Linux 4.19.133
[linux/fpc-iii.git] / net / mac80211 / rx.c
blobc17e148e06e71677e37bec277b4234a869f833f8
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
42 u64_stats_update_begin(&tstats->syncp);
43 tstats->rx_packets++;
44 tstats->rx_bytes += len;
45 u64_stats_update_end(&tstats->syncp);
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 enum nl80211_iftype type)
51 __le16 fc = hdr->frame_control;
53 if (ieee80211_is_data(fc)) {
54 if (len < 24) /* drop incorrect hdr len (data) */
55 return NULL;
57 if (ieee80211_has_a4(fc))
58 return NULL;
59 if (ieee80211_has_tods(fc))
60 return hdr->addr1;
61 if (ieee80211_has_fromds(fc))
62 return hdr->addr2;
64 return hdr->addr3;
67 if (ieee80211_is_mgmt(fc)) {
68 if (len < 24) /* drop incorrect hdr len (mgmt) */
69 return NULL;
70 return hdr->addr3;
73 if (ieee80211_is_ctl(fc)) {
74 if (ieee80211_is_pspoll(fc))
75 return hdr->addr1;
77 if (ieee80211_is_back_req(fc)) {
78 switch (type) {
79 case NL80211_IFTYPE_STATION:
80 return hdr->addr2;
81 case NL80211_IFTYPE_AP:
82 case NL80211_IFTYPE_AP_VLAN:
83 return hdr->addr1;
84 default:
85 break; /* fall through to the return */
90 return NULL;
94 * monitor mode reception
96 * This function cleans up the SKB, i.e. it removes all the stuff
97 * only useful for monitoring.
99 static void remove_monitor_info(struct sk_buff *skb,
100 unsigned int present_fcs_len,
101 unsigned int rtap_space)
103 if (present_fcs_len)
104 __pskb_trim(skb, skb->len - present_fcs_len);
105 __pskb_pull(skb, rtap_space);
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 unsigned int rtap_space)
111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 struct ieee80211_hdr *hdr;
114 hdr = (void *)(skb->data + rtap_space);
116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 RX_FLAG_FAILED_PLCP_CRC |
118 RX_FLAG_ONLY_MONITOR))
119 return true;
121 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
122 return true;
124 if (ieee80211_is_ctl(hdr->frame_control) &&
125 !ieee80211_is_pspoll(hdr->frame_control) &&
126 !ieee80211_is_back_req(hdr->frame_control))
127 return true;
129 return false;
132 static int
133 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
134 struct ieee80211_rx_status *status,
135 struct sk_buff *skb)
137 int len;
139 /* always present fields */
140 len = sizeof(struct ieee80211_radiotap_header) + 8;
142 /* allocate extra bitmaps */
143 if (status->chains)
144 len += 4 * hweight8(status->chains);
145 /* vendor presence bitmap */
146 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
147 len += 4;
149 if (ieee80211_have_rx_timestamp(status)) {
150 len = ALIGN(len, 8);
151 len += 8;
153 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
154 len += 1;
156 /* antenna field, if we don't have per-chain info */
157 if (!status->chains)
158 len += 1;
160 /* padding for RX_FLAGS if necessary */
161 len = ALIGN(len, 2);
163 if (status->encoding == RX_ENC_HT) /* HT info */
164 len += 3;
166 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
167 len = ALIGN(len, 4);
168 len += 8;
171 if (status->encoding == RX_ENC_VHT) {
172 len = ALIGN(len, 2);
173 len += 12;
176 if (local->hw.radiotap_timestamp.units_pos >= 0) {
177 len = ALIGN(len, 8);
178 len += 12;
181 if (status->encoding == RX_ENC_HE &&
182 status->flag & RX_FLAG_RADIOTAP_HE) {
183 len = ALIGN(len, 2);
184 len += 12;
185 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
188 if (status->encoding == RX_ENC_HE &&
189 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
190 len = ALIGN(len, 2);
191 len += 12;
192 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
195 if (status->chains) {
196 /* antenna and antenna signal fields */
197 len += 2 * hweight8(status->chains);
200 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
201 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
203 /* alignment for fixed 6-byte vendor data header */
204 len = ALIGN(len, 2);
205 /* vendor data header */
206 len += 6;
207 if (WARN_ON(rtap->align == 0))
208 rtap->align = 1;
209 len = ALIGN(len, rtap->align);
210 len += rtap->len + rtap->pad;
213 return len;
216 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
217 struct sk_buff *skb,
218 int rtap_space)
220 struct {
221 struct ieee80211_hdr_3addr hdr;
222 u8 category;
223 u8 action_code;
224 } __packed __aligned(2) action;
226 if (!sdata)
227 return;
229 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
231 if (skb->len < rtap_space + sizeof(action) +
232 VHT_MUMIMO_GROUPS_DATA_LEN)
233 return;
235 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
236 return;
238 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
240 if (!ieee80211_is_action(action.hdr.frame_control))
241 return;
243 if (action.category != WLAN_CATEGORY_VHT)
244 return;
246 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
247 return;
249 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
250 return;
252 skb = skb_copy(skb, GFP_ATOMIC);
253 if (!skb)
254 return;
256 skb_queue_tail(&sdata->skb_queue, skb);
257 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
261 * ieee80211_add_rx_radiotap_header - add radiotap header
263 * add a radiotap header containing all the fields which the hardware provided.
265 static void
266 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
267 struct sk_buff *skb,
268 struct ieee80211_rate *rate,
269 int rtap_len, bool has_fcs)
271 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
272 struct ieee80211_radiotap_header *rthdr;
273 unsigned char *pos;
274 __le32 *it_present;
275 u32 it_present_val;
276 u16 rx_flags = 0;
277 u16 channel_flags = 0;
278 int mpdulen, chain;
279 unsigned long chains = status->chains;
280 struct ieee80211_vendor_radiotap rtap = {};
281 struct ieee80211_radiotap_he he = {};
282 struct ieee80211_radiotap_he_mu he_mu = {};
284 if (status->flag & RX_FLAG_RADIOTAP_HE) {
285 he = *(struct ieee80211_radiotap_he *)skb->data;
286 skb_pull(skb, sizeof(he));
287 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
290 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
291 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
292 skb_pull(skb, sizeof(he_mu));
295 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
296 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
297 /* rtap.len and rtap.pad are undone immediately */
298 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
301 mpdulen = skb->len;
302 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
303 mpdulen += FCS_LEN;
305 rthdr = skb_push(skb, rtap_len);
306 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
307 it_present = &rthdr->it_present;
309 /* radiotap header, set always present flags */
310 rthdr->it_len = cpu_to_le16(rtap_len);
311 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
312 BIT(IEEE80211_RADIOTAP_CHANNEL) |
313 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
315 if (!status->chains)
316 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
318 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
319 it_present_val |=
320 BIT(IEEE80211_RADIOTAP_EXT) |
321 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
322 put_unaligned_le32(it_present_val, it_present);
323 it_present++;
324 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
325 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
328 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
329 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
330 BIT(IEEE80211_RADIOTAP_EXT);
331 put_unaligned_le32(it_present_val, it_present);
332 it_present++;
333 it_present_val = rtap.present;
336 put_unaligned_le32(it_present_val, it_present);
338 pos = (void *)(it_present + 1);
340 /* the order of the following fields is important */
342 /* IEEE80211_RADIOTAP_TSFT */
343 if (ieee80211_have_rx_timestamp(status)) {
344 /* padding */
345 while ((pos - (u8 *)rthdr) & 7)
346 *pos++ = 0;
347 put_unaligned_le64(
348 ieee80211_calculate_rx_timestamp(local, status,
349 mpdulen, 0),
350 pos);
351 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
352 pos += 8;
355 /* IEEE80211_RADIOTAP_FLAGS */
356 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
357 *pos |= IEEE80211_RADIOTAP_F_FCS;
358 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
359 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
360 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
361 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
362 pos++;
364 /* IEEE80211_RADIOTAP_RATE */
365 if (!rate || status->encoding != RX_ENC_LEGACY) {
367 * Without rate information don't add it. If we have,
368 * MCS information is a separate field in radiotap,
369 * added below. The byte here is needed as padding
370 * for the channel though, so initialise it to 0.
372 *pos = 0;
373 } else {
374 int shift = 0;
375 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
376 if (status->bw == RATE_INFO_BW_10)
377 shift = 1;
378 else if (status->bw == RATE_INFO_BW_5)
379 shift = 2;
380 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
382 pos++;
384 /* IEEE80211_RADIOTAP_CHANNEL */
385 put_unaligned_le16(status->freq, pos);
386 pos += 2;
387 if (status->bw == RATE_INFO_BW_10)
388 channel_flags |= IEEE80211_CHAN_HALF;
389 else if (status->bw == RATE_INFO_BW_5)
390 channel_flags |= IEEE80211_CHAN_QUARTER;
392 if (status->band == NL80211_BAND_5GHZ)
393 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
394 else if (status->encoding != RX_ENC_LEGACY)
395 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
396 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
397 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
398 else if (rate)
399 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
400 else
401 channel_flags |= IEEE80211_CHAN_2GHZ;
402 put_unaligned_le16(channel_flags, pos);
403 pos += 2;
405 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
406 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
407 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
408 *pos = status->signal;
409 rthdr->it_present |=
410 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
411 pos++;
414 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
416 if (!status->chains) {
417 /* IEEE80211_RADIOTAP_ANTENNA */
418 *pos = status->antenna;
419 pos++;
422 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
424 /* IEEE80211_RADIOTAP_RX_FLAGS */
425 /* ensure 2 byte alignment for the 2 byte field as required */
426 if ((pos - (u8 *)rthdr) & 1)
427 *pos++ = 0;
428 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
429 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
430 put_unaligned_le16(rx_flags, pos);
431 pos += 2;
433 if (status->encoding == RX_ENC_HT) {
434 unsigned int stbc;
436 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
437 *pos++ = local->hw.radiotap_mcs_details;
438 *pos = 0;
439 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
440 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
441 if (status->bw == RATE_INFO_BW_40)
442 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
443 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
444 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
445 if (status->enc_flags & RX_ENC_FLAG_LDPC)
446 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
447 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
448 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
449 pos++;
450 *pos++ = status->rate_idx;
453 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
454 u16 flags = 0;
456 /* ensure 4 byte alignment */
457 while ((pos - (u8 *)rthdr) & 3)
458 pos++;
459 rthdr->it_present |=
460 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
461 put_unaligned_le32(status->ampdu_reference, pos);
462 pos += 4;
463 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
464 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
465 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
466 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
467 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
468 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
469 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
470 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
471 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
472 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
473 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
474 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
475 put_unaligned_le16(flags, pos);
476 pos += 2;
477 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
478 *pos++ = status->ampdu_delimiter_crc;
479 else
480 *pos++ = 0;
481 *pos++ = 0;
484 if (status->encoding == RX_ENC_VHT) {
485 u16 known = local->hw.radiotap_vht_details;
487 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
488 put_unaligned_le16(known, pos);
489 pos += 2;
490 /* flags */
491 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
492 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
493 /* in VHT, STBC is binary */
494 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
495 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
496 if (status->enc_flags & RX_ENC_FLAG_BF)
497 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
498 pos++;
499 /* bandwidth */
500 switch (status->bw) {
501 case RATE_INFO_BW_80:
502 *pos++ = 4;
503 break;
504 case RATE_INFO_BW_160:
505 *pos++ = 11;
506 break;
507 case RATE_INFO_BW_40:
508 *pos++ = 1;
509 break;
510 default:
511 *pos++ = 0;
513 /* MCS/NSS */
514 *pos = (status->rate_idx << 4) | status->nss;
515 pos += 4;
516 /* coding field */
517 if (status->enc_flags & RX_ENC_FLAG_LDPC)
518 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
519 pos++;
520 /* group ID */
521 pos++;
522 /* partial_aid */
523 pos += 2;
526 if (local->hw.radiotap_timestamp.units_pos >= 0) {
527 u16 accuracy = 0;
528 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
530 rthdr->it_present |=
531 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
533 /* ensure 8 byte alignment */
534 while ((pos - (u8 *)rthdr) & 7)
535 pos++;
537 put_unaligned_le64(status->device_timestamp, pos);
538 pos += sizeof(u64);
540 if (local->hw.radiotap_timestamp.accuracy >= 0) {
541 accuracy = local->hw.radiotap_timestamp.accuracy;
542 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
544 put_unaligned_le16(accuracy, pos);
545 pos += sizeof(u16);
547 *pos++ = local->hw.radiotap_timestamp.units_pos;
548 *pos++ = flags;
551 if (status->encoding == RX_ENC_HE &&
552 status->flag & RX_FLAG_RADIOTAP_HE) {
553 #define HE_PREP(f, val) cpu_to_le16(FIELD_PREP(IEEE80211_RADIOTAP_HE_##f, val))
555 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
556 he.data6 |= HE_PREP(DATA6_NSTS,
557 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
558 status->enc_flags));
559 he.data3 |= HE_PREP(DATA3_STBC, 1);
560 } else {
561 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
564 #define CHECK_GI(s) \
565 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
566 (int)NL80211_RATE_INFO_HE_GI_##s)
568 CHECK_GI(0_8);
569 CHECK_GI(1_6);
570 CHECK_GI(3_2);
572 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
573 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
574 he.data3 |= HE_PREP(DATA3_CODING,
575 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
577 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
579 switch (status->bw) {
580 case RATE_INFO_BW_20:
581 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
582 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
583 break;
584 case RATE_INFO_BW_40:
585 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
586 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
587 break;
588 case RATE_INFO_BW_80:
589 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
590 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
591 break;
592 case RATE_INFO_BW_160:
593 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
594 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
595 break;
596 case RATE_INFO_BW_HE_RU:
597 #define CHECK_RU_ALLOC(s) \
598 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
599 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
601 CHECK_RU_ALLOC(26);
602 CHECK_RU_ALLOC(52);
603 CHECK_RU_ALLOC(106);
604 CHECK_RU_ALLOC(242);
605 CHECK_RU_ALLOC(484);
606 CHECK_RU_ALLOC(996);
607 CHECK_RU_ALLOC(2x996);
609 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
610 status->he_ru + 4);
611 break;
612 default:
613 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
616 /* ensure 2 byte alignment */
617 while ((pos - (u8 *)rthdr) & 1)
618 pos++;
619 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
620 memcpy(pos, &he, sizeof(he));
621 pos += sizeof(he);
624 if (status->encoding == RX_ENC_HE &&
625 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
626 /* ensure 2 byte alignment */
627 while ((pos - (u8 *)rthdr) & 1)
628 pos++;
629 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
630 memcpy(pos, &he_mu, sizeof(he_mu));
631 pos += sizeof(he_mu);
634 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
635 *pos++ = status->chain_signal[chain];
636 *pos++ = chain;
639 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
640 /* ensure 2 byte alignment for the vendor field as required */
641 if ((pos - (u8 *)rthdr) & 1)
642 *pos++ = 0;
643 *pos++ = rtap.oui[0];
644 *pos++ = rtap.oui[1];
645 *pos++ = rtap.oui[2];
646 *pos++ = rtap.subns;
647 put_unaligned_le16(rtap.len, pos);
648 pos += 2;
649 /* align the actual payload as requested */
650 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
651 *pos++ = 0;
652 /* data (and possible padding) already follows */
656 static struct sk_buff *
657 ieee80211_make_monitor_skb(struct ieee80211_local *local,
658 struct sk_buff **origskb,
659 struct ieee80211_rate *rate,
660 int rtap_space, bool use_origskb)
662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
663 int rt_hdrlen, needed_headroom;
664 struct sk_buff *skb;
666 /* room for the radiotap header based on driver features */
667 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
668 needed_headroom = rt_hdrlen - rtap_space;
670 if (use_origskb) {
671 /* only need to expand headroom if necessary */
672 skb = *origskb;
673 *origskb = NULL;
676 * This shouldn't trigger often because most devices have an
677 * RX header they pull before we get here, and that should
678 * be big enough for our radiotap information. We should
679 * probably export the length to drivers so that we can have
680 * them allocate enough headroom to start with.
682 if (skb_headroom(skb) < needed_headroom &&
683 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
684 dev_kfree_skb(skb);
685 return NULL;
687 } else {
689 * Need to make a copy and possibly remove radiotap header
690 * and FCS from the original.
692 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
694 if (!skb)
695 return NULL;
698 /* prepend radiotap information */
699 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
701 skb_reset_mac_header(skb);
702 skb->ip_summed = CHECKSUM_UNNECESSARY;
703 skb->pkt_type = PACKET_OTHERHOST;
704 skb->protocol = htons(ETH_P_802_2);
706 return skb;
710 * This function copies a received frame to all monitor interfaces and
711 * returns a cleaned-up SKB that no longer includes the FCS nor the
712 * radiotap header the driver might have added.
714 static struct sk_buff *
715 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
716 struct ieee80211_rate *rate)
718 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
719 struct ieee80211_sub_if_data *sdata;
720 struct sk_buff *monskb = NULL;
721 int present_fcs_len = 0;
722 unsigned int rtap_space = 0;
723 struct ieee80211_sub_if_data *monitor_sdata =
724 rcu_dereference(local->monitor_sdata);
725 bool only_monitor = false;
727 if (status->flag & RX_FLAG_RADIOTAP_HE)
728 rtap_space += sizeof(struct ieee80211_radiotap_he);
730 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
731 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
733 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
734 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
736 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
740 * First, we may need to make a copy of the skb because
741 * (1) we need to modify it for radiotap (if not present), and
742 * (2) the other RX handlers will modify the skb we got.
744 * We don't need to, of course, if we aren't going to return
745 * the SKB because it has a bad FCS/PLCP checksum.
748 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
749 if (unlikely(origskb->len <= FCS_LEN)) {
750 /* driver bug */
751 WARN_ON(1);
752 dev_kfree_skb(origskb);
753 return NULL;
755 present_fcs_len = FCS_LEN;
758 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
759 if (!pskb_may_pull(origskb, 2 + rtap_space)) {
760 dev_kfree_skb(origskb);
761 return NULL;
764 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
766 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
767 if (only_monitor) {
768 dev_kfree_skb(origskb);
769 return NULL;
772 remove_monitor_info(origskb, present_fcs_len, rtap_space);
773 return origskb;
776 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
778 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
779 bool last_monitor = list_is_last(&sdata->u.mntr.list,
780 &local->mon_list);
782 if (!monskb)
783 monskb = ieee80211_make_monitor_skb(local, &origskb,
784 rate, rtap_space,
785 only_monitor &&
786 last_monitor);
788 if (monskb) {
789 struct sk_buff *skb;
791 if (last_monitor) {
792 skb = monskb;
793 monskb = NULL;
794 } else {
795 skb = skb_clone(monskb, GFP_ATOMIC);
798 if (skb) {
799 skb->dev = sdata->dev;
800 ieee80211_rx_stats(skb->dev, skb->len);
801 netif_receive_skb(skb);
805 if (last_monitor)
806 break;
809 /* this happens if last_monitor was erroneously false */
810 dev_kfree_skb(monskb);
812 /* ditto */
813 if (!origskb)
814 return NULL;
816 remove_monitor_info(origskb, present_fcs_len, rtap_space);
817 return origskb;
820 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
822 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
823 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
824 int tid, seqno_idx, security_idx;
826 /* does the frame have a qos control field? */
827 if (ieee80211_is_data_qos(hdr->frame_control)) {
828 u8 *qc = ieee80211_get_qos_ctl(hdr);
829 /* frame has qos control */
830 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
831 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
832 status->rx_flags |= IEEE80211_RX_AMSDU;
834 seqno_idx = tid;
835 security_idx = tid;
836 } else {
838 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
840 * Sequence numbers for management frames, QoS data
841 * frames with a broadcast/multicast address in the
842 * Address 1 field, and all non-QoS data frames sent
843 * by QoS STAs are assigned using an additional single
844 * modulo-4096 counter, [...]
846 * We also use that counter for non-QoS STAs.
848 seqno_idx = IEEE80211_NUM_TIDS;
849 security_idx = 0;
850 if (ieee80211_is_mgmt(hdr->frame_control))
851 security_idx = IEEE80211_NUM_TIDS;
852 tid = 0;
855 rx->seqno_idx = seqno_idx;
856 rx->security_idx = security_idx;
857 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
858 * For now, set skb->priority to 0 for other cases. */
859 rx->skb->priority = (tid > 7) ? 0 : tid;
863 * DOC: Packet alignment
865 * Drivers always need to pass packets that are aligned to two-byte boundaries
866 * to the stack.
868 * Additionally, should, if possible, align the payload data in a way that
869 * guarantees that the contained IP header is aligned to a four-byte
870 * boundary. In the case of regular frames, this simply means aligning the
871 * payload to a four-byte boundary (because either the IP header is directly
872 * contained, or IV/RFC1042 headers that have a length divisible by four are
873 * in front of it). If the payload data is not properly aligned and the
874 * architecture doesn't support efficient unaligned operations, mac80211
875 * will align the data.
877 * With A-MSDU frames, however, the payload data address must yield two modulo
878 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
879 * push the IP header further back to a multiple of four again. Thankfully, the
880 * specs were sane enough this time around to require padding each A-MSDU
881 * subframe to a length that is a multiple of four.
883 * Padding like Atheros hardware adds which is between the 802.11 header and
884 * the payload is not supported, the driver is required to move the 802.11
885 * header to be directly in front of the payload in that case.
887 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
889 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
890 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
891 #endif
895 /* rx handlers */
897 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
901 if (is_multicast_ether_addr(hdr->addr1))
902 return 0;
904 return ieee80211_is_robust_mgmt_frame(skb);
908 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
910 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
912 if (!is_multicast_ether_addr(hdr->addr1))
913 return 0;
915 return ieee80211_is_robust_mgmt_frame(skb);
919 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
920 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
922 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
923 struct ieee80211_mmie *mmie;
924 struct ieee80211_mmie_16 *mmie16;
926 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
927 return -1;
929 if (!ieee80211_is_robust_mgmt_frame(skb))
930 return -1; /* not a robust management frame */
932 mmie = (struct ieee80211_mmie *)
933 (skb->data + skb->len - sizeof(*mmie));
934 if (mmie->element_id == WLAN_EID_MMIE &&
935 mmie->length == sizeof(*mmie) - 2)
936 return le16_to_cpu(mmie->key_id);
938 mmie16 = (struct ieee80211_mmie_16 *)
939 (skb->data + skb->len - sizeof(*mmie16));
940 if (skb->len >= 24 + sizeof(*mmie16) &&
941 mmie16->element_id == WLAN_EID_MMIE &&
942 mmie16->length == sizeof(*mmie16) - 2)
943 return le16_to_cpu(mmie16->key_id);
945 return -1;
948 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
949 struct sk_buff *skb)
951 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
952 __le16 fc;
953 int hdrlen;
954 u8 keyid;
956 fc = hdr->frame_control;
957 hdrlen = ieee80211_hdrlen(fc);
959 if (skb->len < hdrlen + cs->hdr_len)
960 return -EINVAL;
962 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
963 keyid &= cs->key_idx_mask;
964 keyid >>= cs->key_idx_shift;
966 return keyid;
969 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
971 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
972 char *dev_addr = rx->sdata->vif.addr;
974 if (ieee80211_is_data(hdr->frame_control)) {
975 if (is_multicast_ether_addr(hdr->addr1)) {
976 if (ieee80211_has_tods(hdr->frame_control) ||
977 !ieee80211_has_fromds(hdr->frame_control))
978 return RX_DROP_MONITOR;
979 if (ether_addr_equal(hdr->addr3, dev_addr))
980 return RX_DROP_MONITOR;
981 } else {
982 if (!ieee80211_has_a4(hdr->frame_control))
983 return RX_DROP_MONITOR;
984 if (ether_addr_equal(hdr->addr4, dev_addr))
985 return RX_DROP_MONITOR;
989 /* If there is not an established peer link and this is not a peer link
990 * establisment frame, beacon or probe, drop the frame.
993 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
994 struct ieee80211_mgmt *mgmt;
996 if (!ieee80211_is_mgmt(hdr->frame_control))
997 return RX_DROP_MONITOR;
999 if (ieee80211_is_action(hdr->frame_control)) {
1000 u8 category;
1002 /* make sure category field is present */
1003 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1004 return RX_DROP_MONITOR;
1006 mgmt = (struct ieee80211_mgmt *)hdr;
1007 category = mgmt->u.action.category;
1008 if (category != WLAN_CATEGORY_MESH_ACTION &&
1009 category != WLAN_CATEGORY_SELF_PROTECTED)
1010 return RX_DROP_MONITOR;
1011 return RX_CONTINUE;
1014 if (ieee80211_is_probe_req(hdr->frame_control) ||
1015 ieee80211_is_probe_resp(hdr->frame_control) ||
1016 ieee80211_is_beacon(hdr->frame_control) ||
1017 ieee80211_is_auth(hdr->frame_control))
1018 return RX_CONTINUE;
1020 return RX_DROP_MONITOR;
1023 return RX_CONTINUE;
1026 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1027 int index)
1029 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1030 struct sk_buff *tail = skb_peek_tail(frames);
1031 struct ieee80211_rx_status *status;
1033 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1034 return true;
1036 if (!tail)
1037 return false;
1039 status = IEEE80211_SKB_RXCB(tail);
1040 if (status->flag & RX_FLAG_AMSDU_MORE)
1041 return false;
1043 return true;
1046 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1047 struct tid_ampdu_rx *tid_agg_rx,
1048 int index,
1049 struct sk_buff_head *frames)
1051 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1052 struct sk_buff *skb;
1053 struct ieee80211_rx_status *status;
1055 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1057 if (skb_queue_empty(skb_list))
1058 goto no_frame;
1060 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1061 __skb_queue_purge(skb_list);
1062 goto no_frame;
1065 /* release frames from the reorder ring buffer */
1066 tid_agg_rx->stored_mpdu_num--;
1067 while ((skb = __skb_dequeue(skb_list))) {
1068 status = IEEE80211_SKB_RXCB(skb);
1069 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1070 __skb_queue_tail(frames, skb);
1073 no_frame:
1074 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1075 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1078 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1079 struct tid_ampdu_rx *tid_agg_rx,
1080 u16 head_seq_num,
1081 struct sk_buff_head *frames)
1083 int index;
1085 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1087 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1088 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1089 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1090 frames);
1095 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1096 * the skb was added to the buffer longer than this time ago, the earlier
1097 * frames that have not yet been received are assumed to be lost and the skb
1098 * can be released for processing. This may also release other skb's from the
1099 * reorder buffer if there are no additional gaps between the frames.
1101 * Callers must hold tid_agg_rx->reorder_lock.
1103 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1105 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1106 struct tid_ampdu_rx *tid_agg_rx,
1107 struct sk_buff_head *frames)
1109 int index, i, j;
1111 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1113 /* release the buffer until next missing frame */
1114 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1115 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1116 tid_agg_rx->stored_mpdu_num) {
1118 * No buffers ready to be released, but check whether any
1119 * frames in the reorder buffer have timed out.
1121 int skipped = 1;
1122 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1123 j = (j + 1) % tid_agg_rx->buf_size) {
1124 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1125 skipped++;
1126 continue;
1128 if (skipped &&
1129 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1130 HT_RX_REORDER_BUF_TIMEOUT))
1131 goto set_release_timer;
1133 /* don't leave incomplete A-MSDUs around */
1134 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1135 i = (i + 1) % tid_agg_rx->buf_size)
1136 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1138 ht_dbg_ratelimited(sdata,
1139 "release an RX reorder frame due to timeout on earlier frames\n");
1140 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1141 frames);
1144 * Increment the head seq# also for the skipped slots.
1146 tid_agg_rx->head_seq_num =
1147 (tid_agg_rx->head_seq_num +
1148 skipped) & IEEE80211_SN_MASK;
1149 skipped = 0;
1151 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1152 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1153 frames);
1154 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1157 if (tid_agg_rx->stored_mpdu_num) {
1158 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1160 for (; j != (index - 1) % tid_agg_rx->buf_size;
1161 j = (j + 1) % tid_agg_rx->buf_size) {
1162 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1163 break;
1166 set_release_timer:
1168 if (!tid_agg_rx->removed)
1169 mod_timer(&tid_agg_rx->reorder_timer,
1170 tid_agg_rx->reorder_time[j] + 1 +
1171 HT_RX_REORDER_BUF_TIMEOUT);
1172 } else {
1173 del_timer(&tid_agg_rx->reorder_timer);
1178 * As this function belongs to the RX path it must be under
1179 * rcu_read_lock protection. It returns false if the frame
1180 * can be processed immediately, true if it was consumed.
1182 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1183 struct tid_ampdu_rx *tid_agg_rx,
1184 struct sk_buff *skb,
1185 struct sk_buff_head *frames)
1187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1188 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1189 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1190 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1191 u16 head_seq_num, buf_size;
1192 int index;
1193 bool ret = true;
1195 spin_lock(&tid_agg_rx->reorder_lock);
1198 * Offloaded BA sessions have no known starting sequence number so pick
1199 * one from first Rxed frame for this tid after BA was started.
1201 if (unlikely(tid_agg_rx->auto_seq)) {
1202 tid_agg_rx->auto_seq = false;
1203 tid_agg_rx->ssn = mpdu_seq_num;
1204 tid_agg_rx->head_seq_num = mpdu_seq_num;
1207 buf_size = tid_agg_rx->buf_size;
1208 head_seq_num = tid_agg_rx->head_seq_num;
1211 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1212 * be reordered.
1214 if (unlikely(!tid_agg_rx->started)) {
1215 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1216 ret = false;
1217 goto out;
1219 tid_agg_rx->started = true;
1222 /* frame with out of date sequence number */
1223 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1224 dev_kfree_skb(skb);
1225 goto out;
1229 * If frame the sequence number exceeds our buffering window
1230 * size release some previous frames to make room for this one.
1232 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1233 head_seq_num = ieee80211_sn_inc(
1234 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1235 /* release stored frames up to new head to stack */
1236 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1237 head_seq_num, frames);
1240 /* Now the new frame is always in the range of the reordering buffer */
1242 index = mpdu_seq_num % tid_agg_rx->buf_size;
1244 /* check if we already stored this frame */
1245 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1246 dev_kfree_skb(skb);
1247 goto out;
1251 * If the current MPDU is in the right order and nothing else
1252 * is stored we can process it directly, no need to buffer it.
1253 * If it is first but there's something stored, we may be able
1254 * to release frames after this one.
1256 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1257 tid_agg_rx->stored_mpdu_num == 0) {
1258 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1259 tid_agg_rx->head_seq_num =
1260 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1261 ret = false;
1262 goto out;
1265 /* put the frame in the reordering buffer */
1266 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1267 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1268 tid_agg_rx->reorder_time[index] = jiffies;
1269 tid_agg_rx->stored_mpdu_num++;
1270 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1273 out:
1274 spin_unlock(&tid_agg_rx->reorder_lock);
1275 return ret;
1279 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1280 * true if the MPDU was buffered, false if it should be processed.
1282 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1283 struct sk_buff_head *frames)
1285 struct sk_buff *skb = rx->skb;
1286 struct ieee80211_local *local = rx->local;
1287 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1288 struct sta_info *sta = rx->sta;
1289 struct tid_ampdu_rx *tid_agg_rx;
1290 u16 sc;
1291 u8 tid, ack_policy;
1293 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1294 is_multicast_ether_addr(hdr->addr1))
1295 goto dont_reorder;
1298 * filter the QoS data rx stream according to
1299 * STA/TID and check if this STA/TID is on aggregation
1302 if (!sta)
1303 goto dont_reorder;
1305 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1306 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1307 tid = ieee80211_get_tid(hdr);
1309 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1310 if (!tid_agg_rx) {
1311 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1312 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1313 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1314 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1315 WLAN_BACK_RECIPIENT,
1316 WLAN_REASON_QSTA_REQUIRE_SETUP);
1317 goto dont_reorder;
1320 /* qos null data frames are excluded */
1321 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1322 goto dont_reorder;
1324 /* not part of a BA session */
1325 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1326 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1327 goto dont_reorder;
1329 /* new, potentially un-ordered, ampdu frame - process it */
1331 /* reset session timer */
1332 if (tid_agg_rx->timeout)
1333 tid_agg_rx->last_rx = jiffies;
1335 /* if this mpdu is fragmented - terminate rx aggregation session */
1336 sc = le16_to_cpu(hdr->seq_ctrl);
1337 if (sc & IEEE80211_SCTL_FRAG) {
1338 skb_queue_tail(&rx->sdata->skb_queue, skb);
1339 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1340 return;
1344 * No locking needed -- we will only ever process one
1345 * RX packet at a time, and thus own tid_agg_rx. All
1346 * other code manipulating it needs to (and does) make
1347 * sure that we cannot get to it any more before doing
1348 * anything with it.
1350 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1351 frames))
1352 return;
1354 dont_reorder:
1355 __skb_queue_tail(frames, skb);
1358 static ieee80211_rx_result debug_noinline
1359 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1361 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1362 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1364 if (status->flag & RX_FLAG_DUP_VALIDATED)
1365 return RX_CONTINUE;
1368 * Drop duplicate 802.11 retransmissions
1369 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1372 if (rx->skb->len < 24)
1373 return RX_CONTINUE;
1375 if (ieee80211_is_ctl(hdr->frame_control) ||
1376 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1377 is_multicast_ether_addr(hdr->addr1))
1378 return RX_CONTINUE;
1380 if (!rx->sta)
1381 return RX_CONTINUE;
1383 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1384 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1385 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1386 rx->sta->rx_stats.num_duplicates++;
1387 return RX_DROP_UNUSABLE;
1388 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1389 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1392 return RX_CONTINUE;
1395 static ieee80211_rx_result debug_noinline
1396 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1398 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1400 /* Drop disallowed frame classes based on STA auth/assoc state;
1401 * IEEE 802.11, Chap 5.5.
1403 * mac80211 filters only based on association state, i.e. it drops
1404 * Class 3 frames from not associated stations. hostapd sends
1405 * deauth/disassoc frames when needed. In addition, hostapd is
1406 * responsible for filtering on both auth and assoc states.
1409 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1410 return ieee80211_rx_mesh_check(rx);
1412 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1413 ieee80211_is_pspoll(hdr->frame_control)) &&
1414 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1415 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1416 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1417 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1419 * accept port control frames from the AP even when it's not
1420 * yet marked ASSOC to prevent a race where we don't set the
1421 * assoc bit quickly enough before it sends the first frame
1423 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1424 ieee80211_is_data_present(hdr->frame_control)) {
1425 unsigned int hdrlen;
1426 __be16 ethertype;
1428 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1430 if (rx->skb->len < hdrlen + 8)
1431 return RX_DROP_MONITOR;
1433 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1434 if (ethertype == rx->sdata->control_port_protocol)
1435 return RX_CONTINUE;
1438 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1439 cfg80211_rx_spurious_frame(rx->sdata->dev,
1440 hdr->addr2,
1441 GFP_ATOMIC))
1442 return RX_DROP_UNUSABLE;
1444 return RX_DROP_MONITOR;
1447 return RX_CONTINUE;
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1454 struct ieee80211_local *local;
1455 struct ieee80211_hdr *hdr;
1456 struct sk_buff *skb;
1458 local = rx->local;
1459 skb = rx->skb;
1460 hdr = (struct ieee80211_hdr *) skb->data;
1462 if (!local->pspolling)
1463 return RX_CONTINUE;
1465 if (!ieee80211_has_fromds(hdr->frame_control))
1466 /* this is not from AP */
1467 return RX_CONTINUE;
1469 if (!ieee80211_is_data(hdr->frame_control))
1470 return RX_CONTINUE;
1472 if (!ieee80211_has_moredata(hdr->frame_control)) {
1473 /* AP has no more frames buffered for us */
1474 local->pspolling = false;
1475 return RX_CONTINUE;
1478 /* more data bit is set, let's request a new frame from the AP */
1479 ieee80211_send_pspoll(local, rx->sdata);
1481 return RX_CONTINUE;
1484 static void sta_ps_start(struct sta_info *sta)
1486 struct ieee80211_sub_if_data *sdata = sta->sdata;
1487 struct ieee80211_local *local = sdata->local;
1488 struct ps_data *ps;
1489 int tid;
1491 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1492 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1493 ps = &sdata->bss->ps;
1494 else
1495 return;
1497 atomic_inc(&ps->num_sta_ps);
1498 set_sta_flag(sta, WLAN_STA_PS_STA);
1499 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1500 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1501 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1502 sta->sta.addr, sta->sta.aid);
1504 ieee80211_clear_fast_xmit(sta);
1506 if (!sta->sta.txq[0])
1507 return;
1509 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1510 if (txq_has_queue(sta->sta.txq[tid]))
1511 set_bit(tid, &sta->txq_buffered_tids);
1512 else
1513 clear_bit(tid, &sta->txq_buffered_tids);
1517 static void sta_ps_end(struct sta_info *sta)
1519 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1520 sta->sta.addr, sta->sta.aid);
1522 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1524 * Clear the flag only if the other one is still set
1525 * so that the TX path won't start TX'ing new frames
1526 * directly ... In the case that the driver flag isn't
1527 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1529 clear_sta_flag(sta, WLAN_STA_PS_STA);
1530 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1531 sta->sta.addr, sta->sta.aid);
1532 return;
1535 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1536 clear_sta_flag(sta, WLAN_STA_PS_STA);
1537 ieee80211_sta_ps_deliver_wakeup(sta);
1540 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1542 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1543 bool in_ps;
1545 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1547 /* Don't let the same PS state be set twice */
1548 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1549 if ((start && in_ps) || (!start && !in_ps))
1550 return -EINVAL;
1552 if (start)
1553 sta_ps_start(sta);
1554 else
1555 sta_ps_end(sta);
1557 return 0;
1559 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1561 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1563 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1565 if (test_sta_flag(sta, WLAN_STA_SP))
1566 return;
1568 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1569 ieee80211_sta_ps_deliver_poll_response(sta);
1570 else
1571 set_sta_flag(sta, WLAN_STA_PSPOLL);
1573 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1575 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1577 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1578 int ac = ieee80211_ac_from_tid(tid);
1581 * If this AC is not trigger-enabled do nothing unless the
1582 * driver is calling us after it already checked.
1584 * NB: This could/should check a separate bitmap of trigger-
1585 * enabled queues, but for now we only implement uAPSD w/o
1586 * TSPEC changes to the ACs, so they're always the same.
1588 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1589 tid != IEEE80211_NUM_TIDS)
1590 return;
1592 /* if we are in a service period, do nothing */
1593 if (test_sta_flag(sta, WLAN_STA_SP))
1594 return;
1596 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1597 ieee80211_sta_ps_deliver_uapsd(sta);
1598 else
1599 set_sta_flag(sta, WLAN_STA_UAPSD);
1601 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1603 static ieee80211_rx_result debug_noinline
1604 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1606 struct ieee80211_sub_if_data *sdata = rx->sdata;
1607 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1608 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1610 if (!rx->sta)
1611 return RX_CONTINUE;
1613 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1614 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1615 return RX_CONTINUE;
1618 * The device handles station powersave, so don't do anything about
1619 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1620 * it to mac80211 since they're handled.)
1622 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1623 return RX_CONTINUE;
1626 * Don't do anything if the station isn't already asleep. In
1627 * the uAPSD case, the station will probably be marked asleep,
1628 * in the PS-Poll case the station must be confused ...
1630 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1631 return RX_CONTINUE;
1633 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1634 ieee80211_sta_pspoll(&rx->sta->sta);
1636 /* Free PS Poll skb here instead of returning RX_DROP that would
1637 * count as an dropped frame. */
1638 dev_kfree_skb(rx->skb);
1640 return RX_QUEUED;
1641 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1642 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1643 ieee80211_has_pm(hdr->frame_control) &&
1644 (ieee80211_is_data_qos(hdr->frame_control) ||
1645 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1646 u8 tid = ieee80211_get_tid(hdr);
1648 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1651 return RX_CONTINUE;
1654 static ieee80211_rx_result debug_noinline
1655 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1657 struct sta_info *sta = rx->sta;
1658 struct sk_buff *skb = rx->skb;
1659 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1660 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1661 int i;
1663 if (!sta)
1664 return RX_CONTINUE;
1667 * Update last_rx only for IBSS packets which are for the current
1668 * BSSID and for station already AUTHORIZED to avoid keeping the
1669 * current IBSS network alive in cases where other STAs start
1670 * using different BSSID. This will also give the station another
1671 * chance to restart the authentication/authorization in case
1672 * something went wrong the first time.
1674 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1675 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1676 NL80211_IFTYPE_ADHOC);
1677 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1678 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1679 sta->rx_stats.last_rx = jiffies;
1680 if (ieee80211_is_data(hdr->frame_control) &&
1681 !is_multicast_ether_addr(hdr->addr1))
1682 sta->rx_stats.last_rate =
1683 sta_stats_encode_rate(status);
1685 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1686 sta->rx_stats.last_rx = jiffies;
1687 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1689 * Mesh beacons will update last_rx when if they are found to
1690 * match the current local configuration when processed.
1692 sta->rx_stats.last_rx = jiffies;
1693 if (ieee80211_is_data(hdr->frame_control))
1694 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1697 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1698 ieee80211_sta_rx_notify(rx->sdata, hdr);
1700 sta->rx_stats.fragments++;
1702 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1703 sta->rx_stats.bytes += rx->skb->len;
1704 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1706 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1707 sta->rx_stats.last_signal = status->signal;
1708 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1711 if (status->chains) {
1712 sta->rx_stats.chains = status->chains;
1713 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1714 int signal = status->chain_signal[i];
1716 if (!(status->chains & BIT(i)))
1717 continue;
1719 sta->rx_stats.chain_signal_last[i] = signal;
1720 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1721 -signal);
1726 * Change STA power saving mode only at the end of a frame
1727 * exchange sequence, and only for a data or management
1728 * frame as specified in IEEE 802.11-2016 11.2.3.2
1730 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1731 !ieee80211_has_morefrags(hdr->frame_control) &&
1732 !is_multicast_ether_addr(hdr->addr1) &&
1733 (ieee80211_is_mgmt(hdr->frame_control) ||
1734 ieee80211_is_data(hdr->frame_control)) &&
1735 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1736 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1737 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1738 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1739 if (!ieee80211_has_pm(hdr->frame_control))
1740 sta_ps_end(sta);
1741 } else {
1742 if (ieee80211_has_pm(hdr->frame_control))
1743 sta_ps_start(sta);
1747 /* mesh power save support */
1748 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1749 ieee80211_mps_rx_h_sta_process(sta, hdr);
1752 * Drop (qos-)data::nullfunc frames silently, since they
1753 * are used only to control station power saving mode.
1755 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1756 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1759 * If we receive a 4-addr nullfunc frame from a STA
1760 * that was not moved to a 4-addr STA vlan yet send
1761 * the event to userspace and for older hostapd drop
1762 * the frame to the monitor interface.
1764 if (ieee80211_has_a4(hdr->frame_control) &&
1765 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1766 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1767 !rx->sdata->u.vlan.sta))) {
1768 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1769 cfg80211_rx_unexpected_4addr_frame(
1770 rx->sdata->dev, sta->sta.addr,
1771 GFP_ATOMIC);
1772 return RX_DROP_MONITOR;
1775 * Update counter and free packet here to avoid
1776 * counting this as a dropped packed.
1778 sta->rx_stats.packets++;
1779 dev_kfree_skb(rx->skb);
1780 return RX_QUEUED;
1783 return RX_CONTINUE;
1784 } /* ieee80211_rx_h_sta_process */
1786 static ieee80211_rx_result debug_noinline
1787 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1789 struct sk_buff *skb = rx->skb;
1790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1792 int keyidx;
1793 int hdrlen;
1794 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1795 struct ieee80211_key *sta_ptk = NULL;
1796 int mmie_keyidx = -1;
1797 __le16 fc;
1798 const struct ieee80211_cipher_scheme *cs = NULL;
1801 * Key selection 101
1803 * There are four types of keys:
1804 * - GTK (group keys)
1805 * - IGTK (group keys for management frames)
1806 * - PTK (pairwise keys)
1807 * - STK (station-to-station pairwise keys)
1809 * When selecting a key, we have to distinguish between multicast
1810 * (including broadcast) and unicast frames, the latter can only
1811 * use PTKs and STKs while the former always use GTKs and IGTKs.
1812 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1813 * unicast frames can also use key indices like GTKs. Hence, if we
1814 * don't have a PTK/STK we check the key index for a WEP key.
1816 * Note that in a regular BSS, multicast frames are sent by the
1817 * AP only, associated stations unicast the frame to the AP first
1818 * which then multicasts it on their behalf.
1820 * There is also a slight problem in IBSS mode: GTKs are negotiated
1821 * with each station, that is something we don't currently handle.
1822 * The spec seems to expect that one negotiates the same key with
1823 * every station but there's no such requirement; VLANs could be
1824 * possible.
1827 /* start without a key */
1828 rx->key = NULL;
1829 fc = hdr->frame_control;
1831 if (rx->sta) {
1832 int keyid = rx->sta->ptk_idx;
1834 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1835 cs = rx->sta->cipher_scheme;
1836 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1837 if (unlikely(keyid < 0))
1838 return RX_DROP_UNUSABLE;
1840 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1843 if (!ieee80211_has_protected(fc))
1844 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1846 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1847 rx->key = sta_ptk;
1848 if ((status->flag & RX_FLAG_DECRYPTED) &&
1849 (status->flag & RX_FLAG_IV_STRIPPED))
1850 return RX_CONTINUE;
1851 /* Skip decryption if the frame is not protected. */
1852 if (!ieee80211_has_protected(fc))
1853 return RX_CONTINUE;
1854 } else if (mmie_keyidx >= 0) {
1855 /* Broadcast/multicast robust management frame / BIP */
1856 if ((status->flag & RX_FLAG_DECRYPTED) &&
1857 (status->flag & RX_FLAG_IV_STRIPPED))
1858 return RX_CONTINUE;
1860 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1861 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1862 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1863 if (rx->sta) {
1864 if (ieee80211_is_group_privacy_action(skb) &&
1865 test_sta_flag(rx->sta, WLAN_STA_MFP))
1866 return RX_DROP_MONITOR;
1868 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1870 if (!rx->key)
1871 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1872 } else if (!ieee80211_has_protected(fc)) {
1874 * The frame was not protected, so skip decryption. However, we
1875 * need to set rx->key if there is a key that could have been
1876 * used so that the frame may be dropped if encryption would
1877 * have been expected.
1879 struct ieee80211_key *key = NULL;
1880 struct ieee80211_sub_if_data *sdata = rx->sdata;
1881 int i;
1883 if (ieee80211_is_mgmt(fc) &&
1884 is_multicast_ether_addr(hdr->addr1) &&
1885 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1886 rx->key = key;
1887 else {
1888 if (rx->sta) {
1889 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1890 key = rcu_dereference(rx->sta->gtk[i]);
1891 if (key)
1892 break;
1895 if (!key) {
1896 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1897 key = rcu_dereference(sdata->keys[i]);
1898 if (key)
1899 break;
1902 if (key)
1903 rx->key = key;
1905 return RX_CONTINUE;
1906 } else {
1907 u8 keyid;
1910 * The device doesn't give us the IV so we won't be
1911 * able to look up the key. That's ok though, we
1912 * don't need to decrypt the frame, we just won't
1913 * be able to keep statistics accurate.
1914 * Except for key threshold notifications, should
1915 * we somehow allow the driver to tell us which key
1916 * the hardware used if this flag is set?
1918 if ((status->flag & RX_FLAG_DECRYPTED) &&
1919 (status->flag & RX_FLAG_IV_STRIPPED))
1920 return RX_CONTINUE;
1922 hdrlen = ieee80211_hdrlen(fc);
1924 if (cs) {
1925 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1927 if (unlikely(keyidx < 0))
1928 return RX_DROP_UNUSABLE;
1929 } else {
1930 if (rx->skb->len < 8 + hdrlen)
1931 return RX_DROP_UNUSABLE; /* TODO: count this? */
1933 * no need to call ieee80211_wep_get_keyidx,
1934 * it verifies a bunch of things we've done already
1936 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1937 keyidx = keyid >> 6;
1940 /* check per-station GTK first, if multicast packet */
1941 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1942 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1944 /* if not found, try default key */
1945 if (!rx->key) {
1946 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1949 * RSNA-protected unicast frames should always be
1950 * sent with pairwise or station-to-station keys,
1951 * but for WEP we allow using a key index as well.
1953 if (rx->key &&
1954 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1955 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1956 !is_multicast_ether_addr(hdr->addr1))
1957 rx->key = NULL;
1961 if (rx->key) {
1962 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1963 return RX_DROP_MONITOR;
1965 /* TODO: add threshold stuff again */
1966 } else {
1967 return RX_DROP_MONITOR;
1970 switch (rx->key->conf.cipher) {
1971 case WLAN_CIPHER_SUITE_WEP40:
1972 case WLAN_CIPHER_SUITE_WEP104:
1973 result = ieee80211_crypto_wep_decrypt(rx);
1974 break;
1975 case WLAN_CIPHER_SUITE_TKIP:
1976 result = ieee80211_crypto_tkip_decrypt(rx);
1977 break;
1978 case WLAN_CIPHER_SUITE_CCMP:
1979 result = ieee80211_crypto_ccmp_decrypt(
1980 rx, IEEE80211_CCMP_MIC_LEN);
1981 break;
1982 case WLAN_CIPHER_SUITE_CCMP_256:
1983 result = ieee80211_crypto_ccmp_decrypt(
1984 rx, IEEE80211_CCMP_256_MIC_LEN);
1985 break;
1986 case WLAN_CIPHER_SUITE_AES_CMAC:
1987 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1988 break;
1989 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1990 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1991 break;
1992 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1993 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1994 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1995 break;
1996 case WLAN_CIPHER_SUITE_GCMP:
1997 case WLAN_CIPHER_SUITE_GCMP_256:
1998 result = ieee80211_crypto_gcmp_decrypt(rx);
1999 break;
2000 default:
2001 result = ieee80211_crypto_hw_decrypt(rx);
2004 /* the hdr variable is invalid after the decrypt handlers */
2006 /* either the frame has been decrypted or will be dropped */
2007 status->flag |= RX_FLAG_DECRYPTED;
2009 return result;
2012 static inline struct ieee80211_fragment_entry *
2013 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2014 unsigned int frag, unsigned int seq, int rx_queue,
2015 struct sk_buff **skb)
2017 struct ieee80211_fragment_entry *entry;
2019 entry = &sdata->fragments[sdata->fragment_next++];
2020 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2021 sdata->fragment_next = 0;
2023 if (!skb_queue_empty(&entry->skb_list))
2024 __skb_queue_purge(&entry->skb_list);
2026 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2027 *skb = NULL;
2028 entry->first_frag_time = jiffies;
2029 entry->seq = seq;
2030 entry->rx_queue = rx_queue;
2031 entry->last_frag = frag;
2032 entry->check_sequential_pn = false;
2033 entry->extra_len = 0;
2035 return entry;
2038 static inline struct ieee80211_fragment_entry *
2039 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2040 unsigned int frag, unsigned int seq,
2041 int rx_queue, struct ieee80211_hdr *hdr)
2043 struct ieee80211_fragment_entry *entry;
2044 int i, idx;
2046 idx = sdata->fragment_next;
2047 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2048 struct ieee80211_hdr *f_hdr;
2050 idx--;
2051 if (idx < 0)
2052 idx = IEEE80211_FRAGMENT_MAX - 1;
2054 entry = &sdata->fragments[idx];
2055 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2056 entry->rx_queue != rx_queue ||
2057 entry->last_frag + 1 != frag)
2058 continue;
2060 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
2063 * Check ftype and addresses are equal, else check next fragment
2065 if (((hdr->frame_control ^ f_hdr->frame_control) &
2066 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2067 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2068 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2069 continue;
2071 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2072 __skb_queue_purge(&entry->skb_list);
2073 continue;
2075 return entry;
2078 return NULL;
2081 static ieee80211_rx_result debug_noinline
2082 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2084 struct ieee80211_hdr *hdr;
2085 u16 sc;
2086 __le16 fc;
2087 unsigned int frag, seq;
2088 struct ieee80211_fragment_entry *entry;
2089 struct sk_buff *skb;
2091 hdr = (struct ieee80211_hdr *)rx->skb->data;
2092 fc = hdr->frame_control;
2094 if (ieee80211_is_ctl(fc))
2095 return RX_CONTINUE;
2097 sc = le16_to_cpu(hdr->seq_ctrl);
2098 frag = sc & IEEE80211_SCTL_FRAG;
2100 if (is_multicast_ether_addr(hdr->addr1)) {
2101 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2102 goto out_no_led;
2105 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2106 goto out;
2108 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2110 if (skb_linearize(rx->skb))
2111 return RX_DROP_UNUSABLE;
2114 * skb_linearize() might change the skb->data and
2115 * previously cached variables (in this case, hdr) need to
2116 * be refreshed with the new data.
2118 hdr = (struct ieee80211_hdr *)rx->skb->data;
2119 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2121 if (frag == 0) {
2122 /* This is the first fragment of a new frame. */
2123 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2124 rx->seqno_idx, &(rx->skb));
2125 if (rx->key &&
2126 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2127 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2128 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2129 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2130 ieee80211_has_protected(fc)) {
2131 int queue = rx->security_idx;
2133 /* Store CCMP/GCMP PN so that we can verify that the
2134 * next fragment has a sequential PN value.
2136 entry->check_sequential_pn = true;
2137 memcpy(entry->last_pn,
2138 rx->key->u.ccmp.rx_pn[queue],
2139 IEEE80211_CCMP_PN_LEN);
2140 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2141 u.ccmp.rx_pn) !=
2142 offsetof(struct ieee80211_key,
2143 u.gcmp.rx_pn));
2144 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2145 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2146 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2147 IEEE80211_GCMP_PN_LEN);
2149 return RX_QUEUED;
2152 /* This is a fragment for a frame that should already be pending in
2153 * fragment cache. Add this fragment to the end of the pending entry.
2155 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2156 rx->seqno_idx, hdr);
2157 if (!entry) {
2158 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2159 return RX_DROP_MONITOR;
2162 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2163 * MPDU PN values are not incrementing in steps of 1."
2164 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2165 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2167 if (entry->check_sequential_pn) {
2168 int i;
2169 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2170 int queue;
2172 if (!rx->key ||
2173 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2174 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2175 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2176 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2177 return RX_DROP_UNUSABLE;
2178 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2179 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2180 pn[i]++;
2181 if (pn[i])
2182 break;
2184 queue = rx->security_idx;
2185 rpn = rx->key->u.ccmp.rx_pn[queue];
2186 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2187 return RX_DROP_UNUSABLE;
2188 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2191 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2192 __skb_queue_tail(&entry->skb_list, rx->skb);
2193 entry->last_frag = frag;
2194 entry->extra_len += rx->skb->len;
2195 if (ieee80211_has_morefrags(fc)) {
2196 rx->skb = NULL;
2197 return RX_QUEUED;
2200 rx->skb = __skb_dequeue(&entry->skb_list);
2201 if (skb_tailroom(rx->skb) < entry->extra_len) {
2202 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2203 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2204 GFP_ATOMIC))) {
2205 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2206 __skb_queue_purge(&entry->skb_list);
2207 return RX_DROP_UNUSABLE;
2210 while ((skb = __skb_dequeue(&entry->skb_list))) {
2211 skb_put_data(rx->skb, skb->data, skb->len);
2212 dev_kfree_skb(skb);
2215 out:
2216 ieee80211_led_rx(rx->local);
2217 out_no_led:
2218 if (rx->sta)
2219 rx->sta->rx_stats.packets++;
2220 return RX_CONTINUE;
2223 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2225 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2226 return -EACCES;
2228 return 0;
2231 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2233 struct sk_buff *skb = rx->skb;
2234 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2237 * Pass through unencrypted frames if the hardware has
2238 * decrypted them already.
2240 if (status->flag & RX_FLAG_DECRYPTED)
2241 return 0;
2243 /* Drop unencrypted frames if key is set. */
2244 if (unlikely(!ieee80211_has_protected(fc) &&
2245 !ieee80211_is_any_nullfunc(fc) &&
2246 ieee80211_is_data(fc) && rx->key))
2247 return -EACCES;
2249 return 0;
2252 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2256 __le16 fc = hdr->frame_control;
2259 * Pass through unencrypted frames if the hardware has
2260 * decrypted them already.
2262 if (status->flag & RX_FLAG_DECRYPTED)
2263 return 0;
2265 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2266 if (unlikely(!ieee80211_has_protected(fc) &&
2267 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2268 rx->key)) {
2269 if (ieee80211_is_deauth(fc) ||
2270 ieee80211_is_disassoc(fc))
2271 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2272 rx->skb->data,
2273 rx->skb->len);
2274 return -EACCES;
2276 /* BIP does not use Protected field, so need to check MMIE */
2277 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2278 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2279 if (ieee80211_is_deauth(fc) ||
2280 ieee80211_is_disassoc(fc))
2281 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2282 rx->skb->data,
2283 rx->skb->len);
2284 return -EACCES;
2287 * When using MFP, Action frames are not allowed prior to
2288 * having configured keys.
2290 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2291 ieee80211_is_robust_mgmt_frame(rx->skb)))
2292 return -EACCES;
2295 return 0;
2298 static int
2299 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2301 struct ieee80211_sub_if_data *sdata = rx->sdata;
2302 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2303 bool check_port_control = false;
2304 struct ethhdr *ehdr;
2305 int ret;
2307 *port_control = false;
2308 if (ieee80211_has_a4(hdr->frame_control) &&
2309 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2310 return -1;
2312 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2313 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2315 if (!sdata->u.mgd.use_4addr)
2316 return -1;
2317 else
2318 check_port_control = true;
2321 if (is_multicast_ether_addr(hdr->addr1) &&
2322 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2323 return -1;
2325 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2326 if (ret < 0)
2327 return ret;
2329 ehdr = (struct ethhdr *) rx->skb->data;
2330 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2331 *port_control = true;
2332 else if (check_port_control)
2333 return -1;
2335 return 0;
2339 * requires that rx->skb is a frame with ethernet header
2341 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2343 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2344 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2345 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2348 * Allow EAPOL frames to us/the PAE group address regardless
2349 * of whether the frame was encrypted or not.
2351 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2352 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2353 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2354 return true;
2356 if (ieee80211_802_1x_port_control(rx) ||
2357 ieee80211_drop_unencrypted(rx, fc))
2358 return false;
2360 return true;
2363 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2364 struct ieee80211_rx_data *rx)
2366 struct ieee80211_sub_if_data *sdata = rx->sdata;
2367 struct net_device *dev = sdata->dev;
2369 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2370 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2371 sdata->control_port_over_nl80211)) {
2372 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2373 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2375 cfg80211_rx_control_port(dev, skb, noencrypt);
2376 dev_kfree_skb(skb);
2377 } else {
2378 memset(skb->cb, 0, sizeof(skb->cb));
2380 /* deliver to local stack */
2381 if (rx->napi)
2382 napi_gro_receive(rx->napi, skb);
2383 else
2384 netif_receive_skb(skb);
2389 * requires that rx->skb is a frame with ethernet header
2391 static void
2392 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2394 struct ieee80211_sub_if_data *sdata = rx->sdata;
2395 struct net_device *dev = sdata->dev;
2396 struct sk_buff *skb, *xmit_skb;
2397 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2398 struct sta_info *dsta;
2400 skb = rx->skb;
2401 xmit_skb = NULL;
2403 ieee80211_rx_stats(dev, skb->len);
2405 if (rx->sta) {
2406 /* The seqno index has the same property as needed
2407 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2408 * for non-QoS-data frames. Here we know it's a data
2409 * frame, so count MSDUs.
2411 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2412 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2413 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2416 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2417 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2418 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2419 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2420 if (is_multicast_ether_addr(ehdr->h_dest) &&
2421 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2423 * send multicast frames both to higher layers in
2424 * local net stack and back to the wireless medium
2426 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2427 if (!xmit_skb)
2428 net_info_ratelimited("%s: failed to clone multicast frame\n",
2429 dev->name);
2430 } else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2431 dsta = sta_info_get(sdata, skb->data);
2432 if (dsta) {
2434 * The destination station is associated to
2435 * this AP (in this VLAN), so send the frame
2436 * directly to it and do not pass it to local
2437 * net stack.
2439 xmit_skb = skb;
2440 skb = NULL;
2445 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2446 if (skb) {
2447 /* 'align' will only take the values 0 or 2 here since all
2448 * frames are required to be aligned to 2-byte boundaries
2449 * when being passed to mac80211; the code here works just
2450 * as well if that isn't true, but mac80211 assumes it can
2451 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2453 int align;
2455 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2456 if (align) {
2457 if (WARN_ON(skb_headroom(skb) < 3)) {
2458 dev_kfree_skb(skb);
2459 skb = NULL;
2460 } else {
2461 u8 *data = skb->data;
2462 size_t len = skb_headlen(skb);
2463 skb->data -= align;
2464 memmove(skb->data, data, len);
2465 skb_set_tail_pointer(skb, len);
2469 #endif
2471 if (skb) {
2472 skb->protocol = eth_type_trans(skb, dev);
2473 ieee80211_deliver_skb_to_local_stack(skb, rx);
2476 if (xmit_skb) {
2478 * Send to wireless media and increase priority by 256 to
2479 * keep the received priority instead of reclassifying
2480 * the frame (see cfg80211_classify8021d).
2482 xmit_skb->priority += 256;
2483 xmit_skb->protocol = htons(ETH_P_802_3);
2484 skb_reset_network_header(xmit_skb);
2485 skb_reset_mac_header(xmit_skb);
2486 dev_queue_xmit(xmit_skb);
2490 static ieee80211_rx_result debug_noinline
2491 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2493 struct net_device *dev = rx->sdata->dev;
2494 struct sk_buff *skb = rx->skb;
2495 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2496 __le16 fc = hdr->frame_control;
2497 struct sk_buff_head frame_list;
2498 struct ethhdr ethhdr;
2499 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2501 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2502 check_da = NULL;
2503 check_sa = NULL;
2504 } else switch (rx->sdata->vif.type) {
2505 case NL80211_IFTYPE_AP:
2506 case NL80211_IFTYPE_AP_VLAN:
2507 check_da = NULL;
2508 break;
2509 case NL80211_IFTYPE_STATION:
2510 if (!rx->sta ||
2511 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2512 check_sa = NULL;
2513 break;
2514 case NL80211_IFTYPE_MESH_POINT:
2515 check_sa = NULL;
2516 break;
2517 default:
2518 break;
2521 skb->dev = dev;
2522 __skb_queue_head_init(&frame_list);
2524 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2525 rx->sdata->vif.addr,
2526 rx->sdata->vif.type,
2527 data_offset))
2528 return RX_DROP_UNUSABLE;
2530 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2531 rx->sdata->vif.type,
2532 rx->local->hw.extra_tx_headroom,
2533 check_da, check_sa);
2535 while (!skb_queue_empty(&frame_list)) {
2536 rx->skb = __skb_dequeue(&frame_list);
2538 if (!ieee80211_frame_allowed(rx, fc)) {
2539 dev_kfree_skb(rx->skb);
2540 continue;
2543 ieee80211_deliver_skb(rx);
2546 return RX_QUEUED;
2549 static ieee80211_rx_result debug_noinline
2550 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2552 struct sk_buff *skb = rx->skb;
2553 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2554 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2555 __le16 fc = hdr->frame_control;
2557 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2558 return RX_CONTINUE;
2560 if (unlikely(!ieee80211_is_data(fc)))
2561 return RX_CONTINUE;
2563 if (unlikely(!ieee80211_is_data_present(fc)))
2564 return RX_DROP_MONITOR;
2566 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2567 switch (rx->sdata->vif.type) {
2568 case NL80211_IFTYPE_AP_VLAN:
2569 if (!rx->sdata->u.vlan.sta)
2570 return RX_DROP_UNUSABLE;
2571 break;
2572 case NL80211_IFTYPE_STATION:
2573 if (!rx->sdata->u.mgd.use_4addr)
2574 return RX_DROP_UNUSABLE;
2575 break;
2576 default:
2577 return RX_DROP_UNUSABLE;
2581 if (is_multicast_ether_addr(hdr->addr1))
2582 return RX_DROP_UNUSABLE;
2584 return __ieee80211_rx_h_amsdu(rx, 0);
2587 #ifdef CONFIG_MAC80211_MESH
2588 static ieee80211_rx_result
2589 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2591 struct ieee80211_hdr *fwd_hdr, *hdr;
2592 struct ieee80211_tx_info *info;
2593 struct ieee80211s_hdr *mesh_hdr;
2594 struct sk_buff *skb = rx->skb, *fwd_skb;
2595 struct ieee80211_local *local = rx->local;
2596 struct ieee80211_sub_if_data *sdata = rx->sdata;
2597 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2598 u16 ac, q, hdrlen;
2599 int tailroom = 0;
2601 hdr = (struct ieee80211_hdr *) skb->data;
2602 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2604 /* make sure fixed part of mesh header is there, also checks skb len */
2605 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2606 return RX_DROP_MONITOR;
2608 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2610 /* make sure full mesh header is there, also checks skb len */
2611 if (!pskb_may_pull(rx->skb,
2612 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2613 return RX_DROP_MONITOR;
2615 /* reload pointers */
2616 hdr = (struct ieee80211_hdr *) skb->data;
2617 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2619 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2620 return RX_DROP_MONITOR;
2622 /* frame is in RMC, don't forward */
2623 if (ieee80211_is_data(hdr->frame_control) &&
2624 is_multicast_ether_addr(hdr->addr1) &&
2625 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2626 return RX_DROP_MONITOR;
2628 if (!ieee80211_is_data(hdr->frame_control))
2629 return RX_CONTINUE;
2631 if (!mesh_hdr->ttl)
2632 return RX_DROP_MONITOR;
2634 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2635 struct mesh_path *mppath;
2636 char *proxied_addr;
2637 char *mpp_addr;
2639 if (is_multicast_ether_addr(hdr->addr1)) {
2640 mpp_addr = hdr->addr3;
2641 proxied_addr = mesh_hdr->eaddr1;
2642 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2643 MESH_FLAGS_AE_A5_A6) {
2644 /* has_a4 already checked in ieee80211_rx_mesh_check */
2645 mpp_addr = hdr->addr4;
2646 proxied_addr = mesh_hdr->eaddr2;
2647 } else {
2648 return RX_DROP_MONITOR;
2651 rcu_read_lock();
2652 mppath = mpp_path_lookup(sdata, proxied_addr);
2653 if (!mppath) {
2654 mpp_path_add(sdata, proxied_addr, mpp_addr);
2655 } else {
2656 spin_lock_bh(&mppath->state_lock);
2657 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2658 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2659 mppath->exp_time = jiffies;
2660 spin_unlock_bh(&mppath->state_lock);
2662 rcu_read_unlock();
2665 /* Frame has reached destination. Don't forward */
2666 if (!is_multicast_ether_addr(hdr->addr1) &&
2667 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2668 return RX_CONTINUE;
2670 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2671 q = sdata->vif.hw_queue[ac];
2672 if (ieee80211_queue_stopped(&local->hw, q)) {
2673 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2674 return RX_DROP_MONITOR;
2676 skb_set_queue_mapping(skb, q);
2678 if (!--mesh_hdr->ttl) {
2679 if (!is_multicast_ether_addr(hdr->addr1))
2680 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2681 dropped_frames_ttl);
2682 goto out;
2685 if (!ifmsh->mshcfg.dot11MeshForwarding)
2686 goto out;
2688 if (sdata->crypto_tx_tailroom_needed_cnt)
2689 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2691 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2692 sdata->encrypt_headroom,
2693 tailroom, GFP_ATOMIC);
2694 if (!fwd_skb)
2695 goto out;
2697 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2698 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2699 info = IEEE80211_SKB_CB(fwd_skb);
2700 memset(info, 0, sizeof(*info));
2701 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2702 info->control.vif = &rx->sdata->vif;
2703 info->control.jiffies = jiffies;
2704 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2705 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2706 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2707 /* update power mode indication when forwarding */
2708 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2709 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2710 /* mesh power mode flags updated in mesh_nexthop_lookup */
2711 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2712 } else {
2713 /* unable to resolve next hop */
2714 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2715 fwd_hdr->addr3, 0,
2716 WLAN_REASON_MESH_PATH_NOFORWARD,
2717 fwd_hdr->addr2);
2718 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2719 kfree_skb(fwd_skb);
2720 return RX_DROP_MONITOR;
2723 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2724 ieee80211_add_pending_skb(local, fwd_skb);
2725 out:
2726 if (is_multicast_ether_addr(hdr->addr1))
2727 return RX_CONTINUE;
2728 return RX_DROP_MONITOR;
2730 #endif
2732 static ieee80211_rx_result debug_noinline
2733 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2735 struct ieee80211_sub_if_data *sdata = rx->sdata;
2736 struct ieee80211_local *local = rx->local;
2737 struct net_device *dev = sdata->dev;
2738 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2739 __le16 fc = hdr->frame_control;
2740 bool port_control;
2741 int err;
2743 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2744 return RX_CONTINUE;
2746 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2747 return RX_DROP_MONITOR;
2750 * Send unexpected-4addr-frame event to hostapd. For older versions,
2751 * also drop the frame to cooked monitor interfaces.
2753 if (ieee80211_has_a4(hdr->frame_control) &&
2754 sdata->vif.type == NL80211_IFTYPE_AP) {
2755 if (rx->sta &&
2756 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2757 cfg80211_rx_unexpected_4addr_frame(
2758 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2759 return RX_DROP_MONITOR;
2762 err = __ieee80211_data_to_8023(rx, &port_control);
2763 if (unlikely(err))
2764 return RX_DROP_UNUSABLE;
2766 if (!ieee80211_frame_allowed(rx, fc))
2767 return RX_DROP_MONITOR;
2769 /* directly handle TDLS channel switch requests/responses */
2770 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2771 cpu_to_be16(ETH_P_TDLS))) {
2772 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2774 if (pskb_may_pull(rx->skb,
2775 offsetof(struct ieee80211_tdls_data, u)) &&
2776 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2777 tf->category == WLAN_CATEGORY_TDLS &&
2778 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2779 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2780 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2781 schedule_work(&local->tdls_chsw_work);
2782 if (rx->sta)
2783 rx->sta->rx_stats.packets++;
2785 return RX_QUEUED;
2789 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2790 unlikely(port_control) && sdata->bss) {
2791 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2792 u.ap);
2793 dev = sdata->dev;
2794 rx->sdata = sdata;
2797 rx->skb->dev = dev;
2799 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2800 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2801 !is_multicast_ether_addr(
2802 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2803 (!local->scanning &&
2804 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2805 mod_timer(&local->dynamic_ps_timer, jiffies +
2806 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2808 ieee80211_deliver_skb(rx);
2810 return RX_QUEUED;
2813 static ieee80211_rx_result debug_noinline
2814 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2816 struct sk_buff *skb = rx->skb;
2817 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2818 struct tid_ampdu_rx *tid_agg_rx;
2819 u16 start_seq_num;
2820 u16 tid;
2822 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2823 return RX_CONTINUE;
2825 if (ieee80211_is_back_req(bar->frame_control)) {
2826 struct {
2827 __le16 control, start_seq_num;
2828 } __packed bar_data;
2829 struct ieee80211_event event = {
2830 .type = BAR_RX_EVENT,
2833 if (!rx->sta)
2834 return RX_DROP_MONITOR;
2836 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2837 &bar_data, sizeof(bar_data)))
2838 return RX_DROP_MONITOR;
2840 tid = le16_to_cpu(bar_data.control) >> 12;
2842 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2843 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2844 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2845 WLAN_BACK_RECIPIENT,
2846 WLAN_REASON_QSTA_REQUIRE_SETUP);
2848 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2849 if (!tid_agg_rx)
2850 return RX_DROP_MONITOR;
2852 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2853 event.u.ba.tid = tid;
2854 event.u.ba.ssn = start_seq_num;
2855 event.u.ba.sta = &rx->sta->sta;
2857 /* reset session timer */
2858 if (tid_agg_rx->timeout)
2859 mod_timer(&tid_agg_rx->session_timer,
2860 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2862 spin_lock(&tid_agg_rx->reorder_lock);
2863 /* release stored frames up to start of BAR */
2864 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2865 start_seq_num, frames);
2866 spin_unlock(&tid_agg_rx->reorder_lock);
2868 drv_event_callback(rx->local, rx->sdata, &event);
2870 kfree_skb(skb);
2871 return RX_QUEUED;
2875 * After this point, we only want management frames,
2876 * so we can drop all remaining control frames to
2877 * cooked monitor interfaces.
2879 return RX_DROP_MONITOR;
2882 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2883 struct ieee80211_mgmt *mgmt,
2884 size_t len)
2886 struct ieee80211_local *local = sdata->local;
2887 struct sk_buff *skb;
2888 struct ieee80211_mgmt *resp;
2890 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2891 /* Not to own unicast address */
2892 return;
2895 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2896 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2897 /* Not from the current AP or not associated yet. */
2898 return;
2901 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2902 /* Too short SA Query request frame */
2903 return;
2906 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2907 if (skb == NULL)
2908 return;
2910 skb_reserve(skb, local->hw.extra_tx_headroom);
2911 resp = skb_put_zero(skb, 24);
2912 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2913 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2914 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2915 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2916 IEEE80211_STYPE_ACTION);
2917 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2918 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2919 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2920 memcpy(resp->u.action.u.sa_query.trans_id,
2921 mgmt->u.action.u.sa_query.trans_id,
2922 WLAN_SA_QUERY_TR_ID_LEN);
2924 ieee80211_tx_skb(sdata, skb);
2927 static ieee80211_rx_result debug_noinline
2928 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2930 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2931 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2934 * From here on, look only at management frames.
2935 * Data and control frames are already handled,
2936 * and unknown (reserved) frames are useless.
2938 if (rx->skb->len < 24)
2939 return RX_DROP_MONITOR;
2941 if (!ieee80211_is_mgmt(mgmt->frame_control))
2942 return RX_DROP_MONITOR;
2944 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2945 ieee80211_is_beacon(mgmt->frame_control) &&
2946 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2947 int sig = 0;
2949 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2950 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2951 sig = status->signal;
2953 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2954 rx->skb->data, rx->skb->len,
2955 status->freq, sig);
2956 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2959 if (ieee80211_drop_unencrypted_mgmt(rx))
2960 return RX_DROP_UNUSABLE;
2962 return RX_CONTINUE;
2965 static ieee80211_rx_result debug_noinline
2966 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2968 struct ieee80211_local *local = rx->local;
2969 struct ieee80211_sub_if_data *sdata = rx->sdata;
2970 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2971 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2972 int len = rx->skb->len;
2974 if (!ieee80211_is_action(mgmt->frame_control))
2975 return RX_CONTINUE;
2977 /* drop too small frames */
2978 if (len < IEEE80211_MIN_ACTION_SIZE)
2979 return RX_DROP_UNUSABLE;
2981 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2982 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2983 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2984 return RX_DROP_UNUSABLE;
2986 switch (mgmt->u.action.category) {
2987 case WLAN_CATEGORY_HT:
2988 /* reject HT action frames from stations not supporting HT */
2989 if (!rx->sta->sta.ht_cap.ht_supported)
2990 goto invalid;
2992 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2993 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2994 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2995 sdata->vif.type != NL80211_IFTYPE_AP &&
2996 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2997 break;
2999 /* verify action & smps_control/chanwidth are present */
3000 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3001 goto invalid;
3003 switch (mgmt->u.action.u.ht_smps.action) {
3004 case WLAN_HT_ACTION_SMPS: {
3005 struct ieee80211_supported_band *sband;
3006 enum ieee80211_smps_mode smps_mode;
3007 struct sta_opmode_info sta_opmode = {};
3009 /* convert to HT capability */
3010 switch (mgmt->u.action.u.ht_smps.smps_control) {
3011 case WLAN_HT_SMPS_CONTROL_DISABLED:
3012 smps_mode = IEEE80211_SMPS_OFF;
3013 break;
3014 case WLAN_HT_SMPS_CONTROL_STATIC:
3015 smps_mode = IEEE80211_SMPS_STATIC;
3016 break;
3017 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3018 smps_mode = IEEE80211_SMPS_DYNAMIC;
3019 break;
3020 default:
3021 goto invalid;
3024 /* if no change do nothing */
3025 if (rx->sta->sta.smps_mode == smps_mode)
3026 goto handled;
3027 rx->sta->sta.smps_mode = smps_mode;
3028 sta_opmode.smps_mode =
3029 ieee80211_smps_mode_to_smps_mode(smps_mode);
3030 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3032 sband = rx->local->hw.wiphy->bands[status->band];
3034 rate_control_rate_update(local, sband, rx->sta,
3035 IEEE80211_RC_SMPS_CHANGED);
3036 cfg80211_sta_opmode_change_notify(sdata->dev,
3037 rx->sta->addr,
3038 &sta_opmode,
3039 GFP_ATOMIC);
3040 goto handled;
3042 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3043 struct ieee80211_supported_band *sband;
3044 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3045 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3046 struct sta_opmode_info sta_opmode = {};
3048 /* If it doesn't support 40 MHz it can't change ... */
3049 if (!(rx->sta->sta.ht_cap.cap &
3050 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3051 goto handled;
3053 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3054 max_bw = IEEE80211_STA_RX_BW_20;
3055 else
3056 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3058 /* set cur_max_bandwidth and recalc sta bw */
3059 rx->sta->cur_max_bandwidth = max_bw;
3060 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3062 if (rx->sta->sta.bandwidth == new_bw)
3063 goto handled;
3065 rx->sta->sta.bandwidth = new_bw;
3066 sband = rx->local->hw.wiphy->bands[status->band];
3067 sta_opmode.bw =
3068 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3069 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3071 rate_control_rate_update(local, sband, rx->sta,
3072 IEEE80211_RC_BW_CHANGED);
3073 cfg80211_sta_opmode_change_notify(sdata->dev,
3074 rx->sta->addr,
3075 &sta_opmode,
3076 GFP_ATOMIC);
3077 goto handled;
3079 default:
3080 goto invalid;
3083 break;
3084 case WLAN_CATEGORY_PUBLIC:
3085 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3086 goto invalid;
3087 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3088 break;
3089 if (!rx->sta)
3090 break;
3091 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3092 break;
3093 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3094 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3095 break;
3096 if (len < offsetof(struct ieee80211_mgmt,
3097 u.action.u.ext_chan_switch.variable))
3098 goto invalid;
3099 goto queue;
3100 case WLAN_CATEGORY_VHT:
3101 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3102 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3103 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3104 sdata->vif.type != NL80211_IFTYPE_AP &&
3105 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3106 break;
3108 /* verify action code is present */
3109 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3110 goto invalid;
3112 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3113 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3114 /* verify opmode is present */
3115 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3116 goto invalid;
3117 goto queue;
3119 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3120 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3121 goto invalid;
3122 goto queue;
3124 default:
3125 break;
3127 break;
3128 case WLAN_CATEGORY_BACK:
3129 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3130 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3131 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3132 sdata->vif.type != NL80211_IFTYPE_AP &&
3133 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3134 break;
3136 /* verify action_code is present */
3137 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3138 break;
3140 switch (mgmt->u.action.u.addba_req.action_code) {
3141 case WLAN_ACTION_ADDBA_REQ:
3142 if (len < (IEEE80211_MIN_ACTION_SIZE +
3143 sizeof(mgmt->u.action.u.addba_req)))
3144 goto invalid;
3145 break;
3146 case WLAN_ACTION_ADDBA_RESP:
3147 if (len < (IEEE80211_MIN_ACTION_SIZE +
3148 sizeof(mgmt->u.action.u.addba_resp)))
3149 goto invalid;
3150 break;
3151 case WLAN_ACTION_DELBA:
3152 if (len < (IEEE80211_MIN_ACTION_SIZE +
3153 sizeof(mgmt->u.action.u.delba)))
3154 goto invalid;
3155 break;
3156 default:
3157 goto invalid;
3160 goto queue;
3161 case WLAN_CATEGORY_SPECTRUM_MGMT:
3162 /* verify action_code is present */
3163 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3164 break;
3166 switch (mgmt->u.action.u.measurement.action_code) {
3167 case WLAN_ACTION_SPCT_MSR_REQ:
3168 if (status->band != NL80211_BAND_5GHZ)
3169 break;
3171 if (len < (IEEE80211_MIN_ACTION_SIZE +
3172 sizeof(mgmt->u.action.u.measurement)))
3173 break;
3175 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3176 break;
3178 ieee80211_process_measurement_req(sdata, mgmt, len);
3179 goto handled;
3180 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3181 u8 *bssid;
3182 if (len < (IEEE80211_MIN_ACTION_SIZE +
3183 sizeof(mgmt->u.action.u.chan_switch)))
3184 break;
3186 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3187 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3188 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3189 break;
3191 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3192 bssid = sdata->u.mgd.bssid;
3193 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3194 bssid = sdata->u.ibss.bssid;
3195 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3196 bssid = mgmt->sa;
3197 else
3198 break;
3200 if (!ether_addr_equal(mgmt->bssid, bssid))
3201 break;
3203 goto queue;
3206 break;
3207 case WLAN_CATEGORY_SA_QUERY:
3208 if (len < (IEEE80211_MIN_ACTION_SIZE +
3209 sizeof(mgmt->u.action.u.sa_query)))
3210 break;
3212 switch (mgmt->u.action.u.sa_query.action) {
3213 case WLAN_ACTION_SA_QUERY_REQUEST:
3214 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3215 break;
3216 ieee80211_process_sa_query_req(sdata, mgmt, len);
3217 goto handled;
3219 break;
3220 case WLAN_CATEGORY_SELF_PROTECTED:
3221 if (len < (IEEE80211_MIN_ACTION_SIZE +
3222 sizeof(mgmt->u.action.u.self_prot.action_code)))
3223 break;
3225 switch (mgmt->u.action.u.self_prot.action_code) {
3226 case WLAN_SP_MESH_PEERING_OPEN:
3227 case WLAN_SP_MESH_PEERING_CLOSE:
3228 case WLAN_SP_MESH_PEERING_CONFIRM:
3229 if (!ieee80211_vif_is_mesh(&sdata->vif))
3230 goto invalid;
3231 if (sdata->u.mesh.user_mpm)
3232 /* userspace handles this frame */
3233 break;
3234 goto queue;
3235 case WLAN_SP_MGK_INFORM:
3236 case WLAN_SP_MGK_ACK:
3237 if (!ieee80211_vif_is_mesh(&sdata->vif))
3238 goto invalid;
3239 break;
3241 break;
3242 case WLAN_CATEGORY_MESH_ACTION:
3243 if (len < (IEEE80211_MIN_ACTION_SIZE +
3244 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3245 break;
3247 if (!ieee80211_vif_is_mesh(&sdata->vif))
3248 break;
3249 if (mesh_action_is_path_sel(mgmt) &&
3250 !mesh_path_sel_is_hwmp(sdata))
3251 break;
3252 goto queue;
3255 return RX_CONTINUE;
3257 invalid:
3258 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3259 /* will return in the next handlers */
3260 return RX_CONTINUE;
3262 handled:
3263 if (rx->sta)
3264 rx->sta->rx_stats.packets++;
3265 dev_kfree_skb(rx->skb);
3266 return RX_QUEUED;
3268 queue:
3269 skb_queue_tail(&sdata->skb_queue, rx->skb);
3270 ieee80211_queue_work(&local->hw, &sdata->work);
3271 if (rx->sta)
3272 rx->sta->rx_stats.packets++;
3273 return RX_QUEUED;
3276 static ieee80211_rx_result debug_noinline
3277 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3279 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3280 int sig = 0;
3282 /* skip known-bad action frames and return them in the next handler */
3283 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3284 return RX_CONTINUE;
3287 * Getting here means the kernel doesn't know how to handle
3288 * it, but maybe userspace does ... include returned frames
3289 * so userspace can register for those to know whether ones
3290 * it transmitted were processed or returned.
3293 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3294 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3295 sig = status->signal;
3297 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3298 rx->skb->data, rx->skb->len, 0)) {
3299 if (rx->sta)
3300 rx->sta->rx_stats.packets++;
3301 dev_kfree_skb(rx->skb);
3302 return RX_QUEUED;
3305 return RX_CONTINUE;
3308 static ieee80211_rx_result debug_noinline
3309 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3311 struct ieee80211_local *local = rx->local;
3312 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3313 struct sk_buff *nskb;
3314 struct ieee80211_sub_if_data *sdata = rx->sdata;
3315 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3317 if (!ieee80211_is_action(mgmt->frame_control))
3318 return RX_CONTINUE;
3321 * For AP mode, hostapd is responsible for handling any action
3322 * frames that we didn't handle, including returning unknown
3323 * ones. For all other modes we will return them to the sender,
3324 * setting the 0x80 bit in the action category, as required by
3325 * 802.11-2012 9.24.4.
3326 * Newer versions of hostapd shall also use the management frame
3327 * registration mechanisms, but older ones still use cooked
3328 * monitor interfaces so push all frames there.
3330 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3331 (sdata->vif.type == NL80211_IFTYPE_AP ||
3332 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3333 return RX_DROP_MONITOR;
3335 if (is_multicast_ether_addr(mgmt->da))
3336 return RX_DROP_MONITOR;
3338 /* do not return rejected action frames */
3339 if (mgmt->u.action.category & 0x80)
3340 return RX_DROP_UNUSABLE;
3342 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3343 GFP_ATOMIC);
3344 if (nskb) {
3345 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3347 nmgmt->u.action.category |= 0x80;
3348 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3349 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3351 memset(nskb->cb, 0, sizeof(nskb->cb));
3353 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3354 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3356 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3357 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3358 IEEE80211_TX_CTL_NO_CCK_RATE;
3359 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3360 info->hw_queue =
3361 local->hw.offchannel_tx_hw_queue;
3364 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3365 status->band, 0);
3367 dev_kfree_skb(rx->skb);
3368 return RX_QUEUED;
3371 static ieee80211_rx_result debug_noinline
3372 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3374 struct ieee80211_sub_if_data *sdata = rx->sdata;
3375 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3376 __le16 stype;
3378 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3380 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3381 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3382 sdata->vif.type != NL80211_IFTYPE_OCB &&
3383 sdata->vif.type != NL80211_IFTYPE_STATION)
3384 return RX_DROP_MONITOR;
3386 switch (stype) {
3387 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3388 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3389 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3390 /* process for all: mesh, mlme, ibss */
3391 break;
3392 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3393 if (is_multicast_ether_addr(mgmt->da) &&
3394 !is_broadcast_ether_addr(mgmt->da))
3395 return RX_DROP_MONITOR;
3397 /* process only for station/IBSS */
3398 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3399 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3400 return RX_DROP_MONITOR;
3401 break;
3402 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3403 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3404 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3405 if (is_multicast_ether_addr(mgmt->da) &&
3406 !is_broadcast_ether_addr(mgmt->da))
3407 return RX_DROP_MONITOR;
3409 /* process only for station */
3410 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3411 return RX_DROP_MONITOR;
3412 break;
3413 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3414 /* process only for ibss and mesh */
3415 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3416 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3417 return RX_DROP_MONITOR;
3418 break;
3419 default:
3420 return RX_DROP_MONITOR;
3423 /* queue up frame and kick off work to process it */
3424 skb_queue_tail(&sdata->skb_queue, rx->skb);
3425 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3426 if (rx->sta)
3427 rx->sta->rx_stats.packets++;
3429 return RX_QUEUED;
3432 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3433 struct ieee80211_rate *rate)
3435 struct ieee80211_sub_if_data *sdata;
3436 struct ieee80211_local *local = rx->local;
3437 struct sk_buff *skb = rx->skb, *skb2;
3438 struct net_device *prev_dev = NULL;
3439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3440 int needed_headroom;
3443 * If cooked monitor has been processed already, then
3444 * don't do it again. If not, set the flag.
3446 if (rx->flags & IEEE80211_RX_CMNTR)
3447 goto out_free_skb;
3448 rx->flags |= IEEE80211_RX_CMNTR;
3450 /* If there are no cooked monitor interfaces, just free the SKB */
3451 if (!local->cooked_mntrs)
3452 goto out_free_skb;
3454 /* vendor data is long removed here */
3455 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3456 /* room for the radiotap header based on driver features */
3457 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3459 if (skb_headroom(skb) < needed_headroom &&
3460 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3461 goto out_free_skb;
3463 /* prepend radiotap information */
3464 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3465 false);
3467 skb_reset_mac_header(skb);
3468 skb->ip_summed = CHECKSUM_UNNECESSARY;
3469 skb->pkt_type = PACKET_OTHERHOST;
3470 skb->protocol = htons(ETH_P_802_2);
3472 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3473 if (!ieee80211_sdata_running(sdata))
3474 continue;
3476 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3477 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3478 continue;
3480 if (prev_dev) {
3481 skb2 = skb_clone(skb, GFP_ATOMIC);
3482 if (skb2) {
3483 skb2->dev = prev_dev;
3484 netif_receive_skb(skb2);
3488 prev_dev = sdata->dev;
3489 ieee80211_rx_stats(sdata->dev, skb->len);
3492 if (prev_dev) {
3493 skb->dev = prev_dev;
3494 netif_receive_skb(skb);
3495 return;
3498 out_free_skb:
3499 dev_kfree_skb(skb);
3502 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3503 ieee80211_rx_result res)
3505 switch (res) {
3506 case RX_DROP_MONITOR:
3507 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3508 if (rx->sta)
3509 rx->sta->rx_stats.dropped++;
3510 /* fall through */
3511 case RX_CONTINUE: {
3512 struct ieee80211_rate *rate = NULL;
3513 struct ieee80211_supported_band *sband;
3514 struct ieee80211_rx_status *status;
3516 status = IEEE80211_SKB_RXCB((rx->skb));
3518 sband = rx->local->hw.wiphy->bands[status->band];
3519 if (status->encoding == RX_ENC_LEGACY)
3520 rate = &sband->bitrates[status->rate_idx];
3522 ieee80211_rx_cooked_monitor(rx, rate);
3523 break;
3525 case RX_DROP_UNUSABLE:
3526 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3527 if (rx->sta)
3528 rx->sta->rx_stats.dropped++;
3529 dev_kfree_skb(rx->skb);
3530 break;
3531 case RX_QUEUED:
3532 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3533 break;
3537 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3538 struct sk_buff_head *frames)
3540 ieee80211_rx_result res = RX_DROP_MONITOR;
3541 struct sk_buff *skb;
3543 #define CALL_RXH(rxh) \
3544 do { \
3545 res = rxh(rx); \
3546 if (res != RX_CONTINUE) \
3547 goto rxh_next; \
3548 } while (0)
3550 /* Lock here to avoid hitting all of the data used in the RX
3551 * path (e.g. key data, station data, ...) concurrently when
3552 * a frame is released from the reorder buffer due to timeout
3553 * from the timer, potentially concurrently with RX from the
3554 * driver.
3556 spin_lock_bh(&rx->local->rx_path_lock);
3558 while ((skb = __skb_dequeue(frames))) {
3560 * all the other fields are valid across frames
3561 * that belong to an aMPDU since they are on the
3562 * same TID from the same station
3564 rx->skb = skb;
3566 CALL_RXH(ieee80211_rx_h_check_more_data);
3567 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3568 CALL_RXH(ieee80211_rx_h_sta_process);
3569 CALL_RXH(ieee80211_rx_h_decrypt);
3570 CALL_RXH(ieee80211_rx_h_defragment);
3571 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3572 /* must be after MMIC verify so header is counted in MPDU mic */
3573 #ifdef CONFIG_MAC80211_MESH
3574 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3575 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3576 #endif
3577 CALL_RXH(ieee80211_rx_h_amsdu);
3578 CALL_RXH(ieee80211_rx_h_data);
3580 /* special treatment -- needs the queue */
3581 res = ieee80211_rx_h_ctrl(rx, frames);
3582 if (res != RX_CONTINUE)
3583 goto rxh_next;
3585 CALL_RXH(ieee80211_rx_h_mgmt_check);
3586 CALL_RXH(ieee80211_rx_h_action);
3587 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3588 CALL_RXH(ieee80211_rx_h_action_return);
3589 CALL_RXH(ieee80211_rx_h_mgmt);
3591 rxh_next:
3592 ieee80211_rx_handlers_result(rx, res);
3594 #undef CALL_RXH
3597 spin_unlock_bh(&rx->local->rx_path_lock);
3600 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3602 struct sk_buff_head reorder_release;
3603 ieee80211_rx_result res = RX_DROP_MONITOR;
3605 __skb_queue_head_init(&reorder_release);
3607 #define CALL_RXH(rxh) \
3608 do { \
3609 res = rxh(rx); \
3610 if (res != RX_CONTINUE) \
3611 goto rxh_next; \
3612 } while (0)
3614 CALL_RXH(ieee80211_rx_h_check_dup);
3615 CALL_RXH(ieee80211_rx_h_check);
3617 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3619 ieee80211_rx_handlers(rx, &reorder_release);
3620 return;
3622 rxh_next:
3623 ieee80211_rx_handlers_result(rx, res);
3625 #undef CALL_RXH
3629 * This function makes calls into the RX path, therefore
3630 * it has to be invoked under RCU read lock.
3632 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3634 struct sk_buff_head frames;
3635 struct ieee80211_rx_data rx = {
3636 .sta = sta,
3637 .sdata = sta->sdata,
3638 .local = sta->local,
3639 /* This is OK -- must be QoS data frame */
3640 .security_idx = tid,
3641 .seqno_idx = tid,
3642 .napi = NULL, /* must be NULL to not have races */
3644 struct tid_ampdu_rx *tid_agg_rx;
3646 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3647 if (!tid_agg_rx)
3648 return;
3650 __skb_queue_head_init(&frames);
3652 spin_lock(&tid_agg_rx->reorder_lock);
3653 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3654 spin_unlock(&tid_agg_rx->reorder_lock);
3656 if (!skb_queue_empty(&frames)) {
3657 struct ieee80211_event event = {
3658 .type = BA_FRAME_TIMEOUT,
3659 .u.ba.tid = tid,
3660 .u.ba.sta = &sta->sta,
3662 drv_event_callback(rx.local, rx.sdata, &event);
3665 ieee80211_rx_handlers(&rx, &frames);
3668 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3669 u16 ssn, u64 filtered,
3670 u16 received_mpdus)
3672 struct sta_info *sta;
3673 struct tid_ampdu_rx *tid_agg_rx;
3674 struct sk_buff_head frames;
3675 struct ieee80211_rx_data rx = {
3676 /* This is OK -- must be QoS data frame */
3677 .security_idx = tid,
3678 .seqno_idx = tid,
3680 int i, diff;
3682 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3683 return;
3685 __skb_queue_head_init(&frames);
3687 sta = container_of(pubsta, struct sta_info, sta);
3689 rx.sta = sta;
3690 rx.sdata = sta->sdata;
3691 rx.local = sta->local;
3693 rcu_read_lock();
3694 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3695 if (!tid_agg_rx)
3696 goto out;
3698 spin_lock_bh(&tid_agg_rx->reorder_lock);
3700 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3701 int release;
3703 /* release all frames in the reorder buffer */
3704 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3705 IEEE80211_SN_MODULO;
3706 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3707 release, &frames);
3708 /* update ssn to match received ssn */
3709 tid_agg_rx->head_seq_num = ssn;
3710 } else {
3711 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3712 &frames);
3715 /* handle the case that received ssn is behind the mac ssn.
3716 * it can be tid_agg_rx->buf_size behind and still be valid */
3717 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3718 if (diff >= tid_agg_rx->buf_size) {
3719 tid_agg_rx->reorder_buf_filtered = 0;
3720 goto release;
3722 filtered = filtered >> diff;
3723 ssn += diff;
3725 /* update bitmap */
3726 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3727 int index = (ssn + i) % tid_agg_rx->buf_size;
3729 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3730 if (filtered & BIT_ULL(i))
3731 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3734 /* now process also frames that the filter marking released */
3735 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3737 release:
3738 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3740 ieee80211_rx_handlers(&rx, &frames);
3742 out:
3743 rcu_read_unlock();
3745 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3747 /* main receive path */
3749 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3751 struct ieee80211_sub_if_data *sdata = rx->sdata;
3752 struct sk_buff *skb = rx->skb;
3753 struct ieee80211_hdr *hdr = (void *)skb->data;
3754 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3755 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3756 bool multicast = is_multicast_ether_addr(hdr->addr1);
3758 switch (sdata->vif.type) {
3759 case NL80211_IFTYPE_STATION:
3760 if (!bssid && !sdata->u.mgd.use_4addr)
3761 return false;
3762 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3763 return false;
3764 if (multicast)
3765 return true;
3766 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3767 case NL80211_IFTYPE_ADHOC:
3768 if (!bssid)
3769 return false;
3770 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3771 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3772 return false;
3773 if (ieee80211_is_beacon(hdr->frame_control))
3774 return true;
3775 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3776 return false;
3777 if (!multicast &&
3778 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3779 return false;
3780 if (!rx->sta) {
3781 int rate_idx;
3782 if (status->encoding != RX_ENC_LEGACY)
3783 rate_idx = 0; /* TODO: HT/VHT rates */
3784 else
3785 rate_idx = status->rate_idx;
3786 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3787 BIT(rate_idx));
3789 return true;
3790 case NL80211_IFTYPE_OCB:
3791 if (!bssid)
3792 return false;
3793 if (!ieee80211_is_data_present(hdr->frame_control))
3794 return false;
3795 if (!is_broadcast_ether_addr(bssid))
3796 return false;
3797 if (!multicast &&
3798 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3799 return false;
3800 if (!rx->sta) {
3801 int rate_idx;
3802 if (status->encoding != RX_ENC_LEGACY)
3803 rate_idx = 0; /* TODO: HT rates */
3804 else
3805 rate_idx = status->rate_idx;
3806 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3807 BIT(rate_idx));
3809 return true;
3810 case NL80211_IFTYPE_MESH_POINT:
3811 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3812 return false;
3813 if (multicast)
3814 return true;
3815 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3816 case NL80211_IFTYPE_AP_VLAN:
3817 case NL80211_IFTYPE_AP:
3818 if (!bssid)
3819 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3821 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3823 * Accept public action frames even when the
3824 * BSSID doesn't match, this is used for P2P
3825 * and location updates. Note that mac80211
3826 * itself never looks at these frames.
3828 if (!multicast &&
3829 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3830 return false;
3831 if (ieee80211_is_public_action(hdr, skb->len))
3832 return true;
3833 return ieee80211_is_beacon(hdr->frame_control);
3836 if (!ieee80211_has_tods(hdr->frame_control)) {
3837 /* ignore data frames to TDLS-peers */
3838 if (ieee80211_is_data(hdr->frame_control))
3839 return false;
3840 /* ignore action frames to TDLS-peers */
3841 if (ieee80211_is_action(hdr->frame_control) &&
3842 !is_broadcast_ether_addr(bssid) &&
3843 !ether_addr_equal(bssid, hdr->addr1))
3844 return false;
3848 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3849 * the BSSID - we've checked that already but may have accepted
3850 * the wildcard (ff:ff:ff:ff:ff:ff).
3852 * It also says:
3853 * The BSSID of the Data frame is determined as follows:
3854 * a) If the STA is contained within an AP or is associated
3855 * with an AP, the BSSID is the address currently in use
3856 * by the STA contained in the AP.
3858 * So we should not accept data frames with an address that's
3859 * multicast.
3861 * Accepting it also opens a security problem because stations
3862 * could encrypt it with the GTK and inject traffic that way.
3864 if (ieee80211_is_data(hdr->frame_control) && multicast)
3865 return false;
3867 return true;
3868 case NL80211_IFTYPE_WDS:
3869 if (bssid || !ieee80211_is_data(hdr->frame_control))
3870 return false;
3871 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3872 case NL80211_IFTYPE_P2P_DEVICE:
3873 return ieee80211_is_public_action(hdr, skb->len) ||
3874 ieee80211_is_probe_req(hdr->frame_control) ||
3875 ieee80211_is_probe_resp(hdr->frame_control) ||
3876 ieee80211_is_beacon(hdr->frame_control);
3877 case NL80211_IFTYPE_NAN:
3878 /* Currently no frames on NAN interface are allowed */
3879 return false;
3880 default:
3881 break;
3884 WARN_ON_ONCE(1);
3885 return false;
3888 void ieee80211_check_fast_rx(struct sta_info *sta)
3890 struct ieee80211_sub_if_data *sdata = sta->sdata;
3891 struct ieee80211_local *local = sdata->local;
3892 struct ieee80211_key *key;
3893 struct ieee80211_fast_rx fastrx = {
3894 .dev = sdata->dev,
3895 .vif_type = sdata->vif.type,
3896 .control_port_protocol = sdata->control_port_protocol,
3897 }, *old, *new = NULL;
3898 bool assign = false;
3900 /* use sparse to check that we don't return without updating */
3901 __acquire(check_fast_rx);
3903 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3904 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3905 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3906 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3908 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3910 /* fast-rx doesn't do reordering */
3911 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3912 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3913 goto clear;
3915 switch (sdata->vif.type) {
3916 case NL80211_IFTYPE_STATION:
3917 if (sta->sta.tdls) {
3918 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3919 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3920 fastrx.expected_ds_bits = 0;
3921 } else {
3922 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3923 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3924 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3925 fastrx.expected_ds_bits =
3926 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3929 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3930 fastrx.expected_ds_bits |=
3931 cpu_to_le16(IEEE80211_FCTL_TODS);
3932 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3933 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3936 if (!sdata->u.mgd.powersave)
3937 break;
3939 /* software powersave is a huge mess, avoid all of it */
3940 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3941 goto clear;
3942 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3943 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3944 goto clear;
3945 break;
3946 case NL80211_IFTYPE_AP_VLAN:
3947 case NL80211_IFTYPE_AP:
3948 /* parallel-rx requires this, at least with calls to
3949 * ieee80211_sta_ps_transition()
3951 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3952 goto clear;
3953 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3954 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3955 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3957 fastrx.internal_forward =
3958 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3959 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3960 !sdata->u.vlan.sta);
3962 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3963 sdata->u.vlan.sta) {
3964 fastrx.expected_ds_bits |=
3965 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3966 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3967 fastrx.internal_forward = 0;
3970 break;
3971 default:
3972 goto clear;
3975 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3976 goto clear;
3978 rcu_read_lock();
3979 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3980 if (key) {
3981 switch (key->conf.cipher) {
3982 case WLAN_CIPHER_SUITE_TKIP:
3983 /* we don't want to deal with MMIC in fast-rx */
3984 goto clear_rcu;
3985 case WLAN_CIPHER_SUITE_CCMP:
3986 case WLAN_CIPHER_SUITE_CCMP_256:
3987 case WLAN_CIPHER_SUITE_GCMP:
3988 case WLAN_CIPHER_SUITE_GCMP_256:
3989 break;
3990 default:
3991 /* we also don't want to deal with WEP or cipher scheme
3992 * since those require looking up the key idx in the
3993 * frame, rather than assuming the PTK is used
3994 * (we need to revisit this once we implement the real
3995 * PTK index, which is now valid in the spec, but we
3996 * haven't implemented that part yet)
3998 goto clear_rcu;
4001 fastrx.key = true;
4002 fastrx.icv_len = key->conf.icv_len;
4005 assign = true;
4006 clear_rcu:
4007 rcu_read_unlock();
4008 clear:
4009 __release(check_fast_rx);
4011 if (assign)
4012 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4014 spin_lock_bh(&sta->lock);
4015 old = rcu_dereference_protected(sta->fast_rx, true);
4016 rcu_assign_pointer(sta->fast_rx, new);
4017 spin_unlock_bh(&sta->lock);
4019 if (old)
4020 kfree_rcu(old, rcu_head);
4023 void ieee80211_clear_fast_rx(struct sta_info *sta)
4025 struct ieee80211_fast_rx *old;
4027 spin_lock_bh(&sta->lock);
4028 old = rcu_dereference_protected(sta->fast_rx, true);
4029 RCU_INIT_POINTER(sta->fast_rx, NULL);
4030 spin_unlock_bh(&sta->lock);
4032 if (old)
4033 kfree_rcu(old, rcu_head);
4036 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4038 struct ieee80211_local *local = sdata->local;
4039 struct sta_info *sta;
4041 lockdep_assert_held(&local->sta_mtx);
4043 list_for_each_entry(sta, &local->sta_list, list) {
4044 if (sdata != sta->sdata &&
4045 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4046 continue;
4047 ieee80211_check_fast_rx(sta);
4051 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4053 struct ieee80211_local *local = sdata->local;
4055 mutex_lock(&local->sta_mtx);
4056 __ieee80211_check_fast_rx_iface(sdata);
4057 mutex_unlock(&local->sta_mtx);
4060 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4061 struct ieee80211_fast_rx *fast_rx)
4063 struct sk_buff *skb = rx->skb;
4064 struct ieee80211_hdr *hdr = (void *)skb->data;
4065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4066 struct sta_info *sta = rx->sta;
4067 int orig_len = skb->len;
4068 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4069 int snap_offs = hdrlen;
4070 struct {
4071 u8 snap[sizeof(rfc1042_header)];
4072 __be16 proto;
4073 } *payload __aligned(2);
4074 struct {
4075 u8 da[ETH_ALEN];
4076 u8 sa[ETH_ALEN];
4077 } addrs __aligned(2);
4078 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4080 if (fast_rx->uses_rss)
4081 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4083 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4084 * to a common data structure; drivers can implement that per queue
4085 * but we don't have that information in mac80211
4087 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4088 return false;
4090 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4092 /* If using encryption, we also need to have:
4093 * - PN_VALIDATED: similar, but the implementation is tricky
4094 * - DECRYPTED: necessary for PN_VALIDATED
4096 if (fast_rx->key &&
4097 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4098 return false;
4100 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4101 return false;
4103 if (unlikely(ieee80211_is_frag(hdr)))
4104 return false;
4106 /* Since our interface address cannot be multicast, this
4107 * implicitly also rejects multicast frames without the
4108 * explicit check.
4110 * We shouldn't get any *data* frames not addressed to us
4111 * (AP mode will accept multicast *management* frames), but
4112 * punting here will make it go through the full checks in
4113 * ieee80211_accept_frame().
4115 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4116 return false;
4118 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4119 IEEE80211_FCTL_TODS)) !=
4120 fast_rx->expected_ds_bits)
4121 return false;
4123 /* assign the key to drop unencrypted frames (later)
4124 * and strip the IV/MIC if necessary
4126 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4127 /* GCMP header length is the same */
4128 snap_offs += IEEE80211_CCMP_HDR_LEN;
4131 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4132 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4133 goto drop;
4135 payload = (void *)(skb->data + snap_offs);
4137 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4138 return false;
4140 /* Don't handle these here since they require special code.
4141 * Accept AARP and IPX even though they should come with a
4142 * bridge-tunnel header - but if we get them this way then
4143 * there's little point in discarding them.
4145 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4146 payload->proto == fast_rx->control_port_protocol))
4147 return false;
4150 /* after this point, don't punt to the slowpath! */
4152 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4153 pskb_trim(skb, skb->len - fast_rx->icv_len))
4154 goto drop;
4156 if (unlikely(fast_rx->sta_notify)) {
4157 ieee80211_sta_rx_notify(rx->sdata, hdr);
4158 fast_rx->sta_notify = false;
4161 /* statistics part of ieee80211_rx_h_sta_process() */
4162 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4163 stats->last_signal = status->signal;
4164 if (!fast_rx->uses_rss)
4165 ewma_signal_add(&sta->rx_stats_avg.signal,
4166 -status->signal);
4169 if (status->chains) {
4170 int i;
4172 stats->chains = status->chains;
4173 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4174 int signal = status->chain_signal[i];
4176 if (!(status->chains & BIT(i)))
4177 continue;
4179 stats->chain_signal_last[i] = signal;
4180 if (!fast_rx->uses_rss)
4181 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4182 -signal);
4185 /* end of statistics */
4187 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4188 goto drop;
4190 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4191 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4192 RX_QUEUED)
4193 goto drop;
4195 return true;
4198 stats->last_rx = jiffies;
4199 stats->last_rate = sta_stats_encode_rate(status);
4201 stats->fragments++;
4202 stats->packets++;
4204 /* do the header conversion - first grab the addresses */
4205 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4206 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4207 /* remove the SNAP but leave the ethertype */
4208 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4209 /* push the addresses in front */
4210 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4212 skb->dev = fast_rx->dev;
4214 ieee80211_rx_stats(fast_rx->dev, skb->len);
4216 /* The seqno index has the same property as needed
4217 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4218 * for non-QoS-data frames. Here we know it's a data
4219 * frame, so count MSDUs.
4221 u64_stats_update_begin(&stats->syncp);
4222 stats->msdu[rx->seqno_idx]++;
4223 stats->bytes += orig_len;
4224 u64_stats_update_end(&stats->syncp);
4226 if (fast_rx->internal_forward) {
4227 struct sk_buff *xmit_skb = NULL;
4228 bool multicast = is_multicast_ether_addr(skb->data);
4230 if (multicast) {
4231 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4232 } else if (sta_info_get(rx->sdata, skb->data)) {
4233 xmit_skb = skb;
4234 skb = NULL;
4237 if (xmit_skb) {
4239 * Send to wireless media and increase priority by 256
4240 * to keep the received priority instead of
4241 * reclassifying the frame (see cfg80211_classify8021d).
4243 xmit_skb->priority += 256;
4244 xmit_skb->protocol = htons(ETH_P_802_3);
4245 skb_reset_network_header(xmit_skb);
4246 skb_reset_mac_header(xmit_skb);
4247 dev_queue_xmit(xmit_skb);
4250 if (!skb)
4251 return true;
4254 /* deliver to local stack */
4255 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4256 memset(skb->cb, 0, sizeof(skb->cb));
4257 if (rx->napi)
4258 napi_gro_receive(rx->napi, skb);
4259 else
4260 netif_receive_skb(skb);
4262 return true;
4263 drop:
4264 dev_kfree_skb(skb);
4265 stats->dropped++;
4266 return true;
4270 * This function returns whether or not the SKB
4271 * was destined for RX processing or not, which,
4272 * if consume is true, is equivalent to whether
4273 * or not the skb was consumed.
4275 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4276 struct sk_buff *skb, bool consume)
4278 struct ieee80211_local *local = rx->local;
4279 struct ieee80211_sub_if_data *sdata = rx->sdata;
4281 rx->skb = skb;
4283 /* See if we can do fast-rx; if we have to copy we already lost,
4284 * so punt in that case. We should never have to deliver a data
4285 * frame to multiple interfaces anyway.
4287 * We skip the ieee80211_accept_frame() call and do the necessary
4288 * checking inside ieee80211_invoke_fast_rx().
4290 if (consume && rx->sta) {
4291 struct ieee80211_fast_rx *fast_rx;
4293 fast_rx = rcu_dereference(rx->sta->fast_rx);
4294 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4295 return true;
4298 if (!ieee80211_accept_frame(rx))
4299 return false;
4301 if (!consume) {
4302 skb = skb_copy(skb, GFP_ATOMIC);
4303 if (!skb) {
4304 if (net_ratelimit())
4305 wiphy_debug(local->hw.wiphy,
4306 "failed to copy skb for %s\n",
4307 sdata->name);
4308 return true;
4311 rx->skb = skb;
4314 ieee80211_invoke_rx_handlers(rx);
4315 return true;
4319 * This is the actual Rx frames handler. as it belongs to Rx path it must
4320 * be called with rcu_read_lock protection.
4322 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4323 struct ieee80211_sta *pubsta,
4324 struct sk_buff *skb,
4325 struct napi_struct *napi)
4327 struct ieee80211_local *local = hw_to_local(hw);
4328 struct ieee80211_sub_if_data *sdata;
4329 struct ieee80211_hdr *hdr;
4330 __le16 fc;
4331 struct ieee80211_rx_data rx;
4332 struct ieee80211_sub_if_data *prev;
4333 struct rhlist_head *tmp;
4334 int err = 0;
4336 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4337 memset(&rx, 0, sizeof(rx));
4338 rx.skb = skb;
4339 rx.local = local;
4340 rx.napi = napi;
4342 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4343 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4345 if (ieee80211_is_mgmt(fc)) {
4346 /* drop frame if too short for header */
4347 if (skb->len < ieee80211_hdrlen(fc))
4348 err = -ENOBUFS;
4349 else
4350 err = skb_linearize(skb);
4351 } else {
4352 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4355 if (err) {
4356 dev_kfree_skb(skb);
4357 return;
4360 hdr = (struct ieee80211_hdr *)skb->data;
4361 ieee80211_parse_qos(&rx);
4362 ieee80211_verify_alignment(&rx);
4364 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4365 ieee80211_is_beacon(hdr->frame_control)))
4366 ieee80211_scan_rx(local, skb);
4368 if (ieee80211_is_data(fc)) {
4369 struct sta_info *sta, *prev_sta;
4371 if (pubsta) {
4372 rx.sta = container_of(pubsta, struct sta_info, sta);
4373 rx.sdata = rx.sta->sdata;
4374 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4375 return;
4376 goto out;
4379 prev_sta = NULL;
4381 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4382 if (!prev_sta) {
4383 prev_sta = sta;
4384 continue;
4387 rx.sta = prev_sta;
4388 rx.sdata = prev_sta->sdata;
4389 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4391 prev_sta = sta;
4394 if (prev_sta) {
4395 rx.sta = prev_sta;
4396 rx.sdata = prev_sta->sdata;
4398 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4399 return;
4400 goto out;
4404 prev = NULL;
4406 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4407 if (!ieee80211_sdata_running(sdata))
4408 continue;
4410 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4411 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4412 continue;
4415 * frame is destined for this interface, but if it's
4416 * not also for the previous one we handle that after
4417 * the loop to avoid copying the SKB once too much
4420 if (!prev) {
4421 prev = sdata;
4422 continue;
4425 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4426 rx.sdata = prev;
4427 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4429 prev = sdata;
4432 if (prev) {
4433 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4434 rx.sdata = prev;
4436 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4437 return;
4440 out:
4441 dev_kfree_skb(skb);
4445 * This is the receive path handler. It is called by a low level driver when an
4446 * 802.11 MPDU is received from the hardware.
4448 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4449 struct sk_buff *skb, struct napi_struct *napi)
4451 struct ieee80211_local *local = hw_to_local(hw);
4452 struct ieee80211_rate *rate = NULL;
4453 struct ieee80211_supported_band *sband;
4454 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4456 WARN_ON_ONCE(softirq_count() == 0);
4458 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4459 goto drop;
4461 sband = local->hw.wiphy->bands[status->band];
4462 if (WARN_ON(!sband))
4463 goto drop;
4466 * If we're suspending, it is possible although not too likely
4467 * that we'd be receiving frames after having already partially
4468 * quiesced the stack. We can't process such frames then since
4469 * that might, for example, cause stations to be added or other
4470 * driver callbacks be invoked.
4472 if (unlikely(local->quiescing || local->suspended))
4473 goto drop;
4475 /* We might be during a HW reconfig, prevent Rx for the same reason */
4476 if (unlikely(local->in_reconfig))
4477 goto drop;
4480 * The same happens when we're not even started,
4481 * but that's worth a warning.
4483 if (WARN_ON(!local->started))
4484 goto drop;
4486 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4488 * Validate the rate, unless a PLCP error means that
4489 * we probably can't have a valid rate here anyway.
4492 switch (status->encoding) {
4493 case RX_ENC_HT:
4495 * rate_idx is MCS index, which can be [0-76]
4496 * as documented on:
4498 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4500 * Anything else would be some sort of driver or
4501 * hardware error. The driver should catch hardware
4502 * errors.
4504 if (WARN(status->rate_idx > 76,
4505 "Rate marked as an HT rate but passed "
4506 "status->rate_idx is not "
4507 "an MCS index [0-76]: %d (0x%02x)\n",
4508 status->rate_idx,
4509 status->rate_idx))
4510 goto drop;
4511 break;
4512 case RX_ENC_VHT:
4513 if (WARN_ONCE(status->rate_idx > 9 ||
4514 !status->nss ||
4515 status->nss > 8,
4516 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4517 status->rate_idx, status->nss))
4518 goto drop;
4519 break;
4520 case RX_ENC_HE:
4521 if (WARN_ONCE(status->rate_idx > 11 ||
4522 !status->nss ||
4523 status->nss > 8,
4524 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4525 status->rate_idx, status->nss))
4526 goto drop;
4527 break;
4528 default:
4529 WARN_ON_ONCE(1);
4530 /* fall through */
4531 case RX_ENC_LEGACY:
4532 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4533 goto drop;
4534 rate = &sband->bitrates[status->rate_idx];
4538 status->rx_flags = 0;
4541 * key references and virtual interfaces are protected using RCU
4542 * and this requires that we are in a read-side RCU section during
4543 * receive processing
4545 rcu_read_lock();
4548 * Frames with failed FCS/PLCP checksum are not returned,
4549 * all other frames are returned without radiotap header
4550 * if it was previously present.
4551 * Also, frames with less than 16 bytes are dropped.
4553 skb = ieee80211_rx_monitor(local, skb, rate);
4554 if (!skb) {
4555 rcu_read_unlock();
4556 return;
4559 ieee80211_tpt_led_trig_rx(local,
4560 ((struct ieee80211_hdr *)skb->data)->frame_control,
4561 skb->len);
4563 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4565 rcu_read_unlock();
4567 return;
4568 drop:
4569 kfree_skb(skb);
4571 EXPORT_SYMBOL(ieee80211_rx_napi);
4573 /* This is a version of the rx handler that can be called from hard irq
4574 * context. Post the skb on the queue and schedule the tasklet */
4575 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4577 struct ieee80211_local *local = hw_to_local(hw);
4579 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4581 skb->pkt_type = IEEE80211_RX_MSG;
4582 skb_queue_tail(&local->skb_queue, skb);
4583 tasklet_schedule(&local->tasklet);
4585 EXPORT_SYMBOL(ieee80211_rx_irqsafe);