Linux 4.19.133
[linux/fpc-iii.git] / net / rds / ib_recv.c
blob2f16146e4ec94e580b26bf6e4e12395a6d882a4b
1 /*
2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
49 struct rds_ib_recv_work *recv;
50 u32 i;
52 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 struct ib_sge *sge;
55 recv->r_ibinc = NULL;
56 recv->r_frag = NULL;
58 recv->r_wr.next = NULL;
59 recv->r_wr.wr_id = i;
60 recv->r_wr.sg_list = recv->r_sge;
61 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
63 sge = &recv->r_sge[0];
64 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 sge->length = sizeof(struct rds_header);
66 sge->lkey = ic->i_pd->local_dma_lkey;
68 sge = &recv->r_sge[1];
69 sge->addr = 0;
70 sge->length = RDS_FRAG_SIZE;
71 sge->lkey = ic->i_pd->local_dma_lkey;
76 * The entire 'from' list, including the from element itself, is put on
77 * to the tail of the 'to' list.
79 static void list_splice_entire_tail(struct list_head *from,
80 struct list_head *to)
82 struct list_head *from_last = from->prev;
84 list_splice_tail(from_last, to);
85 list_add_tail(from_last, to);
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
90 struct list_head *tmp;
92 tmp = xchg(&cache->xfer, NULL);
93 if (tmp) {
94 if (cache->ready)
95 list_splice_entire_tail(tmp, cache->ready);
96 else
97 cache->ready = tmp;
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
103 struct rds_ib_cache_head *head;
104 int cpu;
106 cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 if (!cache->percpu)
108 return -ENOMEM;
110 for_each_possible_cpu(cpu) {
111 head = per_cpu_ptr(cache->percpu, cpu);
112 head->first = NULL;
113 head->count = 0;
115 cache->xfer = NULL;
116 cache->ready = NULL;
118 return 0;
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
123 int ret;
125 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 if (!ret) {
127 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 if (ret)
129 free_percpu(ic->i_cache_incs.percpu);
132 return ret;
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 struct list_head *caller_list)
138 struct rds_ib_cache_head *head;
139 int cpu;
141 for_each_possible_cpu(cpu) {
142 head = per_cpu_ptr(cache->percpu, cpu);
143 if (head->first) {
144 list_splice_entire_tail(head->first, caller_list);
145 head->first = NULL;
149 if (cache->ready) {
150 list_splice_entire_tail(cache->ready, caller_list);
151 cache->ready = NULL;
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
157 struct rds_ib_incoming *inc;
158 struct rds_ib_incoming *inc_tmp;
159 struct rds_page_frag *frag;
160 struct rds_page_frag *frag_tmp;
161 LIST_HEAD(list);
163 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 free_percpu(ic->i_cache_incs.percpu);
167 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 list_del(&inc->ii_cache_entry);
169 WARN_ON(!list_empty(&inc->ii_frags));
170 kmem_cache_free(rds_ib_incoming_slab, inc);
173 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
174 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
175 free_percpu(ic->i_cache_frags.percpu);
177 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
178 list_del(&frag->f_cache_entry);
179 WARN_ON(!list_empty(&frag->f_item));
180 kmem_cache_free(rds_ib_frag_slab, frag);
184 /* fwd decl */
185 static void rds_ib_recv_cache_put(struct list_head *new_item,
186 struct rds_ib_refill_cache *cache);
187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection *ic,
192 struct rds_page_frag *frag)
194 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
197 atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
198 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
201 /* Recycle inc after freeing attached frags */
202 void rds_ib_inc_free(struct rds_incoming *inc)
204 struct rds_ib_incoming *ibinc;
205 struct rds_page_frag *frag;
206 struct rds_page_frag *pos;
207 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211 /* Free attached frags */
212 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
213 list_del_init(&frag->f_item);
214 rds_ib_frag_free(ic, frag);
216 BUG_ON(!list_empty(&ibinc->ii_frags));
218 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
219 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
222 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
223 struct rds_ib_recv_work *recv)
225 if (recv->r_ibinc) {
226 rds_inc_put(&recv->r_ibinc->ii_inc);
227 recv->r_ibinc = NULL;
229 if (recv->r_frag) {
230 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
231 rds_ib_frag_free(ic, recv->r_frag);
232 recv->r_frag = NULL;
236 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 u32 i;
240 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
241 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
244 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
245 gfp_t slab_mask)
247 struct rds_ib_incoming *ibinc;
248 struct list_head *cache_item;
249 int avail_allocs;
251 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
252 if (cache_item) {
253 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
254 } else {
255 avail_allocs = atomic_add_unless(&rds_ib_allocation,
256 1, rds_ib_sysctl_max_recv_allocation);
257 if (!avail_allocs) {
258 rds_ib_stats_inc(s_ib_rx_alloc_limit);
259 return NULL;
261 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
262 if (!ibinc) {
263 atomic_dec(&rds_ib_allocation);
264 return NULL;
266 rds_ib_stats_inc(s_ib_rx_total_incs);
268 INIT_LIST_HEAD(&ibinc->ii_frags);
269 rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271 return ibinc;
274 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
275 gfp_t slab_mask, gfp_t page_mask)
277 struct rds_page_frag *frag;
278 struct list_head *cache_item;
279 int ret;
281 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
282 if (cache_item) {
283 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
284 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
285 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
286 } else {
287 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
288 if (!frag)
289 return NULL;
291 sg_init_table(&frag->f_sg, 1);
292 ret = rds_page_remainder_alloc(&frag->f_sg,
293 RDS_FRAG_SIZE, page_mask);
294 if (ret) {
295 kmem_cache_free(rds_ib_frag_slab, frag);
296 return NULL;
298 rds_ib_stats_inc(s_ib_rx_total_frags);
301 INIT_LIST_HEAD(&frag->f_item);
303 return frag;
306 static int rds_ib_recv_refill_one(struct rds_connection *conn,
307 struct rds_ib_recv_work *recv, gfp_t gfp)
309 struct rds_ib_connection *ic = conn->c_transport_data;
310 struct ib_sge *sge;
311 int ret = -ENOMEM;
312 gfp_t slab_mask = GFP_NOWAIT;
313 gfp_t page_mask = GFP_NOWAIT;
315 if (gfp & __GFP_DIRECT_RECLAIM) {
316 slab_mask = GFP_KERNEL;
317 page_mask = GFP_HIGHUSER;
320 if (!ic->i_cache_incs.ready)
321 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
322 if (!ic->i_cache_frags.ready)
323 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
326 * ibinc was taken from recv if recv contained the start of a message.
327 * recvs that were continuations will still have this allocated.
329 if (!recv->r_ibinc) {
330 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
331 if (!recv->r_ibinc)
332 goto out;
335 WARN_ON(recv->r_frag); /* leak! */
336 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
337 if (!recv->r_frag)
338 goto out;
340 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
341 1, DMA_FROM_DEVICE);
342 WARN_ON(ret != 1);
344 sge = &recv->r_sge[0];
345 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
346 sge->length = sizeof(struct rds_header);
348 sge = &recv->r_sge[1];
349 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
350 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
352 ret = 0;
353 out:
354 return ret;
357 static int acquire_refill(struct rds_connection *conn)
359 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
362 static void release_refill(struct rds_connection *conn)
364 clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
367 * hot path and finding waiters is very rare. We don't want to walk
368 * the system-wide hashed waitqueue buckets in the fast path only to
369 * almost never find waiters.
371 if (waitqueue_active(&conn->c_waitq))
372 wake_up_all(&conn->c_waitq);
376 * This tries to allocate and post unused work requests after making sure that
377 * they have all the allocations they need to queue received fragments into
378 * sockets.
380 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
382 struct rds_ib_connection *ic = conn->c_transport_data;
383 struct rds_ib_recv_work *recv;
384 unsigned int posted = 0;
385 int ret = 0;
386 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
387 u32 pos;
389 /* the goal here is to just make sure that someone, somewhere
390 * is posting buffers. If we can't get the refill lock,
391 * let them do their thing
393 if (!acquire_refill(conn))
394 return;
396 while ((prefill || rds_conn_up(conn)) &&
397 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
398 if (pos >= ic->i_recv_ring.w_nr) {
399 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
400 pos);
401 break;
404 recv = &ic->i_recvs[pos];
405 ret = rds_ib_recv_refill_one(conn, recv, gfp);
406 if (ret) {
407 break;
410 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
411 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
412 (long) ib_sg_dma_address(
413 ic->i_cm_id->device,
414 &recv->r_frag->f_sg));
416 /* XXX when can this fail? */
417 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
418 if (ret) {
419 rds_ib_conn_error(conn, "recv post on "
420 "%pI6c returned %d, disconnecting and "
421 "reconnecting\n", &conn->c_faddr,
422 ret);
423 break;
426 posted++;
429 /* We're doing flow control - update the window. */
430 if (ic->i_flowctl && posted)
431 rds_ib_advertise_credits(conn, posted);
433 if (ret)
434 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
436 release_refill(conn);
438 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
439 * in this case the ring being low is going to lead to more interrupts
440 * and we can safely let the softirq code take care of it unless the
441 * ring is completely empty.
443 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
444 * we might have raced with the softirq code while we had the refill
445 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
446 * if we should requeue.
448 if (rds_conn_up(conn) &&
449 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
450 rds_ib_ring_empty(&ic->i_recv_ring))) {
451 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
456 * We want to recycle several types of recv allocations, like incs and frags.
457 * To use this, the *_free() function passes in the ptr to a list_head within
458 * the recyclee, as well as the cache to put it on.
460 * First, we put the memory on a percpu list. When this reaches a certain size,
461 * We move it to an intermediate non-percpu list in a lockless manner, with some
462 * xchg/compxchg wizardry.
464 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
465 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
466 * list_empty() will return true with one element is actually present.
468 static void rds_ib_recv_cache_put(struct list_head *new_item,
469 struct rds_ib_refill_cache *cache)
471 unsigned long flags;
472 struct list_head *old, *chpfirst;
474 local_irq_save(flags);
476 chpfirst = __this_cpu_read(cache->percpu->first);
477 if (!chpfirst)
478 INIT_LIST_HEAD(new_item);
479 else /* put on front */
480 list_add_tail(new_item, chpfirst);
482 __this_cpu_write(cache->percpu->first, new_item);
483 __this_cpu_inc(cache->percpu->count);
485 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
486 goto end;
489 * Return our per-cpu first list to the cache's xfer by atomically
490 * grabbing the current xfer list, appending it to our per-cpu list,
491 * and then atomically returning that entire list back to the
492 * cache's xfer list as long as it's still empty.
494 do {
495 old = xchg(&cache->xfer, NULL);
496 if (old)
497 list_splice_entire_tail(old, chpfirst);
498 old = cmpxchg(&cache->xfer, NULL, chpfirst);
499 } while (old);
502 __this_cpu_write(cache->percpu->first, NULL);
503 __this_cpu_write(cache->percpu->count, 0);
504 end:
505 local_irq_restore(flags);
508 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
510 struct list_head *head = cache->ready;
512 if (head) {
513 if (!list_empty(head)) {
514 cache->ready = head->next;
515 list_del_init(head);
516 } else
517 cache->ready = NULL;
520 return head;
523 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
525 struct rds_ib_incoming *ibinc;
526 struct rds_page_frag *frag;
527 unsigned long to_copy;
528 unsigned long frag_off = 0;
529 int copied = 0;
530 int ret;
531 u32 len;
533 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
534 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
535 len = be32_to_cpu(inc->i_hdr.h_len);
537 while (iov_iter_count(to) && copied < len) {
538 if (frag_off == RDS_FRAG_SIZE) {
539 frag = list_entry(frag->f_item.next,
540 struct rds_page_frag, f_item);
541 frag_off = 0;
543 to_copy = min_t(unsigned long, iov_iter_count(to),
544 RDS_FRAG_SIZE - frag_off);
545 to_copy = min_t(unsigned long, to_copy, len - copied);
547 /* XXX needs + offset for multiple recvs per page */
548 rds_stats_add(s_copy_to_user, to_copy);
549 ret = copy_page_to_iter(sg_page(&frag->f_sg),
550 frag->f_sg.offset + frag_off,
551 to_copy,
552 to);
553 if (ret != to_copy)
554 return -EFAULT;
556 frag_off += to_copy;
557 copied += to_copy;
560 return copied;
563 /* ic starts out kzalloc()ed */
564 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
566 struct ib_send_wr *wr = &ic->i_ack_wr;
567 struct ib_sge *sge = &ic->i_ack_sge;
569 sge->addr = ic->i_ack_dma;
570 sge->length = sizeof(struct rds_header);
571 sge->lkey = ic->i_pd->local_dma_lkey;
573 wr->sg_list = sge;
574 wr->num_sge = 1;
575 wr->opcode = IB_WR_SEND;
576 wr->wr_id = RDS_IB_ACK_WR_ID;
577 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
581 * You'd think that with reliable IB connections you wouldn't need to ack
582 * messages that have been received. The problem is that IB hardware generates
583 * an ack message before it has DMAed the message into memory. This creates a
584 * potential message loss if the HCA is disabled for any reason between when it
585 * sends the ack and before the message is DMAed and processed. This is only a
586 * potential issue if another HCA is available for fail-over.
588 * When the remote host receives our ack they'll free the sent message from
589 * their send queue. To decrease the latency of this we always send an ack
590 * immediately after we've received messages.
592 * For simplicity, we only have one ack in flight at a time. This puts
593 * pressure on senders to have deep enough send queues to absorb the latency of
594 * a single ack frame being in flight. This might not be good enough.
596 * This is implemented by have a long-lived send_wr and sge which point to a
597 * statically allocated ack frame. This ack wr does not fall under the ring
598 * accounting that the tx and rx wrs do. The QP attribute specifically makes
599 * room for it beyond the ring size. Send completion notices its special
600 * wr_id and avoids working with the ring in that case.
602 #ifndef KERNEL_HAS_ATOMIC64
603 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
605 unsigned long flags;
607 spin_lock_irqsave(&ic->i_ack_lock, flags);
608 ic->i_ack_next = seq;
609 if (ack_required)
610 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
611 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
614 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
616 unsigned long flags;
617 u64 seq;
619 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
621 spin_lock_irqsave(&ic->i_ack_lock, flags);
622 seq = ic->i_ack_next;
623 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
625 return seq;
627 #else
628 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
630 atomic64_set(&ic->i_ack_next, seq);
631 if (ack_required) {
632 smp_mb__before_atomic();
633 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
637 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
639 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
640 smp_mb__after_atomic();
642 return atomic64_read(&ic->i_ack_next);
644 #endif
647 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
649 struct rds_header *hdr = ic->i_ack;
650 u64 seq;
651 int ret;
653 seq = rds_ib_get_ack(ic);
655 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
656 rds_message_populate_header(hdr, 0, 0, 0);
657 hdr->h_ack = cpu_to_be64(seq);
658 hdr->h_credit = adv_credits;
659 rds_message_make_checksum(hdr);
660 ic->i_ack_queued = jiffies;
662 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
663 if (unlikely(ret)) {
664 /* Failed to send. Release the WR, and
665 * force another ACK.
667 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
668 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
670 rds_ib_stats_inc(s_ib_ack_send_failure);
672 rds_ib_conn_error(ic->conn, "sending ack failed\n");
673 } else
674 rds_ib_stats_inc(s_ib_ack_sent);
678 * There are 3 ways of getting acknowledgements to the peer:
679 * 1. We call rds_ib_attempt_ack from the recv completion handler
680 * to send an ACK-only frame.
681 * However, there can be only one such frame in the send queue
682 * at any time, so we may have to postpone it.
683 * 2. When another (data) packet is transmitted while there's
684 * an ACK in the queue, we piggyback the ACK sequence number
685 * on the data packet.
686 * 3. If the ACK WR is done sending, we get called from the
687 * send queue completion handler, and check whether there's
688 * another ACK pending (postponed because the WR was on the
689 * queue). If so, we transmit it.
691 * We maintain 2 variables:
692 * - i_ack_flags, which keeps track of whether the ACK WR
693 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
694 * - i_ack_next, which is the last sequence number we received
696 * Potentially, send queue and receive queue handlers can run concurrently.
697 * It would be nice to not have to use a spinlock to synchronize things,
698 * but the one problem that rules this out is that 64bit updates are
699 * not atomic on all platforms. Things would be a lot simpler if
700 * we had atomic64 or maybe cmpxchg64 everywhere.
702 * Reconnecting complicates this picture just slightly. When we
703 * reconnect, we may be seeing duplicate packets. The peer
704 * is retransmitting them, because it hasn't seen an ACK for
705 * them. It is important that we ACK these.
707 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
708 * this flag set *MUST* be acknowledged immediately.
712 * When we get here, we're called from the recv queue handler.
713 * Check whether we ought to transmit an ACK.
715 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
717 unsigned int adv_credits;
719 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
720 return;
722 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
723 rds_ib_stats_inc(s_ib_ack_send_delayed);
724 return;
727 /* Can we get a send credit? */
728 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
729 rds_ib_stats_inc(s_ib_tx_throttle);
730 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
731 return;
734 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
735 rds_ib_send_ack(ic, adv_credits);
739 * We get here from the send completion handler, when the
740 * adapter tells us the ACK frame was sent.
742 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
744 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
745 rds_ib_attempt_ack(ic);
749 * This is called by the regular xmit code when it wants to piggyback
750 * an ACK on an outgoing frame.
752 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
754 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
755 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
756 return rds_ib_get_ack(ic);
760 * It's kind of lame that we're copying from the posted receive pages into
761 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
762 * them. But receiving new congestion bitmaps should be a *rare* event, so
763 * hopefully we won't need to invest that complexity in making it more
764 * efficient. By copying we can share a simpler core with TCP which has to
765 * copy.
767 static void rds_ib_cong_recv(struct rds_connection *conn,
768 struct rds_ib_incoming *ibinc)
770 struct rds_cong_map *map;
771 unsigned int map_off;
772 unsigned int map_page;
773 struct rds_page_frag *frag;
774 unsigned long frag_off;
775 unsigned long to_copy;
776 unsigned long copied;
777 uint64_t uncongested = 0;
778 void *addr;
780 /* catch completely corrupt packets */
781 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
782 return;
784 map = conn->c_fcong;
785 map_page = 0;
786 map_off = 0;
788 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
789 frag_off = 0;
791 copied = 0;
793 while (copied < RDS_CONG_MAP_BYTES) {
794 uint64_t *src, *dst;
795 unsigned int k;
797 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
798 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
800 addr = kmap_atomic(sg_page(&frag->f_sg));
802 src = addr + frag->f_sg.offset + frag_off;
803 dst = (void *)map->m_page_addrs[map_page] + map_off;
804 for (k = 0; k < to_copy; k += 8) {
805 /* Record ports that became uncongested, ie
806 * bits that changed from 0 to 1. */
807 uncongested |= ~(*src) & *dst;
808 *dst++ = *src++;
810 kunmap_atomic(addr);
812 copied += to_copy;
814 map_off += to_copy;
815 if (map_off == PAGE_SIZE) {
816 map_off = 0;
817 map_page++;
820 frag_off += to_copy;
821 if (frag_off == RDS_FRAG_SIZE) {
822 frag = list_entry(frag->f_item.next,
823 struct rds_page_frag, f_item);
824 frag_off = 0;
828 /* the congestion map is in little endian order */
829 uncongested = le64_to_cpu(uncongested);
831 rds_cong_map_updated(map, uncongested);
834 static void rds_ib_process_recv(struct rds_connection *conn,
835 struct rds_ib_recv_work *recv, u32 data_len,
836 struct rds_ib_ack_state *state)
838 struct rds_ib_connection *ic = conn->c_transport_data;
839 struct rds_ib_incoming *ibinc = ic->i_ibinc;
840 struct rds_header *ihdr, *hdr;
842 /* XXX shut down the connection if port 0,0 are seen? */
844 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
845 data_len);
847 if (data_len < sizeof(struct rds_header)) {
848 rds_ib_conn_error(conn, "incoming message "
849 "from %pI6c didn't include a "
850 "header, disconnecting and "
851 "reconnecting\n",
852 &conn->c_faddr);
853 return;
855 data_len -= sizeof(struct rds_header);
857 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
859 /* Validate the checksum. */
860 if (!rds_message_verify_checksum(ihdr)) {
861 rds_ib_conn_error(conn, "incoming message "
862 "from %pI6c has corrupted header - "
863 "forcing a reconnect\n",
864 &conn->c_faddr);
865 rds_stats_inc(s_recv_drop_bad_checksum);
866 return;
869 /* Process the ACK sequence which comes with every packet */
870 state->ack_recv = be64_to_cpu(ihdr->h_ack);
871 state->ack_recv_valid = 1;
873 /* Process the credits update if there was one */
874 if (ihdr->h_credit)
875 rds_ib_send_add_credits(conn, ihdr->h_credit);
877 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
878 /* This is an ACK-only packet. The fact that it gets
879 * special treatment here is that historically, ACKs
880 * were rather special beasts.
882 rds_ib_stats_inc(s_ib_ack_received);
885 * Usually the frags make their way on to incs and are then freed as
886 * the inc is freed. We don't go that route, so we have to drop the
887 * page ref ourselves. We can't just leave the page on the recv
888 * because that confuses the dma mapping of pages and each recv's use
889 * of a partial page.
891 * FIXME: Fold this into the code path below.
893 rds_ib_frag_free(ic, recv->r_frag);
894 recv->r_frag = NULL;
895 return;
899 * If we don't already have an inc on the connection then this
900 * fragment has a header and starts a message.. copy its header
901 * into the inc and save the inc so we can hang upcoming fragments
902 * off its list.
904 if (!ibinc) {
905 ibinc = recv->r_ibinc;
906 recv->r_ibinc = NULL;
907 ic->i_ibinc = ibinc;
909 hdr = &ibinc->ii_inc.i_hdr;
910 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
911 local_clock();
912 memcpy(hdr, ihdr, sizeof(*hdr));
913 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
914 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
915 local_clock();
917 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
918 ic->i_recv_data_rem, hdr->h_flags);
919 } else {
920 hdr = &ibinc->ii_inc.i_hdr;
921 /* We can't just use memcmp here; fragments of a
922 * single message may carry different ACKs */
923 if (hdr->h_sequence != ihdr->h_sequence ||
924 hdr->h_len != ihdr->h_len ||
925 hdr->h_sport != ihdr->h_sport ||
926 hdr->h_dport != ihdr->h_dport) {
927 rds_ib_conn_error(conn,
928 "fragment header mismatch; forcing reconnect\n");
929 return;
933 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
934 recv->r_frag = NULL;
936 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
937 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
938 else {
939 ic->i_recv_data_rem = 0;
940 ic->i_ibinc = NULL;
942 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
943 rds_ib_cong_recv(conn, ibinc);
944 } else {
945 rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
946 &ibinc->ii_inc, GFP_ATOMIC);
947 state->ack_next = be64_to_cpu(hdr->h_sequence);
948 state->ack_next_valid = 1;
951 /* Evaluate the ACK_REQUIRED flag *after* we received
952 * the complete frame, and after bumping the next_rx
953 * sequence. */
954 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
955 rds_stats_inc(s_recv_ack_required);
956 state->ack_required = 1;
959 rds_inc_put(&ibinc->ii_inc);
963 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
964 struct ib_wc *wc,
965 struct rds_ib_ack_state *state)
967 struct rds_connection *conn = ic->conn;
968 struct rds_ib_recv_work *recv;
970 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
971 (unsigned long long)wc->wr_id, wc->status,
972 ib_wc_status_msg(wc->status), wc->byte_len,
973 be32_to_cpu(wc->ex.imm_data));
975 rds_ib_stats_inc(s_ib_rx_cq_event);
976 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
977 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
978 DMA_FROM_DEVICE);
980 /* Also process recvs in connecting state because it is possible
981 * to get a recv completion _before_ the rdmacm ESTABLISHED
982 * event is processed.
984 if (wc->status == IB_WC_SUCCESS) {
985 rds_ib_process_recv(conn, recv, wc->byte_len, state);
986 } else {
987 /* We expect errors as the qp is drained during shutdown */
988 if (rds_conn_up(conn) || rds_conn_connecting(conn))
989 rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c> had status %u (%s), disconnecting and reconnecting\n",
990 &conn->c_laddr, &conn->c_faddr,
991 wc->status,
992 ib_wc_status_msg(wc->status));
995 /* rds_ib_process_recv() doesn't always consume the frag, and
996 * we might not have called it at all if the wc didn't indicate
997 * success. We already unmapped the frag's pages, though, and
998 * the following rds_ib_ring_free() call tells the refill path
999 * that it will not find an allocated frag here. Make sure we
1000 * keep that promise by freeing a frag that's still on the ring.
1002 if (recv->r_frag) {
1003 rds_ib_frag_free(ic, recv->r_frag);
1004 recv->r_frag = NULL;
1006 rds_ib_ring_free(&ic->i_recv_ring, 1);
1008 /* If we ever end up with a really empty receive ring, we're
1009 * in deep trouble, as the sender will definitely see RNR
1010 * timeouts. */
1011 if (rds_ib_ring_empty(&ic->i_recv_ring))
1012 rds_ib_stats_inc(s_ib_rx_ring_empty);
1014 if (rds_ib_ring_low(&ic->i_recv_ring)) {
1015 rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1016 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1020 int rds_ib_recv_path(struct rds_conn_path *cp)
1022 struct rds_connection *conn = cp->cp_conn;
1023 struct rds_ib_connection *ic = conn->c_transport_data;
1025 rdsdebug("conn %p\n", conn);
1026 if (rds_conn_up(conn)) {
1027 rds_ib_attempt_ack(ic);
1028 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1029 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1032 return 0;
1035 int rds_ib_recv_init(void)
1037 struct sysinfo si;
1038 int ret = -ENOMEM;
1040 /* Default to 30% of all available RAM for recv memory */
1041 si_meminfo(&si);
1042 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1044 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1045 sizeof(struct rds_ib_incoming),
1046 0, SLAB_HWCACHE_ALIGN, NULL);
1047 if (!rds_ib_incoming_slab)
1048 goto out;
1050 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1051 sizeof(struct rds_page_frag),
1052 0, SLAB_HWCACHE_ALIGN, NULL);
1053 if (!rds_ib_frag_slab) {
1054 kmem_cache_destroy(rds_ib_incoming_slab);
1055 rds_ib_incoming_slab = NULL;
1056 } else
1057 ret = 0;
1058 out:
1059 return ret;
1062 void rds_ib_recv_exit(void)
1064 kmem_cache_destroy(rds_ib_incoming_slab);
1065 kmem_cache_destroy(rds_ib_frag_slab);