Linux 4.19.133
[linux/fpc-iii.git] / net / rds / tcp.c
blob18bb522df2823905b754311fe1eab882e4bcb857
1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/in.h>
36 #include <linux/module.h>
37 #include <net/tcp.h>
38 #include <net/net_namespace.h>
39 #include <net/netns/generic.h>
40 #include <net/addrconf.h>
42 #include "rds.h"
43 #include "tcp.h"
45 /* only for info exporting */
46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock);
47 static LIST_HEAD(rds_tcp_tc_list);
49 /* rds_tcp_tc_count counts only IPv4 connections.
50 * rds6_tcp_tc_count counts both IPv4 and IPv6 connections.
52 static unsigned int rds_tcp_tc_count;
53 #if IS_ENABLED(CONFIG_IPV6)
54 static unsigned int rds6_tcp_tc_count;
55 #endif
57 /* Track rds_tcp_connection structs so they can be cleaned up */
58 static DEFINE_SPINLOCK(rds_tcp_conn_lock);
59 static LIST_HEAD(rds_tcp_conn_list);
60 static atomic_t rds_tcp_unloading = ATOMIC_INIT(0);
62 static struct kmem_cache *rds_tcp_conn_slab;
64 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
65 void __user *buffer, size_t *lenp,
66 loff_t *fpos);
68 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF;
69 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF;
71 static struct ctl_table rds_tcp_sysctl_table[] = {
72 #define RDS_TCP_SNDBUF 0
74 .procname = "rds_tcp_sndbuf",
75 /* data is per-net pointer */
76 .maxlen = sizeof(int),
77 .mode = 0644,
78 .proc_handler = rds_tcp_skbuf_handler,
79 .extra1 = &rds_tcp_min_sndbuf,
81 #define RDS_TCP_RCVBUF 1
83 .procname = "rds_tcp_rcvbuf",
84 /* data is per-net pointer */
85 .maxlen = sizeof(int),
86 .mode = 0644,
87 .proc_handler = rds_tcp_skbuf_handler,
88 .extra1 = &rds_tcp_min_rcvbuf,
90 { }
93 /* doing it this way avoids calling tcp_sk() */
94 void rds_tcp_nonagle(struct socket *sock)
96 int val = 1;
98 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (void *)&val,
99 sizeof(val));
102 u32 rds_tcp_write_seq(struct rds_tcp_connection *tc)
104 /* seq# of the last byte of data in tcp send buffer */
105 return tcp_sk(tc->t_sock->sk)->write_seq;
108 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc)
110 return tcp_sk(tc->t_sock->sk)->snd_una;
113 void rds_tcp_restore_callbacks(struct socket *sock,
114 struct rds_tcp_connection *tc)
116 rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc);
117 write_lock_bh(&sock->sk->sk_callback_lock);
119 /* done under the callback_lock to serialize with write_space */
120 spin_lock(&rds_tcp_tc_list_lock);
121 list_del_init(&tc->t_list_item);
122 #if IS_ENABLED(CONFIG_IPV6)
123 rds6_tcp_tc_count--;
124 #endif
125 if (!tc->t_cpath->cp_conn->c_isv6)
126 rds_tcp_tc_count--;
127 spin_unlock(&rds_tcp_tc_list_lock);
129 tc->t_sock = NULL;
131 sock->sk->sk_write_space = tc->t_orig_write_space;
132 sock->sk->sk_data_ready = tc->t_orig_data_ready;
133 sock->sk->sk_state_change = tc->t_orig_state_change;
134 sock->sk->sk_user_data = NULL;
136 write_unlock_bh(&sock->sk->sk_callback_lock);
140 * rds_tcp_reset_callbacks() switches the to the new sock and
141 * returns the existing tc->t_sock.
143 * The only functions that set tc->t_sock are rds_tcp_set_callbacks
144 * and rds_tcp_reset_callbacks. Send and receive trust that
145 * it is set. The absence of RDS_CONN_UP bit protects those paths
146 * from being called while it isn't set.
148 void rds_tcp_reset_callbacks(struct socket *sock,
149 struct rds_conn_path *cp)
151 struct rds_tcp_connection *tc = cp->cp_transport_data;
152 struct socket *osock = tc->t_sock;
154 if (!osock)
155 goto newsock;
157 /* Need to resolve a duelling SYN between peers.
158 * We have an outstanding SYN to this peer, which may
159 * potentially have transitioned to the RDS_CONN_UP state,
160 * so we must quiesce any send threads before resetting
161 * cp_transport_data. We quiesce these threads by setting
162 * cp_state to something other than RDS_CONN_UP, and then
163 * waiting for any existing threads in rds_send_xmit to
164 * complete release_in_xmit(). (Subsequent threads entering
165 * rds_send_xmit() will bail on !rds_conn_up().
167 * However an incoming syn-ack at this point would end up
168 * marking the conn as RDS_CONN_UP, and would again permit
169 * rds_send_xmi() threads through, so ideally we would
170 * synchronize on RDS_CONN_UP after lock_sock(), but cannot
171 * do that: waiting on !RDS_IN_XMIT after lock_sock() may
172 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT
173 * would not get set. As a result, we set c_state to
174 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change
175 * cannot mark rds_conn_path_up() in the window before lock_sock()
177 atomic_set(&cp->cp_state, RDS_CONN_RESETTING);
178 wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags));
179 lock_sock(osock->sk);
180 /* reset receive side state for rds_tcp_data_recv() for osock */
181 cancel_delayed_work_sync(&cp->cp_send_w);
182 cancel_delayed_work_sync(&cp->cp_recv_w);
183 if (tc->t_tinc) {
184 rds_inc_put(&tc->t_tinc->ti_inc);
185 tc->t_tinc = NULL;
187 tc->t_tinc_hdr_rem = sizeof(struct rds_header);
188 tc->t_tinc_data_rem = 0;
189 rds_tcp_restore_callbacks(osock, tc);
190 release_sock(osock->sk);
191 sock_release(osock);
192 newsock:
193 rds_send_path_reset(cp);
194 lock_sock(sock->sk);
195 rds_tcp_set_callbacks(sock, cp);
196 release_sock(sock->sk);
199 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments
200 * above rds_tcp_reset_callbacks for notes about synchronization
201 * with data path
203 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp)
205 struct rds_tcp_connection *tc = cp->cp_transport_data;
207 rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc);
208 write_lock_bh(&sock->sk->sk_callback_lock);
210 /* done under the callback_lock to serialize with write_space */
211 spin_lock(&rds_tcp_tc_list_lock);
212 list_add_tail(&tc->t_list_item, &rds_tcp_tc_list);
213 #if IS_ENABLED(CONFIG_IPV6)
214 rds6_tcp_tc_count++;
215 #endif
216 if (!tc->t_cpath->cp_conn->c_isv6)
217 rds_tcp_tc_count++;
218 spin_unlock(&rds_tcp_tc_list_lock);
220 /* accepted sockets need our listen data ready undone */
221 if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready)
222 sock->sk->sk_data_ready = sock->sk->sk_user_data;
224 tc->t_sock = sock;
225 tc->t_cpath = cp;
226 tc->t_orig_data_ready = sock->sk->sk_data_ready;
227 tc->t_orig_write_space = sock->sk->sk_write_space;
228 tc->t_orig_state_change = sock->sk->sk_state_change;
230 sock->sk->sk_user_data = cp;
231 sock->sk->sk_data_ready = rds_tcp_data_ready;
232 sock->sk->sk_write_space = rds_tcp_write_space;
233 sock->sk->sk_state_change = rds_tcp_state_change;
235 write_unlock_bh(&sock->sk->sk_callback_lock);
238 /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4
239 * connections for backward compatibility.
241 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len,
242 struct rds_info_iterator *iter,
243 struct rds_info_lengths *lens)
245 struct rds_info_tcp_socket tsinfo;
246 struct rds_tcp_connection *tc;
247 unsigned long flags;
249 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
251 if (len / sizeof(tsinfo) < rds_tcp_tc_count)
252 goto out;
254 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
255 struct inet_sock *inet = inet_sk(tc->t_sock->sk);
257 if (tc->t_cpath->cp_conn->c_isv6)
258 continue;
260 tsinfo.local_addr = inet->inet_saddr;
261 tsinfo.local_port = inet->inet_sport;
262 tsinfo.peer_addr = inet->inet_daddr;
263 tsinfo.peer_port = inet->inet_dport;
265 tsinfo.hdr_rem = tc->t_tinc_hdr_rem;
266 tsinfo.data_rem = tc->t_tinc_data_rem;
267 tsinfo.last_sent_nxt = tc->t_last_sent_nxt;
268 tsinfo.last_expected_una = tc->t_last_expected_una;
269 tsinfo.last_seen_una = tc->t_last_seen_una;
271 rds_info_copy(iter, &tsinfo, sizeof(tsinfo));
274 out:
275 lens->nr = rds_tcp_tc_count;
276 lens->each = sizeof(tsinfo);
278 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
281 #if IS_ENABLED(CONFIG_IPV6)
282 /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and
283 * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped
284 * address.
286 static void rds6_tcp_tc_info(struct socket *sock, unsigned int len,
287 struct rds_info_iterator *iter,
288 struct rds_info_lengths *lens)
290 struct rds6_info_tcp_socket tsinfo6;
291 struct rds_tcp_connection *tc;
292 unsigned long flags;
294 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
296 if (len / sizeof(tsinfo6) < rds6_tcp_tc_count)
297 goto out;
299 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
300 struct sock *sk = tc->t_sock->sk;
301 struct inet_sock *inet = inet_sk(sk);
303 tsinfo6.local_addr = sk->sk_v6_rcv_saddr;
304 tsinfo6.local_port = inet->inet_sport;
305 tsinfo6.peer_addr = sk->sk_v6_daddr;
306 tsinfo6.peer_port = inet->inet_dport;
308 tsinfo6.hdr_rem = tc->t_tinc_hdr_rem;
309 tsinfo6.data_rem = tc->t_tinc_data_rem;
310 tsinfo6.last_sent_nxt = tc->t_last_sent_nxt;
311 tsinfo6.last_expected_una = tc->t_last_expected_una;
312 tsinfo6.last_seen_una = tc->t_last_seen_una;
314 rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6));
317 out:
318 lens->nr = rds6_tcp_tc_count;
319 lens->each = sizeof(tsinfo6);
321 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
323 #endif
325 static int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr,
326 __u32 scope_id)
328 struct net_device *dev = NULL;
329 #if IS_ENABLED(CONFIG_IPV6)
330 int ret;
331 #endif
333 if (ipv6_addr_v4mapped(addr)) {
334 if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL)
335 return 0;
336 return -EADDRNOTAVAIL;
339 /* If the scope_id is specified, check only those addresses
340 * hosted on the specified interface.
342 if (scope_id != 0) {
343 rcu_read_lock();
344 dev = dev_get_by_index_rcu(net, scope_id);
345 /* scope_id is not valid... */
346 if (!dev) {
347 rcu_read_unlock();
348 return -EADDRNOTAVAIL;
350 rcu_read_unlock();
352 #if IS_ENABLED(CONFIG_IPV6)
353 ret = ipv6_chk_addr(net, addr, dev, 0);
354 if (ret)
355 return 0;
356 #endif
357 return -EADDRNOTAVAIL;
360 static void rds_tcp_conn_free(void *arg)
362 struct rds_tcp_connection *tc = arg;
363 unsigned long flags;
365 rdsdebug("freeing tc %p\n", tc);
367 spin_lock_irqsave(&rds_tcp_conn_lock, flags);
368 if (!tc->t_tcp_node_detached)
369 list_del(&tc->t_tcp_node);
370 spin_unlock_irqrestore(&rds_tcp_conn_lock, flags);
372 kmem_cache_free(rds_tcp_conn_slab, tc);
375 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp)
377 struct rds_tcp_connection *tc;
378 int i, j;
379 int ret = 0;
381 for (i = 0; i < RDS_MPATH_WORKERS; i++) {
382 tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp);
383 if (!tc) {
384 ret = -ENOMEM;
385 goto fail;
387 mutex_init(&tc->t_conn_path_lock);
388 tc->t_sock = NULL;
389 tc->t_tinc = NULL;
390 tc->t_tinc_hdr_rem = sizeof(struct rds_header);
391 tc->t_tinc_data_rem = 0;
393 conn->c_path[i].cp_transport_data = tc;
394 tc->t_cpath = &conn->c_path[i];
395 tc->t_tcp_node_detached = true;
397 rdsdebug("rds_conn_path [%d] tc %p\n", i,
398 conn->c_path[i].cp_transport_data);
400 spin_lock_irq(&rds_tcp_conn_lock);
401 for (i = 0; i < RDS_MPATH_WORKERS; i++) {
402 tc = conn->c_path[i].cp_transport_data;
403 tc->t_tcp_node_detached = false;
404 list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list);
406 spin_unlock_irq(&rds_tcp_conn_lock);
407 fail:
408 if (ret) {
409 for (j = 0; j < i; j++)
410 rds_tcp_conn_free(conn->c_path[j].cp_transport_data);
412 return ret;
415 static bool list_has_conn(struct list_head *list, struct rds_connection *conn)
417 struct rds_tcp_connection *tc, *_tc;
419 list_for_each_entry_safe(tc, _tc, list, t_tcp_node) {
420 if (tc->t_cpath->cp_conn == conn)
421 return true;
423 return false;
426 static void rds_tcp_set_unloading(void)
428 atomic_set(&rds_tcp_unloading, 1);
431 static bool rds_tcp_is_unloading(struct rds_connection *conn)
433 return atomic_read(&rds_tcp_unloading) != 0;
436 static void rds_tcp_destroy_conns(void)
438 struct rds_tcp_connection *tc, *_tc;
439 LIST_HEAD(tmp_list);
441 /* avoid calling conn_destroy with irqs off */
442 spin_lock_irq(&rds_tcp_conn_lock);
443 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
444 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
445 list_move_tail(&tc->t_tcp_node, &tmp_list);
447 spin_unlock_irq(&rds_tcp_conn_lock);
449 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
450 rds_conn_destroy(tc->t_cpath->cp_conn);
453 static void rds_tcp_exit(void);
455 struct rds_transport rds_tcp_transport = {
456 .laddr_check = rds_tcp_laddr_check,
457 .xmit_path_prepare = rds_tcp_xmit_path_prepare,
458 .xmit_path_complete = rds_tcp_xmit_path_complete,
459 .xmit = rds_tcp_xmit,
460 .recv_path = rds_tcp_recv_path,
461 .conn_alloc = rds_tcp_conn_alloc,
462 .conn_free = rds_tcp_conn_free,
463 .conn_path_connect = rds_tcp_conn_path_connect,
464 .conn_path_shutdown = rds_tcp_conn_path_shutdown,
465 .inc_copy_to_user = rds_tcp_inc_copy_to_user,
466 .inc_free = rds_tcp_inc_free,
467 .stats_info_copy = rds_tcp_stats_info_copy,
468 .exit = rds_tcp_exit,
469 .t_owner = THIS_MODULE,
470 .t_name = "tcp",
471 .t_type = RDS_TRANS_TCP,
472 .t_prefer_loopback = 1,
473 .t_mp_capable = 1,
474 .t_unloading = rds_tcp_is_unloading,
477 static unsigned int rds_tcp_netid;
479 /* per-network namespace private data for this module */
480 struct rds_tcp_net {
481 struct socket *rds_tcp_listen_sock;
482 struct work_struct rds_tcp_accept_w;
483 struct ctl_table_header *rds_tcp_sysctl;
484 struct ctl_table *ctl_table;
485 int sndbuf_size;
486 int rcvbuf_size;
489 /* All module specific customizations to the RDS-TCP socket should be done in
490 * rds_tcp_tune() and applied after socket creation.
492 void rds_tcp_tune(struct socket *sock)
494 struct sock *sk = sock->sk;
495 struct net *net = sock_net(sk);
496 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
498 rds_tcp_nonagle(sock);
499 lock_sock(sk);
500 if (rtn->sndbuf_size > 0) {
501 sk->sk_sndbuf = rtn->sndbuf_size;
502 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if (rtn->rcvbuf_size > 0) {
505 sk->sk_sndbuf = rtn->rcvbuf_size;
506 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
508 release_sock(sk);
511 static void rds_tcp_accept_worker(struct work_struct *work)
513 struct rds_tcp_net *rtn = container_of(work,
514 struct rds_tcp_net,
515 rds_tcp_accept_w);
517 while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0)
518 cond_resched();
521 void rds_tcp_accept_work(struct sock *sk)
523 struct net *net = sock_net(sk);
524 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
526 queue_work(rds_wq, &rtn->rds_tcp_accept_w);
529 static __net_init int rds_tcp_init_net(struct net *net)
531 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
532 struct ctl_table *tbl;
533 int err = 0;
535 memset(rtn, 0, sizeof(*rtn));
537 /* {snd, rcv}buf_size default to 0, which implies we let the
538 * stack pick the value, and permit auto-tuning of buffer size.
540 if (net == &init_net) {
541 tbl = rds_tcp_sysctl_table;
542 } else {
543 tbl = kmemdup(rds_tcp_sysctl_table,
544 sizeof(rds_tcp_sysctl_table), GFP_KERNEL);
545 if (!tbl) {
546 pr_warn("could not set allocate syctl table\n");
547 return -ENOMEM;
549 rtn->ctl_table = tbl;
551 tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size;
552 tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size;
553 rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl);
554 if (!rtn->rds_tcp_sysctl) {
555 pr_warn("could not register sysctl\n");
556 err = -ENOMEM;
557 goto fail;
560 #if IS_ENABLED(CONFIG_IPV6)
561 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true);
562 #else
563 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
564 #endif
565 if (!rtn->rds_tcp_listen_sock) {
566 pr_warn("could not set up IPv6 listen sock\n");
568 #if IS_ENABLED(CONFIG_IPV6)
569 /* Try IPv4 as some systems disable IPv6 */
570 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
571 if (!rtn->rds_tcp_listen_sock) {
572 #endif
573 unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
574 rtn->rds_tcp_sysctl = NULL;
575 err = -EAFNOSUPPORT;
576 goto fail;
577 #if IS_ENABLED(CONFIG_IPV6)
579 #endif
581 INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker);
582 return 0;
584 fail:
585 if (net != &init_net)
586 kfree(tbl);
587 return err;
590 static void rds_tcp_kill_sock(struct net *net)
592 struct rds_tcp_connection *tc, *_tc;
593 LIST_HEAD(tmp_list);
594 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
595 struct socket *lsock = rtn->rds_tcp_listen_sock;
597 rtn->rds_tcp_listen_sock = NULL;
598 rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w);
599 spin_lock_irq(&rds_tcp_conn_lock);
600 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
601 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
603 if (net != c_net)
604 continue;
605 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) {
606 list_move_tail(&tc->t_tcp_node, &tmp_list);
607 } else {
608 list_del(&tc->t_tcp_node);
609 tc->t_tcp_node_detached = true;
612 spin_unlock_irq(&rds_tcp_conn_lock);
613 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
614 rds_conn_destroy(tc->t_cpath->cp_conn);
617 static void __net_exit rds_tcp_exit_net(struct net *net)
619 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
621 rds_tcp_kill_sock(net);
623 if (rtn->rds_tcp_sysctl)
624 unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
626 if (net != &init_net && rtn->ctl_table)
627 kfree(rtn->ctl_table);
630 static struct pernet_operations rds_tcp_net_ops = {
631 .init = rds_tcp_init_net,
632 .exit = rds_tcp_exit_net,
633 .id = &rds_tcp_netid,
634 .size = sizeof(struct rds_tcp_net),
637 void *rds_tcp_listen_sock_def_readable(struct net *net)
639 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
640 struct socket *lsock = rtn->rds_tcp_listen_sock;
642 if (!lsock)
643 return NULL;
645 return lsock->sk->sk_user_data;
648 /* when sysctl is used to modify some kernel socket parameters,this
649 * function resets the RDS connections in that netns so that we can
650 * restart with new parameters. The assumption is that such reset
651 * events are few and far-between.
653 static void rds_tcp_sysctl_reset(struct net *net)
655 struct rds_tcp_connection *tc, *_tc;
657 spin_lock_irq(&rds_tcp_conn_lock);
658 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
659 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
661 if (net != c_net || !tc->t_sock)
662 continue;
664 /* reconnect with new parameters */
665 rds_conn_path_drop(tc->t_cpath, false);
667 spin_unlock_irq(&rds_tcp_conn_lock);
670 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
671 void __user *buffer, size_t *lenp,
672 loff_t *fpos)
674 struct net *net = current->nsproxy->net_ns;
675 int err;
677 err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos);
678 if (err < 0) {
679 pr_warn("Invalid input. Must be >= %d\n",
680 *(int *)(ctl->extra1));
681 return err;
683 if (write)
684 rds_tcp_sysctl_reset(net);
685 return 0;
688 static void rds_tcp_exit(void)
690 rds_tcp_set_unloading();
691 synchronize_rcu();
692 rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
693 #if IS_ENABLED(CONFIG_IPV6)
694 rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
695 #endif
696 unregister_pernet_device(&rds_tcp_net_ops);
697 rds_tcp_destroy_conns();
698 rds_trans_unregister(&rds_tcp_transport);
699 rds_tcp_recv_exit();
700 kmem_cache_destroy(rds_tcp_conn_slab);
702 module_exit(rds_tcp_exit);
704 static int rds_tcp_init(void)
706 int ret;
708 rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection",
709 sizeof(struct rds_tcp_connection),
710 0, 0, NULL);
711 if (!rds_tcp_conn_slab) {
712 ret = -ENOMEM;
713 goto out;
716 ret = rds_tcp_recv_init();
717 if (ret)
718 goto out_slab;
720 ret = register_pernet_device(&rds_tcp_net_ops);
721 if (ret)
722 goto out_recv;
724 rds_trans_register(&rds_tcp_transport);
726 rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
727 #if IS_ENABLED(CONFIG_IPV6)
728 rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
729 #endif
731 goto out;
732 out_recv:
733 rds_tcp_recv_exit();
734 out_slab:
735 kmem_cache_destroy(rds_tcp_conn_slab);
736 out:
737 return ret;
739 module_init(rds_tcp_init);
741 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
742 MODULE_DESCRIPTION("RDS: TCP transport");
743 MODULE_LICENSE("Dual BSD/GPL");