2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
48 * Also, it seems fairer to not let one busy connection stall all the
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
55 static int send_batch_count
= SZ_1K
;
56 module_param(send_batch_count
, int, 0444);
57 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
62 * Reset the send state. Callers must ensure that this doesn't race with
65 void rds_send_path_reset(struct rds_conn_path
*cp
)
67 struct rds_message
*rm
, *tmp
;
72 cp
->cp_xmit_rm
= NULL
;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm
);
82 cp
->cp_xmit_hdr_off
= 0;
83 cp
->cp_xmit_data_off
= 0;
84 cp
->cp_xmit_atomic_sent
= 0;
85 cp
->cp_xmit_rdma_sent
= 0;
86 cp
->cp_xmit_data_sent
= 0;
88 cp
->cp_conn
->c_map_queued
= 0;
90 cp
->cp_unacked_packets
= rds_sysctl_max_unacked_packets
;
91 cp
->cp_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp
->cp_lock
, flags
);
95 list_for_each_entry_safe(rm
, tmp
, &cp
->cp_retrans
, m_conn_item
) {
96 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
97 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
99 list_splice_init(&cp
->cp_retrans
, &cp
->cp_send_queue
);
100 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
102 EXPORT_SYMBOL_GPL(rds_send_path_reset
);
104 static int acquire_in_xmit(struct rds_conn_path
*cp
)
106 return test_and_set_bit(RDS_IN_XMIT
, &cp
->cp_flags
) == 0;
109 static void release_in_xmit(struct rds_conn_path
*cp
)
111 clear_bit(RDS_IN_XMIT
, &cp
->cp_flags
);
112 smp_mb__after_atomic();
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
119 if (waitqueue_active(&cp
->cp_waitq
))
120 wake_up_all(&cp
->cp_waitq
);
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
132 * - queued acks can be delayed behind large messages
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
137 int rds_send_xmit(struct rds_conn_path
*cp
)
139 struct rds_connection
*conn
= cp
->cp_conn
;
140 struct rds_message
*rm
;
143 struct scatterlist
*sg
;
145 LIST_HEAD(to_be_dropped
);
147 unsigned long send_gen
= 0;
153 * sendmsg calls here after having queued its message on the send
154 * queue. We only have one task feeding the connection at a time. If
155 * another thread is already feeding the queue then we back off. This
156 * avoids blocking the caller and trading per-connection data between
157 * caches per message.
159 if (!acquire_in_xmit(cp
)) {
160 rds_stats_inc(s_send_lock_contention
);
165 if (rds_destroy_pending(cp
->cp_conn
)) {
167 ret
= -ENETUNREACH
; /* dont requeue send work */
172 * we record the send generation after doing the xmit acquire.
173 * if someone else manages to jump in and do some work, we'll use
174 * this to avoid a goto restart farther down.
176 * The acquire_in_xmit() check above ensures that only one
177 * caller can increment c_send_gen at any time.
179 send_gen
= READ_ONCE(cp
->cp_send_gen
) + 1;
180 WRITE_ONCE(cp
->cp_send_gen
, send_gen
);
183 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 * we do the opposite to avoid races.
186 if (!rds_conn_path_up(cp
)) {
192 if (conn
->c_trans
->xmit_path_prepare
)
193 conn
->c_trans
->xmit_path_prepare(cp
);
196 * spin trying to push headers and data down the connection until
197 * the connection doesn't make forward progress.
204 * If between sending messages, we can send a pending congestion
207 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
208 rm
= rds_cong_update_alloc(conn
);
213 rm
->data
.op_active
= 1;
214 rm
->m_inc
.i_conn_path
= cp
;
215 rm
->m_inc
.i_conn
= cp
->cp_conn
;
221 * If not already working on one, grab the next message.
223 * cp_xmit_rm holds a ref while we're sending this message down
224 * the connction. We can use this ref while holding the
225 * send_sem.. rds_send_reset() is serialized with it.
232 /* we want to process as big a batch as we can, but
233 * we also want to avoid softlockups. If we've been
234 * through a lot of messages, lets back off and see
235 * if anyone else jumps in
237 if (batch_count
>= send_batch_count
)
240 spin_lock_irqsave(&cp
->cp_lock
, flags
);
242 if (!list_empty(&cp
->cp_send_queue
)) {
243 rm
= list_entry(cp
->cp_send_queue
.next
,
246 rds_message_addref(rm
);
249 * Move the message from the send queue to the retransmit
252 list_move_tail(&rm
->m_conn_item
,
256 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
261 /* Unfortunately, the way Infiniband deals with
262 * RDMA to a bad MR key is by moving the entire
263 * queue pair to error state. We cold possibly
264 * recover from that, but right now we drop the
266 * Therefore, we never retransmit messages with RDMA ops.
268 if (test_bit(RDS_MSG_FLUSH
, &rm
->m_flags
) ||
269 (rm
->rdma
.op_active
&&
270 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
))) {
271 spin_lock_irqsave(&cp
->cp_lock
, flags
);
272 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
273 list_move(&rm
->m_conn_item
, &to_be_dropped
);
274 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
278 /* Require an ACK every once in a while */
279 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
280 if (cp
->cp_unacked_packets
== 0 ||
281 cp
->cp_unacked_bytes
< len
) {
282 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
284 cp
->cp_unacked_packets
=
285 rds_sysctl_max_unacked_packets
;
286 cp
->cp_unacked_bytes
=
287 rds_sysctl_max_unacked_bytes
;
288 rds_stats_inc(s_send_ack_required
);
290 cp
->cp_unacked_bytes
-= len
;
291 cp
->cp_unacked_packets
--;
297 /* The transport either sends the whole rdma or none of it */
298 if (rm
->rdma
.op_active
&& !cp
->cp_xmit_rdma_sent
) {
299 rm
->m_final_op
= &rm
->rdma
;
300 /* The transport owns the mapped memory for now.
301 * You can't unmap it while it's on the send queue
303 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
304 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
306 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
307 wake_up_interruptible(&rm
->m_flush_wait
);
310 cp
->cp_xmit_rdma_sent
= 1;
314 if (rm
->atomic
.op_active
&& !cp
->cp_xmit_atomic_sent
) {
315 rm
->m_final_op
= &rm
->atomic
;
316 /* The transport owns the mapped memory for now.
317 * You can't unmap it while it's on the send queue
319 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
320 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
322 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
323 wake_up_interruptible(&rm
->m_flush_wait
);
326 cp
->cp_xmit_atomic_sent
= 1;
331 * A number of cases require an RDS header to be sent
332 * even if there is no data.
333 * We permit 0-byte sends; rds-ping depends on this.
334 * However, if there are exclusively attached silent ops,
335 * we skip the hdr/data send, to enable silent operation.
337 if (rm
->data
.op_nents
== 0) {
339 int all_ops_are_silent
= 1;
341 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
342 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
343 all_ops_are_silent
= 0;
344 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
345 all_ops_are_silent
= 0;
347 if (ops_present
&& all_ops_are_silent
348 && !rm
->m_rdma_cookie
)
349 rm
->data
.op_active
= 0;
352 if (rm
->data
.op_active
&& !cp
->cp_xmit_data_sent
) {
353 rm
->m_final_op
= &rm
->data
;
355 ret
= conn
->c_trans
->xmit(conn
, rm
,
358 cp
->cp_xmit_data_off
);
362 if (cp
->cp_xmit_hdr_off
< sizeof(struct rds_header
)) {
363 tmp
= min_t(int, ret
,
364 sizeof(struct rds_header
) -
365 cp
->cp_xmit_hdr_off
);
366 cp
->cp_xmit_hdr_off
+= tmp
;
370 sg
= &rm
->data
.op_sg
[cp
->cp_xmit_sg
];
372 tmp
= min_t(int, ret
, sg
->length
-
373 cp
->cp_xmit_data_off
);
374 cp
->cp_xmit_data_off
+= tmp
;
376 if (cp
->cp_xmit_data_off
== sg
->length
) {
377 cp
->cp_xmit_data_off
= 0;
380 BUG_ON(ret
!= 0 && cp
->cp_xmit_sg
==
385 if (cp
->cp_xmit_hdr_off
== sizeof(struct rds_header
) &&
386 (cp
->cp_xmit_sg
== rm
->data
.op_nents
))
387 cp
->cp_xmit_data_sent
= 1;
391 * A rm will only take multiple times through this loop
392 * if there is a data op. Thus, if the data is sent (or there was
393 * none), then we're done with the rm.
395 if (!rm
->data
.op_active
|| cp
->cp_xmit_data_sent
) {
396 cp
->cp_xmit_rm
= NULL
;
398 cp
->cp_xmit_hdr_off
= 0;
399 cp
->cp_xmit_data_off
= 0;
400 cp
->cp_xmit_rdma_sent
= 0;
401 cp
->cp_xmit_atomic_sent
= 0;
402 cp
->cp_xmit_data_sent
= 0;
409 if (conn
->c_trans
->xmit_path_complete
)
410 conn
->c_trans
->xmit_path_complete(cp
);
413 /* Nuke any messages we decided not to retransmit. */
414 if (!list_empty(&to_be_dropped
)) {
415 /* irqs on here, so we can put(), unlike above */
416 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
418 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
422 * Other senders can queue a message after we last test the send queue
423 * but before we clear RDS_IN_XMIT. In that case they'd back off and
424 * not try and send their newly queued message. We need to check the
425 * send queue after having cleared RDS_IN_XMIT so that their message
426 * doesn't get stuck on the send queue.
428 * If the transport cannot continue (i.e ret != 0), then it must
429 * call us when more room is available, such as from the tx
430 * completion handler.
432 * We have an extra generation check here so that if someone manages
433 * to jump in after our release_in_xmit, we'll see that they have done
434 * some work and we will skip our goto
440 raced
= send_gen
!= READ_ONCE(cp
->cp_send_gen
);
442 if ((test_bit(0, &conn
->c_map_queued
) ||
443 !list_empty(&cp
->cp_send_queue
)) && !raced
) {
444 if (batch_count
< send_batch_count
)
447 if (rds_destroy_pending(cp
->cp_conn
))
450 queue_delayed_work(rds_wq
, &cp
->cp_send_w
, 1);
453 rds_stats_inc(s_send_lock_queue_raced
);
459 EXPORT_SYMBOL_GPL(rds_send_xmit
);
461 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
463 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
465 assert_spin_locked(&rs
->rs_lock
);
467 BUG_ON(rs
->rs_snd_bytes
< len
);
468 rs
->rs_snd_bytes
-= len
;
470 if (rs
->rs_snd_bytes
== 0)
471 rds_stats_inc(s_send_queue_empty
);
474 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
475 is_acked_func is_acked
)
478 return is_acked(rm
, ack
);
479 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
483 * This is pretty similar to what happens below in the ACK
484 * handling code - except that we call here as soon as we get
485 * the IB send completion on the RDMA op and the accompanying
488 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
490 struct rds_sock
*rs
= NULL
;
491 struct rm_rdma_op
*ro
;
492 struct rds_notifier
*notifier
;
494 unsigned int notify
= 0;
496 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
498 notify
= rm
->rdma
.op_notify
| rm
->data
.op_notify
;
500 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
501 ro
->op_active
&& notify
&& ro
->op_notifier
) {
502 notifier
= ro
->op_notifier
;
504 sock_hold(rds_rs_to_sk(rs
));
506 notifier
->n_status
= status
;
507 spin_lock(&rs
->rs_lock
);
508 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
509 spin_unlock(&rs
->rs_lock
);
511 ro
->op_notifier
= NULL
;
514 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
517 rds_wake_sk_sleep(rs
);
518 sock_put(rds_rs_to_sk(rs
));
521 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
524 * Just like above, except looks at atomic op
526 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
528 struct rds_sock
*rs
= NULL
;
529 struct rm_atomic_op
*ao
;
530 struct rds_notifier
*notifier
;
533 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
536 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
537 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
538 notifier
= ao
->op_notifier
;
540 sock_hold(rds_rs_to_sk(rs
));
542 notifier
->n_status
= status
;
543 spin_lock(&rs
->rs_lock
);
544 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
545 spin_unlock(&rs
->rs_lock
);
547 ao
->op_notifier
= NULL
;
550 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
553 rds_wake_sk_sleep(rs
);
554 sock_put(rds_rs_to_sk(rs
));
557 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
560 * This is the same as rds_rdma_send_complete except we
561 * don't do any locking - we have all the ingredients (message,
562 * socket, socket lock) and can just move the notifier.
565 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
567 struct rm_rdma_op
*ro
;
568 struct rm_atomic_op
*ao
;
571 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
572 ro
->op_notifier
->n_status
= status
;
573 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
574 ro
->op_notifier
= NULL
;
578 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
579 ao
->op_notifier
->n_status
= status
;
580 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
581 ao
->op_notifier
= NULL
;
584 /* No need to wake the app - caller does this */
588 * This removes messages from the socket's list if they're on it. The list
589 * argument must be private to the caller, we must be able to modify it
590 * without locks. The messages must have a reference held for their
591 * position on the list. This function will drop that reference after
592 * removing the messages from the 'messages' list regardless of if it found
593 * the messages on the socket list or not.
595 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
598 struct rds_sock
*rs
= NULL
;
599 struct rds_message
*rm
;
601 while (!list_empty(messages
)) {
604 rm
= list_entry(messages
->next
, struct rds_message
,
606 list_del_init(&rm
->m_conn_item
);
609 * If we see this flag cleared then we're *sure* that someone
610 * else beat us to removing it from the sock. If we race
611 * with their flag update we'll get the lock and then really
612 * see that the flag has been cleared.
614 * The message spinlock makes sure nobody clears rm->m_rs
615 * while we're messing with it. It does not prevent the
616 * message from being removed from the socket, though.
618 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
619 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
620 goto unlock_and_drop
;
622 if (rs
!= rm
->m_rs
) {
624 rds_wake_sk_sleep(rs
);
625 sock_put(rds_rs_to_sk(rs
));
629 sock_hold(rds_rs_to_sk(rs
));
632 goto unlock_and_drop
;
633 spin_lock(&rs
->rs_lock
);
635 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
636 struct rm_rdma_op
*ro
= &rm
->rdma
;
637 struct rds_notifier
*notifier
;
639 list_del_init(&rm
->m_sock_item
);
640 rds_send_sndbuf_remove(rs
, rm
);
642 if (ro
->op_active
&& ro
->op_notifier
&&
643 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
644 notifier
= ro
->op_notifier
;
645 list_add_tail(¬ifier
->n_list
,
646 &rs
->rs_notify_queue
);
647 if (!notifier
->n_status
)
648 notifier
->n_status
= status
;
649 rm
->rdma
.op_notifier
= NULL
;
653 spin_unlock(&rs
->rs_lock
);
656 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
663 rds_wake_sk_sleep(rs
);
664 sock_put(rds_rs_to_sk(rs
));
669 * Transports call here when they've determined that the receiver queued
670 * messages up to, and including, the given sequence number. Messages are
671 * moved to the retrans queue when rds_send_xmit picks them off the send
672 * queue. This means that in the TCP case, the message may not have been
673 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
674 * checks the RDS_MSG_HAS_ACK_SEQ bit.
676 void rds_send_path_drop_acked(struct rds_conn_path
*cp
, u64 ack
,
677 is_acked_func is_acked
)
679 struct rds_message
*rm
, *tmp
;
683 spin_lock_irqsave(&cp
->cp_lock
, flags
);
685 list_for_each_entry_safe(rm
, tmp
, &cp
->cp_retrans
, m_conn_item
) {
686 if (!rds_send_is_acked(rm
, ack
, is_acked
))
689 list_move(&rm
->m_conn_item
, &list
);
690 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
693 /* order flag updates with spin locks */
694 if (!list_empty(&list
))
695 smp_mb__after_atomic();
697 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
699 /* now remove the messages from the sock list as needed */
700 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
702 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked
);
704 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
705 is_acked_func is_acked
)
707 WARN_ON(conn
->c_trans
->t_mp_capable
);
708 rds_send_path_drop_acked(&conn
->c_path
[0], ack
, is_acked
);
710 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
712 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in6
*dest
)
714 struct rds_message
*rm
, *tmp
;
715 struct rds_connection
*conn
;
716 struct rds_conn_path
*cp
;
720 /* get all the messages we're dropping under the rs lock */
721 spin_lock_irqsave(&rs
->rs_lock
, flags
);
723 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
725 (!ipv6_addr_equal(&dest
->sin6_addr
, &rm
->m_daddr
) ||
726 dest
->sin6_port
!= rm
->m_inc
.i_hdr
.h_dport
))
729 list_move(&rm
->m_sock_item
, &list
);
730 rds_send_sndbuf_remove(rs
, rm
);
731 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
734 /* order flag updates with the rs lock */
735 smp_mb__after_atomic();
737 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
739 if (list_empty(&list
))
742 /* Remove the messages from the conn */
743 list_for_each_entry(rm
, &list
, m_sock_item
) {
745 conn
= rm
->m_inc
.i_conn
;
746 if (conn
->c_trans
->t_mp_capable
)
747 cp
= rm
->m_inc
.i_conn_path
;
749 cp
= &conn
->c_path
[0];
751 spin_lock_irqsave(&cp
->cp_lock
, flags
);
753 * Maybe someone else beat us to removing rm from the conn.
754 * If we race with their flag update we'll get the lock and
755 * then really see that the flag has been cleared.
757 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
758 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
761 list_del_init(&rm
->m_conn_item
);
762 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
765 * Couldn't grab m_rs_lock in top loop (lock ordering),
768 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
770 spin_lock(&rs
->rs_lock
);
771 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
772 spin_unlock(&rs
->rs_lock
);
774 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
779 rds_wake_sk_sleep(rs
);
781 while (!list_empty(&list
)) {
782 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
783 list_del_init(&rm
->m_sock_item
);
784 rds_message_wait(rm
);
786 /* just in case the code above skipped this message
787 * because RDS_MSG_ON_CONN wasn't set, run it again here
788 * taking m_rs_lock is the only thing that keeps us
789 * from racing with ack processing.
791 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
793 spin_lock(&rs
->rs_lock
);
794 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
795 spin_unlock(&rs
->rs_lock
);
797 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
804 * we only want this to fire once so we use the callers 'queued'. It's
805 * possible that another thread can race with us and remove the
806 * message from the flow with RDS_CANCEL_SENT_TO.
808 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
809 struct rds_conn_path
*cp
,
810 struct rds_message
*rm
, __be16 sport
,
811 __be16 dport
, int *queued
)
819 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
821 /* this is the only place which holds both the socket's rs_lock
822 * and the connection's c_lock */
823 spin_lock_irqsave(&rs
->rs_lock
, flags
);
826 * If there is a little space in sndbuf, we don't queue anything,
827 * and userspace gets -EAGAIN. But poll() indicates there's send
828 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
829 * freed up by incoming acks. So we check the *old* value of
830 * rs_snd_bytes here to allow the last msg to exceed the buffer,
831 * and poll() now knows no more data can be sent.
833 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
834 rs
->rs_snd_bytes
+= len
;
836 /* let recv side know we are close to send space exhaustion.
837 * This is probably not the optimal way to do it, as this
838 * means we set the flag on *all* messages as soon as our
839 * throughput hits a certain threshold.
841 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
842 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
844 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
845 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
846 rds_message_addref(rm
);
847 sock_hold(rds_rs_to_sk(rs
));
850 /* The code ordering is a little weird, but we're
851 trying to minimize the time we hold c_lock */
852 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
853 rm
->m_inc
.i_conn
= conn
;
854 rm
->m_inc
.i_conn_path
= cp
;
855 rds_message_addref(rm
);
857 spin_lock(&cp
->cp_lock
);
858 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(cp
->cp_next_tx_seq
++);
859 list_add_tail(&rm
->m_conn_item
, &cp
->cp_send_queue
);
860 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
861 spin_unlock(&cp
->cp_lock
);
863 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
864 rm
, len
, rs
, rs
->rs_snd_bytes
,
865 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
870 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
876 * rds_message is getting to be quite complicated, and we'd like to allocate
877 * it all in one go. This figures out how big it needs to be up front.
879 static int rds_rm_size(struct msghdr
*msg
, int num_sgs
,
880 struct rds_iov_vector_arr
*vct
)
882 struct cmsghdr
*cmsg
;
886 bool zcopy_cookie
= false;
887 struct rds_iov_vector
*iov
, *tmp_iov
;
889 for_each_cmsghdr(cmsg
, msg
) {
890 if (!CMSG_OK(msg
, cmsg
))
893 if (cmsg
->cmsg_level
!= SOL_RDS
)
896 switch (cmsg
->cmsg_type
) {
897 case RDS_CMSG_RDMA_ARGS
:
898 if (vct
->indx
>= vct
->len
) {
899 vct
->len
+= vct
->incr
;
903 sizeof(struct rds_iov_vector
),
906 vct
->len
-= vct
->incr
;
911 iov
= &vct
->vec
[vct
->indx
];
912 memset(iov
, 0, sizeof(struct rds_iov_vector
));
915 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
), iov
);
922 case RDS_CMSG_ZCOPY_COOKIE
:
926 case RDS_CMSG_RDMA_DEST
:
927 case RDS_CMSG_RDMA_MAP
:
929 /* these are valid but do no add any size */
932 case RDS_CMSG_ATOMIC_CSWP
:
933 case RDS_CMSG_ATOMIC_FADD
:
934 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
935 case RDS_CMSG_MASKED_ATOMIC_FADD
:
937 size
+= sizeof(struct scatterlist
);
946 if ((msg
->msg_flags
& MSG_ZEROCOPY
) && !zcopy_cookie
)
949 size
+= num_sgs
* sizeof(struct scatterlist
);
951 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
952 if (cmsg_groups
== 3)
958 static int rds_cmsg_zcopy(struct rds_sock
*rs
, struct rds_message
*rm
,
959 struct cmsghdr
*cmsg
)
963 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(*cookie
)) ||
964 !rm
->data
.op_mmp_znotifier
)
966 cookie
= CMSG_DATA(cmsg
);
967 rm
->data
.op_mmp_znotifier
->z_cookie
= *cookie
;
971 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
972 struct msghdr
*msg
, int *allocated_mr
,
973 struct rds_iov_vector_arr
*vct
)
975 struct cmsghdr
*cmsg
;
976 int ret
= 0, ind
= 0;
978 for_each_cmsghdr(cmsg
, msg
) {
979 if (!CMSG_OK(msg
, cmsg
))
982 if (cmsg
->cmsg_level
!= SOL_RDS
)
985 /* As a side effect, RDMA_DEST and RDMA_MAP will set
986 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
988 switch (cmsg
->cmsg_type
) {
989 case RDS_CMSG_RDMA_ARGS
:
990 if (ind
>= vct
->indx
)
992 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
, &vct
->vec
[ind
]);
996 case RDS_CMSG_RDMA_DEST
:
997 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
1000 case RDS_CMSG_RDMA_MAP
:
1001 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
1004 else if (ret
== -ENODEV
)
1005 /* Accommodate the get_mr() case which can fail
1006 * if connection isn't established yet.
1010 case RDS_CMSG_ATOMIC_CSWP
:
1011 case RDS_CMSG_ATOMIC_FADD
:
1012 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
1013 case RDS_CMSG_MASKED_ATOMIC_FADD
:
1014 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
1017 case RDS_CMSG_ZCOPY_COOKIE
:
1018 ret
= rds_cmsg_zcopy(rs
, rm
, cmsg
);
1032 static int rds_send_mprds_hash(struct rds_sock
*rs
,
1033 struct rds_connection
*conn
, int nonblock
)
1037 if (conn
->c_npaths
== 0)
1038 hash
= RDS_MPATH_HASH(rs
, RDS_MPATH_WORKERS
);
1040 hash
= RDS_MPATH_HASH(rs
, conn
->c_npaths
);
1041 if (conn
->c_npaths
== 0 && hash
!= 0) {
1042 rds_send_ping(conn
, 0);
1044 /* The underlying connection is not up yet. Need to wait
1045 * until it is up to be sure that the non-zero c_path can be
1046 * used. But if we are interrupted, we have to use the zero
1047 * c_path in case the connection ends up being non-MP capable.
1049 if (conn
->c_npaths
== 0) {
1050 /* Cannot wait for the connection be made, so just use
1055 if (wait_event_interruptible(conn
->c_hs_waitq
,
1056 conn
->c_npaths
!= 0))
1059 if (conn
->c_npaths
== 1)
1065 static int rds_rdma_bytes(struct msghdr
*msg
, size_t *rdma_bytes
)
1067 struct rds_rdma_args
*args
;
1068 struct cmsghdr
*cmsg
;
1070 for_each_cmsghdr(cmsg
, msg
) {
1071 if (!CMSG_OK(msg
, cmsg
))
1074 if (cmsg
->cmsg_level
!= SOL_RDS
)
1077 if (cmsg
->cmsg_type
== RDS_CMSG_RDMA_ARGS
) {
1078 if (cmsg
->cmsg_len
<
1079 CMSG_LEN(sizeof(struct rds_rdma_args
)))
1081 args
= CMSG_DATA(cmsg
);
1082 *rdma_bytes
+= args
->remote_vec
.bytes
;
1088 int rds_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t payload_len
)
1090 struct sock
*sk
= sock
->sk
;
1091 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
1092 DECLARE_SOCKADDR(struct sockaddr_in6
*, sin6
, msg
->msg_name
);
1093 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
1095 struct rds_message
*rm
= NULL
;
1096 struct rds_connection
*conn
;
1098 int queued
= 0, allocated_mr
= 0;
1099 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
1100 long timeo
= sock_sndtimeo(sk
, nonblock
);
1101 struct rds_conn_path
*cpath
;
1102 struct in6_addr daddr
;
1104 size_t total_payload_len
= payload_len
, rdma_payload_len
= 0;
1105 bool zcopy
= ((msg
->msg_flags
& MSG_ZEROCOPY
) &&
1106 sock_flag(rds_rs_to_sk(rs
), SOCK_ZEROCOPY
));
1107 int num_sgs
= ceil(payload_len
, PAGE_SIZE
);
1109 struct rds_iov_vector_arr vct
;
1112 memset(&vct
, 0, sizeof(vct
));
1114 /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1117 /* Mirror Linux UDP mirror of BSD error message compatibility */
1118 /* XXX: Perhaps MSG_MORE someday */
1119 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
| MSG_ZEROCOPY
)) {
1124 namelen
= msg
->msg_namelen
;
1126 if (namelen
< sizeof(*usin
)) {
1130 switch (usin
->sin_family
) {
1132 if (usin
->sin_addr
.s_addr
== htonl(INADDR_ANY
) ||
1133 usin
->sin_addr
.s_addr
== htonl(INADDR_BROADCAST
) ||
1134 IN_MULTICAST(ntohl(usin
->sin_addr
.s_addr
))) {
1138 ipv6_addr_set_v4mapped(usin
->sin_addr
.s_addr
, &daddr
);
1139 dport
= usin
->sin_port
;
1142 #if IS_ENABLED(CONFIG_IPV6)
1146 if (namelen
< sizeof(*sin6
)) {
1150 addr_type
= ipv6_addr_type(&sin6
->sin6_addr
);
1151 if (!(addr_type
& IPV6_ADDR_UNICAST
)) {
1154 if (!(addr_type
& IPV6_ADDR_MAPPED
)) {
1159 /* It is a mapped address. Need to do some
1162 addr4
= sin6
->sin6_addr
.s6_addr32
[3];
1163 if (addr4
== htonl(INADDR_ANY
) ||
1164 addr4
== htonl(INADDR_BROADCAST
) ||
1165 IN_MULTICAST(ntohl(addr4
))) {
1170 if (addr_type
& IPV6_ADDR_LINKLOCAL
) {
1171 if (sin6
->sin6_scope_id
== 0) {
1175 scope_id
= sin6
->sin6_scope_id
;
1178 daddr
= sin6
->sin6_addr
;
1179 dport
= sin6
->sin6_port
;
1189 /* We only care about consistency with ->connect() */
1191 daddr
= rs
->rs_conn_addr
;
1192 dport
= rs
->rs_conn_port
;
1193 scope_id
= rs
->rs_bound_scope_id
;
1198 if (ipv6_addr_any(&rs
->rs_bound_addr
) || ipv6_addr_any(&daddr
)) {
1202 } else if (namelen
!= 0) {
1203 /* Cannot send to an IPv4 address using an IPv6 source
1204 * address and cannot send to an IPv6 address using an
1205 * IPv4 source address.
1207 if (ipv6_addr_v4mapped(&daddr
) ^
1208 ipv6_addr_v4mapped(&rs
->rs_bound_addr
)) {
1213 /* If the socket is already bound to a link local address,
1214 * it can only send to peers on the same link. But allow
1215 * communicating beween link local and non-link local address.
1217 if (scope_id
!= rs
->rs_bound_scope_id
) {
1219 scope_id
= rs
->rs_bound_scope_id
;
1220 } else if (rs
->rs_bound_scope_id
) {
1229 ret
= rds_rdma_bytes(msg
, &rdma_payload_len
);
1233 total_payload_len
+= rdma_payload_len
;
1234 if (max_t(size_t, payload_len
, rdma_payload_len
) > RDS_MAX_MSG_SIZE
) {
1239 if (payload_len
> rds_sk_sndbuf(rs
)) {
1245 if (rs
->rs_transport
->t_type
!= RDS_TRANS_TCP
) {
1249 num_sgs
= iov_iter_npages(&msg
->msg_iter
, INT_MAX
);
1251 /* size of rm including all sgs */
1252 ret
= rds_rm_size(msg
, num_sgs
, &vct
);
1256 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
1262 /* Attach data to the rm */
1264 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, num_sgs
);
1265 if (!rm
->data
.op_sg
) {
1269 ret
= rds_message_copy_from_user(rm
, &msg
->msg_iter
, zcopy
);
1273 rm
->data
.op_active
= 1;
1275 rm
->m_daddr
= daddr
;
1277 /* rds_conn_create has a spinlock that runs with IRQ off.
1278 * Caching the conn in the socket helps a lot. */
1279 if (rs
->rs_conn
&& ipv6_addr_equal(&rs
->rs_conn
->c_faddr
, &daddr
))
1282 conn
= rds_conn_create_outgoing(sock_net(sock
->sk
),
1283 &rs
->rs_bound_addr
, &daddr
,
1285 sock
->sk
->sk_allocation
,
1288 ret
= PTR_ERR(conn
);
1294 if (conn
->c_trans
->t_mp_capable
)
1295 cpath
= &conn
->c_path
[rds_send_mprds_hash(rs
, conn
, nonblock
)];
1297 cpath
= &conn
->c_path
[0];
1299 rm
->m_conn_path
= cpath
;
1301 /* Parse any control messages the user may have included. */
1302 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
, &vct
);
1304 /* Trigger connection so that its ready for the next retry */
1306 rds_conn_connect_if_down(conn
);
1310 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1311 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1312 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1317 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1318 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1319 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1324 if (rds_destroy_pending(conn
)) {
1329 rds_conn_path_connect_if_down(cpath
);
1331 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1333 rs
->rs_seen_congestion
= 1;
1336 while (!rds_send_queue_rm(rs
, conn
, cpath
, rm
, rs
->rs_bound_port
,
1338 rds_stats_inc(s_send_queue_full
);
1345 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1346 rds_send_queue_rm(rs
, conn
, cpath
, rm
,
1351 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1352 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1362 * By now we've committed to the send. We reuse rds_send_worker()
1363 * to retry sends in the rds thread if the transport asks us to.
1365 rds_stats_inc(s_send_queued
);
1367 ret
= rds_send_xmit(cpath
);
1368 if (ret
== -ENOMEM
|| ret
== -EAGAIN
) {
1371 if (rds_destroy_pending(cpath
->cp_conn
))
1374 queue_delayed_work(rds_wq
, &cpath
->cp_send_w
, 1);
1379 rds_message_put(rm
);
1381 for (ind
= 0; ind
< vct
.indx
; ind
++)
1382 kfree(vct
.vec
[ind
].iov
);
1388 for (ind
= 0; ind
< vct
.indx
; ind
++)
1389 kfree(vct
.vec
[ind
].iov
);
1392 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1393 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1394 * or in any other way, we need to destroy the MR again */
1396 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1399 rds_message_put(rm
);
1404 * send out a probe. Can be shared by rds_send_ping,
1405 * rds_send_pong, rds_send_hb.
1406 * rds_send_hb should use h_flags
1407 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1409 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1412 rds_send_probe(struct rds_conn_path
*cp
, __be16 sport
,
1413 __be16 dport
, u8 h_flags
)
1415 struct rds_message
*rm
;
1416 unsigned long flags
;
1419 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1425 rm
->m_daddr
= cp
->cp_conn
->c_faddr
;
1426 rm
->data
.op_active
= 1;
1428 rds_conn_path_connect_if_down(cp
);
1430 ret
= rds_cong_wait(cp
->cp_conn
->c_fcong
, dport
, 1, NULL
);
1434 spin_lock_irqsave(&cp
->cp_lock
, flags
);
1435 list_add_tail(&rm
->m_conn_item
, &cp
->cp_send_queue
);
1436 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1437 rds_message_addref(rm
);
1438 rm
->m_inc
.i_conn
= cp
->cp_conn
;
1439 rm
->m_inc
.i_conn_path
= cp
;
1441 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
,
1442 cp
->cp_next_tx_seq
);
1443 rm
->m_inc
.i_hdr
.h_flags
|= h_flags
;
1444 cp
->cp_next_tx_seq
++;
1446 if (RDS_HS_PROBE(be16_to_cpu(sport
), be16_to_cpu(dport
)) &&
1447 cp
->cp_conn
->c_trans
->t_mp_capable
) {
1448 u16 npaths
= cpu_to_be16(RDS_MPATH_WORKERS
);
1449 u32 my_gen_num
= cpu_to_be32(cp
->cp_conn
->c_my_gen_num
);
1451 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
1452 RDS_EXTHDR_NPATHS
, &npaths
,
1454 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
1459 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1461 rds_stats_inc(s_send_queued
);
1462 rds_stats_inc(s_send_pong
);
1464 /* schedule the send work on rds_wq */
1466 if (!rds_destroy_pending(cp
->cp_conn
))
1467 queue_delayed_work(rds_wq
, &cp
->cp_send_w
, 1);
1470 rds_message_put(rm
);
1475 rds_message_put(rm
);
1480 rds_send_pong(struct rds_conn_path
*cp
, __be16 dport
)
1482 return rds_send_probe(cp
, 0, dport
, 0);
1486 rds_send_ping(struct rds_connection
*conn
, int cp_index
)
1488 unsigned long flags
;
1489 struct rds_conn_path
*cp
= &conn
->c_path
[cp_index
];
1491 spin_lock_irqsave(&cp
->cp_lock
, flags
);
1492 if (conn
->c_ping_triggered
) {
1493 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1496 conn
->c_ping_triggered
= 1;
1497 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1498 rds_send_probe(cp
, cpu_to_be16(RDS_FLAG_PROBE_PORT
), 0, 0);
1500 EXPORT_SYMBOL_GPL(rds_send_ping
);