4110 * @rxq_index: RX queue index
4111 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4112 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4114 * Drivers that implement ndo_rx_flow_steer() should periodically call
4115 * this function for each installed filter and remove the filters for
4116 * which it returns %true.
4118 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4119 u32 flow_id
, u16 filter_id
)
4121 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4122 struct rps_dev_flow_table
*flow_table
;
4123 struct rps_dev_flow
*rflow
;
4128 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4129 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4130 rflow
= &flow_table
->flows
[flow_id
];
4131 cpu
= READ_ONCE(rflow
->cpu
);
4132 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4133 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4134 rflow
->last_qtail
) <
4135 (int)(10 * flow_table
->mask
)))
4141 EXPORT_SYMBOL(rps_may_expire_flow
);
4143 #endif /* CONFIG_RFS_ACCEL */
4145 /* Called from hardirq (IPI) context */
4146 static void rps_trigger_softirq(void *data
)
4148 struct softnet_data
*sd
= data
;
4150 ____napi_schedule(sd
, &sd
->backlog
);
4154 #endif /* CONFIG_RPS */
4157 * Check if this softnet_data structure is another cpu one
4158 * If yes, queue it to our IPI list and return 1
4161 static int rps_ipi_queued(struct softnet_data
*sd
)
4164 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4167 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4168 mysd
->rps_ipi_list
= sd
;
4170 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4173 #endif /* CONFIG_RPS */
4177 #ifdef CONFIG_NET_FLOW_LIMIT
4178 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4181 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4183 #ifdef CONFIG_NET_FLOW_LIMIT
4184 struct sd_flow_limit
*fl
;
4185 struct softnet_data
*sd
;
4186 unsigned int old_flow
, new_flow
;
4188 if (qlen
< (netdev_max_backlog
>> 1))
4191 sd
= this_cpu_ptr(&softnet_data
);
4194 fl
= rcu_dereference(sd
->flow_limit
);
4196 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4197 old_flow
= fl
->history
[fl
->history_head
];
4198 fl
->history
[fl
->history_head
] = new_flow
;
4201 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4203 if (likely(fl
->buckets
[old_flow
]))
4204 fl
->buckets
[old_flow
]--;
4206 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4218 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4219 * queue (may be a remote CPU queue).
4221 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4222 unsigned int *qtail
)
4224 struct softnet_data
*sd
;
4225 unsigned long flags
;
4228 sd
= &per_cpu(softnet_data
, cpu
);
4230 local_irq_save(flags
);
4233 if (!netif_running(skb
->dev
))
4235 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4236 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4239 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4240 input_queue_tail_incr_save(sd
, qtail
);
4242 local_irq_restore(flags
);
4243 return NET_RX_SUCCESS
;
4246 /* Schedule NAPI for backlog device
4247 * We can use non atomic operation since we own the queue lock
4249 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4250 if (!rps_ipi_queued(sd
))
4251 ____napi_schedule(sd
, &sd
->backlog
);
4260 local_irq_restore(flags
);
4262 atomic_long_inc(&skb
->dev
->rx_dropped
);
4267 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4269 struct net_device
*dev
= skb
->dev
;
4270 struct netdev_rx_queue
*rxqueue
;
4274 if (skb_rx_queue_recorded(skb
)) {
4275 u16 index
= skb_get_rx_queue(skb
);
4277 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4278 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4279 "%s received packet on queue %u, but number "
4280 "of RX queues is %u\n",
4281 dev
->name
, index
, dev
->real_num_rx_queues
);
4283 return rxqueue
; /* Return first rxqueue */
4290 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4291 struct xdp_buff
*xdp
,
4292 struct bpf_prog
*xdp_prog
)
4294 struct netdev_rx_queue
*rxqueue
;
4295 void *orig_data
, *orig_data_end
;
4296 u32 metalen
, act
= XDP_DROP
;
4297 __be16 orig_eth_type
;
4303 /* Reinjected packets coming from act_mirred or similar should
4304 * not get XDP generic processing.
4306 if (skb_is_tc_redirected(skb
))
4309 /* XDP packets must be linear and must have sufficient headroom
4310 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4311 * native XDP provides, thus we need to do it here as well.
4313 if (skb_cloned(skb
) || skb_is_nonlinear(skb
) ||
4314 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4315 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4316 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4318 /* In case we have to go down the path and also linearize,
4319 * then lets do the pskb_expand_head() work just once here.
4321 if (pskb_expand_head(skb
,
4322 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4323 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4325 if (skb_linearize(skb
))
4329 /* The XDP program wants to see the packet starting at the MAC
4332 mac_len
= skb
->data
- skb_mac_header(skb
);
4333 hlen
= skb_headlen(skb
) + mac_len
;
4334 xdp
->data
= skb
->data
- mac_len
;
4335 xdp
->data_meta
= xdp
->data
;
4336 xdp
->data_end
= xdp
->data
+ hlen
;
4337 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4338 orig_data_end
= xdp
->data_end
;
4339 orig_data
= xdp
->data
;
4340 eth
= (struct ethhdr
*)xdp
->data
;
4341 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4342 orig_eth_type
= eth
->h_proto
;
4344 rxqueue
= netif_get_rxqueue(skb
);
4345 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4347 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4349 /* check if bpf_xdp_adjust_head was used */
4350 off
= xdp
->data
- orig_data
;
4353 __skb_pull(skb
, off
);
4355 __skb_push(skb
, -off
);
4357 skb
->mac_header
+= off
;
4358 skb_reset_network_header(skb
);
4361 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4364 off
= orig_data_end
- xdp
->data_end
;
4366 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4371 /* check if XDP changed eth hdr such SKB needs update */
4372 eth
= (struct ethhdr
*)xdp
->data
;
4373 if ((orig_eth_type
!= eth
->h_proto
) ||
4374 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
4375 __skb_push(skb
, ETH_HLEN
);
4376 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4382 __skb_push(skb
, mac_len
);
4385 metalen
= xdp
->data
- xdp
->data_meta
;
4387 skb_metadata_set(skb
, metalen
);
4390 bpf_warn_invalid_xdp_action(act
);
4393 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405 * network taps in order to match in-driver-XDP behavior.
4407 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4409 struct net_device
*dev
= skb
->dev
;
4410 struct netdev_queue
*txq
;
4411 bool free_skb
= true;
4414 txq
= netdev_pick_tx(dev
, skb
, NULL
);
4415 cpu
= smp_processor_id();
4416 HARD_TX_LOCK(dev
, txq
, cpu
);
4417 if (!netif_xmit_stopped(txq
)) {
4418 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4419 if (dev_xmit_complete(rc
))
4422 HARD_TX_UNLOCK(dev
, txq
);
4424 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4432 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4435 struct xdp_buff xdp
;
4439 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4440 if (act
!= XDP_PASS
) {
4443 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4449 generic_xdp_tx(skb
, xdp_prog
);
4460 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4462 static int netif_rx_internal(struct sk_buff
*skb
)
4466 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4468 trace_netif_rx(skb
);
4471 if (static_key_false(&rps_needed
)) {
4472 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4478 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4480 cpu
= smp_processor_id();
4482 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4491 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4498 * netif_rx - post buffer to the network code
4499 * @skb: buffer to post
4501 * This function receives a packet from a device driver and queues it for
4502 * the upper (protocol) levels to process. It always succeeds. The buffer
4503 * may be dropped during processing for congestion control or by the
4507 * NET_RX_SUCCESS (no congestion)
4508 * NET_RX_DROP (packet was dropped)
4512 int netif_rx(struct sk_buff
*skb
)
4514 trace_netif_rx_entry(skb
);
4516 return netif_rx_internal(skb
);
4518 EXPORT_SYMBOL(netif_rx
);
4520 int netif_rx_ni(struct sk_buff
*skb
)
4524 trace_netif_rx_ni_entry(skb
);
4527 err
= netif_rx_internal(skb
);
4528 if (local_softirq_pending())
4534 EXPORT_SYMBOL(netif_rx_ni
);
4536 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4538 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4540 if (sd
->completion_queue
) {
4541 struct sk_buff
*clist
;
4543 local_irq_disable();
4544 clist
= sd
->completion_queue
;
4545 sd
->completion_queue
= NULL
;
4549 struct sk_buff
*skb
= clist
;
4551 clist
= clist
->next
;
4553 WARN_ON(refcount_read(&skb
->users
));
4554 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4555 trace_consume_skb(skb
);
4557 trace_kfree_skb(skb
, net_tx_action
);
4559 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4562 __kfree_skb_defer(skb
);
4565 __kfree_skb_flush();
4568 if (sd
->output_queue
) {
4571 local_irq_disable();
4572 head
= sd
->output_queue
;
4573 sd
->output_queue
= NULL
;
4574 sd
->output_queue_tailp
= &sd
->output_queue
;
4578 struct Qdisc
*q
= head
;
4579 spinlock_t
*root_lock
= NULL
;
4581 head
= head
->next_sched
;
4583 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4584 root_lock
= qdisc_lock(q
);
4585 spin_lock(root_lock
);
4587 /* We need to make sure head->next_sched is read
4588 * before clearing __QDISC_STATE_SCHED
4590 smp_mb__before_atomic();
4591 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4594 spin_unlock(root_lock
);
4598 xfrm_dev_backlog(sd
);
4601 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4602 /* This hook is defined here for ATM LANE */
4603 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4604 unsigned char *addr
) __read_mostly
;
4605 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4608 static inline struct sk_buff
*
4609 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4610 struct net_device
*orig_dev
)
4612 #ifdef CONFIG_NET_CLS_ACT
4613 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4614 struct tcf_result cl_res
;
4616 /* If there's at least one ingress present somewhere (so
4617 * we get here via enabled static key), remaining devices
4618 * that are not configured with an ingress qdisc will bail
4625 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4629 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4630 skb
->tc_at_ingress
= 1;
4631 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4633 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4635 case TC_ACT_RECLASSIFY
:
4636 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4639 mini_qdisc_qstats_cpu_drop(miniq
);
4647 case TC_ACT_REDIRECT
:
4648 /* skb_mac_header check was done by cls/act_bpf, so
4649 * we can safely push the L2 header back before
4650 * redirecting to another netdev
4652 __skb_push(skb
, skb
->mac_len
);
4653 skb_do_redirect(skb
);
4655 case TC_ACT_REINSERT
:
4656 /* this does not scrub the packet, and updates stats on error */
4657 skb_tc_reinsert(skb
, &cl_res
);
4662 #endif /* CONFIG_NET_CLS_ACT */
4667 * netdev_is_rx_handler_busy - check if receive handler is registered
4668 * @dev: device to check
4670 * Check if a receive handler is already registered for a given device.
4671 * Return true if there one.
4673 * The caller must hold the rtnl_mutex.
4675 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4678 return dev
&& rtnl_dereference(dev
->rx_handler
);
4680 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4683 * netdev_rx_handler_register - register receive handler
4684 * @dev: device to register a handler for
4685 * @rx_handler: receive handler to register
4686 * @rx_handler_data: data pointer that is used by rx handler
4688 * Register a receive handler for a device. This handler will then be
4689 * called from __netif_receive_skb. A negative errno code is returned
4692 * The caller must hold the rtnl_mutex.
4694 * For a general description of rx_handler, see enum rx_handler_result.
4696 int netdev_rx_handler_register(struct net_device
*dev
,
4697 rx_handler_func_t
*rx_handler
,
4698 void *rx_handler_data
)
4700 if (netdev_is_rx_handler_busy(dev
))
4703 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4706 /* Note: rx_handler_data must be set before rx_handler */
4707 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4708 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4712 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4715 * netdev_rx_handler_unregister - unregister receive handler
4716 * @dev: device to unregister a handler from
4718 * Unregister a receive handler from a device.
4720 * The caller must hold the rtnl_mutex.
4722 void netdev_rx_handler_unregister(struct net_device
*dev
)
4726 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4727 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4728 * section has a guarantee to see a non NULL rx_handler_data
4732 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4737 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4738 * the special handling of PFMEMALLOC skbs.
4740 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4742 switch (skb
->protocol
) {
4743 case htons(ETH_P_ARP
):
4744 case htons(ETH_P_IP
):
4745 case htons(ETH_P_IPV6
):
4746 case htons(ETH_P_8021Q
):
4747 case htons(ETH_P_8021AD
):
4754 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4755 int *ret
, struct net_device
*orig_dev
)
4757 #ifdef CONFIG_NETFILTER_INGRESS
4758 if (nf_hook_ingress_active(skb
)) {
4762 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4767 ingress_retval
= nf_hook_ingress(skb
);
4769 return ingress_retval
;
4771 #endif /* CONFIG_NETFILTER_INGRESS */
4775 static int __netif_receive_skb_core(struct sk_buff
**pskb
, bool pfmemalloc
,
4776 struct packet_type
**ppt_prev
)
4778 struct packet_type
*ptype
, *pt_prev
;
4779 rx_handler_func_t
*rx_handler
;
4780 struct sk_buff
*skb
= *pskb
;
4781 struct net_device
*orig_dev
;
4782 bool deliver_exact
= false;
4783 int ret
= NET_RX_DROP
;
4786 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4788 trace_netif_receive_skb(skb
);
4790 orig_dev
= skb
->dev
;
4792 skb_reset_network_header(skb
);
4793 if (!skb_transport_header_was_set(skb
))
4794 skb_reset_transport_header(skb
);
4795 skb_reset_mac_len(skb
);
4800 skb
->skb_iif
= skb
->dev
->ifindex
;
4802 __this_cpu_inc(softnet_data
.processed
);
4804 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
4808 ret2
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4811 if (ret2
!= XDP_PASS
) {
4815 skb_reset_mac_len(skb
);
4818 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4819 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4820 skb
= skb_vlan_untag(skb
);
4825 if (skb_skip_tc_classify(skb
))
4831 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4833 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4837 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4839 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4844 #ifdef CONFIG_NET_INGRESS
4845 if (static_branch_unlikely(&ingress_needed_key
)) {
4846 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4850 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4856 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4859 if (skb_vlan_tag_present(skb
)) {
4861 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4864 if (vlan_do_receive(&skb
))
4866 else if (unlikely(!skb
))
4870 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4873 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4876 switch (rx_handler(&skb
)) {
4877 case RX_HANDLER_CONSUMED
:
4878 ret
= NET_RX_SUCCESS
;
4880 case RX_HANDLER_ANOTHER
:
4882 case RX_HANDLER_EXACT
:
4883 deliver_exact
= true;
4884 case RX_HANDLER_PASS
:
4891 if (unlikely(skb_vlan_tag_present(skb
))) {
4892 if (skb_vlan_tag_get_id(skb
))
4893 skb
->pkt_type
= PACKET_OTHERHOST
;
4894 /* Note: we might in the future use prio bits
4895 * and set skb->priority like in vlan_do_receive()
4896 * For the time being, just ignore Priority Code Point
4901 type
= skb
->protocol
;
4903 /* deliver only exact match when indicated */
4904 if (likely(!deliver_exact
)) {
4905 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4906 &ptype_base
[ntohs(type
) &
4910 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4911 &orig_dev
->ptype_specific
);
4913 if (unlikely(skb
->dev
!= orig_dev
)) {
4914 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4915 &skb
->dev
->ptype_specific
);
4919 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4921 *ppt_prev
= pt_prev
;
4925 atomic_long_inc(&skb
->dev
->rx_dropped
);
4927 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4929 /* Jamal, now you will not able to escape explaining
4930 * me how you were going to use this. :-)
4936 /* The invariant here is that if *ppt_prev is not NULL
4937 * then skb should also be non-NULL.
4939 * Apparently *ppt_prev assignment above holds this invariant due to
4940 * skb dereferencing near it.
4946 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
4948 struct net_device
*orig_dev
= skb
->dev
;
4949 struct packet_type
*pt_prev
= NULL
;
4952 ret
= __netif_receive_skb_core(&skb
, pfmemalloc
, &pt_prev
);
4954 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4959 * netif_receive_skb_core - special purpose version of netif_receive_skb
4960 * @skb: buffer to process
4962 * More direct receive version of netif_receive_skb(). It should
4963 * only be used by callers that have a need to skip RPS and Generic XDP.
4964 * Caller must also take care of handling if (page_is_)pfmemalloc.
4966 * This function may only be called from softirq context and interrupts
4967 * should be enabled.
4969 * Return values (usually ignored):
4970 * NET_RX_SUCCESS: no congestion
4971 * NET_RX_DROP: packet was dropped
4973 int netif_receive_skb_core(struct sk_buff
*skb
)
4978 ret
= __netif_receive_skb_one_core(skb
, false);
4983 EXPORT_SYMBOL(netif_receive_skb_core
);
4985 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
4986 struct packet_type
*pt_prev
,
4987 struct net_device
*orig_dev
)
4989 struct sk_buff
*skb
, *next
;
4993 if (list_empty(head
))
4995 if (pt_prev
->list_func
!= NULL
)
4996 pt_prev
->list_func(head
, pt_prev
, orig_dev
);
4998 list_for_each_entry_safe(skb
, next
, head
, list
) {
4999 skb_list_del_init(skb
);
5000 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
5004 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
5006 /* Fast-path assumptions:
5007 * - There is no RX handler.
5008 * - Only one packet_type matches.
5009 * If either of these fails, we will end up doing some per-packet
5010 * processing in-line, then handling the 'last ptype' for the whole
5011 * sublist. This can't cause out-of-order delivery to any single ptype,
5012 * because the 'last ptype' must be constant across the sublist, and all
5013 * other ptypes are handled per-packet.
5015 /* Current (common) ptype of sublist */
5016 struct packet_type
*pt_curr
= NULL
;
5017 /* Current (common) orig_dev of sublist */
5018 struct net_device
*od_curr
= NULL
;
5019 struct list_head sublist
;
5020 struct sk_buff
*skb
, *next
;
5022 INIT_LIST_HEAD(&sublist
);
5023 list_for_each_entry_safe(skb
, next
, head
, list
) {
5024 struct net_device
*orig_dev
= skb
->dev
;
5025 struct packet_type
*pt_prev
= NULL
;
5027 skb_list_del_init(skb
);
5028 __netif_receive_skb_core(&skb
, pfmemalloc
, &pt_prev
);
5031 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5032 /* dispatch old sublist */
5033 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5034 /* start new sublist */
5035 INIT_LIST_HEAD(&sublist
);
5039 list_add_tail(&skb
->list
, &sublist
);
5042 /* dispatch final sublist */
5043 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5046 static int __netif_receive_skb(struct sk_buff
*skb
)
5050 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5051 unsigned int noreclaim_flag
;
5054 * PFMEMALLOC skbs are special, they should
5055 * - be delivered to SOCK_MEMALLOC sockets only
5056 * - stay away from userspace
5057 * - have bounded memory usage
5059 * Use PF_MEMALLOC as this saves us from propagating the allocation
5060 * context down to all allocation sites.
5062 noreclaim_flag
= memalloc_noreclaim_save();
5063 ret
= __netif_receive_skb_one_core(skb
, true);
5064 memalloc_noreclaim_restore(noreclaim_flag
);
5066 ret
= __netif_receive_skb_one_core(skb
, false);
5071 static void __netif_receive_skb_list(struct list_head
*head
)
5073 unsigned long noreclaim_flag
= 0;
5074 struct sk_buff
*skb
, *next
;
5075 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5077 list_for_each_entry_safe(skb
, next
, head
, list
) {
5078 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5079 struct list_head sublist
;
5081 /* Handle the previous sublist */
5082 list_cut_before(&sublist
, head
, &skb
->list
);
5083 if (!list_empty(&sublist
))
5084 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5085 pfmemalloc
= !pfmemalloc
;
5086 /* See comments in __netif_receive_skb */
5088 noreclaim_flag
= memalloc_noreclaim_save();
5090 memalloc_noreclaim_restore(noreclaim_flag
);
5093 /* Handle the remaining sublist */
5094 if (!list_empty(head
))
5095 __netif_receive_skb_list_core(head
, pfmemalloc
);
5096 /* Restore pflags */
5098 memalloc_noreclaim_restore(noreclaim_flag
);
5101 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5103 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5104 struct bpf_prog
*new = xdp
->prog
;
5107 switch (xdp
->command
) {
5108 case XDP_SETUP_PROG
:
5109 rcu_assign_pointer(dev
->xdp_prog
, new);
5114 static_branch_dec(&generic_xdp_needed_key
);
5115 } else if (new && !old
) {
5116 static_branch_inc(&generic_xdp_needed_key
);
5117 dev_disable_lro(dev
);
5118 dev_disable_gro_hw(dev
);
5122 case XDP_QUERY_PROG
:
5123 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5134 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5138 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5140 if (skb_defer_rx_timestamp(skb
))
5141 return NET_RX_SUCCESS
;
5145 if (static_key_false(&rps_needed
)) {
5146 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5147 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5150 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5156 ret
= __netif_receive_skb(skb
);
5161 static void netif_receive_skb_list_internal(struct list_head
*head
)
5163 struct sk_buff
*skb
, *next
;
5164 struct list_head sublist
;
5166 INIT_LIST_HEAD(&sublist
);
5167 list_for_each_entry_safe(skb
, next
, head
, list
) {
5168 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5169 skb_list_del_init(skb
);
5170 if (!skb_defer_rx_timestamp(skb
))
5171 list_add_tail(&skb
->list
, &sublist
);
5173 list_splice_init(&sublist
, head
);
5177 if (static_key_false(&rps_needed
)) {
5178 list_for_each_entry_safe(skb
, next
, head
, list
) {
5179 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5180 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5183 /* Will be handled, remove from list */
5184 skb_list_del_init(skb
);
5185 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5190 __netif_receive_skb_list(head
);
5195 * netif_receive_skb - process receive buffer from network
5196 * @skb: buffer to process
5198 * netif_receive_skb() is the main receive data processing function.
5199 * It always succeeds. The buffer may be dropped during processing
5200 * for congestion control or by the protocol layers.
5202 * This function may only be called from softirq context and interrupts
5203 * should be enabled.
5205 * Return values (usually ignored):
5206 * NET_RX_SUCCESS: no congestion
5207 * NET_RX_DROP: packet was dropped
5209 int netif_receive_skb(struct sk_buff
*skb
)
5211 trace_netif_receive_skb_entry(skb
);
5213 return netif_receive_skb_internal(skb
);
5215 EXPORT_SYMBOL(netif_receive_skb
);
5218 * netif_receive_skb_list - process many receive buffers from network
5219 * @head: list of skbs to process.
5221 * Since return value of netif_receive_skb() is normally ignored, and
5222 * wouldn't be meaningful for a list, this function returns void.
5224 * This function may only be called from softirq context and interrupts
5225 * should be enabled.
5227 void netif_receive_skb_list(struct list_head
*head
)
5229 struct sk_buff
*skb
;
5231 if (list_empty(head
))
5233 list_for_each_entry(skb
, head
, list
)
5234 trace_netif_receive_skb_list_entry(skb
);
5235 netif_receive_skb_list_internal(head
);
5237 EXPORT_SYMBOL(netif_receive_skb_list
);
5239 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5241 /* Network device is going away, flush any packets still pending */
5242 static void flush_backlog(struct work_struct
*work
)
5244 struct sk_buff
*skb
, *tmp
;
5245 struct softnet_data
*sd
;
5248 sd
= this_cpu_ptr(&softnet_data
);
5250 local_irq_disable();
5252 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5253 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5254 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5256 input_queue_head_incr(sd
);
5262 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5263 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5264 __skb_unlink(skb
, &sd
->process_queue
);
5266 input_queue_head_incr(sd
);
5272 static void flush_all_backlogs(void)
5278 for_each_online_cpu(cpu
)
5279 queue_work_on(cpu
, system_highpri_wq
,
5280 per_cpu_ptr(&flush_works
, cpu
));
5282 for_each_online_cpu(cpu
)
5283 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5288 static int napi_gro_complete(struct sk_buff
*skb
)
5290 struct packet_offload
*ptype
;
5291 __be16 type
= skb
->protocol
;
5292 struct list_head
*head
= &offload_base
;
5295 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5297 if (NAPI_GRO_CB(skb
)->count
== 1) {
5298 skb_shinfo(skb
)->gso_size
= 0;
5303 list_for_each_entry_rcu(ptype
, head
, list
) {
5304 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5307 err
= ptype
->callbacks
.gro_complete(skb
, 0);
5313 WARN_ON(&ptype
->list
== head
);
5315 return NET_RX_SUCCESS
;
5319 return netif_receive_skb_internal(skb
);
5322 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5325 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5326 struct sk_buff
*skb
, *p
;
5328 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5329 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5331 list_del(&skb
->list
);
5333 napi_gro_complete(skb
);
5334 napi
->gro_hash
[index
].count
--;
5337 if (!napi
->gro_hash
[index
].count
)
5338 __clear_bit(index
, &napi
->gro_bitmask
);
5341 /* napi->gro_hash[].list contains packets ordered by age.
5342 * youngest packets at the head of it.
5343 * Complete skbs in reverse order to reduce latencies.
5345 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5349 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
5350 if (test_bit(i
, &napi
->gro_bitmask
))
5351 __napi_gro_flush_chain(napi
, i
, flush_old
);
5354 EXPORT_SYMBOL(napi_gro_flush
);
5356 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5357 struct sk_buff
*skb
)
5359 unsigned int maclen
= skb
->dev
->hard_header_len
;
5360 u32 hash
= skb_get_hash_raw(skb
);
5361 struct list_head
*head
;
5364 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5365 list_for_each_entry(p
, head
, list
) {
5366 unsigned long diffs
;
5368 NAPI_GRO_CB(p
)->flush
= 0;
5370 if (hash
!= skb_get_hash_raw(p
)) {
5371 NAPI_GRO_CB(p
)->same_flow
= 0;
5375 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5376 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
5377 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5378 diffs
|= skb_metadata_differs(p
, skb
);
5379 if (maclen
== ETH_HLEN
)
5380 diffs
|= compare_ether_header(skb_mac_header(p
),
5381 skb_mac_header(skb
));
5383 diffs
= memcmp(skb_mac_header(p
),
5384 skb_mac_header(skb
),
5386 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5392 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5394 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5395 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5397 NAPI_GRO_CB(skb
)->data_offset
= 0;
5398 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5399 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5401 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
5403 !PageHighMem(skb_frag_page(frag0
))) {
5404 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5405 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5406 skb_frag_size(frag0
),
5407 skb
->end
- skb
->tail
);
5411 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5413 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5415 BUG_ON(skb
->end
- skb
->tail
< grow
);
5417 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5419 skb
->data_len
-= grow
;
5422 pinfo
->frags
[0].page_offset
+= grow
;
5423 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5425 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5426 skb_frag_unref(skb
, 0);
5427 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5428 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5432 static void gro_flush_oldest(struct list_head
*head
)
5434 struct sk_buff
*oldest
;
5436 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5438 /* We are called with head length >= MAX_GRO_SKBS, so this is
5441 if (WARN_ON_ONCE(!oldest
))
5444 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5447 list_del(&oldest
->list
);
5448 oldest
->next
= NULL
;
5449 napi_gro_complete(oldest
);
5452 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5454 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5455 struct list_head
*head
= &offload_base
;
5456 struct packet_offload
*ptype
;
5457 __be16 type
= skb
->protocol
;
5458 struct list_head
*gro_head
;
5459 struct sk_buff
*pp
= NULL
;
5460 enum gro_result ret
;
5464 if (netif_elide_gro(skb
->dev
))
5467 gro_head
= gro_list_prepare(napi
, skb
);
5470 list_for_each_entry_rcu(ptype
, head
, list
) {
5471 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5474 skb_set_network_header(skb
, skb_gro_offset(skb
));
5475 skb_reset_mac_len(skb
);
5476 NAPI_GRO_CB(skb
)->same_flow
= 0;
5477 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5478 NAPI_GRO_CB(skb
)->free
= 0;
5479 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5480 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5481 NAPI_GRO_CB(skb
)->is_fou
= 0;
5482 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5483 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5485 /* Setup for GRO checksum validation */
5486 switch (skb
->ip_summed
) {
5487 case CHECKSUM_COMPLETE
:
5488 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5489 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5490 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5492 case CHECKSUM_UNNECESSARY
:
5493 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5494 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5497 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5498 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5501 pp
= ptype
->callbacks
.gro_receive(gro_head
, skb
);
5506 if (&ptype
->list
== head
)
5509 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
5514 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5515 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5518 list_del(&pp
->list
);
5520 napi_gro_complete(pp
);
5521 napi
->gro_hash
[hash
].count
--;
5527 if (NAPI_GRO_CB(skb
)->flush
)
5530 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5531 gro_flush_oldest(gro_head
);
5533 napi
->gro_hash
[hash
].count
++;
5535 NAPI_GRO_CB(skb
)->count
= 1;
5536 NAPI_GRO_CB(skb
)->age
= jiffies
;
5537 NAPI_GRO_CB(skb
)->last
= skb
;
5538 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5539 list_add(&skb
->list
, gro_head
);
5543 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5545 gro_pull_from_frag0(skb
, grow
);
5547 if (napi
->gro_hash
[hash
].count
) {
5548 if (!test_bit(hash
, &napi
->gro_bitmask
))
5549 __set_bit(hash
, &napi
->gro_bitmask
);
5550 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5551 __clear_bit(hash
, &napi
->gro_bitmask
);
5561 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5563 struct list_head
*offload_head
= &offload_base
;
5564 struct packet_offload
*ptype
;
5566 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5567 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5573 EXPORT_SYMBOL(gro_find_receive_by_type
);
5575 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5577 struct list_head
*offload_head
= &offload_base
;
5578 struct packet_offload
*ptype
;
5580 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5581 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5587 EXPORT_SYMBOL(gro_find_complete_by_type
);
5589 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5593 kmem_cache_free(skbuff_head_cache
, skb
);
5596 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
5600 if (netif_receive_skb_internal(skb
))
5608 case GRO_MERGED_FREE
:
5609 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5610 napi_skb_free_stolen_head(skb
);
5624 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5626 skb_mark_napi_id(skb
, napi
);
5627 trace_napi_gro_receive_entry(skb
);
5629 skb_gro_reset_offset(skb
);
5631 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
5633 EXPORT_SYMBOL(napi_gro_receive
);
5635 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5637 if (unlikely(skb
->pfmemalloc
)) {
5641 __skb_pull(skb
, skb_headlen(skb
));
5642 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5643 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5645 skb
->dev
= napi
->dev
;
5648 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5649 skb
->pkt_type
= PACKET_HOST
;
5651 skb
->encapsulation
= 0;
5652 skb_shinfo(skb
)->gso_type
= 0;
5653 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5659 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5661 struct sk_buff
*skb
= napi
->skb
;
5664 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5667 skb_mark_napi_id(skb
, napi
);
5672 EXPORT_SYMBOL(napi_get_frags
);
5674 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5675 struct sk_buff
*skb
,
5681 __skb_push(skb
, ETH_HLEN
);
5682 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5683 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5688 napi_reuse_skb(napi
, skb
);
5691 case GRO_MERGED_FREE
:
5692 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5693 napi_skb_free_stolen_head(skb
);
5695 napi_reuse_skb(napi
, skb
);
5706 /* Upper GRO stack assumes network header starts at gro_offset=0
5707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5708 * We copy ethernet header into skb->data to have a common layout.
5710 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5712 struct sk_buff
*skb
= napi
->skb
;
5713 const struct ethhdr
*eth
;
5714 unsigned int hlen
= sizeof(*eth
);
5718 skb_reset_mac_header(skb
);
5719 skb_gro_reset_offset(skb
);
5721 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5722 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5723 if (unlikely(!eth
)) {
5724 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5725 __func__
, napi
->dev
->name
);
5726 napi_reuse_skb(napi
, skb
);
5730 eth
= (const struct ethhdr
*)skb
->data
;
5731 gro_pull_from_frag0(skb
, hlen
);
5732 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5733 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5735 __skb_pull(skb
, hlen
);
5738 * This works because the only protocols we care about don't require
5740 * We'll fix it up properly in napi_frags_finish()
5742 skb
->protocol
= eth
->h_proto
;
5747 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5749 struct sk_buff
*skb
= napi_frags_skb(napi
);
5754 trace_napi_gro_frags_entry(skb
);
5756 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5758 EXPORT_SYMBOL(napi_gro_frags
);
5760 /* Compute the checksum from gro_offset and return the folded value
5761 * after adding in any pseudo checksum.
5763 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5768 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5771 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5773 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5774 !skb
->csum_complete_sw
)
5775 netdev_rx_csum_fault(skb
->dev
);
5778 NAPI_GRO_CB(skb
)->csum
= wsum
;
5779 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5783 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5785 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5789 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5791 if (cpu_online(remsd
->cpu
))
5792 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5799 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5800 * Note: called with local irq disabled, but exits with local irq enabled.
5802 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5805 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5808 sd
->rps_ipi_list
= NULL
;
5812 /* Send pending IPI's to kick RPS processing on remote cpus. */
5813 net_rps_send_ipi(remsd
);
5819 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5822 return sd
->rps_ipi_list
!= NULL
;
5828 static int process_backlog(struct napi_struct
*napi
, int quota
)
5830 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5834 /* Check if we have pending ipi, its better to send them now,
5835 * not waiting net_rx_action() end.
5837 if (sd_has_rps_ipi_waiting(sd
)) {
5838 local_irq_disable();
5839 net_rps_action_and_irq_enable(sd
);
5842 napi
->weight
= dev_rx_weight
;
5844 struct sk_buff
*skb
;
5846 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5848 __netif_receive_skb(skb
);
5850 input_queue_head_incr(sd
);
5851 if (++work
>= quota
)
5856 local_irq_disable();
5858 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5860 * Inline a custom version of __napi_complete().
5861 * only current cpu owns and manipulates this napi,
5862 * and NAPI_STATE_SCHED is the only possible flag set
5864 * We can use a plain write instead of clear_bit(),
5865 * and we dont need an smp_mb() memory barrier.
5870 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5871 &sd
->process_queue
);
5881 * __napi_schedule - schedule for receive
5882 * @n: entry to schedule
5884 * The entry's receive function will be scheduled to run.
5885 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5887 void __napi_schedule(struct napi_struct
*n
)
5889 unsigned long flags
;
5891 local_irq_save(flags
);
5892 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5893 local_irq_restore(flags
);
5895 EXPORT_SYMBOL(__napi_schedule
);
5898 * napi_schedule_prep - check if napi can be scheduled
5901 * Test if NAPI routine is already running, and if not mark
5902 * it as running. This is used as a condition variable
5903 * insure only one NAPI poll instance runs. We also make
5904 * sure there is no pending NAPI disable.
5906 bool napi_schedule_prep(struct napi_struct
*n
)
5908 unsigned long val
, new;
5911 val
= READ_ONCE(n
->state
);
5912 if (unlikely(val
& NAPIF_STATE_DISABLE
))
5914 new = val
| NAPIF_STATE_SCHED
;
5916 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5917 * This was suggested by Alexander Duyck, as compiler
5918 * emits better code than :
5919 * if (val & NAPIF_STATE_SCHED)
5920 * new |= NAPIF_STATE_MISSED;
5922 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
5924 } while (cmpxchg(&n
->state
, val
, new) != val
);
5926 return !(val
& NAPIF_STATE_SCHED
);
5928 EXPORT_SYMBOL(napi_schedule_prep
);
5931 * __napi_schedule_irqoff - schedule for receive
5932 * @n: entry to schedule
5934 * Variant of __napi_schedule() assuming hard irqs are masked
5936 void __napi_schedule_irqoff(struct napi_struct
*n
)
5938 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5940 EXPORT_SYMBOL(__napi_schedule_irqoff
);
5942 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
5944 unsigned long flags
, val
, new;
5947 * 1) Don't let napi dequeue from the cpu poll list
5948 * just in case its running on a different cpu.
5949 * 2) If we are busy polling, do nothing here, we have
5950 * the guarantee we will be called later.
5952 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
5953 NAPIF_STATE_IN_BUSY_POLL
)))
5956 if (n
->gro_bitmask
) {
5957 unsigned long timeout
= 0;
5960 timeout
= n
->dev
->gro_flush_timeout
;
5962 /* When the NAPI instance uses a timeout and keeps postponing
5963 * it, we need to bound somehow the time packets are kept in
5966 napi_gro_flush(n
, !!timeout
);
5968 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
5969 HRTIMER_MODE_REL_PINNED
);
5971 if (unlikely(!list_empty(&n
->poll_list
))) {
5972 /* If n->poll_list is not empty, we need to mask irqs */
5973 local_irq_save(flags
);
5974 list_del_init(&n
->poll_list
);
5975 local_irq_restore(flags
);
5979 val
= READ_ONCE(n
->state
);
5981 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
5983 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
5985 /* If STATE_MISSED was set, leave STATE_SCHED set,
5986 * because we will call napi->poll() one more time.
5987 * This C code was suggested by Alexander Duyck to help gcc.
5989 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
5991 } while (cmpxchg(&n
->state
, val
, new) != val
);
5993 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6000 EXPORT_SYMBOL(napi_complete_done
);
6002 /* must be called under rcu_read_lock(), as we dont take a reference */
6003 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
6005 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6006 struct napi_struct
*napi
;
6008 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6009 if (napi
->napi_id
== napi_id
)
6015 #if defined(CONFIG_NET_RX_BUSY_POLL)
6017 #define BUSY_POLL_BUDGET 8
6019 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
6023 /* Busy polling means there is a high chance device driver hard irq
6024 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6025 * set in napi_schedule_prep().
6026 * Since we are about to call napi->poll() once more, we can safely
6027 * clear NAPI_STATE_MISSED.
6029 * Note: x86 could use a single "lock and ..." instruction
6030 * to perform these two clear_bit()
6032 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6033 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6037 /* All we really want here is to re-enable device interrupts.
6038 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6040 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
6041 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
6042 netpoll_poll_unlock(have_poll_lock
);
6043 if (rc
== BUSY_POLL_BUDGET
)
6044 __napi_schedule(napi
);
6048 void napi_busy_loop(unsigned int napi_id
,
6049 bool (*loop_end
)(void *, unsigned long),
6052 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6053 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6054 void *have_poll_lock
= NULL
;
6055 struct napi_struct
*napi
;
6062 napi
= napi_by_id(napi_id
);
6072 unsigned long val
= READ_ONCE(napi
->state
);
6074 /* If multiple threads are competing for this napi,
6075 * we avoid dirtying napi->state as much as we can.
6077 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6078 NAPIF_STATE_IN_BUSY_POLL
))
6080 if (cmpxchg(&napi
->state
, val
,
6081 val
| NAPIF_STATE_IN_BUSY_POLL
|
6082 NAPIF_STATE_SCHED
) != val
)
6084 have_poll_lock
= netpoll_poll_lock(napi
);
6085 napi_poll
= napi
->poll
;
6087 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6088 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6091 __NET_ADD_STATS(dev_net(napi
->dev
),
6092 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6095 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6098 if (unlikely(need_resched())) {
6100 busy_poll_stop(napi
, have_poll_lock
);
6104 if (loop_end(loop_end_arg
, start_time
))
6111 busy_poll_stop(napi
, have_poll_lock
);
6116 EXPORT_SYMBOL(napi_busy_loop
);
6118 #endif /* CONFIG_NET_RX_BUSY_POLL */
6120 static void napi_hash_add(struct napi_struct
*napi
)
6122 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6123 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6126 spin_lock(&napi_hash_lock
);
6128 /* 0..NR_CPUS range is reserved for sender_cpu use */
6130 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6131 napi_gen_id
= MIN_NAPI_ID
;
6132 } while (napi_by_id(napi_gen_id
));
6133 napi
->napi_id
= napi_gen_id
;
6135 hlist_add_head_rcu(&napi
->napi_hash_node
,
6136 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6138 spin_unlock(&napi_hash_lock
);
6141 /* Warning : caller is responsible to make sure rcu grace period
6142 * is respected before freeing memory containing @napi
6144 bool napi_hash_del(struct napi_struct
*napi
)
6146 bool rcu_sync_needed
= false;
6148 spin_lock(&napi_hash_lock
);
6150 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6151 rcu_sync_needed
= true;
6152 hlist_del_rcu(&napi
->napi_hash_node
);
6154 spin_unlock(&napi_hash_lock
);
6155 return rcu_sync_needed
;
6157 EXPORT_SYMBOL_GPL(napi_hash_del
);
6159 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6161 struct napi_struct
*napi
;
6163 napi
= container_of(timer
, struct napi_struct
, timer
);
6165 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6166 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6168 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6169 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6170 __napi_schedule_irqoff(napi
);
6172 return HRTIMER_NORESTART
;
6175 static void init_gro_hash(struct napi_struct
*napi
)
6179 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6180 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6181 napi
->gro_hash
[i
].count
= 0;
6183 napi
->gro_bitmask
= 0;
6186 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6187 int (*poll
)(struct napi_struct
*, int), int weight
)
6189 INIT_LIST_HEAD(&napi
->poll_list
);
6190 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6191 napi
->timer
.function
= napi_watchdog
;
6192 init_gro_hash(napi
);
6195 if (weight
> NAPI_POLL_WEIGHT
)
6196 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6198 napi
->weight
= weight
;
6199 list_add(&napi
->dev_list
, &dev
->napi_list
);
6201 #ifdef CONFIG_NETPOLL
6202 napi
->poll_owner
= -1;
6204 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6205 napi_hash_add(napi
);
6207 EXPORT_SYMBOL(netif_napi_add
);
6209 void napi_disable(struct napi_struct
*n
)
6212 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6214 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6216 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6219 hrtimer_cancel(&n
->timer
);
6221 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6223 EXPORT_SYMBOL(napi_disable
);
6225 static void flush_gro_hash(struct napi_struct
*napi
)
6229 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6230 struct sk_buff
*skb
, *n
;
6232 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6234 napi
->gro_hash
[i
].count
= 0;
6238 /* Must be called in process context */
6239 void netif_napi_del(struct napi_struct
*napi
)
6242 if (napi_hash_del(napi
))
6244 list_del_init(&napi
->dev_list
);
6245 napi_free_frags(napi
);
6247 flush_gro_hash(napi
);
6248 napi
->gro_bitmask
= 0;
6250 EXPORT_SYMBOL(netif_napi_del
);
6252 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6257 list_del_init(&n
->poll_list
);
6259 have
= netpoll_poll_lock(n
);
6263 /* This NAPI_STATE_SCHED test is for avoiding a race
6264 * with netpoll's poll_napi(). Only the entity which
6265 * obtains the lock and sees NAPI_STATE_SCHED set will
6266 * actually make the ->poll() call. Therefore we avoid
6267 * accidentally calling ->poll() when NAPI is not scheduled.
6270 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6271 work
= n
->poll(n
, weight
);
6272 trace_napi_poll(n
, work
, weight
);
6275 WARN_ON_ONCE(work
> weight
);
6277 if (likely(work
< weight
))
6280 /* Drivers must not modify the NAPI state if they
6281 * consume the entire weight. In such cases this code
6282 * still "owns" the NAPI instance and therefore can
6283 * move the instance around on the list at-will.
6285 if (unlikely(napi_disable_pending(n
))) {
6290 if (n
->gro_bitmask
) {
6291 /* flush too old packets
6292 * If HZ < 1000, flush all packets.
6294 napi_gro_flush(n
, HZ
>= 1000);
6297 /* Some drivers may have called napi_schedule
6298 * prior to exhausting their budget.
6300 if (unlikely(!list_empty(&n
->poll_list
))) {
6301 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6302 n
->dev
? n
->dev
->name
: "backlog");
6306 list_add_tail(&n
->poll_list
, repoll
);
6309 netpoll_poll_unlock(have
);
6314 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6316 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6317 unsigned long time_limit
= jiffies
+
6318 usecs_to_jiffies(netdev_budget_usecs
);
6319 int budget
= netdev_budget
;
6323 local_irq_disable();
6324 list_splice_init(&sd
->poll_list
, &list
);
6328 struct napi_struct
*n
;
6330 if (list_empty(&list
)) {
6331 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6336 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6337 budget
-= napi_poll(n
, &repoll
);
6339 /* If softirq window is exhausted then punt.
6340 * Allow this to run for 2 jiffies since which will allow
6341 * an average latency of 1.5/HZ.
6343 if (unlikely(budget
<= 0 ||
6344 time_after_eq(jiffies
, time_limit
))) {
6350 local_irq_disable();
6352 list_splice_tail_init(&sd
->poll_list
, &list
);
6353 list_splice_tail(&repoll
, &list
);
6354 list_splice(&list
, &sd
->poll_list
);
6355 if (!list_empty(&sd
->poll_list
))
6356 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6358 net_rps_action_and_irq_enable(sd
);
6360 __kfree_skb_flush();
6363 struct netdev_adjacent
{
6364 struct net_device
*dev
;
6366 /* upper master flag, there can only be one master device per list */
6369 /* counter for the number of times this device was added to us */
6372 /* private field for the users */
6375 struct list_head list
;
6376 struct rcu_head rcu
;
6379 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6380 struct list_head
*adj_list
)
6382 struct netdev_adjacent
*adj
;
6384 list_for_each_entry(adj
, adj_list
, list
) {
6385 if (adj
->dev
== adj_dev
)
6391 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6393 struct net_device
*dev
= data
;
6395 return upper_dev
== dev
;
6399 * netdev_has_upper_dev - Check if device is linked to an upper device
6401 * @upper_dev: upper device to check
6403 * Find out if a device is linked to specified upper device and return true
6404 * in case it is. Note that this checks only immediate upper device,
6405 * not through a complete stack of devices. The caller must hold the RTNL lock.
6407 bool netdev_has_upper_dev(struct net_device
*dev
,
6408 struct net_device
*upper_dev
)
6412 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6415 EXPORT_SYMBOL(netdev_has_upper_dev
);
6418 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6420 * @upper_dev: upper device to check
6422 * Find out if a device is linked to specified upper device and return true
6423 * in case it is. Note that this checks the entire upper device chain.
6424 * The caller must hold rcu lock.
6427 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6428 struct net_device
*upper_dev
)
6430 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6433 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6436 * netdev_has_any_upper_dev - Check if device is linked to some device
6439 * Find out if a device is linked to an upper device and return true in case
6440 * it is. The caller must hold the RTNL lock.
6442 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6446 return !list_empty(&dev
->adj_list
.upper
);
6448 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6451 * netdev_master_upper_dev_get - Get master upper device
6454 * Find a master upper device and return pointer to it or NULL in case
6455 * it's not there. The caller must hold the RTNL lock.
6457 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6459 struct netdev_adjacent
*upper
;
6463 if (list_empty(&dev
->adj_list
.upper
))
6466 upper
= list_first_entry(&dev
->adj_list
.upper
,
6467 struct netdev_adjacent
, list
);
6468 if (likely(upper
->master
))
6472 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6475 * netdev_has_any_lower_dev - Check if device is linked to some device
6478 * Find out if a device is linked to a lower device and return true in case
6479 * it is. The caller must hold the RTNL lock.
6481 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6485 return !list_empty(&dev
->adj_list
.lower
);
6488 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6490 struct netdev_adjacent
*adj
;
6492 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6494 return adj
->private;
6496 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6499 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6501 * @iter: list_head ** of the current position
6503 * Gets the next device from the dev's upper list, starting from iter
6504 * position. The caller must hold RCU read lock.
6506 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6507 struct list_head
**iter
)
6509 struct netdev_adjacent
*upper
;
6511 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6513 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6515 if (&upper
->list
== &dev
->adj_list
.upper
)
6518 *iter
= &upper
->list
;
6522 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6524 static struct net_device
*netdev_next_upper_dev(struct net_device
*dev
,
6525 struct list_head
**iter
)
6527 struct netdev_adjacent
*upper
;
6529 upper
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6531 if (&upper
->list
== &dev
->adj_list
.upper
)
6534 *iter
= &upper
->list
;
6539 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6540 struct list_head
**iter
)
6542 struct netdev_adjacent
*upper
;
6544 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6548 if (&upper
->list
== &dev
->adj_list
.upper
)
6551 *iter
= &upper
->list
;
6556 static int netdev_walk_all_upper_dev(struct net_device
*dev
,
6557 int (*fn
)(struct net_device
*dev
,
6561 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6562 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6566 iter
= &dev
->adj_list
.upper
;
6570 ret
= fn(now
, data
);
6577 udev
= netdev_next_upper_dev(now
, &iter
);
6582 niter
= &udev
->adj_list
.upper
;
6583 dev_stack
[cur
] = now
;
6584 iter_stack
[cur
++] = iter
;
6591 next
= dev_stack
[--cur
];
6592 niter
= iter_stack
[cur
];
6602 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6603 int (*fn
)(struct net_device
*dev
,
6607 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6608 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6612 iter
= &dev
->adj_list
.upper
;
6616 ret
= fn(now
, data
);
6623 udev
= netdev_next_upper_dev_rcu(now
, &iter
);
6628 niter
= &udev
->adj_list
.upper
;
6629 dev_stack
[cur
] = now
;
6630 iter_stack
[cur
++] = iter
;
6637 next
= dev_stack
[--cur
];
6638 niter
= iter_stack
[cur
];
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6650 * netdev_lower_get_next_private - Get the next ->private from the
6651 * lower neighbour list
6653 * @iter: list_head ** of the current position
6655 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6656 * list, starting from iter position. The caller must hold either hold the
6657 * RTNL lock or its own locking that guarantees that the neighbour lower
6658 * list will remain unchanged.
6660 void *netdev_lower_get_next_private(struct net_device
*dev
,
6661 struct list_head
**iter
)
6663 struct netdev_adjacent
*lower
;
6665 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6667 if (&lower
->list
== &dev
->adj_list
.lower
)
6670 *iter
= lower
->list
.next
;
6672 return lower
->private;
6674 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6677 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6678 * lower neighbour list, RCU
6681 * @iter: list_head ** of the current position
6683 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6684 * list, starting from iter position. The caller must hold RCU read lock.
6686 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6687 struct list_head
**iter
)
6689 struct netdev_adjacent
*lower
;
6691 WARN_ON_ONCE(!rcu_read_lock_held());
6693 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6695 if (&lower
->list
== &dev
->adj_list
.lower
)
6698 *iter
= &lower
->list
;
6700 return lower
->private;
6702 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
6705 * netdev_lower_get_next - Get the next device from the lower neighbour
6708 * @iter: list_head ** of the current position
6710 * Gets the next netdev_adjacent from the dev's lower neighbour
6711 * list, starting from iter position. The caller must hold RTNL lock or
6712 * its own locking that guarantees that the neighbour lower
6713 * list will remain unchanged.
6715 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
6717 struct netdev_adjacent
*lower
;
6719 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6721 if (&lower
->list
== &dev
->adj_list
.lower
)
6724 *iter
= lower
->list
.next
;
6728 EXPORT_SYMBOL(netdev_lower_get_next
);
6730 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
6731 struct list_head
**iter
)
6733 struct netdev_adjacent
*lower
;
6735 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6737 if (&lower
->list
== &dev
->adj_list
.lower
)
6740 *iter
= &lower
->list
;
6745 int netdev_walk_all_lower_dev(struct net_device
*dev
,
6746 int (*fn
)(struct net_device
*dev
,
6750 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6751 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6755 iter
= &dev
->adj_list
.lower
;
6759 ret
= fn(now
, data
);
6766 ldev
= netdev_next_lower_dev(now
, &iter
);
6771 niter
= &ldev
->adj_list
.lower
;
6772 dev_stack
[cur
] = now
;
6773 iter_stack
[cur
++] = iter
;
6780 next
= dev_stack
[--cur
];
6781 niter
= iter_stack
[cur
];
6790 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6792 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6793 struct list_head
**iter
)
6795 struct netdev_adjacent
*lower
;
6797 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6798 if (&lower
->list
== &dev
->adj_list
.lower
)
6801 *iter
= &lower
->list
;
6806 static u8
__netdev_upper_depth(struct net_device
*dev
)
6808 struct net_device
*udev
;
6809 struct list_head
*iter
;
6812 for (iter
= &dev
->adj_list
.upper
,
6813 udev
= netdev_next_upper_dev(dev
, &iter
);
6815 udev
= netdev_next_upper_dev(dev
, &iter
)) {
6816 if (max_depth
< udev
->upper_level
)
6817 max_depth
= udev
->upper_level
;
6823 static u8
__netdev_lower_depth(struct net_device
*dev
)
6825 struct net_device
*ldev
;
6826 struct list_head
*iter
;
6829 for (iter
= &dev
->adj_list
.lower
,
6830 ldev
= netdev_next_lower_dev(dev
, &iter
);
6832 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6833 if (max_depth
< ldev
->lower_level
)
6834 max_depth
= ldev
->lower_level
;
6840 static int __netdev_update_upper_level(struct net_device
*dev
, void *data
)
6842 dev
->upper_level
= __netdev_upper_depth(dev
) + 1;
6846 static int __netdev_update_lower_level(struct net_device
*dev
, void *data
)
6848 dev
->lower_level
= __netdev_lower_depth(dev
) + 1;
6852 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6853 int (*fn
)(struct net_device
*dev
,
6857 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6858 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6862 iter
= &dev
->adj_list
.lower
;
6866 ret
= fn(now
, data
);
6873 ldev
= netdev_next_lower_dev_rcu(now
, &iter
);
6878 niter
= &ldev
->adj_list
.lower
;
6879 dev_stack
[cur
] = now
;
6880 iter_stack
[cur
++] = iter
;
6887 next
= dev_stack
[--cur
];
6888 niter
= iter_stack
[cur
];
6897 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6900 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6901 * lower neighbour list, RCU
6905 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6906 * list. The caller must hold RCU read lock.
6908 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6910 struct netdev_adjacent
*lower
;
6912 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6913 struct netdev_adjacent
, list
);
6915 return lower
->private;
6918 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6921 * netdev_master_upper_dev_get_rcu - Get master upper device
6924 * Find a master upper device and return pointer to it or NULL in case
6925 * it's not there. The caller must hold the RCU read lock.
6927 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6929 struct netdev_adjacent
*upper
;
6931 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6932 struct netdev_adjacent
, list
);
6933 if (upper
&& likely(upper
->master
))
6937 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6939 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6940 struct net_device
*adj_dev
,
6941 struct list_head
*dev_list
)
6943 char linkname
[IFNAMSIZ
+7];
6945 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6946 "upper_%s" : "lower_%s", adj_dev
->name
);
6947 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6950 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6952 struct list_head
*dev_list
)
6954 char linkname
[IFNAMSIZ
+7];
6956 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6957 "upper_%s" : "lower_%s", name
);
6958 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6961 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6962 struct net_device
*adj_dev
,
6963 struct list_head
*dev_list
)
6965 return (dev_list
== &dev
->adj_list
.upper
||
6966 dev_list
== &dev
->adj_list
.lower
) &&
6967 net_eq(dev_net(dev
), dev_net(adj_dev
));
6970 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6971 struct net_device
*adj_dev
,
6972 struct list_head
*dev_list
,
6973 void *private, bool master
)
6975 struct netdev_adjacent
*adj
;
6978 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6982 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6983 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6988 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6993 adj
->master
= master
;
6995 adj
->private = private;
6998 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6999 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
7001 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
7002 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
7007 /* Ensure that master link is always the first item in list. */
7009 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
7010 &(adj_dev
->dev
.kobj
), "master");
7012 goto remove_symlinks
;
7014 list_add_rcu(&adj
->list
, dev_list
);
7016 list_add_tail_rcu(&adj
->list
, dev_list
);
7022 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7023 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7031 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
7032 struct net_device
*adj_dev
,
7034 struct list_head
*dev_list
)
7036 struct netdev_adjacent
*adj
;
7038 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7039 dev
->name
, adj_dev
->name
, ref_nr
);
7041 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7044 pr_err("Adjacency does not exist for device %s from %s\n",
7045 dev
->name
, adj_dev
->name
);
7050 if (adj
->ref_nr
> ref_nr
) {
7051 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7052 dev
->name
, adj_dev
->name
, ref_nr
,
7053 adj
->ref_nr
- ref_nr
);
7054 adj
->ref_nr
-= ref_nr
;
7059 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
7061 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7062 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7064 list_del_rcu(&adj
->list
);
7065 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7066 adj_dev
->name
, dev
->name
, adj_dev
->name
);
7068 kfree_rcu(adj
, rcu
);
7071 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
7072 struct net_device
*upper_dev
,
7073 struct list_head
*up_list
,
7074 struct list_head
*down_list
,
7075 void *private, bool master
)
7079 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
7084 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
7087 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
7094 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
7095 struct net_device
*upper_dev
,
7097 struct list_head
*up_list
,
7098 struct list_head
*down_list
)
7100 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
7101 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
7104 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
7105 struct net_device
*upper_dev
,
7106 void *private, bool master
)
7108 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
7109 &dev
->adj_list
.upper
,
7110 &upper_dev
->adj_list
.lower
,
7114 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
7115 struct net_device
*upper_dev
)
7117 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
7118 &dev
->adj_list
.upper
,
7119 &upper_dev
->adj_list
.lower
);
7122 static int __netdev_upper_dev_link(struct net_device
*dev
,
7123 struct net_device
*upper_dev
, bool master
,
7124 void *upper_priv
, void *upper_info
,
7125 struct netlink_ext_ack
*extack
)
7127 struct netdev_notifier_changeupper_info changeupper_info
= {
7132 .upper_dev
= upper_dev
,
7135 .upper_info
= upper_info
,
7137 struct net_device
*master_dev
;
7142 if (dev
== upper_dev
)
7145 /* To prevent loops, check if dev is not upper device to upper_dev. */
7146 if (netdev_has_upper_dev(upper_dev
, dev
))
7149 if ((dev
->lower_level
+ upper_dev
->upper_level
) > MAX_NEST_DEV
)
7153 if (netdev_has_upper_dev(dev
, upper_dev
))
7156 master_dev
= netdev_master_upper_dev_get(dev
);
7158 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
7161 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7162 &changeupper_info
.info
);
7163 ret
= notifier_to_errno(ret
);
7167 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
7172 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7173 &changeupper_info
.info
);
7174 ret
= notifier_to_errno(ret
);
7178 __netdev_update_upper_level(dev
, NULL
);
7179 netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7181 __netdev_update_lower_level(upper_dev
, NULL
);
7182 netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
, NULL
);
7187 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7193 * netdev_upper_dev_link - Add a link to the upper device
7195 * @upper_dev: new upper device
7196 * @extack: netlink extended ack
7198 * Adds a link to device which is upper to this one. The caller must hold
7199 * the RTNL lock. On a failure a negative errno code is returned.
7200 * On success the reference counts are adjusted and the function
7203 int netdev_upper_dev_link(struct net_device
*dev
,
7204 struct net_device
*upper_dev
,
7205 struct netlink_ext_ack
*extack
)
7207 return __netdev_upper_dev_link(dev
, upper_dev
, false,
7208 NULL
, NULL
, extack
);
7210 EXPORT_SYMBOL(netdev_upper_dev_link
);
7213 * netdev_master_upper_dev_link - Add a master link to the upper device
7215 * @upper_dev: new upper device
7216 * @upper_priv: upper device private
7217 * @upper_info: upper info to be passed down via notifier
7218 * @extack: netlink extended ack
7220 * Adds a link to device which is upper to this one. In this case, only
7221 * one master upper device can be linked, although other non-master devices
7222 * might be linked as well. The caller must hold the RTNL lock.
7223 * On a failure a negative errno code is returned. On success the reference
7224 * counts are adjusted and the function returns zero.
7226 int netdev_master_upper_dev_link(struct net_device
*dev
,
7227 struct net_device
*upper_dev
,
7228 void *upper_priv
, void *upper_info
,
7229 struct netlink_ext_ack
*extack
)
7231 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7232 upper_priv
, upper_info
, extack
);
7234 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7237 * netdev_upper_dev_unlink - Removes a link to upper device
7239 * @upper_dev: new upper device
7241 * Removes a link to device which is upper to this one. The caller must hold
7244 void netdev_upper_dev_unlink(struct net_device
*dev
,
7245 struct net_device
*upper_dev
)
7247 struct netdev_notifier_changeupper_info changeupper_info
= {
7251 .upper_dev
= upper_dev
,
7257 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7259 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7260 &changeupper_info
.info
);
7262 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7264 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7265 &changeupper_info
.info
);
7267 __netdev_update_upper_level(dev
, NULL
);
7268 netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7270 __netdev_update_lower_level(upper_dev
, NULL
);
7271 netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
, NULL
);
7273 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7276 * netdev_bonding_info_change - Dispatch event about slave change
7278 * @bonding_info: info to dispatch
7280 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7281 * The caller must hold the RTNL lock.
7283 void netdev_bonding_info_change(struct net_device
*dev
,
7284 struct netdev_bonding_info
*bonding_info
)
7286 struct netdev_notifier_bonding_info info
= {
7290 memcpy(&info
.bonding_info
, bonding_info
,
7291 sizeof(struct netdev_bonding_info
));
7292 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7295 EXPORT_SYMBOL(netdev_bonding_info_change
);
7297 static void netdev_adjacent_add_links(struct net_device
*dev
)
7299 struct netdev_adjacent
*iter
;
7301 struct net
*net
= dev_net(dev
);
7303 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7304 if (!net_eq(net
, dev_net(iter
->dev
)))
7306 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7307 &iter
->dev
->adj_list
.lower
);
7308 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7309 &dev
->adj_list
.upper
);
7312 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7313 if (!net_eq(net
, dev_net(iter
->dev
)))
7315 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7316 &iter
->dev
->adj_list
.upper
);
7317 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7318 &dev
->adj_list
.lower
);
7322 static void netdev_adjacent_del_links(struct net_device
*dev
)
7324 struct netdev_adjacent
*iter
;
7326 struct net
*net
= dev_net(dev
);
7328 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7329 if (!net_eq(net
, dev_net(iter
->dev
)))
7331 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7332 &iter
->dev
->adj_list
.lower
);
7333 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7334 &dev
->adj_list
.upper
);
7337 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7338 if (!net_eq(net
, dev_net(iter
->dev
)))
7340 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7341 &iter
->dev
->adj_list
.upper
);
7342 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7343 &dev
->adj_list
.lower
);
7347 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7349 struct netdev_adjacent
*iter
;
7351 struct net
*net
= dev_net(dev
);
7353 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7354 if (!net_eq(net
, dev_net(iter
->dev
)))
7356 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7357 &iter
->dev
->adj_list
.lower
);
7358 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7359 &iter
->dev
->adj_list
.lower
);
7362 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7363 if (!net_eq(net
, dev_net(iter
->dev
)))
7365 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7366 &iter
->dev
->adj_list
.upper
);
7367 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7368 &iter
->dev
->adj_list
.upper
);
7372 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7373 struct net_device
*lower_dev
)
7375 struct netdev_adjacent
*lower
;
7379 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7383 return lower
->private;
7385 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7388 int dev_get_nest_level(struct net_device
*dev
)
7390 struct net_device
*lower
= NULL
;
7391 struct list_head
*iter
;
7397 netdev_for_each_lower_dev(dev
, lower
, iter
) {
7398 nest
= dev_get_nest_level(lower
);
7399 if (max_nest
< nest
)
7403 return max_nest
+ 1;
7405 EXPORT_SYMBOL(dev_get_nest_level
);
7408 * netdev_lower_change - Dispatch event about lower device state change
7409 * @lower_dev: device
7410 * @lower_state_info: state to dispatch
7412 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7413 * The caller must hold the RTNL lock.
7415 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7416 void *lower_state_info
)
7418 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7419 .info
.dev
= lower_dev
,
7423 changelowerstate_info
.lower_state_info
= lower_state_info
;
7424 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7425 &changelowerstate_info
.info
);
7427 EXPORT_SYMBOL(netdev_lower_state_changed
);
7429 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7431 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7433 if (ops
->ndo_change_rx_flags
)
7434 ops
->ndo_change_rx_flags(dev
, flags
);
7437 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7439 unsigned int old_flags
= dev
->flags
;
7445 dev
->flags
|= IFF_PROMISC
;
7446 dev
->promiscuity
+= inc
;
7447 if (dev
->promiscuity
== 0) {
7450 * If inc causes overflow, untouch promisc and return error.
7453 dev
->flags
&= ~IFF_PROMISC
;
7455 dev
->promiscuity
-= inc
;
7456 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7461 if (dev
->flags
!= old_flags
) {
7462 pr_info("device %s %s promiscuous mode\n",
7464 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7465 if (audit_enabled
) {
7466 current_uid_gid(&uid
, &gid
);
7467 audit_log(audit_context(), GFP_ATOMIC
,
7468 AUDIT_ANOM_PROMISCUOUS
,
7469 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7470 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7471 (old_flags
& IFF_PROMISC
),
7472 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7473 from_kuid(&init_user_ns
, uid
),
7474 from_kgid(&init_user_ns
, gid
),
7475 audit_get_sessionid(current
));
7478 dev_change_rx_flags(dev
, IFF_PROMISC
);
7481 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7486 * dev_set_promiscuity - update promiscuity count on a device
7490 * Add or remove promiscuity from a device. While the count in the device
7491 * remains above zero the interface remains promiscuous. Once it hits zero
7492 * the device reverts back to normal filtering operation. A negative inc
7493 * value is used to drop promiscuity on the device.
7494 * Return 0 if successful or a negative errno code on error.
7496 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7498 unsigned int old_flags
= dev
->flags
;
7501 err
= __dev_set_promiscuity(dev
, inc
, true);
7504 if (dev
->flags
!= old_flags
)
7505 dev_set_rx_mode(dev
);
7508 EXPORT_SYMBOL(dev_set_promiscuity
);
7510 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7512 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7516 dev
->flags
|= IFF_ALLMULTI
;
7517 dev
->allmulti
+= inc
;
7518 if (dev
->allmulti
== 0) {
7521 * If inc causes overflow, untouch allmulti and return error.
7524 dev
->flags
&= ~IFF_ALLMULTI
;
7526 dev
->allmulti
-= inc
;
7527 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7532 if (dev
->flags
^ old_flags
) {
7533 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
7534 dev_set_rx_mode(dev
);
7536 __dev_notify_flags(dev
, old_flags
,
7537 dev
->gflags
^ old_gflags
);
7543 * dev_set_allmulti - update allmulti count on a device
7547 * Add or remove reception of all multicast frames to a device. While the
7548 * count in the device remains above zero the interface remains listening
7549 * to all interfaces. Once it hits zero the device reverts back to normal
7550 * filtering operation. A negative @inc value is used to drop the counter
7551 * when releasing a resource needing all multicasts.
7552 * Return 0 if successful or a negative errno code on error.
7555 int dev_set_allmulti(struct net_device
*dev
, int inc
)
7557 return __dev_set_allmulti(dev
, inc
, true);
7559 EXPORT_SYMBOL(dev_set_allmulti
);
7562 * Upload unicast and multicast address lists to device and
7563 * configure RX filtering. When the device doesn't support unicast
7564 * filtering it is put in promiscuous mode while unicast addresses
7567 void __dev_set_rx_mode(struct net_device
*dev
)
7569 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7571 /* dev_open will call this function so the list will stay sane. */
7572 if (!(dev
->flags
&IFF_UP
))
7575 if (!netif_device_present(dev
))
7578 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
7579 /* Unicast addresses changes may only happen under the rtnl,
7580 * therefore calling __dev_set_promiscuity here is safe.
7582 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
7583 __dev_set_promiscuity(dev
, 1, false);
7584 dev
->uc_promisc
= true;
7585 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
7586 __dev_set_promiscuity(dev
, -1, false);
7587 dev
->uc_promisc
= false;
7591 if (ops
->ndo_set_rx_mode
)
7592 ops
->ndo_set_rx_mode(dev
);
7595 void dev_set_rx_mode(struct net_device
*dev
)
7597 netif_addr_lock_bh(dev
);
7598 __dev_set_rx_mode(dev
);
7599 netif_addr_unlock_bh(dev
);
7603 * dev_get_flags - get flags reported to userspace
7606 * Get the combination of flag bits exported through APIs to userspace.
7608 unsigned int dev_get_flags(const struct net_device
*dev
)
7612 flags
= (dev
->flags
& ~(IFF_PROMISC
|
7617 (dev
->gflags
& (IFF_PROMISC
|
7620 if (netif_running(dev
)) {
7621 if (netif_oper_up(dev
))
7622 flags
|= IFF_RUNNING
;
7623 if (netif_carrier_ok(dev
))
7624 flags
|= IFF_LOWER_UP
;
7625 if (netif_dormant(dev
))
7626 flags
|= IFF_DORMANT
;
7631 EXPORT_SYMBOL(dev_get_flags
);
7633 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7635 unsigned int old_flags
= dev
->flags
;
7641 * Set the flags on our device.
7644 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
7645 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
7647 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
7651 * Load in the correct multicast list now the flags have changed.
7654 if ((old_flags
^ flags
) & IFF_MULTICAST
)
7655 dev_change_rx_flags(dev
, IFF_MULTICAST
);
7657 dev_set_rx_mode(dev
);
7660 * Have we downed the interface. We handle IFF_UP ourselves
7661 * according to user attempts to set it, rather than blindly
7666 if ((old_flags
^ flags
) & IFF_UP
) {
7667 if (old_flags
& IFF_UP
)
7670 ret
= __dev_open(dev
);
7673 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
7674 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
7675 unsigned int old_flags
= dev
->flags
;
7677 dev
->gflags
^= IFF_PROMISC
;
7679 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
7680 if (dev
->flags
!= old_flags
)
7681 dev_set_rx_mode(dev
);
7684 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7685 * is important. Some (broken) drivers set IFF_PROMISC, when
7686 * IFF_ALLMULTI is requested not asking us and not reporting.
7688 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
7689 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
7691 dev
->gflags
^= IFF_ALLMULTI
;
7692 __dev_set_allmulti(dev
, inc
, false);
7698 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
7699 unsigned int gchanges
)
7701 unsigned int changes
= dev
->flags
^ old_flags
;
7704 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
7706 if (changes
& IFF_UP
) {
7707 if (dev
->flags
& IFF_UP
)
7708 call_netdevice_notifiers(NETDEV_UP
, dev
);
7710 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
7713 if (dev
->flags
& IFF_UP
&&
7714 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
7715 struct netdev_notifier_change_info change_info
= {
7719 .flags_changed
= changes
,
7722 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
7727 * dev_change_flags - change device settings
7729 * @flags: device state flags
7731 * Change settings on device based state flags. The flags are
7732 * in the userspace exported format.
7734 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7737 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7739 ret
= __dev_change_flags(dev
, flags
);
7743 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
7744 __dev_notify_flags(dev
, old_flags
, changes
);
7747 EXPORT_SYMBOL(dev_change_flags
);
7749 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7751 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7753 if (ops
->ndo_change_mtu
)
7754 return ops
->ndo_change_mtu(dev
, new_mtu
);
7756 /* Pairs with all the lockless reads of dev->mtu in the stack */
7757 WRITE_ONCE(dev
->mtu
, new_mtu
);
7760 EXPORT_SYMBOL(__dev_set_mtu
);
7762 int dev_validate_mtu(struct net_device
*dev
, int new_mtu
,
7763 struct netlink_ext_ack
*extack
)
7765 /* MTU must be positive, and in range */
7766 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
7767 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
7771 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
7772 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
7779 * dev_set_mtu_ext - Change maximum transfer unit
7781 * @new_mtu: new transfer unit
7782 * @extack: netlink extended ack
7784 * Change the maximum transfer size of the network device.
7786 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
7787 struct netlink_ext_ack
*extack
)
7791 if (new_mtu
== dev
->mtu
)
7794 err
= dev_validate_mtu(dev
, new_mtu
, extack
);
7798 if (!netif_device_present(dev
))
7801 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
7802 err
= notifier_to_errno(err
);
7806 orig_mtu
= dev
->mtu
;
7807 err
= __dev_set_mtu(dev
, new_mtu
);
7810 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7812 err
= notifier_to_errno(err
);
7814 /* setting mtu back and notifying everyone again,
7815 * so that they have a chance to revert changes.
7817 __dev_set_mtu(dev
, orig_mtu
);
7818 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7825 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7827 struct netlink_ext_ack extack
;
7830 memset(&extack
, 0, sizeof(extack
));
7831 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
7832 if (err
&& extack
._msg
)
7833 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
7836 EXPORT_SYMBOL(dev_set_mtu
);
7839 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7841 * @new_len: new tx queue length
7843 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
7845 unsigned int orig_len
= dev
->tx_queue_len
;
7848 if (new_len
!= (unsigned int)new_len
)
7851 if (new_len
!= orig_len
) {
7852 dev
->tx_queue_len
= new_len
;
7853 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
7854 res
= notifier_to_errno(res
);
7857 res
= dev_qdisc_change_tx_queue_len(dev
);
7865 netdev_err(dev
, "refused to change device tx_queue_len\n");
7866 dev
->tx_queue_len
= orig_len
;
7871 * dev_set_group - Change group this device belongs to
7873 * @new_group: group this device should belong to
7875 void dev_set_group(struct net_device
*dev
, int new_group
)
7877 dev
->group
= new_group
;
7879 EXPORT_SYMBOL(dev_set_group
);
7882 * dev_set_mac_address - Change Media Access Control Address
7886 * Change the hardware (MAC) address of the device
7888 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
7890 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7893 if (!ops
->ndo_set_mac_address
)
7895 if (sa
->sa_family
!= dev
->type
)
7897 if (!netif_device_present(dev
))
7899 err
= ops
->ndo_set_mac_address(dev
, sa
);
7902 dev
->addr_assign_type
= NET_ADDR_SET
;
7903 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
7904 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7907 EXPORT_SYMBOL(dev_set_mac_address
);
7910 * dev_change_carrier - Change device carrier
7912 * @new_carrier: new value
7914 * Change device carrier
7916 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7918 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7920 if (!ops
->ndo_change_carrier
)
7922 if (!netif_device_present(dev
))
7924 return ops
->ndo_change_carrier(dev
, new_carrier
);
7926 EXPORT_SYMBOL(dev_change_carrier
);
7929 * dev_get_phys_port_id - Get device physical port ID
7933 * Get device physical port ID
7935 int dev_get_phys_port_id(struct net_device
*dev
,
7936 struct netdev_phys_item_id
*ppid
)
7938 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7940 if (!ops
->ndo_get_phys_port_id
)
7942 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7944 EXPORT_SYMBOL(dev_get_phys_port_id
);
7947 * dev_get_phys_port_name - Get device physical port name
7950 * @len: limit of bytes to copy to name
7952 * Get device physical port name
7954 int dev_get_phys_port_name(struct net_device
*dev
,
7955 char *name
, size_t len
)
7957 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7959 if (!ops
->ndo_get_phys_port_name
)
7961 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
7963 EXPORT_SYMBOL(dev_get_phys_port_name
);
7966 * dev_change_proto_down - update protocol port state information
7968 * @proto_down: new value
7970 * This info can be used by switch drivers to set the phys state of the
7973 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7975 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7977 if (!ops
->ndo_change_proto_down
)
7979 if (!netif_device_present(dev
))
7981 return ops
->ndo_change_proto_down(dev
, proto_down
);
7983 EXPORT_SYMBOL(dev_change_proto_down
);
7985 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
7986 enum bpf_netdev_command cmd
)
7988 struct netdev_bpf xdp
;
7993 memset(&xdp
, 0, sizeof(xdp
));
7996 /* Query must always succeed. */
7997 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
8002 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
8003 struct netlink_ext_ack
*extack
, u32 flags
,
8004 struct bpf_prog
*prog
)
8006 struct netdev_bpf xdp
;
8008 memset(&xdp
, 0, sizeof(xdp
));
8009 if (flags
& XDP_FLAGS_HW_MODE
)
8010 xdp
.command
= XDP_SETUP_PROG_HW
;
8012 xdp
.command
= XDP_SETUP_PROG
;
8013 xdp
.extack
= extack
;
8017 return bpf_op(dev
, &xdp
);
8020 static void dev_xdp_uninstall(struct net_device
*dev
)
8022 struct netdev_bpf xdp
;
8025 /* Remove generic XDP */
8026 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
8028 /* Remove from the driver */
8029 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
8033 memset(&xdp
, 0, sizeof(xdp
));
8034 xdp
.command
= XDP_QUERY_PROG
;
8035 WARN_ON(ndo_bpf(dev
, &xdp
));
8037 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8040 /* Remove HW offload */
8041 memset(&xdp
, 0, sizeof(xdp
));
8042 xdp
.command
= XDP_QUERY_PROG_HW
;
8043 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
8044 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8049 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8051 * @extack: netlink extended ack
8052 * @fd: new program fd or negative value to clear
8053 * @flags: xdp-related flags
8055 * Set or clear a bpf program for a device
8057 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
8060 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8061 enum bpf_netdev_command query
;
8062 struct bpf_prog
*prog
= NULL
;
8063 bpf_op_t bpf_op
, bpf_chk
;
8068 query
= flags
& XDP_FLAGS_HW_MODE
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
8070 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
8071 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
)))
8073 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
8074 bpf_op
= generic_xdp_install
;
8075 if (bpf_op
== bpf_chk
)
8076 bpf_chk
= generic_xdp_install
;
8079 if (__dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
) ||
8080 __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG_HW
))
8082 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
8083 __dev_xdp_query(dev
, bpf_op
, query
))
8086 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
8087 bpf_op
== ops
->ndo_bpf
);
8089 return PTR_ERR(prog
);
8091 if (!(flags
& XDP_FLAGS_HW_MODE
) &&
8092 bpf_prog_is_dev_bound(prog
->aux
)) {
8093 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
8099 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
8100 if (err
< 0 && prog
)
8107 * dev_new_index - allocate an ifindex
8108 * @net: the applicable net namespace
8110 * Returns a suitable unique value for a new device interface
8111 * number. The caller must hold the rtnl semaphore or the
8112 * dev_base_lock to be sure it remains unique.
8114 static int dev_new_index(struct net
*net
)
8116 int ifindex
= net
->ifindex
;
8121 if (!__dev_get_by_index(net
, ifindex
))
8122 return net
->ifindex
= ifindex
;
8126 /* Delayed registration/unregisteration */
8127 static LIST_HEAD(net_todo_list
);
8128 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
8130 static void net_set_todo(struct net_device
*dev
)
8132 list_add_tail(&dev
->todo_list
, &net_todo_list
);
8133 dev_net(dev
)->dev_unreg_count
++;
8136 static void rollback_registered_many(struct list_head
*head
)
8138 struct net_device
*dev
, *tmp
;
8139 LIST_HEAD(close_head
);
8141 BUG_ON(dev_boot_phase
);
8144 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
8145 /* Some devices call without registering
8146 * for initialization unwind. Remove those
8147 * devices and proceed with the remaining.
8149 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8150 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8154 list_del(&dev
->unreg_list
);
8157 dev
->dismantle
= true;
8158 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
8161 /* If device is running, close it first. */
8162 list_for_each_entry(dev
, head
, unreg_list
)
8163 list_add_tail(&dev
->close_list
, &close_head
);
8164 dev_close_many(&close_head
, true);
8166 list_for_each_entry(dev
, head
, unreg_list
) {
8167 /* And unlink it from device chain. */
8168 unlist_netdevice(dev
);
8170 dev
->reg_state
= NETREG_UNREGISTERING
;
8172 flush_all_backlogs();
8176 list_for_each_entry(dev
, head
, unreg_list
) {
8177 struct sk_buff
*skb
= NULL
;
8179 /* Shutdown queueing discipline. */
8182 dev_xdp_uninstall(dev
);
8184 /* Notify protocols, that we are about to destroy
8185 * this device. They should clean all the things.
8187 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8189 if (!dev
->rtnl_link_ops
||
8190 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8191 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
8192 GFP_KERNEL
, NULL
, 0);
8195 * Flush the unicast and multicast chains
8200 if (dev
->netdev_ops
->ndo_uninit
)
8201 dev
->netdev_ops
->ndo_uninit(dev
);
8204 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
8206 /* Notifier chain MUST detach us all upper devices. */
8207 WARN_ON(netdev_has_any_upper_dev(dev
));
8208 WARN_ON(netdev_has_any_lower_dev(dev
));
8210 /* Remove entries from kobject tree */
8211 netdev_unregister_kobject(dev
);
8213 /* Remove XPS queueing entries */
8214 netif_reset_xps_queues_gt(dev
, 0);
8220 list_for_each_entry(dev
, head
, unreg_list
)
8224 static void rollback_registered(struct net_device
*dev
)
8228 list_add(&dev
->unreg_list
, &single
);
8229 rollback_registered_many(&single
);
8233 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8234 struct net_device
*upper
, netdev_features_t features
)
8236 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8237 netdev_features_t feature
;
8240 for_each_netdev_feature(upper_disables
, feature_bit
) {
8241 feature
= __NETIF_F_BIT(feature_bit
);
8242 if (!(upper
->wanted_features
& feature
)
8243 && (features
& feature
)) {
8244 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8245 &feature
, upper
->name
);
8246 features
&= ~feature
;
8253 static void netdev_sync_lower_features(struct net_device
*upper
,
8254 struct net_device
*lower
, netdev_features_t features
)
8256 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8257 netdev_features_t feature
;
8260 for_each_netdev_feature(upper_disables
, feature_bit
) {
8261 feature
= __NETIF_F_BIT(feature_bit
);
8262 if (!(features
& feature
) && (lower
->features
& feature
)) {
8263 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8264 &feature
, lower
->name
);
8265 lower
->wanted_features
&= ~feature
;
8266 __netdev_update_features(lower
);
8268 if (unlikely(lower
->features
& feature
))
8269 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8270 &feature
, lower
->name
);
8272 netdev_features_change(lower
);
8277 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8278 netdev_features_t features
)
8280 /* Fix illegal checksum combinations */
8281 if ((features
& NETIF_F_HW_CSUM
) &&
8282 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8283 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8284 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8287 /* TSO requires that SG is present as well. */
8288 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8289 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8290 features
&= ~NETIF_F_ALL_TSO
;
8293 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8294 !(features
& NETIF_F_IP_CSUM
)) {
8295 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8296 features
&= ~NETIF_F_TSO
;
8297 features
&= ~NETIF_F_TSO_ECN
;
8300 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8301 !(features
& NETIF_F_IPV6_CSUM
)) {
8302 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8303 features
&= ~NETIF_F_TSO6
;
8306 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8307 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8308 features
&= ~NETIF_F_TSO_MANGLEID
;
8310 /* TSO ECN requires that TSO is present as well. */
8311 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8312 features
&= ~NETIF_F_TSO_ECN
;
8314 /* Software GSO depends on SG. */
8315 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8316 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8317 features
&= ~NETIF_F_GSO
;
8320 /* GSO partial features require GSO partial be set */
8321 if ((features
& dev
->gso_partial_features
) &&
8322 !(features
& NETIF_F_GSO_PARTIAL
)) {
8324 "Dropping partially supported GSO features since no GSO partial.\n");
8325 features
&= ~dev
->gso_partial_features
;
8328 if (!(features
& NETIF_F_RXCSUM
)) {
8329 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8330 * successfully merged by hardware must also have the
8331 * checksum verified by hardware. If the user does not
8332 * want to enable RXCSUM, logically, we should disable GRO_HW.
8334 if (features
& NETIF_F_GRO_HW
) {
8335 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8336 features
&= ~NETIF_F_GRO_HW
;
8340 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8341 if (features
& NETIF_F_RXFCS
) {
8342 if (features
& NETIF_F_LRO
) {
8343 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8344 features
&= ~NETIF_F_LRO
;
8347 if (features
& NETIF_F_GRO_HW
) {
8348 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8349 features
&= ~NETIF_F_GRO_HW
;
8356 int __netdev_update_features(struct net_device
*dev
)
8358 struct net_device
*upper
, *lower
;
8359 netdev_features_t features
;
8360 struct list_head
*iter
;
8365 features
= netdev_get_wanted_features(dev
);
8367 if (dev
->netdev_ops
->ndo_fix_features
)
8368 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
8370 /* driver might be less strict about feature dependencies */
8371 features
= netdev_fix_features(dev
, features
);
8373 /* some features can't be enabled if they're off an an upper device */
8374 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
8375 features
= netdev_sync_upper_features(dev
, upper
, features
);
8377 if (dev
->features
== features
)
8380 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
8381 &dev
->features
, &features
);
8383 if (dev
->netdev_ops
->ndo_set_features
)
8384 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
8388 if (unlikely(err
< 0)) {
8390 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8391 err
, &features
, &dev
->features
);
8392 /* return non-0 since some features might have changed and
8393 * it's better to fire a spurious notification than miss it
8399 /* some features must be disabled on lower devices when disabled
8400 * on an upper device (think: bonding master or bridge)
8402 netdev_for_each_lower_dev(dev
, lower
, iter
)
8403 netdev_sync_lower_features(dev
, lower
, features
);
8406 netdev_features_t diff
= features
^ dev
->features
;
8408 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8409 /* udp_tunnel_{get,drop}_rx_info both need
8410 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8411 * device, or they won't do anything.
8412 * Thus we need to update dev->features
8413 * *before* calling udp_tunnel_get_rx_info,
8414 * but *after* calling udp_tunnel_drop_rx_info.
8416 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8417 dev
->features
= features
;
8418 udp_tunnel_get_rx_info(dev
);
8420 udp_tunnel_drop_rx_info(dev
);
8424 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8425 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8426 dev
->features
= features
;
8427 err
|= vlan_get_rx_ctag_filter_info(dev
);
8429 vlan_drop_rx_ctag_filter_info(dev
);
8433 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8434 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8435 dev
->features
= features
;
8436 err
|= vlan_get_rx_stag_filter_info(dev
);
8438 vlan_drop_rx_stag_filter_info(dev
);
8442 dev
->features
= features
;
8445 return err
< 0 ? 0 : 1;
8449 * netdev_update_features - recalculate device features
8450 * @dev: the device to check
8452 * Recalculate dev->features set and send notifications if it
8453 * has changed. Should be called after driver or hardware dependent
8454 * conditions might have changed that influence the features.
8456 void netdev_update_features(struct net_device
*dev
)
8458 if (__netdev_update_features(dev
))
8459 netdev_features_change(dev
);
8461 EXPORT_SYMBOL(netdev_update_features
);
8464 * netdev_change_features - recalculate device features
8465 * @dev: the device to check
8467 * Recalculate dev->features set and send notifications even
8468 * if they have not changed. Should be called instead of
8469 * netdev_update_features() if also dev->vlan_features might
8470 * have changed to allow the changes to be propagated to stacked
8473 void netdev_change_features(struct net_device
*dev
)
8475 __netdev_update_features(dev
);
8476 netdev_features_change(dev
);
8478 EXPORT_SYMBOL(netdev_change_features
);
8481 * netif_stacked_transfer_operstate - transfer operstate
8482 * @rootdev: the root or lower level device to transfer state from
8483 * @dev: the device to transfer operstate to
8485 * Transfer operational state from root to device. This is normally
8486 * called when a stacking relationship exists between the root
8487 * device and the device(a leaf device).
8489 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
8490 struct net_device
*dev
)
8492 if (rootdev
->operstate
== IF_OPER_DORMANT
)
8493 netif_dormant_on(dev
);
8495 netif_dormant_off(dev
);
8497 if (netif_carrier_ok(rootdev
))
8498 netif_carrier_on(dev
);
8500 netif_carrier_off(dev
);
8502 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
8504 static int netif_alloc_rx_queues(struct net_device
*dev
)
8506 unsigned int i
, count
= dev
->num_rx_queues
;
8507 struct netdev_rx_queue
*rx
;
8508 size_t sz
= count
* sizeof(*rx
);
8513 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8519 for (i
= 0; i
< count
; i
++) {
8522 /* XDP RX-queue setup */
8523 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
8530 /* Rollback successful reg's and free other resources */
8532 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
8538 static void netif_free_rx_queues(struct net_device
*dev
)
8540 unsigned int i
, count
= dev
->num_rx_queues
;
8542 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8546 for (i
= 0; i
< count
; i
++)
8547 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
8552 static void netdev_init_one_queue(struct net_device
*dev
,
8553 struct netdev_queue
*queue
, void *_unused
)
8555 /* Initialize queue lock */
8556 spin_lock_init(&queue
->_xmit_lock
);
8557 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
8558 queue
->xmit_lock_owner
= -1;
8559 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
8562 dql_init(&queue
->dql
, HZ
);
8566 static void netif_free_tx_queues(struct net_device
*dev
)
8571 static int netif_alloc_netdev_queues(struct net_device
*dev
)
8573 unsigned int count
= dev
->num_tx_queues
;
8574 struct netdev_queue
*tx
;
8575 size_t sz
= count
* sizeof(*tx
);
8577 if (count
< 1 || count
> 0xffff)
8580 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8586 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
8587 spin_lock_init(&dev
->tx_global_lock
);
8592 void netif_tx_stop_all_queues(struct net_device
*dev
)
8596 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
8597 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
8599 netif_tx_stop_queue(txq
);
8602 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
8605 * register_netdevice - register a network device
8606 * @dev: device to register
8608 * Take a completed network device structure and add it to the kernel
8609 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8610 * chain. 0 is returned on success. A negative errno code is returned
8611 * on a failure to set up the device, or if the name is a duplicate.
8613 * Callers must hold the rtnl semaphore. You may want
8614 * register_netdev() instead of this.
8617 * The locking appears insufficient to guarantee two parallel registers
8618 * will not get the same name.
8621 int register_netdevice(struct net_device
*dev
)
8624 struct net
*net
= dev_net(dev
);
8626 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
8627 NETDEV_FEATURE_COUNT
);
8628 BUG_ON(dev_boot_phase
);
8633 /* When net_device's are persistent, this will be fatal. */
8634 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
8637 spin_lock_init(&dev
->addr_list_lock
);
8638 netdev_set_addr_lockdep_class(dev
);
8640 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
8644 /* Init, if this function is available */
8645 if (dev
->netdev_ops
->ndo_init
) {
8646 ret
= dev
->netdev_ops
->ndo_init(dev
);
8654 if (((dev
->hw_features
| dev
->features
) &
8655 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
8656 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
8657 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
8658 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
8665 dev
->ifindex
= dev_new_index(net
);
8666 else if (__dev_get_by_index(net
, dev
->ifindex
))
8669 /* Transfer changeable features to wanted_features and enable
8670 * software offloads (GSO and GRO).
8672 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
8673 dev
->features
|= NETIF_F_SOFT_FEATURES
;
8675 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
8676 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8677 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8680 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
8682 if (!(dev
->flags
& IFF_LOOPBACK
))
8683 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
8685 /* If IPv4 TCP segmentation offload is supported we should also
8686 * allow the device to enable segmenting the frame with the option
8687 * of ignoring a static IP ID value. This doesn't enable the
8688 * feature itself but allows the user to enable it later.
8690 if (dev
->hw_features
& NETIF_F_TSO
)
8691 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
8692 if (dev
->vlan_features
& NETIF_F_TSO
)
8693 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
8694 if (dev
->mpls_features
& NETIF_F_TSO
)
8695 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
8696 if (dev
->hw_enc_features
& NETIF_F_TSO
)
8697 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
8699 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8701 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
8703 /* Make NETIF_F_SG inheritable to tunnel devices.
8705 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
8707 /* Make NETIF_F_SG inheritable to MPLS.
8709 dev
->mpls_features
|= NETIF_F_SG
;
8711 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
8712 ret
= notifier_to_errno(ret
);
8716 ret
= netdev_register_kobject(dev
);
8718 dev
->reg_state
= NETREG_UNREGISTERED
;
8721 dev
->reg_state
= NETREG_REGISTERED
;
8723 __netdev_update_features(dev
);
8726 * Default initial state at registry is that the
8727 * device is present.
8730 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8732 linkwatch_init_dev(dev
);
8734 dev_init_scheduler(dev
);
8736 list_netdevice(dev
);
8737 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8739 /* If the device has permanent device address, driver should
8740 * set dev_addr and also addr_assign_type should be set to
8741 * NET_ADDR_PERM (default value).
8743 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
8744 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
8746 /* Notify protocols, that a new device appeared. */
8747 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8748 ret
= notifier_to_errno(ret
);
8750 rollback_registered(dev
);
8753 dev
->reg_state
= NETREG_UNREGISTERED
;
8754 /* We should put the kobject that hold in
8755 * netdev_unregister_kobject(), otherwise
8756 * the net device cannot be freed when
8757 * driver calls free_netdev(), because the
8758 * kobject is being hold.
8760 kobject_put(&dev
->dev
.kobj
);
8763 * Prevent userspace races by waiting until the network
8764 * device is fully setup before sending notifications.
8766 if (!dev
->rtnl_link_ops
||
8767 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8768 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8774 if (dev
->netdev_ops
->ndo_uninit
)
8775 dev
->netdev_ops
->ndo_uninit(dev
);
8776 if (dev
->priv_destructor
)
8777 dev
->priv_destructor(dev
);
8780 EXPORT_SYMBOL(register_netdevice
);
8783 * init_dummy_netdev - init a dummy network device for NAPI
8784 * @dev: device to init
8786 * This takes a network device structure and initialize the minimum
8787 * amount of fields so it can be used to schedule NAPI polls without
8788 * registering a full blown interface. This is to be used by drivers
8789 * that need to tie several hardware interfaces to a single NAPI
8790 * poll scheduler due to HW limitations.
8792 int init_dummy_netdev(struct net_device
*dev
)
8794 /* Clear everything. Note we don't initialize spinlocks
8795 * are they aren't supposed to be taken by any of the
8796 * NAPI code and this dummy netdev is supposed to be
8797 * only ever used for NAPI polls
8799 memset(dev
, 0, sizeof(struct net_device
));
8801 /* make sure we BUG if trying to hit standard
8802 * register/unregister code path
8804 dev
->reg_state
= NETREG_DUMMY
;
8806 /* NAPI wants this */
8807 INIT_LIST_HEAD(&dev
->napi_list
);
8809 /* a dummy interface is started by default */
8810 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8811 set_bit(__LINK_STATE_START
, &dev
->state
);
8813 /* napi_busy_loop stats accounting wants this */
8814 dev_net_set(dev
, &init_net
);
8816 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8817 * because users of this 'device' dont need to change
8823 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
8827 * register_netdev - register a network device
8828 * @dev: device to register
8830 * Take a completed network device structure and add it to the kernel
8831 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8832 * chain. 0 is returned on success. A negative errno code is returned
8833 * on a failure to set up the device, or if the name is a duplicate.
8835 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8836 * and expands the device name if you passed a format string to
8839 int register_netdev(struct net_device
*dev
)
8843 if (rtnl_lock_killable())
8845 err
= register_netdevice(dev
);
8849 EXPORT_SYMBOL(register_netdev
);
8851 int netdev_refcnt_read(const struct net_device
*dev
)
8855 for_each_possible_cpu(i
)
8856 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
8859 EXPORT_SYMBOL(netdev_refcnt_read
);
8862 * netdev_wait_allrefs - wait until all references are gone.
8863 * @dev: target net_device
8865 * This is called when unregistering network devices.
8867 * Any protocol or device that holds a reference should register
8868 * for netdevice notification, and cleanup and put back the
8869 * reference if they receive an UNREGISTER event.
8870 * We can get stuck here if buggy protocols don't correctly
8873 static void netdev_wait_allrefs(struct net_device
*dev
)
8875 unsigned long rebroadcast_time
, warning_time
;
8878 linkwatch_forget_dev(dev
);
8880 rebroadcast_time
= warning_time
= jiffies
;
8881 refcnt
= netdev_refcnt_read(dev
);
8883 while (refcnt
!= 0) {
8884 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
8887 /* Rebroadcast unregister notification */
8888 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8894 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
8896 /* We must not have linkwatch events
8897 * pending on unregister. If this
8898 * happens, we simply run the queue
8899 * unscheduled, resulting in a noop
8902 linkwatch_run_queue();
8907 rebroadcast_time
= jiffies
;
8912 refcnt
= netdev_refcnt_read(dev
);
8914 if (refcnt
&& time_after(jiffies
, warning_time
+ 10 * HZ
)) {
8915 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8917 warning_time
= jiffies
;
8926 * register_netdevice(x1);
8927 * register_netdevice(x2);
8929 * unregister_netdevice(y1);
8930 * unregister_netdevice(y2);
8936 * We are invoked by rtnl_unlock().
8937 * This allows us to deal with problems:
8938 * 1) We can delete sysfs objects which invoke hotplug
8939 * without deadlocking with linkwatch via keventd.
8940 * 2) Since we run with the RTNL semaphore not held, we can sleep
8941 * safely in order to wait for the netdev refcnt to drop to zero.
8943 * We must not return until all unregister events added during
8944 * the interval the lock was held have been completed.
8946 void netdev_run_todo(void)
8948 struct list_head list
;
8950 /* Snapshot list, allow later requests */
8951 list_replace_init(&net_todo_list
, &list
);
8956 /* Wait for rcu callbacks to finish before next phase */
8957 if (!list_empty(&list
))
8960 while (!list_empty(&list
)) {
8961 struct net_device
*dev
8962 = list_first_entry(&list
, struct net_device
, todo_list
);
8963 list_del(&dev
->todo_list
);
8965 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
8966 pr_err("network todo '%s' but state %d\n",
8967 dev
->name
, dev
->reg_state
);
8972 dev
->reg_state
= NETREG_UNREGISTERED
;
8974 netdev_wait_allrefs(dev
);
8977 BUG_ON(netdev_refcnt_read(dev
));
8978 BUG_ON(!list_empty(&dev
->ptype_all
));
8979 BUG_ON(!list_empty(&dev
->ptype_specific
));
8980 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
8981 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
8982 #if IS_ENABLED(CONFIG_DECNET)
8983 WARN_ON(dev
->dn_ptr
);
8985 if (dev
->priv_destructor
)
8986 dev
->priv_destructor(dev
);
8987 if (dev
->needs_free_netdev
)
8990 /* Report a network device has been unregistered */
8992 dev_net(dev
)->dev_unreg_count
--;
8994 wake_up(&netdev_unregistering_wq
);
8996 /* Free network device */
8997 kobject_put(&dev
->dev
.kobj
);
9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9002 * all the same fields in the same order as net_device_stats, with only
9003 * the type differing, but rtnl_link_stats64 may have additional fields
9004 * at the end for newer counters.
9006 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
9007 const struct net_device_stats
*netdev_stats
)
9009 #if BITS_PER_LONG == 64
9010 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
9011 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
9012 /* zero out counters that only exist in rtnl_link_stats64 */
9013 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
9014 sizeof(*stats64
) - sizeof(*netdev_stats
));
9016 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
9017 const unsigned long *src
= (const unsigned long *)netdev_stats
;
9018 u64
*dst
= (u64
*)stats64
;
9020 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
9021 for (i
= 0; i
< n
; i
++)
9023 /* zero out counters that only exist in rtnl_link_stats64 */
9024 memset((char *)stats64
+ n
* sizeof(u64
), 0,
9025 sizeof(*stats64
) - n
* sizeof(u64
));
9028 EXPORT_SYMBOL(netdev_stats_to_stats64
);
9031 * dev_get_stats - get network device statistics
9032 * @dev: device to get statistics from
9033 * @storage: place to store stats
9035 * Get network statistics from device. Return @storage.
9036 * The device driver may provide its own method by setting
9037 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9038 * otherwise the internal statistics structure is used.
9040 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
9041 struct rtnl_link_stats64
*storage
)
9043 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9045 if (ops
->ndo_get_stats64
) {
9046 memset(storage
, 0, sizeof(*storage
));
9047 ops
->ndo_get_stats64(dev
, storage
);
9048 } else if (ops
->ndo_get_stats
) {
9049 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
9051 netdev_stats_to_stats64(storage
, &dev
->stats
);
9053 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
9054 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
9055 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
9058 EXPORT_SYMBOL(dev_get_stats
);
9060 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
9062 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
9064 #ifdef CONFIG_NET_CLS_ACT
9067 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
9070 netdev_init_one_queue(dev
, queue
, NULL
);
9071 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
9072 queue
->qdisc_sleeping
= &noop_qdisc
;
9073 rcu_assign_pointer(dev
->ingress_queue
, queue
);
9078 static const struct ethtool_ops default_ethtool_ops
;
9080 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
9081 const struct ethtool_ops
*ops
)
9083 if (dev
->ethtool_ops
== &default_ethtool_ops
)
9084 dev
->ethtool_ops
= ops
;
9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
9088 void netdev_freemem(struct net_device
*dev
)
9090 char *addr
= (char *)dev
- dev
->padded
;
9096 * alloc_netdev_mqs - allocate network device
9097 * @sizeof_priv: size of private data to allocate space for
9098 * @name: device name format string
9099 * @name_assign_type: origin of device name
9100 * @setup: callback to initialize device
9101 * @txqs: the number of TX subqueues to allocate
9102 * @rxqs: the number of RX subqueues to allocate
9104 * Allocates a struct net_device with private data area for driver use
9105 * and performs basic initialization. Also allocates subqueue structs
9106 * for each queue on the device.
9108 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
9109 unsigned char name_assign_type
,
9110 void (*setup
)(struct net_device
*),
9111 unsigned int txqs
, unsigned int rxqs
)
9113 struct net_device
*dev
;
9114 unsigned int alloc_size
;
9115 struct net_device
*p
;
9117 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
9120 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9125 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9129 alloc_size
= sizeof(struct net_device
);
9131 /* ensure 32-byte alignment of private area */
9132 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
9133 alloc_size
+= sizeof_priv
;
9135 /* ensure 32-byte alignment of whole construct */
9136 alloc_size
+= NETDEV_ALIGN
- 1;
9138 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9142 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
9143 dev
->padded
= (char *)dev
- (char *)p
;
9145 dev
->pcpu_refcnt
= alloc_percpu(int);
9146 if (!dev
->pcpu_refcnt
)
9149 if (dev_addr_init(dev
))
9155 dev_net_set(dev
, &init_net
);
9157 dev
->gso_max_size
= GSO_MAX_SIZE
;
9158 dev
->gso_max_segs
= GSO_MAX_SEGS
;
9159 dev
->upper_level
= 1;
9160 dev
->lower_level
= 1;
9162 INIT_LIST_HEAD(&dev
->napi_list
);
9163 INIT_LIST_HEAD(&dev
->unreg_list
);
9164 INIT_LIST_HEAD(&dev
->close_list
);
9165 INIT_LIST_HEAD(&dev
->link_watch_list
);
9166 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
9167 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
9168 INIT_LIST_HEAD(&dev
->ptype_all
);
9169 INIT_LIST_HEAD(&dev
->ptype_specific
);
9170 #ifdef CONFIG_NET_SCHED
9171 hash_init(dev
->qdisc_hash
);
9173 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
9176 if (!dev
->tx_queue_len
) {
9177 dev
->priv_flags
|= IFF_NO_QUEUE
;
9178 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
9181 dev
->num_tx_queues
= txqs
;
9182 dev
->real_num_tx_queues
= txqs
;
9183 if (netif_alloc_netdev_queues(dev
))
9186 dev
->num_rx_queues
= rxqs
;
9187 dev
->real_num_rx_queues
= rxqs
;
9188 if (netif_alloc_rx_queues(dev
))
9191 strcpy(dev
->name
, name
);
9192 dev
->name_assign_type
= name_assign_type
;
9193 dev
->group
= INIT_NETDEV_GROUP
;
9194 if (!dev
->ethtool_ops
)
9195 dev
->ethtool_ops
= &default_ethtool_ops
;
9197 nf_hook_ingress_init(dev
);
9206 free_percpu(dev
->pcpu_refcnt
);
9208 netdev_freemem(dev
);
9211 EXPORT_SYMBOL(alloc_netdev_mqs
);
9214 * free_netdev - free network device
9217 * This function does the last stage of destroying an allocated device
9218 * interface. The reference to the device object is released. If this
9219 * is the last reference then it will be freed.Must be called in process
9222 void free_netdev(struct net_device
*dev
)
9224 struct napi_struct
*p
, *n
;
9227 netif_free_tx_queues(dev
);
9228 netif_free_rx_queues(dev
);
9230 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
9232 /* Flush device addresses */
9233 dev_addr_flush(dev
);
9235 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
9238 free_percpu(dev
->pcpu_refcnt
);
9239 dev
->pcpu_refcnt
= NULL
;
9241 /* Compatibility with error handling in drivers */
9242 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
9243 netdev_freemem(dev
);
9247 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
9248 dev
->reg_state
= NETREG_RELEASED
;
9250 /* will free via device release */
9251 put_device(&dev
->dev
);
9253 EXPORT_SYMBOL(free_netdev
);
9256 * synchronize_net - Synchronize with packet receive processing
9258 * Wait for packets currently being received to be done.
9259 * Does not block later packets from starting.
9261 void synchronize_net(void)
9264 if (rtnl_is_locked())
9265 synchronize_rcu_expedited();
9269 EXPORT_SYMBOL(synchronize_net
);
9272 * unregister_netdevice_queue - remove device from the kernel
9276 * This function shuts down a device interface and removes it
9277 * from the kernel tables.
9278 * If head not NULL, device is queued to be unregistered later.
9280 * Callers must hold the rtnl semaphore. You may want
9281 * unregister_netdev() instead of this.
9284 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9289 list_move_tail(&dev
->unreg_list
, head
);
9291 rollback_registered(dev
);
9292 /* Finish processing unregister after unlock */
9296 EXPORT_SYMBOL(unregister_netdevice_queue
);
9299 * unregister_netdevice_many - unregister many devices
9300 * @head: list of devices
9302 * Note: As most callers use a stack allocated list_head,
9303 * we force a list_del() to make sure stack wont be corrupted later.
9305 void unregister_netdevice_many(struct list_head
*head
)
9307 struct net_device
*dev
;
9309 if (!list_empty(head
)) {
9310 rollback_registered_many(head
);
9311 list_for_each_entry(dev
, head
, unreg_list
)
9316 EXPORT_SYMBOL(unregister_netdevice_many
);
9319 * unregister_netdev - remove device from the kernel
9322 * This function shuts down a device interface and removes it
9323 * from the kernel tables.
9325 * This is just a wrapper for unregister_netdevice that takes
9326 * the rtnl semaphore. In general you want to use this and not
9327 * unregister_netdevice.
9329 void unregister_netdev(struct net_device
*dev
)
9332 unregister_netdevice(dev
);
9335 EXPORT_SYMBOL(unregister_netdev
);
9338 * dev_change_net_namespace - move device to different nethost namespace
9340 * @net: network namespace
9341 * @pat: If not NULL name pattern to try if the current device name
9342 * is already taken in the destination network namespace.
9344 * This function shuts down a device interface and moves it
9345 * to a new network namespace. On success 0 is returned, on
9346 * a failure a netagive errno code is returned.
9348 * Callers must hold the rtnl semaphore.
9351 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
9353 int err
, new_nsid
, new_ifindex
;
9357 /* Don't allow namespace local devices to be moved. */
9359 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9362 /* Ensure the device has been registrered */
9363 if (dev
->reg_state
!= NETREG_REGISTERED
)
9366 /* Get out if there is nothing todo */
9368 if (net_eq(dev_net(dev
), net
))
9371 /* Pick the destination device name, and ensure
9372 * we can use it in the destination network namespace.
9375 if (__dev_get_by_name(net
, dev
->name
)) {
9376 /* We get here if we can't use the current device name */
9379 err
= dev_get_valid_name(net
, dev
, pat
);
9385 * And now a mini version of register_netdevice unregister_netdevice.
9388 /* If device is running close it first. */
9391 /* And unlink it from device chain */
9392 unlist_netdevice(dev
);
9396 /* Shutdown queueing discipline. */
9399 /* Notify protocols, that we are about to destroy
9400 * this device. They should clean all the things.
9402 * Note that dev->reg_state stays at NETREG_REGISTERED.
9403 * This is wanted because this way 8021q and macvlan know
9404 * the device is just moving and can keep their slaves up.
9406 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9409 new_nsid
= peernet2id_alloc(dev_net(dev
), net
, GFP_KERNEL
);
9410 /* If there is an ifindex conflict assign a new one */
9411 if (__dev_get_by_index(net
, dev
->ifindex
))
9412 new_ifindex
= dev_new_index(net
);
9414 new_ifindex
= dev
->ifindex
;
9416 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
9420 * Flush the unicast and multicast chains
9425 /* Send a netdev-removed uevent to the old namespace */
9426 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
9427 netdev_adjacent_del_links(dev
);
9429 /* Actually switch the network namespace */
9430 dev_net_set(dev
, net
);
9431 dev
->ifindex
= new_ifindex
;
9433 /* Send a netdev-add uevent to the new namespace */
9434 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
9435 netdev_adjacent_add_links(dev
);
9437 /* Fixup kobjects */
9438 err
= device_rename(&dev
->dev
, dev
->name
);
9441 /* Add the device back in the hashes */
9442 list_netdevice(dev
);
9444 /* Notify protocols, that a new device appeared. */
9445 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9448 * Prevent userspace races by waiting until the network
9449 * device is fully setup before sending notifications.
9451 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9458 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
9460 static int dev_cpu_dead(unsigned int oldcpu
)
9462 struct sk_buff
**list_skb
;
9463 struct sk_buff
*skb
;
9465 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
9467 local_irq_disable();
9468 cpu
= smp_processor_id();
9469 sd
= &per_cpu(softnet_data
, cpu
);
9470 oldsd
= &per_cpu(softnet_data
, oldcpu
);
9472 /* Find end of our completion_queue. */
9473 list_skb
= &sd
->completion_queue
;
9475 list_skb
= &(*list_skb
)->next
;
9476 /* Append completion queue from offline CPU. */
9477 *list_skb
= oldsd
->completion_queue
;
9478 oldsd
->completion_queue
= NULL
;
9480 /* Append output queue from offline CPU. */
9481 if (oldsd
->output_queue
) {
9482 *sd
->output_queue_tailp
= oldsd
->output_queue
;
9483 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
9484 oldsd
->output_queue
= NULL
;
9485 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
9487 /* Append NAPI poll list from offline CPU, with one exception :
9488 * process_backlog() must be called by cpu owning percpu backlog.
9489 * We properly handle process_queue & input_pkt_queue later.
9491 while (!list_empty(&oldsd
->poll_list
)) {
9492 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
9496 list_del_init(&napi
->poll_list
);
9497 if (napi
->poll
== process_backlog
)
9500 ____napi_schedule(sd
, napi
);
9503 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
9507 remsd
= oldsd
->rps_ipi_list
;
9508 oldsd
->rps_ipi_list
= NULL
;
9510 /* send out pending IPI's on offline CPU */
9511 net_rps_send_ipi(remsd
);
9513 /* Process offline CPU's input_pkt_queue */
9514 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
9516 input_queue_head_incr(oldsd
);
9518 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
9520 input_queue_head_incr(oldsd
);
9527 * netdev_increment_features - increment feature set by one
9528 * @all: current feature set
9529 * @one: new feature set
9530 * @mask: mask feature set
9532 * Computes a new feature set after adding a device with feature set
9533 * @one to the master device with current feature set @all. Will not
9534 * enable anything that is off in @mask. Returns the new feature set.
9536 netdev_features_t
netdev_increment_features(netdev_features_t all
,
9537 netdev_features_t one
, netdev_features_t mask
)
9539 if (mask
& NETIF_F_HW_CSUM
)
9540 mask
|= NETIF_F_CSUM_MASK
;
9541 mask
|= NETIF_F_VLAN_CHALLENGED
;
9543 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
9544 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
9546 /* If one device supports hw checksumming, set for all. */
9547 if (all
& NETIF_F_HW_CSUM
)
9548 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
9552 EXPORT_SYMBOL(netdev_increment_features
);
9554 static struct hlist_head
* __net_init
netdev_create_hash(void)
9557 struct hlist_head
*hash
;
9559 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
9561 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
9562 INIT_HLIST_HEAD(&hash
[i
]);
9567 /* Initialize per network namespace state */
9568 static int __net_init
netdev_init(struct net
*net
)
9570 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
9571 8 * FIELD_SIZEOF(struct napi_struct
, gro_bitmask
));
9573 if (net
!= &init_net
)
9574 INIT_LIST_HEAD(&net
->dev_base_head
);
9576 net
->dev_name_head
= netdev_create_hash();
9577 if (net
->dev_name_head
== NULL
)
9580 net
->dev_index_head
= netdev_create_hash();
9581 if (net
->dev_index_head
== NULL
)
9587 kfree(net
->dev_name_head
);
9593 * netdev_drivername - network driver for the device
9594 * @dev: network device
9596 * Determine network driver for device.
9598 const char *netdev_drivername(const struct net_device
*dev
)
9600 const struct device_driver
*driver
;
9601 const struct device
*parent
;
9602 const char *empty
= "";
9604 parent
= dev
->dev
.parent
;
9608 driver
= parent
->driver
;
9609 if (driver
&& driver
->name
)
9610 return driver
->name
;
9614 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
9615 struct va_format
*vaf
)
9617 if (dev
&& dev
->dev
.parent
) {
9618 dev_printk_emit(level
[1] - '0',
9621 dev_driver_string(dev
->dev
.parent
),
9622 dev_name(dev
->dev
.parent
),
9623 netdev_name(dev
), netdev_reg_state(dev
),
9626 printk("%s%s%s: %pV",
9627 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
9629 printk("%s(NULL net_device): %pV", level
, vaf
);
9633 void netdev_printk(const char *level
, const struct net_device
*dev
,
9634 const char *format
, ...)
9636 struct va_format vaf
;
9639 va_start(args
, format
);
9644 __netdev_printk(level
, dev
, &vaf
);
9648 EXPORT_SYMBOL(netdev_printk
);
9650 #define define_netdev_printk_level(func, level) \
9651 void func(const struct net_device *dev, const char *fmt, ...) \
9653 struct va_format vaf; \
9656 va_start(args, fmt); \
9661 __netdev_printk(level, dev, &vaf); \
9665 EXPORT_SYMBOL(func);
9667 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
9668 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
9669 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
9670 define_netdev_printk_level(netdev_err
, KERN_ERR
);
9671 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
9672 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
9673 define_netdev_printk_level(netdev_info
, KERN_INFO
);
9675 static void __net_exit
netdev_exit(struct net
*net
)
9677 kfree(net
->dev_name_head
);
9678 kfree(net
->dev_index_head
);
9679 if (net
!= &init_net
)
9680 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
9683 static struct pernet_operations __net_initdata netdev_net_ops
= {
9684 .init
= netdev_init
,
9685 .exit
= netdev_exit
,
9688 static void __net_exit
default_device_exit(struct net
*net
)
9690 struct net_device
*dev
, *aux
;
9692 * Push all migratable network devices back to the
9693 * initial network namespace
9696 for_each_netdev_safe(net
, dev
, aux
) {
9698 char fb_name
[IFNAMSIZ
];
9700 /* Ignore unmoveable devices (i.e. loopback) */
9701 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9704 /* Leave virtual devices for the generic cleanup */
9705 if (dev
->rtnl_link_ops
)
9708 /* Push remaining network devices to init_net */
9709 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
9710 if (__dev_get_by_name(&init_net
, fb_name
))
9711 snprintf(fb_name
, IFNAMSIZ
, "dev%%d");
9712 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
9714 pr_emerg("%s: failed to move %s to init_net: %d\n",
9715 __func__
, dev
->name
, err
);
9722 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
9724 /* Return with the rtnl_lock held when there are no network
9725 * devices unregistering in any network namespace in net_list.
9729 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
9731 add_wait_queue(&netdev_unregistering_wq
, &wait
);
9733 unregistering
= false;
9735 list_for_each_entry(net
, net_list
, exit_list
) {
9736 if (net
->dev_unreg_count
> 0) {
9737 unregistering
= true;
9745 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
9747 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
9750 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
9752 /* At exit all network devices most be removed from a network
9753 * namespace. Do this in the reverse order of registration.
9754 * Do this across as many network namespaces as possible to
9755 * improve batching efficiency.
9757 struct net_device
*dev
;
9759 LIST_HEAD(dev_kill_list
);
9761 /* To prevent network device cleanup code from dereferencing
9762 * loopback devices or network devices that have been freed
9763 * wait here for all pending unregistrations to complete,
9764 * before unregistring the loopback device and allowing the
9765 * network namespace be freed.
9767 * The netdev todo list containing all network devices
9768 * unregistrations that happen in default_device_exit_batch
9769 * will run in the rtnl_unlock() at the end of
9770 * default_device_exit_batch.
9772 rtnl_lock_unregistering(net_list
);
9773 list_for_each_entry(net
, net_list
, exit_list
) {
9774 for_each_netdev_reverse(net
, dev
) {
9775 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
9776 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
9778 unregister_netdevice_queue(dev
, &dev_kill_list
);
9781 unregister_netdevice_many(&dev_kill_list
);
9785 static struct pernet_operations __net_initdata default_device_ops
= {
9786 .exit
= default_device_exit
,
9787 .exit_batch
= default_device_exit_batch
,
9791 * Initialize the DEV module. At boot time this walks the device list and
9792 * unhooks any devices that fail to initialise (normally hardware not
9793 * present) and leaves us with a valid list of present and active devices.
9798 * This is called single threaded during boot, so no need
9799 * to take the rtnl semaphore.
9801 static int __init
net_dev_init(void)
9803 int i
, rc
= -ENOMEM
;
9805 BUG_ON(!dev_boot_phase
);
9807 if (dev_proc_init())
9810 if (netdev_kobject_init())
9813 INIT_LIST_HEAD(&ptype_all
);
9814 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
9815 INIT_LIST_HEAD(&ptype_base
[i
]);
9817 INIT_LIST_HEAD(&offload_base
);
9819 if (register_pernet_subsys(&netdev_net_ops
))
9823 * Initialise the packet receive queues.
9826 for_each_possible_cpu(i
) {
9827 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
9828 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
9830 INIT_WORK(flush
, flush_backlog
);
9832 skb_queue_head_init(&sd
->input_pkt_queue
);
9833 skb_queue_head_init(&sd
->process_queue
);
9834 #ifdef CONFIG_XFRM_OFFLOAD
9835 skb_queue_head_init(&sd
->xfrm_backlog
);
9837 INIT_LIST_HEAD(&sd
->poll_list
);
9838 sd
->output_queue_tailp
= &sd
->output_queue
;
9840 sd
->csd
.func
= rps_trigger_softirq
;
9845 init_gro_hash(&sd
->backlog
);
9846 sd
->backlog
.poll
= process_backlog
;
9847 sd
->backlog
.weight
= weight_p
;
9852 /* The loopback device is special if any other network devices
9853 * is present in a network namespace the loopback device must
9854 * be present. Since we now dynamically allocate and free the
9855 * loopback device ensure this invariant is maintained by
9856 * keeping the loopback device as the first device on the
9857 * list of network devices. Ensuring the loopback devices
9858 * is the first device that appears and the last network device
9861 if (register_pernet_device(&loopback_net_ops
))
9864 if (register_pernet_device(&default_device_ops
))
9867 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
9868 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
9870 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
9871 NULL
, dev_cpu_dead
);
9878 subsys_initcall(net_dev_init
);