2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <asm/unaligned.h>
95 #include <linux/capability.h>
96 #include <linux/errno.h>
97 #include <linux/errqueue.h>
98 #include <linux/types.h>
99 #include <linux/socket.h>
100 #include <linux/in.h>
101 #include <linux/kernel.h>
102 #include <linux/module.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <linux/sched.h>
106 #include <linux/sched/mm.h>
107 #include <linux/timer.h>
108 #include <linux/string.h>
109 #include <linux/sockios.h>
110 #include <linux/net.h>
111 #include <linux/mm.h>
112 #include <linux/slab.h>
113 #include <linux/interrupt.h>
114 #include <linux/poll.h>
115 #include <linux/tcp.h>
116 #include <linux/init.h>
117 #include <linux/highmem.h>
118 #include <linux/user_namespace.h>
119 #include <linux/static_key.h>
120 #include <linux/memcontrol.h>
121 #include <linux/prefetch.h>
123 #include <linux/uaccess.h>
125 #include <linux/netdevice.h>
126 #include <net/protocol.h>
127 #include <linux/skbuff.h>
128 #include <net/net_namespace.h>
129 #include <net/request_sock.h>
130 #include <net/sock.h>
131 #include <linux/net_tstamp.h>
132 #include <net/xfrm.h>
133 #include <linux/ipsec.h>
134 #include <net/cls_cgroup.h>
135 #include <net/netprio_cgroup.h>
136 #include <linux/sock_diag.h>
138 #include <linux/filter.h>
139 #include <net/sock_reuseport.h>
141 #include <trace/events/sock.h>
144 #include <net/busy_poll.h>
146 static DEFINE_MUTEX(proto_list_mutex
);
147 static LIST_HEAD(proto_list
);
149 static void sock_inuse_add(struct net
*net
, int val
);
152 * sk_ns_capable - General socket capability test
153 * @sk: Socket to use a capability on or through
154 * @user_ns: The user namespace of the capability to use
155 * @cap: The capability to use
157 * Test to see if the opener of the socket had when the socket was
158 * created and the current process has the capability @cap in the user
159 * namespace @user_ns.
161 bool sk_ns_capable(const struct sock
*sk
,
162 struct user_namespace
*user_ns
, int cap
)
164 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
165 ns_capable(user_ns
, cap
);
167 EXPORT_SYMBOL(sk_ns_capable
);
170 * sk_capable - Socket global capability test
171 * @sk: Socket to use a capability on or through
172 * @cap: The global capability to use
174 * Test to see if the opener of the socket had when the socket was
175 * created and the current process has the capability @cap in all user
178 bool sk_capable(const struct sock
*sk
, int cap
)
180 return sk_ns_capable(sk
, &init_user_ns
, cap
);
182 EXPORT_SYMBOL(sk_capable
);
185 * sk_net_capable - Network namespace socket capability test
186 * @sk: Socket to use a capability on or through
187 * @cap: The capability to use
189 * Test to see if the opener of the socket had when the socket was created
190 * and the current process has the capability @cap over the network namespace
191 * the socket is a member of.
193 bool sk_net_capable(const struct sock
*sk
, int cap
)
195 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
197 EXPORT_SYMBOL(sk_net_capable
);
200 * Each address family might have different locking rules, so we have
201 * one slock key per address family and separate keys for internal and
204 static struct lock_class_key af_family_keys
[AF_MAX
];
205 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
206 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
207 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
210 * Make lock validator output more readable. (we pre-construct these
211 * strings build-time, so that runtime initialization of socket
215 #define _sock_locks(x) \
216 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
217 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
218 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
219 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
220 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
221 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
222 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
223 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
224 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
225 x "27" , x "28" , x "AF_CAN" , \
226 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
227 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
228 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
229 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
230 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
233 static const char *const af_family_key_strings
[AF_MAX
+1] = {
234 _sock_locks("sk_lock-")
236 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
237 _sock_locks("slock-")
239 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
240 _sock_locks("clock-")
243 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
244 _sock_locks("k-sk_lock-")
246 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
247 _sock_locks("k-slock-")
249 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
250 _sock_locks("k-clock-")
252 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
253 _sock_locks("rlock-")
255 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
256 _sock_locks("wlock-")
258 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
259 _sock_locks("elock-")
263 * sk_callback_lock and sk queues locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
266 static struct lock_class_key af_callback_keys
[AF_MAX
];
267 static struct lock_class_key af_rlock_keys
[AF_MAX
];
268 static struct lock_class_key af_wlock_keys
[AF_MAX
];
269 static struct lock_class_key af_elock_keys
[AF_MAX
];
270 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
272 /* Run time adjustable parameters. */
273 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
274 EXPORT_SYMBOL(sysctl_wmem_max
);
275 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
276 EXPORT_SYMBOL(sysctl_rmem_max
);
277 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
278 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
280 /* Maximal space eaten by iovec or ancillary data plus some space */
281 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
282 EXPORT_SYMBOL(sysctl_optmem_max
);
284 int sysctl_tstamp_allow_data __read_mostly
= 1;
286 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key
);
287 EXPORT_SYMBOL_GPL(memalloc_socks_key
);
290 * sk_set_memalloc - sets %SOCK_MEMALLOC
291 * @sk: socket to set it on
293 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
294 * It's the responsibility of the admin to adjust min_free_kbytes
295 * to meet the requirements
297 void sk_set_memalloc(struct sock
*sk
)
299 sock_set_flag(sk
, SOCK_MEMALLOC
);
300 sk
->sk_allocation
|= __GFP_MEMALLOC
;
301 static_branch_inc(&memalloc_socks_key
);
303 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
305 void sk_clear_memalloc(struct sock
*sk
)
307 sock_reset_flag(sk
, SOCK_MEMALLOC
);
308 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
309 static_branch_dec(&memalloc_socks_key
);
312 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
313 * progress of swapping. SOCK_MEMALLOC may be cleared while
314 * it has rmem allocations due to the last swapfile being deactivated
315 * but there is a risk that the socket is unusable due to exceeding
316 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
322 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
325 unsigned int noreclaim_flag
;
327 /* these should have been dropped before queueing */
328 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
330 noreclaim_flag
= memalloc_noreclaim_save();
331 ret
= sk
->sk_backlog_rcv(sk
, skb
);
332 memalloc_noreclaim_restore(noreclaim_flag
);
336 EXPORT_SYMBOL(__sk_backlog_rcv
);
338 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
342 if (optlen
< sizeof(tv
))
344 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
346 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
350 static int warned __read_mostly
;
353 if (warned
< 10 && net_ratelimit()) {
355 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
356 __func__
, current
->comm
, task_pid_nr(current
));
360 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
361 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
363 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
364 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP(tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
368 static void sock_warn_obsolete_bsdism(const char *name
)
371 static char warncomm
[TASK_COMM_LEN
];
372 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
373 strcpy(warncomm
, current
->comm
);
374 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
380 static bool sock_needs_netstamp(const struct sock
*sk
)
382 switch (sk
->sk_family
) {
391 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
393 if (sk
->sk_flags
& flags
) {
394 sk
->sk_flags
&= ~flags
;
395 if (sock_needs_netstamp(sk
) &&
396 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
397 net_disable_timestamp();
402 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
405 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
407 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
408 atomic_inc(&sk
->sk_drops
);
409 trace_sock_rcvqueue_full(sk
, skb
);
413 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
414 atomic_inc(&sk
->sk_drops
);
419 skb_set_owner_r(skb
, sk
);
421 /* we escape from rcu protected region, make sure we dont leak
426 spin_lock_irqsave(&list
->lock
, flags
);
427 sock_skb_set_dropcount(sk
, skb
);
428 __skb_queue_tail(list
, skb
);
429 spin_unlock_irqrestore(&list
->lock
, flags
);
431 if (!sock_flag(sk
, SOCK_DEAD
))
432 sk
->sk_data_ready(sk
);
435 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
437 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
441 err
= sk_filter(sk
, skb
);
445 return __sock_queue_rcv_skb(sk
, skb
);
447 EXPORT_SYMBOL(sock_queue_rcv_skb
);
449 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
450 const int nested
, unsigned int trim_cap
, bool refcounted
)
452 int rc
= NET_RX_SUCCESS
;
454 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
455 goto discard_and_relse
;
459 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
460 atomic_inc(&sk
->sk_drops
);
461 goto discard_and_relse
;
464 bh_lock_sock_nested(sk
);
467 if (!sock_owned_by_user(sk
)) {
469 * trylock + unlock semantics:
471 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
473 rc
= sk_backlog_rcv(sk
, skb
);
475 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
476 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
478 atomic_inc(&sk
->sk_drops
);
479 goto discard_and_relse
;
491 EXPORT_SYMBOL(__sk_receive_skb
);
493 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
495 struct dst_entry
*dst
= __sk_dst_get(sk
);
497 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
498 sk_tx_queue_clear(sk
);
499 sk
->sk_dst_pending_confirm
= 0;
500 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
507 EXPORT_SYMBOL(__sk_dst_check
);
509 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
511 struct dst_entry
*dst
= sk_dst_get(sk
);
513 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
521 EXPORT_SYMBOL(sk_dst_check
);
523 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
526 int ret
= -ENOPROTOOPT
;
527 #ifdef CONFIG_NETDEVICES
528 struct net
*net
= sock_net(sk
);
529 char devname
[IFNAMSIZ
];
534 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
541 /* Bind this socket to a particular device like "eth0",
542 * as specified in the passed interface name. If the
543 * name is "" or the option length is zero the socket
546 if (optlen
> IFNAMSIZ
- 1)
547 optlen
= IFNAMSIZ
- 1;
548 memset(devname
, 0, sizeof(devname
));
551 if (copy_from_user(devname
, optval
, optlen
))
555 if (devname
[0] != '\0') {
556 struct net_device
*dev
;
559 dev
= dev_get_by_name_rcu(net
, devname
);
561 index
= dev
->ifindex
;
569 sk
->sk_bound_dev_if
= index
;
581 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
582 int __user
*optlen
, int len
)
584 int ret
= -ENOPROTOOPT
;
585 #ifdef CONFIG_NETDEVICES
586 struct net
*net
= sock_net(sk
);
587 char devname
[IFNAMSIZ
];
589 if (sk
->sk_bound_dev_if
== 0) {
598 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
602 len
= strlen(devname
) + 1;
605 if (copy_to_user(optval
, devname
, len
))
610 if (put_user(len
, optlen
))
621 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
624 sock_set_flag(sk
, bit
);
626 sock_reset_flag(sk
, bit
);
629 bool sk_mc_loop(struct sock
*sk
)
631 if (dev_recursion_level())
635 switch (sk
->sk_family
) {
637 return inet_sk(sk
)->mc_loop
;
638 #if IS_ENABLED(CONFIG_IPV6)
640 return inet6_sk(sk
)->mc_loop
;
646 EXPORT_SYMBOL(sk_mc_loop
);
649 * This is meant for all protocols to use and covers goings on
650 * at the socket level. Everything here is generic.
653 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
654 char __user
*optval
, unsigned int optlen
)
656 struct sock_txtime sk_txtime
;
657 struct sock
*sk
= sock
->sk
;
664 * Options without arguments
667 if (optname
== SO_BINDTODEVICE
)
668 return sock_setbindtodevice(sk
, optval
, optlen
);
670 if (optlen
< sizeof(int))
673 if (get_user(val
, (int __user
*)optval
))
676 valbool
= val
? 1 : 0;
682 if (val
&& !capable(CAP_NET_ADMIN
))
685 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
688 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
691 sk
->sk_reuseport
= valbool
;
700 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
704 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
712 val
= min_t(u32
, val
, sysctl_wmem_max
);
714 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
715 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
716 /* Wake up sending tasks if we upped the value. */
717 sk
->sk_write_space(sk
);
721 if (!capable(CAP_NET_ADMIN
)) {
728 /* Don't error on this BSD doesn't and if you think
729 * about it this is right. Otherwise apps have to
730 * play 'guess the biggest size' games. RCVBUF/SNDBUF
731 * are treated in BSD as hints
733 val
= min_t(u32
, val
, sysctl_rmem_max
);
735 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
737 * We double it on the way in to account for
738 * "struct sk_buff" etc. overhead. Applications
739 * assume that the SO_RCVBUF setting they make will
740 * allow that much actual data to be received on that
743 * Applications are unaware that "struct sk_buff" and
744 * other overheads allocate from the receive buffer
745 * during socket buffer allocation.
747 * And after considering the possible alternatives,
748 * returning the value we actually used in getsockopt
749 * is the most desirable behavior.
751 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
755 if (!capable(CAP_NET_ADMIN
)) {
762 if (sk
->sk_prot
->keepalive
)
763 sk
->sk_prot
->keepalive(sk
, valbool
);
764 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
768 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
772 sk
->sk_no_check_tx
= valbool
;
776 if ((val
>= 0 && val
<= 6) ||
777 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
778 sk
->sk_priority
= val
;
784 if (optlen
< sizeof(ling
)) {
785 ret
= -EINVAL
; /* 1003.1g */
788 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
793 sock_reset_flag(sk
, SOCK_LINGER
);
795 #if (BITS_PER_LONG == 32)
796 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
797 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
800 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
801 sock_set_flag(sk
, SOCK_LINGER
);
806 sock_warn_obsolete_bsdism("setsockopt");
811 set_bit(SOCK_PASSCRED
, &sock
->flags
);
813 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
819 if (optname
== SO_TIMESTAMP
)
820 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
822 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
823 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
824 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
826 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
827 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
831 case SO_TIMESTAMPING
:
832 if (val
& ~SOF_TIMESTAMPING_MASK
) {
837 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
838 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
839 if (sk
->sk_protocol
== IPPROTO_TCP
&&
840 sk
->sk_type
== SOCK_STREAM
) {
841 if ((1 << sk
->sk_state
) &
842 (TCPF_CLOSE
| TCPF_LISTEN
)) {
846 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
852 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
853 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
858 sk
->sk_tsflags
= val
;
859 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
860 sock_enable_timestamp(sk
,
861 SOCK_TIMESTAMPING_RX_SOFTWARE
);
863 sock_disable_timestamp(sk
,
864 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
870 if (sock
->ops
->set_rcvlowat
)
871 ret
= sock
->ops
->set_rcvlowat(sk
, val
);
873 sk
->sk_rcvlowat
= val
? : 1;
877 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
881 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
884 case SO_ATTACH_FILTER
:
886 if (optlen
== sizeof(struct sock_fprog
)) {
887 struct sock_fprog fprog
;
890 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
893 ret
= sk_attach_filter(&fprog
, sk
);
899 if (optlen
== sizeof(u32
)) {
903 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
906 ret
= sk_attach_bpf(ufd
, sk
);
910 case SO_ATTACH_REUSEPORT_CBPF
:
912 if (optlen
== sizeof(struct sock_fprog
)) {
913 struct sock_fprog fprog
;
916 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
919 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
923 case SO_ATTACH_REUSEPORT_EBPF
:
925 if (optlen
== sizeof(u32
)) {
929 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
932 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
936 case SO_DETACH_FILTER
:
937 ret
= sk_detach_filter(sk
);
941 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
944 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
949 set_bit(SOCK_PASSSEC
, &sock
->flags
);
951 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
954 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
961 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
965 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
969 if (sock
->ops
->set_peek_off
)
970 ret
= sock
->ops
->set_peek_off(sk
, val
);
976 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
979 case SO_SELECT_ERR_QUEUE
:
980 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
983 #ifdef CONFIG_NET_RX_BUSY_POLL
985 /* allow unprivileged users to decrease the value */
986 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
992 sk
->sk_ll_usec
= val
;
997 case SO_MAX_PACING_RATE
:
999 cmpxchg(&sk
->sk_pacing_status
,
1002 sk
->sk_max_pacing_rate
= val
;
1003 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
1004 sk
->sk_max_pacing_rate
);
1007 case SO_INCOMING_CPU
:
1008 WRITE_ONCE(sk
->sk_incoming_cpu
, val
);
1013 dst_negative_advice(sk
);
1017 if (sk
->sk_family
== PF_INET
|| sk
->sk_family
== PF_INET6
) {
1018 if (sk
->sk_protocol
!= IPPROTO_TCP
)
1020 } else if (sk
->sk_family
!= PF_RDS
) {
1024 if (val
< 0 || val
> 1)
1027 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1032 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
)) {
1034 } else if (optlen
!= sizeof(struct sock_txtime
)) {
1036 } else if (copy_from_user(&sk_txtime
, optval
,
1037 sizeof(struct sock_txtime
))) {
1039 } else if (sk_txtime
.flags
& ~SOF_TXTIME_FLAGS_MASK
) {
1042 sock_valbool_flag(sk
, SOCK_TXTIME
, true);
1043 sk
->sk_clockid
= sk_txtime
.clockid
;
1044 sk
->sk_txtime_deadline_mode
=
1045 !!(sk_txtime
.flags
& SOF_TXTIME_DEADLINE_MODE
);
1046 sk
->sk_txtime_report_errors
=
1047 !!(sk_txtime
.flags
& SOF_TXTIME_REPORT_ERRORS
);
1058 EXPORT_SYMBOL(sock_setsockopt
);
1061 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1062 struct ucred
*ucred
)
1064 ucred
->pid
= pid_vnr(pid
);
1065 ucred
->uid
= ucred
->gid
= -1;
1067 struct user_namespace
*current_ns
= current_user_ns();
1069 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1070 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1074 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1076 struct user_namespace
*user_ns
= current_user_ns();
1079 for (i
= 0; i
< src
->ngroups
; i
++)
1080 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1086 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1087 char __user
*optval
, int __user
*optlen
)
1089 struct sock
*sk
= sock
->sk
;
1096 struct sock_txtime txtime
;
1099 int lv
= sizeof(int);
1102 if (get_user(len
, optlen
))
1107 memset(&v
, 0, sizeof(v
));
1111 v
.val
= sock_flag(sk
, SOCK_DBG
);
1115 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1119 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1123 v
.val
= sk
->sk_sndbuf
;
1127 v
.val
= sk
->sk_rcvbuf
;
1131 v
.val
= sk
->sk_reuse
;
1135 v
.val
= sk
->sk_reuseport
;
1139 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1143 v
.val
= sk
->sk_type
;
1147 v
.val
= sk
->sk_protocol
;
1151 v
.val
= sk
->sk_family
;
1155 v
.val
= -sock_error(sk
);
1157 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1161 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1165 v
.val
= sk
->sk_no_check_tx
;
1169 v
.val
= sk
->sk_priority
;
1173 lv
= sizeof(v
.ling
);
1174 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1175 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1179 sock_warn_obsolete_bsdism("getsockopt");
1183 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1184 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1187 case SO_TIMESTAMPNS
:
1188 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1191 case SO_TIMESTAMPING
:
1192 v
.val
= sk
->sk_tsflags
;
1196 lv
= sizeof(struct timeval
);
1197 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1201 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1202 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1207 lv
= sizeof(struct timeval
);
1208 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1212 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1213 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1218 v
.val
= sk
->sk_rcvlowat
;
1226 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1231 struct ucred peercred
;
1232 if (len
> sizeof(peercred
))
1233 len
= sizeof(peercred
);
1234 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1235 if (copy_to_user(optval
, &peercred
, len
))
1244 if (!sk
->sk_peer_cred
)
1247 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1248 if (len
< n
* sizeof(gid_t
)) {
1249 len
= n
* sizeof(gid_t
);
1250 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1252 len
= n
* sizeof(gid_t
);
1254 ret
= groups_to_user((gid_t __user
*)optval
,
1255 sk
->sk_peer_cred
->group_info
);
1265 lv
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, 2);
1270 if (copy_to_user(optval
, address
, len
))
1275 /* Dubious BSD thing... Probably nobody even uses it, but
1276 * the UNIX standard wants it for whatever reason... -DaveM
1279 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1283 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1287 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1290 v
.val
= sk
->sk_mark
;
1294 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1297 case SO_WIFI_STATUS
:
1298 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1302 if (!sock
->ops
->set_peek_off
)
1305 v
.val
= sk
->sk_peek_off
;
1308 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1311 case SO_BINDTODEVICE
:
1312 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1315 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1321 case SO_LOCK_FILTER
:
1322 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1325 case SO_BPF_EXTENSIONS
:
1326 v
.val
= bpf_tell_extensions();
1329 case SO_SELECT_ERR_QUEUE
:
1330 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1333 #ifdef CONFIG_NET_RX_BUSY_POLL
1335 v
.val
= sk
->sk_ll_usec
;
1339 case SO_MAX_PACING_RATE
:
1340 v
.val
= sk
->sk_max_pacing_rate
;
1343 case SO_INCOMING_CPU
:
1344 v
.val
= READ_ONCE(sk
->sk_incoming_cpu
);
1349 u32 meminfo
[SK_MEMINFO_VARS
];
1351 sk_get_meminfo(sk
, meminfo
);
1353 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1354 if (copy_to_user(optval
, &meminfo
, len
))
1360 #ifdef CONFIG_NET_RX_BUSY_POLL
1361 case SO_INCOMING_NAPI_ID
:
1362 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1364 /* aggregate non-NAPI IDs down to 0 */
1365 if (v
.val
< MIN_NAPI_ID
)
1375 v
.val64
= sock_gen_cookie(sk
);
1379 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1383 lv
= sizeof(v
.txtime
);
1384 v
.txtime
.clockid
= sk
->sk_clockid
;
1385 v
.txtime
.flags
|= sk
->sk_txtime_deadline_mode
?
1386 SOF_TXTIME_DEADLINE_MODE
: 0;
1387 v
.txtime
.flags
|= sk
->sk_txtime_report_errors
?
1388 SOF_TXTIME_REPORT_ERRORS
: 0;
1392 /* We implement the SO_SNDLOWAT etc to not be settable
1395 return -ENOPROTOOPT
;
1400 if (copy_to_user(optval
, &v
, len
))
1403 if (put_user(len
, optlen
))
1409 * Initialize an sk_lock.
1411 * (We also register the sk_lock with the lock validator.)
1413 static inline void sock_lock_init(struct sock
*sk
)
1415 if (sk
->sk_kern_sock
)
1416 sock_lock_init_class_and_name(
1418 af_family_kern_slock_key_strings
[sk
->sk_family
],
1419 af_family_kern_slock_keys
+ sk
->sk_family
,
1420 af_family_kern_key_strings
[sk
->sk_family
],
1421 af_family_kern_keys
+ sk
->sk_family
);
1423 sock_lock_init_class_and_name(
1425 af_family_slock_key_strings
[sk
->sk_family
],
1426 af_family_slock_keys
+ sk
->sk_family
,
1427 af_family_key_strings
[sk
->sk_family
],
1428 af_family_keys
+ sk
->sk_family
);
1432 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1433 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1434 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1436 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1438 #ifdef CONFIG_SECURITY_NETWORK
1439 void *sptr
= nsk
->sk_security
;
1441 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1443 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1444 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1446 #ifdef CONFIG_SECURITY_NETWORK
1447 nsk
->sk_security
= sptr
;
1448 security_sk_clone(osk
, nsk
);
1452 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1456 struct kmem_cache
*slab
;
1460 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1463 if (priority
& __GFP_ZERO
)
1464 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1466 sk
= kmalloc(prot
->obj_size
, priority
);
1469 if (security_sk_alloc(sk
, family
, priority
))
1472 if (!try_module_get(prot
->owner
))
1474 sk_tx_queue_clear(sk
);
1480 security_sk_free(sk
);
1483 kmem_cache_free(slab
, sk
);
1489 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1491 struct kmem_cache
*slab
;
1492 struct module
*owner
;
1494 owner
= prot
->owner
;
1497 cgroup_sk_free(&sk
->sk_cgrp_data
);
1498 mem_cgroup_sk_free(sk
);
1499 security_sk_free(sk
);
1501 kmem_cache_free(slab
, sk
);
1508 * sk_alloc - All socket objects are allocated here
1509 * @net: the applicable net namespace
1510 * @family: protocol family
1511 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1512 * @prot: struct proto associated with this new sock instance
1513 * @kern: is this to be a kernel socket?
1515 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1516 struct proto
*prot
, int kern
)
1520 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1522 sk
->sk_family
= family
;
1524 * See comment in struct sock definition to understand
1525 * why we need sk_prot_creator -acme
1527 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1528 sk
->sk_kern_sock
= kern
;
1530 sk
->sk_net_refcnt
= kern
? 0 : 1;
1531 if (likely(sk
->sk_net_refcnt
)) {
1533 sock_inuse_add(net
, 1);
1536 sock_net_set(sk
, net
);
1537 refcount_set(&sk
->sk_wmem_alloc
, 1);
1539 mem_cgroup_sk_alloc(sk
);
1540 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1541 sock_update_classid(&sk
->sk_cgrp_data
);
1542 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1543 sk_tx_queue_clear(sk
);
1548 EXPORT_SYMBOL(sk_alloc
);
1550 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1551 * grace period. This is the case for UDP sockets and TCP listeners.
1553 static void __sk_destruct(struct rcu_head
*head
)
1555 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1556 struct sk_filter
*filter
;
1558 if (sk
->sk_destruct
)
1559 sk
->sk_destruct(sk
);
1561 filter
= rcu_dereference_check(sk
->sk_filter
,
1562 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1564 sk_filter_uncharge(sk
, filter
);
1565 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1568 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1570 if (atomic_read(&sk
->sk_omem_alloc
))
1571 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1572 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1574 if (sk
->sk_frag
.page
) {
1575 put_page(sk
->sk_frag
.page
);
1576 sk
->sk_frag
.page
= NULL
;
1579 if (sk
->sk_peer_cred
)
1580 put_cred(sk
->sk_peer_cred
);
1581 put_pid(sk
->sk_peer_pid
);
1582 if (likely(sk
->sk_net_refcnt
))
1583 put_net(sock_net(sk
));
1584 sk_prot_free(sk
->sk_prot_creator
, sk
);
1587 void sk_destruct(struct sock
*sk
)
1589 bool use_call_rcu
= sock_flag(sk
, SOCK_RCU_FREE
);
1591 if (rcu_access_pointer(sk
->sk_reuseport_cb
)) {
1592 reuseport_detach_sock(sk
);
1593 use_call_rcu
= true;
1597 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1599 __sk_destruct(&sk
->sk_rcu
);
1602 static void __sk_free(struct sock
*sk
)
1604 if (likely(sk
->sk_net_refcnt
))
1605 sock_inuse_add(sock_net(sk
), -1);
1607 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1608 sock_diag_broadcast_destroy(sk
);
1613 void sk_free(struct sock
*sk
)
1616 * We subtract one from sk_wmem_alloc and can know if
1617 * some packets are still in some tx queue.
1618 * If not null, sock_wfree() will call __sk_free(sk) later
1620 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1623 EXPORT_SYMBOL(sk_free
);
1625 static void sk_init_common(struct sock
*sk
)
1627 skb_queue_head_init(&sk
->sk_receive_queue
);
1628 skb_queue_head_init(&sk
->sk_write_queue
);
1629 skb_queue_head_init(&sk
->sk_error_queue
);
1631 rwlock_init(&sk
->sk_callback_lock
);
1632 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1633 af_rlock_keys
+ sk
->sk_family
,
1634 af_family_rlock_key_strings
[sk
->sk_family
]);
1635 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1636 af_wlock_keys
+ sk
->sk_family
,
1637 af_family_wlock_key_strings
[sk
->sk_family
]);
1638 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1639 af_elock_keys
+ sk
->sk_family
,
1640 af_family_elock_key_strings
[sk
->sk_family
]);
1641 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1642 af_callback_keys
+ sk
->sk_family
,
1643 af_family_clock_key_strings
[sk
->sk_family
]);
1647 * sk_clone_lock - clone a socket, and lock its clone
1648 * @sk: the socket to clone
1649 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1653 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1656 bool is_charged
= true;
1658 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1659 if (newsk
!= NULL
) {
1660 struct sk_filter
*filter
;
1662 sock_copy(newsk
, sk
);
1664 newsk
->sk_prot_creator
= sk
->sk_prot
;
1667 if (likely(newsk
->sk_net_refcnt
))
1668 get_net(sock_net(newsk
));
1669 sk_node_init(&newsk
->sk_node
);
1670 sock_lock_init(newsk
);
1671 bh_lock_sock(newsk
);
1672 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1673 newsk
->sk_backlog
.len
= 0;
1675 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1677 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1679 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1680 atomic_set(&newsk
->sk_omem_alloc
, 0);
1681 sk_init_common(newsk
);
1683 newsk
->sk_dst_cache
= NULL
;
1684 newsk
->sk_dst_pending_confirm
= 0;
1685 newsk
->sk_wmem_queued
= 0;
1686 newsk
->sk_forward_alloc
= 0;
1687 atomic_set(&newsk
->sk_drops
, 0);
1688 newsk
->sk_send_head
= NULL
;
1689 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1690 atomic_set(&newsk
->sk_zckey
, 0);
1692 sock_reset_flag(newsk
, SOCK_DONE
);
1694 /* sk->sk_memcg will be populated at accept() time */
1695 newsk
->sk_memcg
= NULL
;
1697 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1700 filter
= rcu_dereference(sk
->sk_filter
);
1702 /* though it's an empty new sock, the charging may fail
1703 * if sysctl_optmem_max was changed between creation of
1704 * original socket and cloning
1706 is_charged
= sk_filter_charge(newsk
, filter
);
1707 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1710 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1711 /* We need to make sure that we don't uncharge the new
1712 * socket if we couldn't charge it in the first place
1713 * as otherwise we uncharge the parent's filter.
1716 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1717 sk_free_unlock_clone(newsk
);
1721 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1724 newsk
->sk_err_soft
= 0;
1725 newsk
->sk_priority
= 0;
1726 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1727 atomic64_set(&newsk
->sk_cookie
, 0);
1728 if (likely(newsk
->sk_net_refcnt
))
1729 sock_inuse_add(sock_net(newsk
), 1);
1732 * Before updating sk_refcnt, we must commit prior changes to memory
1733 * (Documentation/RCU/rculist_nulls.txt for details)
1736 refcount_set(&newsk
->sk_refcnt
, 2);
1739 * Increment the counter in the same struct proto as the master
1740 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1741 * is the same as sk->sk_prot->socks, as this field was copied
1744 * This _changes_ the previous behaviour, where
1745 * tcp_create_openreq_child always was incrementing the
1746 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1747 * to be taken into account in all callers. -acme
1749 sk_refcnt_debug_inc(newsk
);
1750 sk_set_socket(newsk
, NULL
);
1751 sk_tx_queue_clear(newsk
);
1752 newsk
->sk_wq
= NULL
;
1754 if (newsk
->sk_prot
->sockets_allocated
)
1755 sk_sockets_allocated_inc(newsk
);
1757 if (sock_needs_netstamp(sk
) &&
1758 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1759 net_enable_timestamp();
1764 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1766 void sk_free_unlock_clone(struct sock
*sk
)
1768 /* It is still raw copy of parent, so invalidate
1769 * destructor and make plain sk_free() */
1770 sk
->sk_destruct
= NULL
;
1774 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1776 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1780 sk_dst_set(sk
, dst
);
1781 sk
->sk_route_caps
= dst
->dev
->features
| sk
->sk_route_forced_caps
;
1782 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1783 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1784 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1785 if (sk_can_gso(sk
)) {
1786 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1787 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1789 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1790 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1791 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1794 sk
->sk_gso_max_segs
= max_segs
;
1796 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1799 * Simple resource managers for sockets.
1804 * Write buffer destructor automatically called from kfree_skb.
1806 void sock_wfree(struct sk_buff
*skb
)
1808 struct sock
*sk
= skb
->sk
;
1809 unsigned int len
= skb
->truesize
;
1811 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1813 * Keep a reference on sk_wmem_alloc, this will be released
1814 * after sk_write_space() call
1816 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1817 sk
->sk_write_space(sk
);
1821 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1822 * could not do because of in-flight packets
1824 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1827 EXPORT_SYMBOL(sock_wfree
);
1829 /* This variant of sock_wfree() is used by TCP,
1830 * since it sets SOCK_USE_WRITE_QUEUE.
1832 void __sock_wfree(struct sk_buff
*skb
)
1834 struct sock
*sk
= skb
->sk
;
1836 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1840 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1845 if (unlikely(!sk_fullsock(sk
))) {
1846 skb
->destructor
= sock_edemux
;
1851 skb
->destructor
= sock_wfree
;
1852 skb_set_hash_from_sk(skb
, sk
);
1854 * We used to take a refcount on sk, but following operation
1855 * is enough to guarantee sk_free() wont free this sock until
1856 * all in-flight packets are completed
1858 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1860 EXPORT_SYMBOL(skb_set_owner_w
);
1862 /* This helper is used by netem, as it can hold packets in its
1863 * delay queue. We want to allow the owner socket to send more
1864 * packets, as if they were already TX completed by a typical driver.
1865 * But we also want to keep skb->sk set because some packet schedulers
1866 * rely on it (sch_fq for example).
1868 void skb_orphan_partial(struct sk_buff
*skb
)
1870 if (skb_is_tcp_pure_ack(skb
))
1873 if (skb
->destructor
== sock_wfree
1875 || skb
->destructor
== tcp_wfree
1878 struct sock
*sk
= skb
->sk
;
1880 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1881 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
1882 skb
->destructor
= sock_efree
;
1888 EXPORT_SYMBOL(skb_orphan_partial
);
1891 * Read buffer destructor automatically called from kfree_skb.
1893 void sock_rfree(struct sk_buff
*skb
)
1895 struct sock
*sk
= skb
->sk
;
1896 unsigned int len
= skb
->truesize
;
1898 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1899 sk_mem_uncharge(sk
, len
);
1901 EXPORT_SYMBOL(sock_rfree
);
1904 * Buffer destructor for skbs that are not used directly in read or write
1905 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1907 void sock_efree(struct sk_buff
*skb
)
1911 EXPORT_SYMBOL(sock_efree
);
1913 kuid_t
sock_i_uid(struct sock
*sk
)
1917 read_lock_bh(&sk
->sk_callback_lock
);
1918 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1919 read_unlock_bh(&sk
->sk_callback_lock
);
1922 EXPORT_SYMBOL(sock_i_uid
);
1924 unsigned long sock_i_ino(struct sock
*sk
)
1928 read_lock_bh(&sk
->sk_callback_lock
);
1929 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1930 read_unlock_bh(&sk
->sk_callback_lock
);
1933 EXPORT_SYMBOL(sock_i_ino
);
1936 * Allocate a skb from the socket's send buffer.
1938 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1941 if (force
|| refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1942 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1944 skb_set_owner_w(skb
, sk
);
1950 EXPORT_SYMBOL(sock_wmalloc
);
1952 static void sock_ofree(struct sk_buff
*skb
)
1954 struct sock
*sk
= skb
->sk
;
1956 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
1959 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1962 struct sk_buff
*skb
;
1964 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1965 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
1969 skb
= alloc_skb(size
, priority
);
1973 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
1975 skb
->destructor
= sock_ofree
;
1980 * Allocate a memory block from the socket's option memory buffer.
1982 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1984 if ((unsigned int)size
<= sysctl_optmem_max
&&
1985 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1987 /* First do the add, to avoid the race if kmalloc
1990 atomic_add(size
, &sk
->sk_omem_alloc
);
1991 mem
= kmalloc(size
, priority
);
1994 atomic_sub(size
, &sk
->sk_omem_alloc
);
1998 EXPORT_SYMBOL(sock_kmalloc
);
2000 /* Free an option memory block. Note, we actually want the inline
2001 * here as this allows gcc to detect the nullify and fold away the
2002 * condition entirely.
2004 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
2007 if (WARN_ON_ONCE(!mem
))
2013 atomic_sub(size
, &sk
->sk_omem_alloc
);
2016 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2018 __sock_kfree_s(sk
, mem
, size
, false);
2020 EXPORT_SYMBOL(sock_kfree_s
);
2022 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2024 __sock_kfree_s(sk
, mem
, size
, true);
2026 EXPORT_SYMBOL(sock_kzfree_s
);
2028 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2029 I think, these locks should be removed for datagram sockets.
2031 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2035 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2039 if (signal_pending(current
))
2041 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2042 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2043 if (refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
2045 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2049 timeo
= schedule_timeout(timeo
);
2051 finish_wait(sk_sleep(sk
), &wait
);
2057 * Generic send/receive buffer handlers
2060 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2061 unsigned long data_len
, int noblock
,
2062 int *errcode
, int max_page_order
)
2064 struct sk_buff
*skb
;
2068 timeo
= sock_sndtimeo(sk
, noblock
);
2070 err
= sock_error(sk
);
2075 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2078 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
2081 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2082 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2086 if (signal_pending(current
))
2088 timeo
= sock_wait_for_wmem(sk
, timeo
);
2090 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2091 errcode
, sk
->sk_allocation
);
2093 skb_set_owner_w(skb
, sk
);
2097 err
= sock_intr_errno(timeo
);
2102 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2104 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2105 int noblock
, int *errcode
)
2107 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2109 EXPORT_SYMBOL(sock_alloc_send_skb
);
2111 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2112 struct sockcm_cookie
*sockc
)
2116 switch (cmsg
->cmsg_type
) {
2118 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2120 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2122 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2124 case SO_TIMESTAMPING
:
2125 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2128 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2129 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2132 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2133 sockc
->tsflags
|= tsflags
;
2136 if (!sock_flag(sk
, SOCK_TXTIME
))
2138 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u64
)))
2140 sockc
->transmit_time
= get_unaligned((u64
*)CMSG_DATA(cmsg
));
2142 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2144 case SCM_CREDENTIALS
:
2151 EXPORT_SYMBOL(__sock_cmsg_send
);
2153 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2154 struct sockcm_cookie
*sockc
)
2156 struct cmsghdr
*cmsg
;
2159 for_each_cmsghdr(cmsg
, msg
) {
2160 if (!CMSG_OK(msg
, cmsg
))
2162 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2164 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2170 EXPORT_SYMBOL(sock_cmsg_send
);
2172 static void sk_enter_memory_pressure(struct sock
*sk
)
2174 if (!sk
->sk_prot
->enter_memory_pressure
)
2177 sk
->sk_prot
->enter_memory_pressure(sk
);
2180 static void sk_leave_memory_pressure(struct sock
*sk
)
2182 if (sk
->sk_prot
->leave_memory_pressure
) {
2183 sk
->sk_prot
->leave_memory_pressure(sk
);
2185 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2187 if (memory_pressure
&& READ_ONCE(*memory_pressure
))
2188 WRITE_ONCE(*memory_pressure
, 0);
2192 /* On 32bit arches, an skb frag is limited to 2^15 */
2193 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2196 * skb_page_frag_refill - check that a page_frag contains enough room
2197 * @sz: minimum size of the fragment we want to get
2198 * @pfrag: pointer to page_frag
2199 * @gfp: priority for memory allocation
2201 * Note: While this allocator tries to use high order pages, there is
2202 * no guarantee that allocations succeed. Therefore, @sz MUST be
2203 * less or equal than PAGE_SIZE.
2205 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2208 if (page_ref_count(pfrag
->page
) == 1) {
2212 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2214 put_page(pfrag
->page
);
2218 if (SKB_FRAG_PAGE_ORDER
) {
2219 /* Avoid direct reclaim but allow kswapd to wake */
2220 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2221 __GFP_COMP
| __GFP_NOWARN
|
2223 SKB_FRAG_PAGE_ORDER
);
2224 if (likely(pfrag
->page
)) {
2225 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2229 pfrag
->page
= alloc_page(gfp
);
2230 if (likely(pfrag
->page
)) {
2231 pfrag
->size
= PAGE_SIZE
;
2236 EXPORT_SYMBOL(skb_page_frag_refill
);
2238 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2240 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2243 sk_enter_memory_pressure(sk
);
2244 sk_stream_moderate_sndbuf(sk
);
2247 EXPORT_SYMBOL(sk_page_frag_refill
);
2249 int sk_alloc_sg(struct sock
*sk
, int len
, struct scatterlist
*sg
,
2250 int sg_start
, int *sg_curr_index
, unsigned int *sg_curr_size
,
2253 int sg_curr
= *sg_curr_index
, use
= 0, rc
= 0;
2254 unsigned int size
= *sg_curr_size
;
2255 struct page_frag
*pfrag
;
2256 struct scatterlist
*sge
;
2259 pfrag
= sk_page_frag(sk
);
2262 unsigned int orig_offset
;
2264 if (!sk_page_frag_refill(sk
, pfrag
)) {
2269 use
= min_t(int, len
, pfrag
->size
- pfrag
->offset
);
2271 if (!sk_wmem_schedule(sk
, use
)) {
2276 sk_mem_charge(sk
, use
);
2278 orig_offset
= pfrag
->offset
;
2279 pfrag
->offset
+= use
;
2281 sge
= sg
+ sg_curr
- 1;
2282 if (sg_curr
> first_coalesce
&& sg_page(sge
) == pfrag
->page
&&
2283 sge
->offset
+ sge
->length
== orig_offset
) {
2288 sg_set_page(sge
, pfrag
->page
, use
, orig_offset
);
2289 get_page(pfrag
->page
);
2292 if (sg_curr
== MAX_SKB_FRAGS
)
2295 if (sg_curr
== sg_start
) {
2304 *sg_curr_size
= size
;
2305 *sg_curr_index
= sg_curr
;
2308 EXPORT_SYMBOL(sk_alloc_sg
);
2310 static void __lock_sock(struct sock
*sk
)
2311 __releases(&sk
->sk_lock
.slock
)
2312 __acquires(&sk
->sk_lock
.slock
)
2317 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2318 TASK_UNINTERRUPTIBLE
);
2319 spin_unlock_bh(&sk
->sk_lock
.slock
);
2321 spin_lock_bh(&sk
->sk_lock
.slock
);
2322 if (!sock_owned_by_user(sk
))
2325 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2328 void __release_sock(struct sock
*sk
)
2329 __releases(&sk
->sk_lock
.slock
)
2330 __acquires(&sk
->sk_lock
.slock
)
2332 struct sk_buff
*skb
, *next
;
2334 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2335 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2337 spin_unlock_bh(&sk
->sk_lock
.slock
);
2342 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2344 sk_backlog_rcv(sk
, skb
);
2349 } while (skb
!= NULL
);
2351 spin_lock_bh(&sk
->sk_lock
.slock
);
2355 * Doing the zeroing here guarantee we can not loop forever
2356 * while a wild producer attempts to flood us.
2358 sk
->sk_backlog
.len
= 0;
2361 void __sk_flush_backlog(struct sock
*sk
)
2363 spin_lock_bh(&sk
->sk_lock
.slock
);
2365 spin_unlock_bh(&sk
->sk_lock
.slock
);
2369 * sk_wait_data - wait for data to arrive at sk_receive_queue
2370 * @sk: sock to wait on
2371 * @timeo: for how long
2372 * @skb: last skb seen on sk_receive_queue
2374 * Now socket state including sk->sk_err is changed only under lock,
2375 * hence we may omit checks after joining wait queue.
2376 * We check receive queue before schedule() only as optimization;
2377 * it is very likely that release_sock() added new data.
2379 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2381 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2384 add_wait_queue(sk_sleep(sk
), &wait
);
2385 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2386 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2387 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2388 remove_wait_queue(sk_sleep(sk
), &wait
);
2391 EXPORT_SYMBOL(sk_wait_data
);
2394 * __sk_mem_raise_allocated - increase memory_allocated
2396 * @size: memory size to allocate
2397 * @amt: pages to allocate
2398 * @kind: allocation type
2400 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2402 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2404 struct proto
*prot
= sk
->sk_prot
;
2405 long allocated
= sk_memory_allocated_add(sk
, amt
);
2406 bool charged
= true;
2408 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2409 !(charged
= mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
)))
2410 goto suppress_allocation
;
2413 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2414 sk_leave_memory_pressure(sk
);
2418 /* Under pressure. */
2419 if (allocated
> sk_prot_mem_limits(sk
, 1))
2420 sk_enter_memory_pressure(sk
);
2422 /* Over hard limit. */
2423 if (allocated
> sk_prot_mem_limits(sk
, 2))
2424 goto suppress_allocation
;
2426 /* guarantee minimum buffer size under pressure */
2427 if (kind
== SK_MEM_RECV
) {
2428 if (atomic_read(&sk
->sk_rmem_alloc
) < sk_get_rmem0(sk
, prot
))
2431 } else { /* SK_MEM_SEND */
2432 int wmem0
= sk_get_wmem0(sk
, prot
);
2434 if (sk
->sk_type
== SOCK_STREAM
) {
2435 if (sk
->sk_wmem_queued
< wmem0
)
2437 } else if (refcount_read(&sk
->sk_wmem_alloc
) < wmem0
) {
2442 if (sk_has_memory_pressure(sk
)) {
2445 if (!sk_under_memory_pressure(sk
))
2447 alloc
= sk_sockets_allocated_read_positive(sk
);
2448 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2449 sk_mem_pages(sk
->sk_wmem_queued
+
2450 atomic_read(&sk
->sk_rmem_alloc
) +
2451 sk
->sk_forward_alloc
))
2455 suppress_allocation
:
2457 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2458 sk_stream_moderate_sndbuf(sk
);
2460 /* Fail only if socket is _under_ its sndbuf.
2461 * In this case we cannot block, so that we have to fail.
2463 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2467 if (kind
== SK_MEM_SEND
|| (kind
== SK_MEM_RECV
&& charged
))
2468 trace_sock_exceed_buf_limit(sk
, prot
, allocated
, kind
);
2470 sk_memory_allocated_sub(sk
, amt
);
2472 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2473 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2477 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2480 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2482 * @size: memory size to allocate
2483 * @kind: allocation type
2485 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2486 * rmem allocation. This function assumes that protocols which have
2487 * memory_pressure use sk_wmem_queued as write buffer accounting.
2489 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2491 int ret
, amt
= sk_mem_pages(size
);
2493 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2494 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2496 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2499 EXPORT_SYMBOL(__sk_mem_schedule
);
2502 * __sk_mem_reduce_allocated - reclaim memory_allocated
2504 * @amount: number of quanta
2506 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2508 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2510 sk_memory_allocated_sub(sk
, amount
);
2512 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2513 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2515 if (sk_under_memory_pressure(sk
) &&
2516 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2517 sk_leave_memory_pressure(sk
);
2519 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2522 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2524 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2526 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2528 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2529 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2530 __sk_mem_reduce_allocated(sk
, amount
);
2532 EXPORT_SYMBOL(__sk_mem_reclaim
);
2534 int sk_set_peek_off(struct sock
*sk
, int val
)
2536 sk
->sk_peek_off
= val
;
2539 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2542 * Set of default routines for initialising struct proto_ops when
2543 * the protocol does not support a particular function. In certain
2544 * cases where it makes no sense for a protocol to have a "do nothing"
2545 * function, some default processing is provided.
2548 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2552 EXPORT_SYMBOL(sock_no_bind
);
2554 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2559 EXPORT_SYMBOL(sock_no_connect
);
2561 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2565 EXPORT_SYMBOL(sock_no_socketpair
);
2567 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2572 EXPORT_SYMBOL(sock_no_accept
);
2574 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2579 EXPORT_SYMBOL(sock_no_getname
);
2581 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2585 EXPORT_SYMBOL(sock_no_ioctl
);
2587 int sock_no_listen(struct socket
*sock
, int backlog
)
2591 EXPORT_SYMBOL(sock_no_listen
);
2593 int sock_no_shutdown(struct socket
*sock
, int how
)
2597 EXPORT_SYMBOL(sock_no_shutdown
);
2599 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2600 char __user
*optval
, unsigned int optlen
)
2604 EXPORT_SYMBOL(sock_no_setsockopt
);
2606 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2607 char __user
*optval
, int __user
*optlen
)
2611 EXPORT_SYMBOL(sock_no_getsockopt
);
2613 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2617 EXPORT_SYMBOL(sock_no_sendmsg
);
2619 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2623 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2625 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2630 EXPORT_SYMBOL(sock_no_recvmsg
);
2632 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2634 /* Mirror missing mmap method error code */
2637 EXPORT_SYMBOL(sock_no_mmap
);
2639 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2642 struct msghdr msg
= {.msg_flags
= flags
};
2644 char *kaddr
= kmap(page
);
2645 iov
.iov_base
= kaddr
+ offset
;
2647 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2651 EXPORT_SYMBOL(sock_no_sendpage
);
2653 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2654 int offset
, size_t size
, int flags
)
2657 struct msghdr msg
= {.msg_flags
= flags
};
2659 char *kaddr
= kmap(page
);
2661 iov
.iov_base
= kaddr
+ offset
;
2663 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2667 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2670 * Default Socket Callbacks
2673 static void sock_def_wakeup(struct sock
*sk
)
2675 struct socket_wq
*wq
;
2678 wq
= rcu_dereference(sk
->sk_wq
);
2679 if (skwq_has_sleeper(wq
))
2680 wake_up_interruptible_all(&wq
->wait
);
2684 static void sock_def_error_report(struct sock
*sk
)
2686 struct socket_wq
*wq
;
2689 wq
= rcu_dereference(sk
->sk_wq
);
2690 if (skwq_has_sleeper(wq
))
2691 wake_up_interruptible_poll(&wq
->wait
, EPOLLERR
);
2692 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2696 static void sock_def_readable(struct sock
*sk
)
2698 struct socket_wq
*wq
;
2701 wq
= rcu_dereference(sk
->sk_wq
);
2702 if (skwq_has_sleeper(wq
))
2703 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLIN
| EPOLLPRI
|
2704 EPOLLRDNORM
| EPOLLRDBAND
);
2705 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2709 static void sock_def_write_space(struct sock
*sk
)
2711 struct socket_wq
*wq
;
2715 /* Do not wake up a writer until he can make "significant"
2718 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2719 wq
= rcu_dereference(sk
->sk_wq
);
2720 if (skwq_has_sleeper(wq
))
2721 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLOUT
|
2722 EPOLLWRNORM
| EPOLLWRBAND
);
2724 /* Should agree with poll, otherwise some programs break */
2725 if (sock_writeable(sk
))
2726 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2732 static void sock_def_destruct(struct sock
*sk
)
2736 void sk_send_sigurg(struct sock
*sk
)
2738 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2739 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2740 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2742 EXPORT_SYMBOL(sk_send_sigurg
);
2744 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2745 unsigned long expires
)
2747 if (!mod_timer(timer
, expires
))
2750 EXPORT_SYMBOL(sk_reset_timer
);
2752 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2754 if (del_timer(timer
))
2757 EXPORT_SYMBOL(sk_stop_timer
);
2759 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2762 sk
->sk_send_head
= NULL
;
2764 timer_setup(&sk
->sk_timer
, NULL
, 0);
2766 sk
->sk_allocation
= GFP_KERNEL
;
2767 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2768 sk
->sk_sndbuf
= sysctl_wmem_default
;
2769 sk
->sk_state
= TCP_CLOSE
;
2770 sk_set_socket(sk
, sock
);
2772 sock_set_flag(sk
, SOCK_ZAPPED
);
2775 sk
->sk_type
= sock
->type
;
2776 sk
->sk_wq
= sock
->wq
;
2778 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2781 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2784 rwlock_init(&sk
->sk_callback_lock
);
2785 if (sk
->sk_kern_sock
)
2786 lockdep_set_class_and_name(
2787 &sk
->sk_callback_lock
,
2788 af_kern_callback_keys
+ sk
->sk_family
,
2789 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2791 lockdep_set_class_and_name(
2792 &sk
->sk_callback_lock
,
2793 af_callback_keys
+ sk
->sk_family
,
2794 af_family_clock_key_strings
[sk
->sk_family
]);
2796 sk
->sk_state_change
= sock_def_wakeup
;
2797 sk
->sk_data_ready
= sock_def_readable
;
2798 sk
->sk_write_space
= sock_def_write_space
;
2799 sk
->sk_error_report
= sock_def_error_report
;
2800 sk
->sk_destruct
= sock_def_destruct
;
2802 sk
->sk_frag
.page
= NULL
;
2803 sk
->sk_frag
.offset
= 0;
2804 sk
->sk_peek_off
= -1;
2806 sk
->sk_peer_pid
= NULL
;
2807 sk
->sk_peer_cred
= NULL
;
2808 sk
->sk_write_pending
= 0;
2809 sk
->sk_rcvlowat
= 1;
2810 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2811 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2813 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2814 #if BITS_PER_LONG==32
2815 seqlock_init(&sk
->sk_stamp_seq
);
2817 atomic_set(&sk
->sk_zckey
, 0);
2819 #ifdef CONFIG_NET_RX_BUSY_POLL
2821 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2824 sk
->sk_max_pacing_rate
= ~0U;
2825 sk
->sk_pacing_rate
= ~0U;
2826 sk
->sk_pacing_shift
= 10;
2827 sk
->sk_incoming_cpu
= -1;
2829 sk_rx_queue_clear(sk
);
2831 * Before updating sk_refcnt, we must commit prior changes to memory
2832 * (Documentation/RCU/rculist_nulls.txt for details)
2835 refcount_set(&sk
->sk_refcnt
, 1);
2836 atomic_set(&sk
->sk_drops
, 0);
2838 EXPORT_SYMBOL(sock_init_data
);
2840 void lock_sock_nested(struct sock
*sk
, int subclass
)
2843 spin_lock_bh(&sk
->sk_lock
.slock
);
2844 if (sk
->sk_lock
.owned
)
2846 sk
->sk_lock
.owned
= 1;
2847 spin_unlock(&sk
->sk_lock
.slock
);
2849 * The sk_lock has mutex_lock() semantics here:
2851 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2854 EXPORT_SYMBOL(lock_sock_nested
);
2856 void release_sock(struct sock
*sk
)
2858 spin_lock_bh(&sk
->sk_lock
.slock
);
2859 if (sk
->sk_backlog
.tail
)
2862 /* Warning : release_cb() might need to release sk ownership,
2863 * ie call sock_release_ownership(sk) before us.
2865 if (sk
->sk_prot
->release_cb
)
2866 sk
->sk_prot
->release_cb(sk
);
2868 sock_release_ownership(sk
);
2869 if (waitqueue_active(&sk
->sk_lock
.wq
))
2870 wake_up(&sk
->sk_lock
.wq
);
2871 spin_unlock_bh(&sk
->sk_lock
.slock
);
2873 EXPORT_SYMBOL(release_sock
);
2876 * lock_sock_fast - fast version of lock_sock
2879 * This version should be used for very small section, where process wont block
2880 * return false if fast path is taken:
2882 * sk_lock.slock locked, owned = 0, BH disabled
2884 * return true if slow path is taken:
2886 * sk_lock.slock unlocked, owned = 1, BH enabled
2888 bool lock_sock_fast(struct sock
*sk
)
2891 spin_lock_bh(&sk
->sk_lock
.slock
);
2893 if (!sk
->sk_lock
.owned
)
2895 * Note : We must disable BH
2900 sk
->sk_lock
.owned
= 1;
2901 spin_unlock(&sk
->sk_lock
.slock
);
2903 * The sk_lock has mutex_lock() semantics here:
2905 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2909 EXPORT_SYMBOL(lock_sock_fast
);
2911 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2915 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2916 tv
= ktime_to_timeval(sock_read_timestamp(sk
));
2917 if (tv
.tv_sec
== -1)
2919 if (tv
.tv_sec
== 0) {
2920 ktime_t kt
= ktime_get_real();
2921 sock_write_timestamp(sk
, kt
);
2922 tv
= ktime_to_timeval(kt
);
2924 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2926 EXPORT_SYMBOL(sock_get_timestamp
);
2928 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2932 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2933 ts
= ktime_to_timespec(sock_read_timestamp(sk
));
2934 if (ts
.tv_sec
== -1)
2936 if (ts
.tv_sec
== 0) {
2937 ktime_t kt
= ktime_get_real();
2938 sock_write_timestamp(sk
, kt
);
2939 ts
= ktime_to_timespec(sk
->sk_stamp
);
2941 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2943 EXPORT_SYMBOL(sock_get_timestampns
);
2945 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2947 if (!sock_flag(sk
, flag
)) {
2948 unsigned long previous_flags
= sk
->sk_flags
;
2950 sock_set_flag(sk
, flag
);
2952 * we just set one of the two flags which require net
2953 * time stamping, but time stamping might have been on
2954 * already because of the other one
2956 if (sock_needs_netstamp(sk
) &&
2957 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2958 net_enable_timestamp();
2962 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2963 int level
, int type
)
2965 struct sock_exterr_skb
*serr
;
2966 struct sk_buff
*skb
;
2970 skb
= sock_dequeue_err_skb(sk
);
2976 msg
->msg_flags
|= MSG_TRUNC
;
2979 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2983 sock_recv_timestamp(msg
, sk
, skb
);
2985 serr
= SKB_EXT_ERR(skb
);
2986 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2988 msg
->msg_flags
|= MSG_ERRQUEUE
;
2996 EXPORT_SYMBOL(sock_recv_errqueue
);
2999 * Get a socket option on an socket.
3001 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3002 * asynchronous errors should be reported by getsockopt. We assume
3003 * this means if you specify SO_ERROR (otherwise whats the point of it).
3005 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
3006 char __user
*optval
, int __user
*optlen
)
3008 struct sock
*sk
= sock
->sk
;
3010 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3012 EXPORT_SYMBOL(sock_common_getsockopt
);
3014 #ifdef CONFIG_COMPAT
3015 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
3016 char __user
*optval
, int __user
*optlen
)
3018 struct sock
*sk
= sock
->sk
;
3020 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
3021 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
3023 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3025 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
3028 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
3031 struct sock
*sk
= sock
->sk
;
3035 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
3036 flags
& ~MSG_DONTWAIT
, &addr_len
);
3038 msg
->msg_namelen
= addr_len
;
3041 EXPORT_SYMBOL(sock_common_recvmsg
);
3044 * Set socket options on an inet socket.
3046 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3047 char __user
*optval
, unsigned int optlen
)
3049 struct sock
*sk
= sock
->sk
;
3051 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3053 EXPORT_SYMBOL(sock_common_setsockopt
);
3055 #ifdef CONFIG_COMPAT
3056 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3057 char __user
*optval
, unsigned int optlen
)
3059 struct sock
*sk
= sock
->sk
;
3061 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
3062 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
3064 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3066 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
3069 void sk_common_release(struct sock
*sk
)
3071 if (sk
->sk_prot
->destroy
)
3072 sk
->sk_prot
->destroy(sk
);
3075 * Observation: when sock_common_release is called, processes have
3076 * no access to socket. But net still has.
3077 * Step one, detach it from networking:
3079 * A. Remove from hash tables.
3082 sk
->sk_prot
->unhash(sk
);
3085 * In this point socket cannot receive new packets, but it is possible
3086 * that some packets are in flight because some CPU runs receiver and
3087 * did hash table lookup before we unhashed socket. They will achieve
3088 * receive queue and will be purged by socket destructor.
3090 * Also we still have packets pending on receive queue and probably,
3091 * our own packets waiting in device queues. sock_destroy will drain
3092 * receive queue, but transmitted packets will delay socket destruction
3093 * until the last reference will be released.
3098 xfrm_sk_free_policy(sk
);
3100 sk_refcnt_debug_release(sk
);
3104 EXPORT_SYMBOL(sk_common_release
);
3106 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3108 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3110 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3111 mem
[SK_MEMINFO_RCVBUF
] = sk
->sk_rcvbuf
;
3112 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3113 mem
[SK_MEMINFO_SNDBUF
] = sk
->sk_sndbuf
;
3114 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3115 mem
[SK_MEMINFO_WMEM_QUEUED
] = sk
->sk_wmem_queued
;
3116 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3117 mem
[SK_MEMINFO_BACKLOG
] = sk
->sk_backlog
.len
;
3118 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3121 #ifdef CONFIG_PROC_FS
3122 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3124 int val
[PROTO_INUSE_NR
];
3127 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3129 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3131 __this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
3133 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3135 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3137 int cpu
, idx
= prot
->inuse_idx
;
3140 for_each_possible_cpu(cpu
)
3141 res
+= per_cpu_ptr(net
->core
.prot_inuse
, cpu
)->val
[idx
];
3143 return res
>= 0 ? res
: 0;
3145 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3147 static void sock_inuse_add(struct net
*net
, int val
)
3149 this_cpu_add(*net
->core
.sock_inuse
, val
);
3152 int sock_inuse_get(struct net
*net
)
3156 for_each_possible_cpu(cpu
)
3157 res
+= *per_cpu_ptr(net
->core
.sock_inuse
, cpu
);
3162 EXPORT_SYMBOL_GPL(sock_inuse_get
);
3164 static int __net_init
sock_inuse_init_net(struct net
*net
)
3166 net
->core
.prot_inuse
= alloc_percpu(struct prot_inuse
);
3167 if (net
->core
.prot_inuse
== NULL
)
3170 net
->core
.sock_inuse
= alloc_percpu(int);
3171 if (net
->core
.sock_inuse
== NULL
)
3177 free_percpu(net
->core
.prot_inuse
);
3181 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3183 free_percpu(net
->core
.prot_inuse
);
3184 free_percpu(net
->core
.sock_inuse
);
3187 static struct pernet_operations net_inuse_ops
= {
3188 .init
= sock_inuse_init_net
,
3189 .exit
= sock_inuse_exit_net
,
3192 static __init
int net_inuse_init(void)
3194 if (register_pernet_subsys(&net_inuse_ops
))
3195 panic("Cannot initialize net inuse counters");
3200 core_initcall(net_inuse_init
);
3202 static void assign_proto_idx(struct proto
*prot
)
3204 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3206 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3207 pr_err("PROTO_INUSE_NR exhausted\n");
3211 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3214 static void release_proto_idx(struct proto
*prot
)
3216 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3217 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3220 static inline void assign_proto_idx(struct proto
*prot
)
3224 static inline void release_proto_idx(struct proto
*prot
)
3228 static void sock_inuse_add(struct net
*net
, int val
)
3233 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3237 kfree(rsk_prot
->slab_name
);
3238 rsk_prot
->slab_name
= NULL
;
3239 kmem_cache_destroy(rsk_prot
->slab
);
3240 rsk_prot
->slab
= NULL
;
3243 static int req_prot_init(const struct proto
*prot
)
3245 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3250 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3252 if (!rsk_prot
->slab_name
)
3255 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3256 rsk_prot
->obj_size
, 0,
3257 SLAB_ACCOUNT
| prot
->slab_flags
,
3260 if (!rsk_prot
->slab
) {
3261 pr_crit("%s: Can't create request sock SLAB cache!\n",
3268 int proto_register(struct proto
*prot
, int alloc_slab
)
3271 prot
->slab
= kmem_cache_create_usercopy(prot
->name
,
3273 SLAB_HWCACHE_ALIGN
| SLAB_ACCOUNT
|
3275 prot
->useroffset
, prot
->usersize
,
3278 if (prot
->slab
== NULL
) {
3279 pr_crit("%s: Can't create sock SLAB cache!\n",
3284 if (req_prot_init(prot
))
3285 goto out_free_request_sock_slab
;
3287 if (prot
->twsk_prot
!= NULL
) {
3288 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3290 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3291 goto out_free_request_sock_slab
;
3293 prot
->twsk_prot
->twsk_slab
=
3294 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3295 prot
->twsk_prot
->twsk_obj_size
,
3300 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3301 goto out_free_timewait_sock_slab_name
;
3305 mutex_lock(&proto_list_mutex
);
3306 list_add(&prot
->node
, &proto_list
);
3307 assign_proto_idx(prot
);
3308 mutex_unlock(&proto_list_mutex
);
3311 out_free_timewait_sock_slab_name
:
3312 kfree(prot
->twsk_prot
->twsk_slab_name
);
3313 out_free_request_sock_slab
:
3314 req_prot_cleanup(prot
->rsk_prot
);
3316 kmem_cache_destroy(prot
->slab
);
3321 EXPORT_SYMBOL(proto_register
);
3323 void proto_unregister(struct proto
*prot
)
3325 mutex_lock(&proto_list_mutex
);
3326 release_proto_idx(prot
);
3327 list_del(&prot
->node
);
3328 mutex_unlock(&proto_list_mutex
);
3330 kmem_cache_destroy(prot
->slab
);
3333 req_prot_cleanup(prot
->rsk_prot
);
3335 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
3336 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
3337 kfree(prot
->twsk_prot
->twsk_slab_name
);
3338 prot
->twsk_prot
->twsk_slab
= NULL
;
3341 EXPORT_SYMBOL(proto_unregister
);
3343 int sock_load_diag_module(int family
, int protocol
)
3346 if (!sock_is_registered(family
))
3349 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK
,
3350 NETLINK_SOCK_DIAG
, family
);
3354 if (family
== AF_INET
&&
3355 protocol
!= IPPROTO_RAW
&&
3356 !rcu_access_pointer(inet_protos
[protocol
]))
3360 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK
,
3361 NETLINK_SOCK_DIAG
, family
, protocol
);
3363 EXPORT_SYMBOL(sock_load_diag_module
);
3365 #ifdef CONFIG_PROC_FS
3366 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3367 __acquires(proto_list_mutex
)
3369 mutex_lock(&proto_list_mutex
);
3370 return seq_list_start_head(&proto_list
, *pos
);
3373 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3375 return seq_list_next(v
, &proto_list
, pos
);
3378 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3379 __releases(proto_list_mutex
)
3381 mutex_unlock(&proto_list_mutex
);
3384 static char proto_method_implemented(const void *method
)
3386 return method
== NULL
? 'n' : 'y';
3388 static long sock_prot_memory_allocated(struct proto
*proto
)
3390 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3393 static char *sock_prot_memory_pressure(struct proto
*proto
)
3395 return proto
->memory_pressure
!= NULL
?
3396 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3399 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3402 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3403 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3406 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3407 sock_prot_memory_allocated(proto
),
3408 sock_prot_memory_pressure(proto
),
3410 proto
->slab
== NULL
? "no" : "yes",
3411 module_name(proto
->owner
),
3412 proto_method_implemented(proto
->close
),
3413 proto_method_implemented(proto
->connect
),
3414 proto_method_implemented(proto
->disconnect
),
3415 proto_method_implemented(proto
->accept
),
3416 proto_method_implemented(proto
->ioctl
),
3417 proto_method_implemented(proto
->init
),
3418 proto_method_implemented(proto
->destroy
),
3419 proto_method_implemented(proto
->shutdown
),
3420 proto_method_implemented(proto
->setsockopt
),
3421 proto_method_implemented(proto
->getsockopt
),
3422 proto_method_implemented(proto
->sendmsg
),
3423 proto_method_implemented(proto
->recvmsg
),
3424 proto_method_implemented(proto
->sendpage
),
3425 proto_method_implemented(proto
->bind
),
3426 proto_method_implemented(proto
->backlog_rcv
),
3427 proto_method_implemented(proto
->hash
),
3428 proto_method_implemented(proto
->unhash
),
3429 proto_method_implemented(proto
->get_port
),
3430 proto_method_implemented(proto
->enter_memory_pressure
));
3433 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3435 if (v
== &proto_list
)
3436 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3445 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3447 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3451 static const struct seq_operations proto_seq_ops
= {
3452 .start
= proto_seq_start
,
3453 .next
= proto_seq_next
,
3454 .stop
= proto_seq_stop
,
3455 .show
= proto_seq_show
,
3458 static __net_init
int proto_init_net(struct net
*net
)
3460 if (!proc_create_net("protocols", 0444, net
->proc_net
, &proto_seq_ops
,
3461 sizeof(struct seq_net_private
)))
3467 static __net_exit
void proto_exit_net(struct net
*net
)
3469 remove_proc_entry("protocols", net
->proc_net
);
3473 static __net_initdata
struct pernet_operations proto_net_ops
= {
3474 .init
= proto_init_net
,
3475 .exit
= proto_exit_net
,
3478 static int __init
proto_init(void)
3480 return register_pernet_subsys(&proto_net_ops
);
3483 subsys_initcall(proto_init
);
3485 #endif /* PROC_FS */
3487 #ifdef CONFIG_NET_RX_BUSY_POLL
3488 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3490 struct sock
*sk
= p
;
3492 return !skb_queue_empty_lockless(&sk
->sk_receive_queue
) ||
3493 sk_busy_loop_timeout(sk
, start_time
);
3495 EXPORT_SYMBOL(sk_busy_loop_end
);
3496 #endif /* CONFIG_NET_RX_BUSY_POLL */