Linux 4.19.133
[linux/fpc-iii.git] / net / rds / ib.c
blobba3379085c52d249f9a9b919679910237bcee682
1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
44 #include "rds_single_path.h"
45 #include "rds.h"
46 #include "ib.h"
47 #include "ib_mr.h"
49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
52 static atomic_t rds_ib_unloading;
54 module_param(rds_ib_mr_1m_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
62 * we have a clumsy combination of RCU and a rwsem protecting this list
63 * because it is used both in the get_mr fast path and while blocking in
64 * the FMR flushing path.
66 DECLARE_RWSEM(rds_ib_devices_lock);
67 struct list_head rds_ib_devices;
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock);
71 LIST_HEAD(ib_nodev_conns);
73 static void rds_ib_nodev_connect(void)
75 struct rds_ib_connection *ic;
77 spin_lock(&ib_nodev_conns_lock);
78 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
79 rds_conn_connect_if_down(ic->conn);
80 spin_unlock(&ib_nodev_conns_lock);
83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 struct rds_ib_connection *ic;
86 unsigned long flags;
88 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
89 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
90 rds_conn_drop(ic->conn);
91 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96 * from interrupt context so we push freing off into a work struct in krdsd.
98 static void rds_ib_dev_free(struct work_struct *work)
100 struct rds_ib_ipaddr *i_ipaddr, *i_next;
101 struct rds_ib_device *rds_ibdev = container_of(work,
102 struct rds_ib_device, free_work);
104 if (rds_ibdev->mr_8k_pool)
105 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
106 if (rds_ibdev->mr_1m_pool)
107 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
108 if (rds_ibdev->pd)
109 ib_dealloc_pd(rds_ibdev->pd);
111 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
112 list_del(&i_ipaddr->list);
113 kfree(i_ipaddr);
116 kfree(rds_ibdev->vector_load);
118 kfree(rds_ibdev);
121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
123 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
124 if (refcount_dec_and_test(&rds_ibdev->refcount))
125 queue_work(rds_wq, &rds_ibdev->free_work);
128 static void rds_ib_add_one(struct ib_device *device)
130 struct rds_ib_device *rds_ibdev;
131 bool has_fr, has_fmr;
133 /* Only handle IB (no iWARP) devices */
134 if (device->node_type != RDMA_NODE_IB_CA)
135 return;
137 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
138 ibdev_to_node(device));
139 if (!rds_ibdev)
140 return;
142 spin_lock_init(&rds_ibdev->spinlock);
143 refcount_set(&rds_ibdev->refcount, 1);
144 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
146 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
147 INIT_LIST_HEAD(&rds_ibdev->conn_list);
149 rds_ibdev->max_wrs = device->attrs.max_qp_wr;
150 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
152 has_fr = (device->attrs.device_cap_flags &
153 IB_DEVICE_MEM_MGT_EXTENSIONS);
154 has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
155 device->map_phys_fmr && device->unmap_fmr);
156 rds_ibdev->use_fastreg = (has_fr && !has_fmr);
158 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
159 rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
160 min_t(unsigned int, (device->attrs.max_mr / 2),
161 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
163 rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
164 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
165 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
167 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
168 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
170 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
171 sizeof(int),
172 GFP_KERNEL);
173 if (!rds_ibdev->vector_load) {
174 pr_err("RDS/IB: %s failed to allocate vector memory\n",
175 __func__);
176 goto put_dev;
179 rds_ibdev->dev = device;
180 rds_ibdev->pd = ib_alloc_pd(device, 0);
181 if (IS_ERR(rds_ibdev->pd)) {
182 rds_ibdev->pd = NULL;
183 goto put_dev;
186 rds_ibdev->mr_1m_pool =
187 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
188 if (IS_ERR(rds_ibdev->mr_1m_pool)) {
189 rds_ibdev->mr_1m_pool = NULL;
190 goto put_dev;
193 rds_ibdev->mr_8k_pool =
194 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
195 if (IS_ERR(rds_ibdev->mr_8k_pool)) {
196 rds_ibdev->mr_8k_pool = NULL;
197 goto put_dev;
200 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
201 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
202 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
203 rds_ibdev->max_8k_mrs);
205 pr_info("RDS/IB: %s: %s supported and preferred\n",
206 device->name,
207 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
209 down_write(&rds_ib_devices_lock);
210 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
211 up_write(&rds_ib_devices_lock);
212 refcount_inc(&rds_ibdev->refcount);
214 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
215 refcount_inc(&rds_ibdev->refcount);
217 rds_ib_nodev_connect();
219 put_dev:
220 rds_ib_dev_put(rds_ibdev);
224 * New connections use this to find the device to associate with the
225 * connection. It's not in the fast path so we're not concerned about the
226 * performance of the IB call. (As of this writing, it uses an interrupt
227 * blocking spinlock to serialize walking a per-device list of all registered
228 * clients.)
230 * RCU is used to handle incoming connections racing with device teardown.
231 * Rather than use a lock to serialize removal from the client_data and
232 * getting a new reference, we use an RCU grace period. The destruction
233 * path removes the device from client_data and then waits for all RCU
234 * readers to finish.
236 * A new connection can get NULL from this if its arriving on a
237 * device that is in the process of being removed.
239 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
241 struct rds_ib_device *rds_ibdev;
243 rcu_read_lock();
244 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
245 if (rds_ibdev)
246 refcount_inc(&rds_ibdev->refcount);
247 rcu_read_unlock();
248 return rds_ibdev;
252 * The IB stack is letting us know that a device is going away. This can
253 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
254 * the pci function, for example.
256 * This can be called at any time and can be racing with any other RDS path.
258 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
260 struct rds_ib_device *rds_ibdev = client_data;
262 if (!rds_ibdev)
263 return;
265 rds_ib_dev_shutdown(rds_ibdev);
267 /* stop connection attempts from getting a reference to this device. */
268 ib_set_client_data(device, &rds_ib_client, NULL);
270 down_write(&rds_ib_devices_lock);
271 list_del_rcu(&rds_ibdev->list);
272 up_write(&rds_ib_devices_lock);
275 * This synchronize rcu is waiting for readers of both the ib
276 * client data and the devices list to finish before we drop
277 * both of those references.
279 synchronize_rcu();
280 rds_ib_dev_put(rds_ibdev);
281 rds_ib_dev_put(rds_ibdev);
284 struct ib_client rds_ib_client = {
285 .name = "rds_ib",
286 .add = rds_ib_add_one,
287 .remove = rds_ib_remove_one
290 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
291 void *buffer)
293 struct rds_info_rdma_connection *iinfo = buffer;
294 struct rds_ib_connection *ic;
296 /* We will only ever look at IB transports */
297 if (conn->c_trans != &rds_ib_transport)
298 return 0;
299 if (conn->c_isv6)
300 return 0;
302 iinfo->src_addr = conn->c_laddr.s6_addr32[3];
303 iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
305 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
306 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
307 if (rds_conn_state(conn) == RDS_CONN_UP) {
308 struct rds_ib_device *rds_ibdev;
310 ic = conn->c_transport_data;
312 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
313 (union ib_gid *)&iinfo->dst_gid);
315 rds_ibdev = ic->rds_ibdev;
316 iinfo->max_send_wr = ic->i_send_ring.w_nr;
317 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
318 iinfo->max_send_sge = rds_ibdev->max_sge;
319 rds_ib_get_mr_info(rds_ibdev, iinfo);
321 return 1;
324 #if IS_ENABLED(CONFIG_IPV6)
325 /* IPv6 version of rds_ib_conn_info_visitor(). */
326 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
327 void *buffer)
329 struct rds6_info_rdma_connection *iinfo6 = buffer;
330 struct rds_ib_connection *ic;
332 /* We will only ever look at IB transports */
333 if (conn->c_trans != &rds_ib_transport)
334 return 0;
336 iinfo6->src_addr = conn->c_laddr;
337 iinfo6->dst_addr = conn->c_faddr;
339 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
340 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
342 if (rds_conn_state(conn) == RDS_CONN_UP) {
343 struct rds_ib_device *rds_ibdev;
345 ic = conn->c_transport_data;
346 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
347 (union ib_gid *)&iinfo6->dst_gid);
348 rds_ibdev = ic->rds_ibdev;
349 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
350 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
351 iinfo6->max_send_sge = rds_ibdev->max_sge;
352 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
354 return 1;
356 #endif
358 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
359 struct rds_info_iterator *iter,
360 struct rds_info_lengths *lens)
362 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
364 rds_for_each_conn_info(sock, len, iter, lens,
365 rds_ib_conn_info_visitor,
366 buffer,
367 sizeof(struct rds_info_rdma_connection));
370 #if IS_ENABLED(CONFIG_IPV6)
371 /* IPv6 version of rds_ib_ic_info(). */
372 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
373 struct rds_info_iterator *iter,
374 struct rds_info_lengths *lens)
376 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
378 rds_for_each_conn_info(sock, len, iter, lens,
379 rds6_ib_conn_info_visitor,
380 buffer,
381 sizeof(struct rds6_info_rdma_connection));
383 #endif
386 * Early RDS/IB was built to only bind to an address if there is an IPoIB
387 * device with that address set.
389 * If it were me, I'd advocate for something more flexible. Sending and
390 * receiving should be device-agnostic. Transports would try and maintain
391 * connections between peers who have messages queued. Userspace would be
392 * allowed to influence which paths have priority. We could call userspace
393 * asserting this policy "routing".
395 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
396 __u32 scope_id)
398 int ret;
399 struct rdma_cm_id *cm_id;
400 #if IS_ENABLED(CONFIG_IPV6)
401 struct sockaddr_in6 sin6;
402 #endif
403 struct sockaddr_in sin;
404 struct sockaddr *sa;
405 bool isv4;
407 isv4 = ipv6_addr_v4mapped(addr);
408 /* Create a CMA ID and try to bind it. This catches both
409 * IB and iWARP capable NICs.
411 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
412 NULL, RDMA_PS_TCP, IB_QPT_RC);
413 if (IS_ERR(cm_id))
414 return PTR_ERR(cm_id);
416 if (isv4) {
417 memset(&sin, 0, sizeof(sin));
418 sin.sin_family = AF_INET;
419 sin.sin_addr.s_addr = addr->s6_addr32[3];
420 sa = (struct sockaddr *)&sin;
421 } else {
422 #if IS_ENABLED(CONFIG_IPV6)
423 memset(&sin6, 0, sizeof(sin6));
424 sin6.sin6_family = AF_INET6;
425 sin6.sin6_addr = *addr;
426 sin6.sin6_scope_id = scope_id;
427 sa = (struct sockaddr *)&sin6;
429 /* XXX Do a special IPv6 link local address check here. The
430 * reason is that rdma_bind_addr() always succeeds with IPv6
431 * link local address regardless it is indeed configured in a
432 * system.
434 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
435 struct net_device *dev;
437 if (scope_id == 0) {
438 ret = -EADDRNOTAVAIL;
439 goto out;
442 /* Use init_net for now as RDS is not network
443 * name space aware.
445 dev = dev_get_by_index(&init_net, scope_id);
446 if (!dev) {
447 ret = -EADDRNOTAVAIL;
448 goto out;
450 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
451 dev_put(dev);
452 ret = -EADDRNOTAVAIL;
453 goto out;
455 dev_put(dev);
457 #else
458 ret = -EADDRNOTAVAIL;
459 goto out;
460 #endif
463 /* rdma_bind_addr will only succeed for IB & iWARP devices */
464 ret = rdma_bind_addr(cm_id, sa);
465 /* due to this, we will claim to support iWARP devices unless we
466 check node_type. */
467 if (ret || !cm_id->device ||
468 cm_id->device->node_type != RDMA_NODE_IB_CA)
469 ret = -EADDRNOTAVAIL;
471 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
472 addr, scope_id, ret,
473 cm_id->device ? cm_id->device->node_type : -1);
475 out:
476 rdma_destroy_id(cm_id);
478 return ret;
481 static void rds_ib_unregister_client(void)
483 ib_unregister_client(&rds_ib_client);
484 /* wait for rds_ib_dev_free() to complete */
485 flush_workqueue(rds_wq);
488 static void rds_ib_set_unloading(void)
490 atomic_set(&rds_ib_unloading, 1);
493 static bool rds_ib_is_unloading(struct rds_connection *conn)
495 struct rds_conn_path *cp = &conn->c_path[0];
497 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
498 atomic_read(&rds_ib_unloading) != 0);
501 void rds_ib_exit(void)
503 rds_ib_set_unloading();
504 synchronize_rcu();
505 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
506 #if IS_ENABLED(CONFIG_IPV6)
507 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
508 #endif
509 rds_ib_unregister_client();
510 rds_ib_destroy_nodev_conns();
511 rds_ib_sysctl_exit();
512 rds_ib_recv_exit();
513 rds_trans_unregister(&rds_ib_transport);
514 rds_ib_mr_exit();
517 struct rds_transport rds_ib_transport = {
518 .laddr_check = rds_ib_laddr_check,
519 .xmit_path_complete = rds_ib_xmit_path_complete,
520 .xmit = rds_ib_xmit,
521 .xmit_rdma = rds_ib_xmit_rdma,
522 .xmit_atomic = rds_ib_xmit_atomic,
523 .recv_path = rds_ib_recv_path,
524 .conn_alloc = rds_ib_conn_alloc,
525 .conn_free = rds_ib_conn_free,
526 .conn_path_connect = rds_ib_conn_path_connect,
527 .conn_path_shutdown = rds_ib_conn_path_shutdown,
528 .inc_copy_to_user = rds_ib_inc_copy_to_user,
529 .inc_free = rds_ib_inc_free,
530 .cm_initiate_connect = rds_ib_cm_initiate_connect,
531 .cm_handle_connect = rds_ib_cm_handle_connect,
532 .cm_connect_complete = rds_ib_cm_connect_complete,
533 .stats_info_copy = rds_ib_stats_info_copy,
534 .exit = rds_ib_exit,
535 .get_mr = rds_ib_get_mr,
536 .sync_mr = rds_ib_sync_mr,
537 .free_mr = rds_ib_free_mr,
538 .flush_mrs = rds_ib_flush_mrs,
539 .t_owner = THIS_MODULE,
540 .t_name = "infiniband",
541 .t_unloading = rds_ib_is_unloading,
542 .t_type = RDS_TRANS_IB
545 int rds_ib_init(void)
547 int ret;
549 INIT_LIST_HEAD(&rds_ib_devices);
551 ret = rds_ib_mr_init();
552 if (ret)
553 goto out;
555 ret = ib_register_client(&rds_ib_client);
556 if (ret)
557 goto out_mr_exit;
559 ret = rds_ib_sysctl_init();
560 if (ret)
561 goto out_ibreg;
563 ret = rds_ib_recv_init();
564 if (ret)
565 goto out_sysctl;
567 rds_trans_register(&rds_ib_transport);
569 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
570 #if IS_ENABLED(CONFIG_IPV6)
571 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
572 #endif
574 goto out;
576 out_sysctl:
577 rds_ib_sysctl_exit();
578 out_ibreg:
579 rds_ib_unregister_client();
580 out_mr_exit:
581 rds_ib_mr_exit();
582 out:
583 return ret;
586 MODULE_LICENSE("GPL");