1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association
*asoc
);
59 static void sctp_assoc_bh_rcv(struct work_struct
*work
);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association
*asoc
);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association
*asoc
);
63 /* 1st Level Abstractions. */
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association
*sctp_association_init(
67 struct sctp_association
*asoc
,
68 const struct sctp_endpoint
*ep
,
69 const struct sock
*sk
,
70 enum sctp_scope scope
, gfp_t gfp
)
72 struct net
*net
= sock_net(sk
);
74 struct sctp_paramhdr
*p
;
77 /* Retrieve the SCTP per socket area. */
78 sp
= sctp_sk((struct sock
*)sk
);
80 /* Discarding const is appropriate here. */
81 asoc
->ep
= (struct sctp_endpoint
*)ep
;
82 asoc
->base
.sk
= (struct sock
*)sk
;
83 asoc
->base
.net
= sock_net(sk
);
85 sctp_endpoint_hold(asoc
->ep
);
86 sock_hold(asoc
->base
.sk
);
88 /* Initialize the common base substructure. */
89 asoc
->base
.type
= SCTP_EP_TYPE_ASSOCIATION
;
91 /* Initialize the object handling fields. */
92 refcount_set(&asoc
->base
.refcnt
, 1);
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc
->base
.bind_addr
, ep
->base
.bind_addr
.port
);
97 asoc
->state
= SCTP_STATE_CLOSED
;
98 asoc
->cookie_life
= ms_to_ktime(sp
->assocparams
.sasoc_cookie_life
);
99 asoc
->user_frag
= sp
->user_frag
;
101 /* Set the association max_retrans and RTO values from the
104 asoc
->max_retrans
= sp
->assocparams
.sasoc_asocmaxrxt
;
105 asoc
->pf_retrans
= net
->sctp
.pf_retrans
;
107 asoc
->rto_initial
= msecs_to_jiffies(sp
->rtoinfo
.srto_initial
);
108 asoc
->rto_max
= msecs_to_jiffies(sp
->rtoinfo
.srto_max
);
109 asoc
->rto_min
= msecs_to_jiffies(sp
->rtoinfo
.srto_min
);
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
114 asoc
->hbinterval
= msecs_to_jiffies(sp
->hbinterval
);
116 /* Initialize path max retrans value. */
117 asoc
->pathmaxrxt
= sp
->pathmaxrxt
;
119 asoc
->flowlabel
= sp
->flowlabel
;
120 asoc
->dscp
= sp
->dscp
;
122 /* Set association default SACK delay */
123 asoc
->sackdelay
= msecs_to_jiffies(sp
->sackdelay
);
124 asoc
->sackfreq
= sp
->sackfreq
;
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
129 asoc
->param_flags
= sp
->param_flags
;
131 /* Initialize the maximum number of new data packets that can be sent
134 asoc
->max_burst
= sp
->max_burst
;
136 /* initialize association timers */
137 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_T1_COOKIE
] = asoc
->rto_initial
;
138 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_T1_INIT
] = asoc
->rto_initial
;
139 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN
] = asoc
->rto_initial
;
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
145 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]
148 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_SACK
] = asoc
->sackdelay
;
149 asoc
->timeouts
[SCTP_EVENT_TIMEOUT_AUTOCLOSE
] = sp
->autoclose
* HZ
;
151 /* Initializes the timers */
152 for (i
= SCTP_EVENT_TIMEOUT_NONE
; i
< SCTP_NUM_TIMEOUT_TYPES
; ++i
)
153 timer_setup(&asoc
->timers
[i
], sctp_timer_events
[i
], 0);
155 /* Pull default initialization values from the sock options.
156 * Note: This assumes that the values have already been
157 * validated in the sock.
159 asoc
->c
.sinit_max_instreams
= sp
->initmsg
.sinit_max_instreams
;
160 asoc
->c
.sinit_num_ostreams
= sp
->initmsg
.sinit_num_ostreams
;
161 asoc
->max_init_attempts
= sp
->initmsg
.sinit_max_attempts
;
163 asoc
->max_init_timeo
=
164 msecs_to_jiffies(sp
->initmsg
.sinit_max_init_timeo
);
166 /* Set the local window size for receive.
167 * This is also the rcvbuf space per association.
168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 * 1500 bytes in one SCTP packet.
171 if ((sk
->sk_rcvbuf
/2) < SCTP_DEFAULT_MINWINDOW
)
172 asoc
->rwnd
= SCTP_DEFAULT_MINWINDOW
;
174 asoc
->rwnd
= sk
->sk_rcvbuf
/2;
176 asoc
->a_rwnd
= asoc
->rwnd
;
178 /* Use my own max window until I learn something better. */
179 asoc
->peer
.rwnd
= SCTP_DEFAULT_MAXWINDOW
;
181 /* Initialize the receive memory counter */
182 atomic_set(&asoc
->rmem_alloc
, 0);
184 init_waitqueue_head(&asoc
->wait
);
186 asoc
->c
.my_vtag
= sctp_generate_tag(ep
);
187 asoc
->c
.my_port
= ep
->base
.bind_addr
.port
;
189 asoc
->c
.initial_tsn
= sctp_generate_tsn(ep
);
191 asoc
->next_tsn
= asoc
->c
.initial_tsn
;
193 asoc
->ctsn_ack_point
= asoc
->next_tsn
- 1;
194 asoc
->adv_peer_ack_point
= asoc
->ctsn_ack_point
;
195 asoc
->highest_sacked
= asoc
->ctsn_ack_point
;
196 asoc
->last_cwr_tsn
= asoc
->ctsn_ack_point
;
198 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 * When an endpoint has an ASCONF signaled change to be sent to the
201 * remote endpoint it should do the following:
203 * A2) a serial number should be assigned to the chunk. The serial
204 * number SHOULD be a monotonically increasing number. The serial
205 * numbers SHOULD be initialized at the start of the
206 * association to the same value as the initial TSN.
208 asoc
->addip_serial
= asoc
->c
.initial_tsn
;
209 asoc
->strreset_outseq
= asoc
->c
.initial_tsn
;
211 INIT_LIST_HEAD(&asoc
->addip_chunk_list
);
212 INIT_LIST_HEAD(&asoc
->asconf_ack_list
);
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc
->peer
.transport_addr_list
);
217 /* RFC 2960 5.1 Normal Establishment of an Association
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
225 * [We implement this by telling a new association that it
226 * already received one packet.]
228 asoc
->peer
.sack_needed
= 1;
229 asoc
->peer
.sack_generation
= 1;
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
236 if (net
->sctp
.addip_noauth
)
237 asoc
->peer
.asconf_capable
= 1;
239 /* Create an input queue. */
240 sctp_inq_init(&asoc
->base
.inqueue
);
241 sctp_inq_set_th_handler(&asoc
->base
.inqueue
, sctp_assoc_bh_rcv
);
243 /* Create an output queue. */
244 sctp_outq_init(asoc
, &asoc
->outqueue
);
246 if (!sctp_ulpq_init(&asoc
->ulpq
, asoc
))
249 if (sctp_stream_init(&asoc
->stream
, asoc
->c
.sinit_num_ostreams
,
253 /* Initialize default path MTU. */
254 asoc
->pathmtu
= sp
->pathmtu
;
255 sctp_assoc_update_frag_point(asoc
);
257 /* Assume that peer would support both address types unless we are
260 asoc
->peer
.ipv4_address
= 1;
261 if (asoc
->base
.sk
->sk_family
== PF_INET6
)
262 asoc
->peer
.ipv6_address
= 1;
263 INIT_LIST_HEAD(&asoc
->asocs
);
265 asoc
->default_stream
= sp
->default_stream
;
266 asoc
->default_ppid
= sp
->default_ppid
;
267 asoc
->default_flags
= sp
->default_flags
;
268 asoc
->default_context
= sp
->default_context
;
269 asoc
->default_timetolive
= sp
->default_timetolive
;
270 asoc
->default_rcv_context
= sp
->default_rcv_context
;
272 /* AUTH related initializations */
273 INIT_LIST_HEAD(&asoc
->endpoint_shared_keys
);
274 if (sctp_auth_asoc_copy_shkeys(ep
, asoc
, gfp
))
277 asoc
->active_key_id
= ep
->active_key_id
;
278 asoc
->prsctp_enable
= ep
->prsctp_enable
;
279 asoc
->reconf_enable
= ep
->reconf_enable
;
280 asoc
->strreset_enable
= ep
->strreset_enable
;
282 /* Save the hmacs and chunks list into this association */
283 if (ep
->auth_hmacs_list
)
284 memcpy(asoc
->c
.auth_hmacs
, ep
->auth_hmacs_list
,
285 ntohs(ep
->auth_hmacs_list
->param_hdr
.length
));
286 if (ep
->auth_chunk_list
)
287 memcpy(asoc
->c
.auth_chunks
, ep
->auth_chunk_list
,
288 ntohs(ep
->auth_chunk_list
->param_hdr
.length
));
290 /* Get the AUTH random number for this association */
291 p
= (struct sctp_paramhdr
*)asoc
->c
.auth_random
;
292 p
->type
= SCTP_PARAM_RANDOM
;
293 p
->length
= htons(sizeof(*p
) + SCTP_AUTH_RANDOM_LENGTH
);
294 get_random_bytes(p
+1, SCTP_AUTH_RANDOM_LENGTH
);
299 sctp_stream_free(&asoc
->stream
);
301 sock_put(asoc
->base
.sk
);
302 sctp_endpoint_put(asoc
->ep
);
306 /* Allocate and initialize a new association */
307 struct sctp_association
*sctp_association_new(const struct sctp_endpoint
*ep
,
308 const struct sock
*sk
,
309 enum sctp_scope scope
, gfp_t gfp
)
311 struct sctp_association
*asoc
;
313 asoc
= kzalloc(sizeof(*asoc
), gfp
);
317 if (!sctp_association_init(asoc
, ep
, sk
, scope
, gfp
))
320 SCTP_DBG_OBJCNT_INC(assoc
);
322 pr_debug("Created asoc %p\n", asoc
);
332 /* Free this association if possible. There may still be users, so
333 * the actual deallocation may be delayed.
335 void sctp_association_free(struct sctp_association
*asoc
)
337 struct sock
*sk
= asoc
->base
.sk
;
338 struct sctp_transport
*transport
;
339 struct list_head
*pos
, *temp
;
342 /* Only real associations count against the endpoint, so
343 * don't bother for if this is a temporary association.
345 if (!list_empty(&asoc
->asocs
)) {
346 list_del(&asoc
->asocs
);
348 /* Decrement the backlog value for a TCP-style listening
351 if (sctp_style(sk
, TCP
) && sctp_sstate(sk
, LISTENING
))
352 sk
->sk_ack_backlog
--;
355 /* Mark as dead, so other users can know this structure is
358 asoc
->base
.dead
= true;
360 /* Dispose of any data lying around in the outqueue. */
361 sctp_outq_free(&asoc
->outqueue
);
363 /* Dispose of any pending messages for the upper layer. */
364 sctp_ulpq_free(&asoc
->ulpq
);
366 /* Dispose of any pending chunks on the inqueue. */
367 sctp_inq_free(&asoc
->base
.inqueue
);
369 sctp_tsnmap_free(&asoc
->peer
.tsn_map
);
371 /* Free stream information. */
372 sctp_stream_free(&asoc
->stream
);
374 if (asoc
->strreset_chunk
)
375 sctp_chunk_free(asoc
->strreset_chunk
);
377 /* Clean up the bound address list. */
378 sctp_bind_addr_free(&asoc
->base
.bind_addr
);
380 /* Do we need to go through all of our timers and
381 * delete them? To be safe we will try to delete all, but we
382 * should be able to go through and make a guess based
385 for (i
= SCTP_EVENT_TIMEOUT_NONE
; i
< SCTP_NUM_TIMEOUT_TYPES
; ++i
) {
386 if (del_timer(&asoc
->timers
[i
]))
387 sctp_association_put(asoc
);
390 /* Free peer's cached cookie. */
391 kfree(asoc
->peer
.cookie
);
392 kfree(asoc
->peer
.peer_random
);
393 kfree(asoc
->peer
.peer_chunks
);
394 kfree(asoc
->peer
.peer_hmacs
);
396 /* Release the transport structures. */
397 list_for_each_safe(pos
, temp
, &asoc
->peer
.transport_addr_list
) {
398 transport
= list_entry(pos
, struct sctp_transport
, transports
);
400 sctp_unhash_transport(transport
);
401 sctp_transport_free(transport
);
404 asoc
->peer
.transport_count
= 0;
406 sctp_asconf_queue_teardown(asoc
);
408 /* Free pending address space being deleted */
409 kfree(asoc
->asconf_addr_del_pending
);
411 /* AUTH - Free the endpoint shared keys */
412 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
414 /* AUTH - Free the association shared key */
415 sctp_auth_key_put(asoc
->asoc_shared_key
);
417 sctp_association_put(asoc
);
420 /* Cleanup and free up an association. */
421 static void sctp_association_destroy(struct sctp_association
*asoc
)
423 if (unlikely(!asoc
->base
.dead
)) {
424 WARN(1, "Attempt to destroy undead association %p!\n", asoc
);
428 sctp_endpoint_put(asoc
->ep
);
429 sock_put(asoc
->base
.sk
);
431 if (asoc
->assoc_id
!= 0) {
432 spin_lock_bh(&sctp_assocs_id_lock
);
433 idr_remove(&sctp_assocs_id
, asoc
->assoc_id
);
434 spin_unlock_bh(&sctp_assocs_id_lock
);
437 WARN_ON(atomic_read(&asoc
->rmem_alloc
));
439 kfree_rcu(asoc
, rcu
);
440 SCTP_DBG_OBJCNT_DEC(assoc
);
443 /* Change the primary destination address for the peer. */
444 void sctp_assoc_set_primary(struct sctp_association
*asoc
,
445 struct sctp_transport
*transport
)
449 /* it's a changeover only if we already have a primary path
450 * that we are changing
452 if (asoc
->peer
.primary_path
!= NULL
&&
453 asoc
->peer
.primary_path
!= transport
)
456 asoc
->peer
.primary_path
= transport
;
458 /* Set a default msg_name for events. */
459 memcpy(&asoc
->peer
.primary_addr
, &transport
->ipaddr
,
460 sizeof(union sctp_addr
));
462 /* If the primary path is changing, assume that the
463 * user wants to use this new path.
465 if ((transport
->state
== SCTP_ACTIVE
) ||
466 (transport
->state
== SCTP_UNKNOWN
))
467 asoc
->peer
.active_path
= transport
;
470 * SFR-CACC algorithm:
471 * Upon the receipt of a request to change the primary
472 * destination address, on the data structure for the new
473 * primary destination, the sender MUST do the following:
475 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
476 * to this destination address earlier. The sender MUST set
477 * CYCLING_CHANGEOVER to indicate that this switch is a
478 * double switch to the same destination address.
480 * Really, only bother is we have data queued or outstanding on
483 if (!asoc
->outqueue
.outstanding_bytes
&& !asoc
->outqueue
.out_qlen
)
486 if (transport
->cacc
.changeover_active
)
487 transport
->cacc
.cycling_changeover
= changeover
;
489 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
490 * a changeover has occurred.
492 transport
->cacc
.changeover_active
= changeover
;
494 /* 3) The sender MUST store the next TSN to be sent in
495 * next_tsn_at_change.
497 transport
->cacc
.next_tsn_at_change
= asoc
->next_tsn
;
500 /* Remove a transport from an association. */
501 void sctp_assoc_rm_peer(struct sctp_association
*asoc
,
502 struct sctp_transport
*peer
)
504 struct sctp_transport
*transport
;
505 struct list_head
*pos
;
506 struct sctp_chunk
*ch
;
508 pr_debug("%s: association:%p addr:%pISpc\n",
509 __func__
, asoc
, &peer
->ipaddr
.sa
);
511 /* If we are to remove the current retran_path, update it
512 * to the next peer before removing this peer from the list.
514 if (asoc
->peer
.retran_path
== peer
)
515 sctp_assoc_update_retran_path(asoc
);
517 /* Remove this peer from the list. */
518 list_del_rcu(&peer
->transports
);
519 /* Remove this peer from the transport hashtable */
520 sctp_unhash_transport(peer
);
522 /* Get the first transport of asoc. */
523 pos
= asoc
->peer
.transport_addr_list
.next
;
524 transport
= list_entry(pos
, struct sctp_transport
, transports
);
526 /* Update any entries that match the peer to be deleted. */
527 if (asoc
->peer
.primary_path
== peer
)
528 sctp_assoc_set_primary(asoc
, transport
);
529 if (asoc
->peer
.active_path
== peer
)
530 asoc
->peer
.active_path
= transport
;
531 if (asoc
->peer
.retran_path
== peer
)
532 asoc
->peer
.retran_path
= transport
;
533 if (asoc
->peer
.last_data_from
== peer
)
534 asoc
->peer
.last_data_from
= transport
;
536 if (asoc
->strreset_chunk
&&
537 asoc
->strreset_chunk
->transport
== peer
) {
538 asoc
->strreset_chunk
->transport
= transport
;
539 sctp_transport_reset_reconf_timer(transport
);
542 /* If we remove the transport an INIT was last sent to, set it to
543 * NULL. Combined with the update of the retran path above, this
544 * will cause the next INIT to be sent to the next available
545 * transport, maintaining the cycle.
547 if (asoc
->init_last_sent_to
== peer
)
548 asoc
->init_last_sent_to
= NULL
;
550 /* If we remove the transport an SHUTDOWN was last sent to, set it
551 * to NULL. Combined with the update of the retran path above, this
552 * will cause the next SHUTDOWN to be sent to the next available
553 * transport, maintaining the cycle.
555 if (asoc
->shutdown_last_sent_to
== peer
)
556 asoc
->shutdown_last_sent_to
= NULL
;
558 /* If we remove the transport an ASCONF was last sent to, set it to
561 if (asoc
->addip_last_asconf
&&
562 asoc
->addip_last_asconf
->transport
== peer
)
563 asoc
->addip_last_asconf
->transport
= NULL
;
565 /* If we have something on the transmitted list, we have to
566 * save it off. The best place is the active path.
568 if (!list_empty(&peer
->transmitted
)) {
569 struct sctp_transport
*active
= asoc
->peer
.active_path
;
571 /* Reset the transport of each chunk on this list */
572 list_for_each_entry(ch
, &peer
->transmitted
,
574 ch
->transport
= NULL
;
575 ch
->rtt_in_progress
= 0;
578 list_splice_tail_init(&peer
->transmitted
,
579 &active
->transmitted
);
581 /* Start a T3 timer here in case it wasn't running so
582 * that these migrated packets have a chance to get
585 if (!timer_pending(&active
->T3_rtx_timer
))
586 if (!mod_timer(&active
->T3_rtx_timer
,
587 jiffies
+ active
->rto
))
588 sctp_transport_hold(active
);
591 list_for_each_entry(ch
, &asoc
->outqueue
.out_chunk_list
, list
)
592 if (ch
->transport
== peer
)
593 ch
->transport
= NULL
;
595 asoc
->peer
.transport_count
--;
597 sctp_transport_free(peer
);
600 /* Add a transport address to an association. */
601 struct sctp_transport
*sctp_assoc_add_peer(struct sctp_association
*asoc
,
602 const union sctp_addr
*addr
,
604 const int peer_state
)
606 struct net
*net
= sock_net(asoc
->base
.sk
);
607 struct sctp_transport
*peer
;
608 struct sctp_sock
*sp
;
611 sp
= sctp_sk(asoc
->base
.sk
);
613 /* AF_INET and AF_INET6 share common port field. */
614 port
= ntohs(addr
->v4
.sin_port
);
616 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__
,
617 asoc
, &addr
->sa
, peer_state
);
619 /* Set the port if it has not been set yet. */
620 if (0 == asoc
->peer
.port
)
621 asoc
->peer
.port
= port
;
623 /* Check to see if this is a duplicate. */
624 peer
= sctp_assoc_lookup_paddr(asoc
, addr
);
626 /* An UNKNOWN state is only set on transports added by
627 * user in sctp_connectx() call. Such transports should be
628 * considered CONFIRMED per RFC 4960, Section 5.4.
630 if (peer
->state
== SCTP_UNKNOWN
) {
631 peer
->state
= SCTP_ACTIVE
;
636 peer
= sctp_transport_new(net
, addr
, gfp
);
640 sctp_transport_set_owner(peer
, asoc
);
642 /* Initialize the peer's heartbeat interval based on the
643 * association configured value.
645 peer
->hbinterval
= asoc
->hbinterval
;
647 /* Set the path max_retrans. */
648 peer
->pathmaxrxt
= asoc
->pathmaxrxt
;
650 /* And the partial failure retrans threshold */
651 peer
->pf_retrans
= asoc
->pf_retrans
;
653 /* Initialize the peer's SACK delay timeout based on the
654 * association configured value.
656 peer
->sackdelay
= asoc
->sackdelay
;
657 peer
->sackfreq
= asoc
->sackfreq
;
659 if (addr
->sa
.sa_family
== AF_INET6
) {
660 __be32 info
= addr
->v6
.sin6_flowinfo
;
663 peer
->flowlabel
= ntohl(info
& IPV6_FLOWLABEL_MASK
);
664 peer
->flowlabel
|= SCTP_FLOWLABEL_SET_MASK
;
666 peer
->flowlabel
= asoc
->flowlabel
;
669 peer
->dscp
= asoc
->dscp
;
671 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
672 * based on association setting.
674 peer
->param_flags
= asoc
->param_flags
;
676 /* Initialize the pmtu of the transport. */
677 sctp_transport_route(peer
, NULL
, sp
);
679 /* If this is the first transport addr on this association,
680 * initialize the association PMTU to the peer's PMTU.
681 * If not and the current association PMTU is higher than the new
682 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
684 sctp_assoc_set_pmtu(asoc
, asoc
->pathmtu
?
685 min_t(int, peer
->pathmtu
, asoc
->pathmtu
) :
688 peer
->pmtu_pending
= 0;
690 /* The asoc->peer.port might not be meaningful yet, but
691 * initialize the packet structure anyway.
693 sctp_packet_init(&peer
->packet
, peer
, asoc
->base
.bind_addr
.port
,
698 * o The initial cwnd before DATA transmission or after a sufficiently
699 * long idle period MUST be set to
700 * min(4*MTU, max(2*MTU, 4380 bytes))
702 * o The initial value of ssthresh MAY be arbitrarily high
703 * (for example, implementations MAY use the size of the
704 * receiver advertised window).
706 peer
->cwnd
= min(4*asoc
->pathmtu
, max_t(__u32
, 2*asoc
->pathmtu
, 4380));
708 /* At this point, we may not have the receiver's advertised window,
709 * so initialize ssthresh to the default value and it will be set
710 * later when we process the INIT.
712 peer
->ssthresh
= SCTP_DEFAULT_MAXWINDOW
;
714 peer
->partial_bytes_acked
= 0;
715 peer
->flight_size
= 0;
716 peer
->burst_limited
= 0;
718 /* Set the transport's RTO.initial value */
719 peer
->rto
= asoc
->rto_initial
;
720 sctp_max_rto(asoc
, peer
);
722 /* Set the peer's active state. */
723 peer
->state
= peer_state
;
725 /* Add this peer into the transport hashtable */
726 if (sctp_hash_transport(peer
)) {
727 sctp_transport_free(peer
);
731 /* Attach the remote transport to our asoc. */
732 list_add_tail_rcu(&peer
->transports
, &asoc
->peer
.transport_addr_list
);
733 asoc
->peer
.transport_count
++;
735 /* If we do not yet have a primary path, set one. */
736 if (!asoc
->peer
.primary_path
) {
737 sctp_assoc_set_primary(asoc
, peer
);
738 asoc
->peer
.retran_path
= peer
;
741 if (asoc
->peer
.active_path
== asoc
->peer
.retran_path
&&
742 peer
->state
!= SCTP_UNCONFIRMED
) {
743 asoc
->peer
.retran_path
= peer
;
749 /* Delete a transport address from an association. */
750 void sctp_assoc_del_peer(struct sctp_association
*asoc
,
751 const union sctp_addr
*addr
)
753 struct list_head
*pos
;
754 struct list_head
*temp
;
755 struct sctp_transport
*transport
;
757 list_for_each_safe(pos
, temp
, &asoc
->peer
.transport_addr_list
) {
758 transport
= list_entry(pos
, struct sctp_transport
, transports
);
759 if (sctp_cmp_addr_exact(addr
, &transport
->ipaddr
)) {
760 /* Do book keeping for removing the peer and free it. */
761 sctp_assoc_rm_peer(asoc
, transport
);
767 /* Lookup a transport by address. */
768 struct sctp_transport
*sctp_assoc_lookup_paddr(
769 const struct sctp_association
*asoc
,
770 const union sctp_addr
*address
)
772 struct sctp_transport
*t
;
774 /* Cycle through all transports searching for a peer address. */
776 list_for_each_entry(t
, &asoc
->peer
.transport_addr_list
,
778 if (sctp_cmp_addr_exact(address
, &t
->ipaddr
))
785 /* Remove all transports except a give one */
786 void sctp_assoc_del_nonprimary_peers(struct sctp_association
*asoc
,
787 struct sctp_transport
*primary
)
789 struct sctp_transport
*temp
;
790 struct sctp_transport
*t
;
792 list_for_each_entry_safe(t
, temp
, &asoc
->peer
.transport_addr_list
,
794 /* if the current transport is not the primary one, delete it */
796 sctp_assoc_rm_peer(asoc
, t
);
800 /* Engage in transport control operations.
801 * Mark the transport up or down and send a notification to the user.
802 * Select and update the new active and retran paths.
804 void sctp_assoc_control_transport(struct sctp_association
*asoc
,
805 struct sctp_transport
*transport
,
806 enum sctp_transport_cmd command
,
807 sctp_sn_error_t error
)
809 struct sctp_ulpevent
*event
;
810 struct sockaddr_storage addr
;
812 bool ulp_notify
= true;
814 /* Record the transition on the transport. */
816 case SCTP_TRANSPORT_UP
:
817 /* If we are moving from UNCONFIRMED state due
818 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
819 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
821 if (SCTP_UNCONFIRMED
== transport
->state
&&
822 SCTP_HEARTBEAT_SUCCESS
== error
)
823 spc_state
= SCTP_ADDR_CONFIRMED
;
825 spc_state
= SCTP_ADDR_AVAILABLE
;
826 /* Don't inform ULP about transition from PF to
827 * active state and set cwnd to 1 MTU, see SCTP
828 * Quick failover draft section 5.1, point 5
830 if (transport
->state
== SCTP_PF
) {
832 transport
->cwnd
= asoc
->pathmtu
;
834 transport
->state
= SCTP_ACTIVE
;
837 case SCTP_TRANSPORT_DOWN
:
838 /* If the transport was never confirmed, do not transition it
839 * to inactive state. Also, release the cached route since
840 * there may be a better route next time.
842 if (transport
->state
!= SCTP_UNCONFIRMED
)
843 transport
->state
= SCTP_INACTIVE
;
845 sctp_transport_dst_release(transport
);
849 spc_state
= SCTP_ADDR_UNREACHABLE
;
852 case SCTP_TRANSPORT_PF
:
853 transport
->state
= SCTP_PF
;
861 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
865 memset(&addr
, 0, sizeof(struct sockaddr_storage
));
866 memcpy(&addr
, &transport
->ipaddr
,
867 transport
->af_specific
->sockaddr_len
);
869 event
= sctp_ulpevent_make_peer_addr_change(asoc
, &addr
,
870 0, spc_state
, error
, GFP_ATOMIC
);
872 asoc
->stream
.si
->enqueue_event(&asoc
->ulpq
, event
);
875 /* Select new active and retran paths. */
876 sctp_select_active_and_retran_path(asoc
);
879 /* Hold a reference to an association. */
880 void sctp_association_hold(struct sctp_association
*asoc
)
882 refcount_inc(&asoc
->base
.refcnt
);
885 /* Release a reference to an association and cleanup
886 * if there are no more references.
888 void sctp_association_put(struct sctp_association
*asoc
)
890 if (refcount_dec_and_test(&asoc
->base
.refcnt
))
891 sctp_association_destroy(asoc
);
894 /* Allocate the next TSN, Transmission Sequence Number, for the given
897 __u32
sctp_association_get_next_tsn(struct sctp_association
*asoc
)
899 /* From Section 1.6 Serial Number Arithmetic:
900 * Transmission Sequence Numbers wrap around when they reach
901 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
902 * after transmitting TSN = 2*32 - 1 is TSN = 0.
904 __u32 retval
= asoc
->next_tsn
;
911 /* Compare two addresses to see if they match. Wildcard addresses
912 * only match themselves.
914 int sctp_cmp_addr_exact(const union sctp_addr
*ss1
,
915 const union sctp_addr
*ss2
)
919 af
= sctp_get_af_specific(ss1
->sa
.sa_family
);
923 return af
->cmp_addr(ss1
, ss2
);
926 /* Return an ecne chunk to get prepended to a packet.
927 * Note: We are sly and return a shared, prealloced chunk. FIXME:
928 * No we don't, but we could/should.
930 struct sctp_chunk
*sctp_get_ecne_prepend(struct sctp_association
*asoc
)
932 if (!asoc
->need_ecne
)
935 /* Send ECNE if needed.
936 * Not being able to allocate a chunk here is not deadly.
938 return sctp_make_ecne(asoc
, asoc
->last_ecne_tsn
);
942 * Find which transport this TSN was sent on.
944 struct sctp_transport
*sctp_assoc_lookup_tsn(struct sctp_association
*asoc
,
947 struct sctp_transport
*active
;
948 struct sctp_transport
*match
;
949 struct sctp_transport
*transport
;
950 struct sctp_chunk
*chunk
;
951 __be32 key
= htonl(tsn
);
956 * FIXME: In general, find a more efficient data structure for
961 * The general strategy is to search each transport's transmitted
962 * list. Return which transport this TSN lives on.
964 * Let's be hopeful and check the active_path first.
965 * Another optimization would be to know if there is only one
966 * outbound path and not have to look for the TSN at all.
970 active
= asoc
->peer
.active_path
;
972 list_for_each_entry(chunk
, &active
->transmitted
,
975 if (key
== chunk
->subh
.data_hdr
->tsn
) {
981 /* If not found, go search all the other transports. */
982 list_for_each_entry(transport
, &asoc
->peer
.transport_addr_list
,
985 if (transport
== active
)
987 list_for_each_entry(chunk
, &transport
->transmitted
,
989 if (key
== chunk
->subh
.data_hdr
->tsn
) {
999 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1000 static void sctp_assoc_bh_rcv(struct work_struct
*work
)
1002 struct sctp_association
*asoc
=
1003 container_of(work
, struct sctp_association
,
1004 base
.inqueue
.immediate
);
1005 struct net
*net
= sock_net(asoc
->base
.sk
);
1006 union sctp_subtype subtype
;
1007 struct sctp_endpoint
*ep
;
1008 struct sctp_chunk
*chunk
;
1009 struct sctp_inq
*inqueue
;
1010 int first_time
= 1; /* is this the first time through the loop */
1014 /* The association should be held so we should be safe. */
1017 inqueue
= &asoc
->base
.inqueue
;
1018 sctp_association_hold(asoc
);
1019 while (NULL
!= (chunk
= sctp_inq_pop(inqueue
))) {
1020 state
= asoc
->state
;
1021 subtype
= SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
);
1023 /* If the first chunk in the packet is AUTH, do special
1024 * processing specified in Section 6.3 of SCTP-AUTH spec
1026 if (first_time
&& subtype
.chunk
== SCTP_CID_AUTH
) {
1027 struct sctp_chunkhdr
*next_hdr
;
1029 next_hdr
= sctp_inq_peek(inqueue
);
1033 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1034 * chunk while saving a pointer to it so we can do
1035 * Authentication later (during cookie-echo
1038 if (next_hdr
->type
== SCTP_CID_COOKIE_ECHO
) {
1039 chunk
->auth_chunk
= skb_clone(chunk
->skb
,
1047 /* SCTP-AUTH, Section 6.3:
1048 * The receiver has a list of chunk types which it expects
1049 * to be received only after an AUTH-chunk. This list has
1050 * been sent to the peer during the association setup. It
1051 * MUST silently discard these chunks if they are not placed
1052 * after an AUTH chunk in the packet.
1054 if (sctp_auth_recv_cid(subtype
.chunk
, asoc
) && !chunk
->auth
)
1057 /* Remember where the last DATA chunk came from so we
1058 * know where to send the SACK.
1060 if (sctp_chunk_is_data(chunk
))
1061 asoc
->peer
.last_data_from
= chunk
->transport
;
1063 SCTP_INC_STATS(net
, SCTP_MIB_INCTRLCHUNKS
);
1064 asoc
->stats
.ictrlchunks
++;
1065 if (chunk
->chunk_hdr
->type
== SCTP_CID_SACK
)
1066 asoc
->stats
.isacks
++;
1069 if (chunk
->transport
)
1070 chunk
->transport
->last_time_heard
= ktime_get();
1072 /* Run through the state machine. */
1073 error
= sctp_do_sm(net
, SCTP_EVENT_T_CHUNK
, subtype
,
1074 state
, ep
, asoc
, chunk
, GFP_ATOMIC
);
1076 /* Check to see if the association is freed in response to
1077 * the incoming chunk. If so, get out of the while loop.
1079 if (asoc
->base
.dead
)
1082 /* If there is an error on chunk, discard this packet. */
1084 chunk
->pdiscard
= 1;
1089 sctp_association_put(asoc
);
1092 /* This routine moves an association from its old sk to a new sk. */
1093 void sctp_assoc_migrate(struct sctp_association
*assoc
, struct sock
*newsk
)
1095 struct sctp_sock
*newsp
= sctp_sk(newsk
);
1096 struct sock
*oldsk
= assoc
->base
.sk
;
1098 /* Delete the association from the old endpoint's list of
1101 list_del_init(&assoc
->asocs
);
1103 /* Decrement the backlog value for a TCP-style socket. */
1104 if (sctp_style(oldsk
, TCP
))
1105 oldsk
->sk_ack_backlog
--;
1107 /* Release references to the old endpoint and the sock. */
1108 sctp_endpoint_put(assoc
->ep
);
1109 sock_put(assoc
->base
.sk
);
1111 /* Get a reference to the new endpoint. */
1112 assoc
->ep
= newsp
->ep
;
1113 sctp_endpoint_hold(assoc
->ep
);
1115 /* Get a reference to the new sock. */
1116 assoc
->base
.sk
= newsk
;
1117 sock_hold(assoc
->base
.sk
);
1119 /* Add the association to the new endpoint's list of associations. */
1120 sctp_endpoint_add_asoc(newsp
->ep
, assoc
);
1123 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1124 int sctp_assoc_update(struct sctp_association
*asoc
,
1125 struct sctp_association
*new)
1127 struct sctp_transport
*trans
;
1128 struct list_head
*pos
, *temp
;
1130 /* Copy in new parameters of peer. */
1132 asoc
->peer
.rwnd
= new->peer
.rwnd
;
1133 asoc
->peer
.sack_needed
= new->peer
.sack_needed
;
1134 asoc
->peer
.auth_capable
= new->peer
.auth_capable
;
1135 asoc
->peer
.i
= new->peer
.i
;
1137 if (!sctp_tsnmap_init(&asoc
->peer
.tsn_map
, SCTP_TSN_MAP_INITIAL
,
1138 asoc
->peer
.i
.initial_tsn
, GFP_ATOMIC
))
1141 /* Remove any peer addresses not present in the new association. */
1142 list_for_each_safe(pos
, temp
, &asoc
->peer
.transport_addr_list
) {
1143 trans
= list_entry(pos
, struct sctp_transport
, transports
);
1144 if (!sctp_assoc_lookup_paddr(new, &trans
->ipaddr
)) {
1145 sctp_assoc_rm_peer(asoc
, trans
);
1149 if (asoc
->state
>= SCTP_STATE_ESTABLISHED
)
1150 sctp_transport_reset(trans
);
1153 /* If the case is A (association restart), use
1154 * initial_tsn as next_tsn. If the case is B, use
1155 * current next_tsn in case data sent to peer
1156 * has been discarded and needs retransmission.
1158 if (asoc
->state
>= SCTP_STATE_ESTABLISHED
) {
1159 asoc
->next_tsn
= new->next_tsn
;
1160 asoc
->ctsn_ack_point
= new->ctsn_ack_point
;
1161 asoc
->adv_peer_ack_point
= new->adv_peer_ack_point
;
1163 /* Reinitialize SSN for both local streams
1164 * and peer's streams.
1166 sctp_stream_clear(&asoc
->stream
);
1168 /* Flush the ULP reassembly and ordered queue.
1169 * Any data there will now be stale and will
1172 sctp_ulpq_flush(&asoc
->ulpq
);
1174 /* reset the overall association error count so
1175 * that the restarted association doesn't get torn
1176 * down on the next retransmission timer.
1178 asoc
->overall_error_count
= 0;
1181 /* Add any peer addresses from the new association. */
1182 list_for_each_entry(trans
, &new->peer
.transport_addr_list
,
1184 if (!sctp_assoc_lookup_paddr(asoc
, &trans
->ipaddr
) &&
1185 !sctp_assoc_add_peer(asoc
, &trans
->ipaddr
,
1186 GFP_ATOMIC
, trans
->state
))
1189 asoc
->ctsn_ack_point
= asoc
->next_tsn
- 1;
1190 asoc
->adv_peer_ack_point
= asoc
->ctsn_ack_point
;
1192 if (sctp_state(asoc
, COOKIE_WAIT
))
1193 sctp_stream_update(&asoc
->stream
, &new->stream
);
1195 /* get a new assoc id if we don't have one yet. */
1196 if (sctp_assoc_set_id(asoc
, GFP_ATOMIC
))
1200 /* SCTP-AUTH: Save the peer parameters from the new associations
1201 * and also move the association shared keys over
1203 kfree(asoc
->peer
.peer_random
);
1204 asoc
->peer
.peer_random
= new->peer
.peer_random
;
1205 new->peer
.peer_random
= NULL
;
1207 kfree(asoc
->peer
.peer_chunks
);
1208 asoc
->peer
.peer_chunks
= new->peer
.peer_chunks
;
1209 new->peer
.peer_chunks
= NULL
;
1211 kfree(asoc
->peer
.peer_hmacs
);
1212 asoc
->peer
.peer_hmacs
= new->peer
.peer_hmacs
;
1213 new->peer
.peer_hmacs
= NULL
;
1215 return sctp_auth_asoc_init_active_key(asoc
, GFP_ATOMIC
);
1218 /* Update the retran path for sending a retransmitted packet.
1219 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1221 * When there is outbound data to send and the primary path
1222 * becomes inactive (e.g., due to failures), or where the
1223 * SCTP user explicitly requests to send data to an
1224 * inactive destination transport address, before reporting
1225 * an error to its ULP, the SCTP endpoint should try to send
1226 * the data to an alternate active destination transport
1227 * address if one exists.
1229 * When retransmitting data that timed out, if the endpoint
1230 * is multihomed, it should consider each source-destination
1231 * address pair in its retransmission selection policy.
1232 * When retransmitting timed-out data, the endpoint should
1233 * attempt to pick the most divergent source-destination
1234 * pair from the original source-destination pair to which
1235 * the packet was transmitted.
1237 * Note: Rules for picking the most divergent source-destination
1238 * pair are an implementation decision and are not specified
1239 * within this document.
1241 * Our basic strategy is to round-robin transports in priorities
1242 * according to sctp_trans_score() e.g., if no such
1243 * transport with state SCTP_ACTIVE exists, round-robin through
1244 * SCTP_UNKNOWN, etc. You get the picture.
1246 static u8
sctp_trans_score(const struct sctp_transport
*trans
)
1248 switch (trans
->state
) {
1250 return 3; /* best case */
1255 default: /* case SCTP_INACTIVE */
1256 return 0; /* worst case */
1260 static struct sctp_transport
*sctp_trans_elect_tie(struct sctp_transport
*trans1
,
1261 struct sctp_transport
*trans2
)
1263 if (trans1
->error_count
> trans2
->error_count
) {
1265 } else if (trans1
->error_count
== trans2
->error_count
&&
1266 ktime_after(trans2
->last_time_heard
,
1267 trans1
->last_time_heard
)) {
1274 static struct sctp_transport
*sctp_trans_elect_best(struct sctp_transport
*curr
,
1275 struct sctp_transport
*best
)
1277 u8 score_curr
, score_best
;
1279 if (best
== NULL
|| curr
== best
)
1282 score_curr
= sctp_trans_score(curr
);
1283 score_best
= sctp_trans_score(best
);
1285 /* First, try a score-based selection if both transport states
1286 * differ. If we're in a tie, lets try to make a more clever
1287 * decision here based on error counts and last time heard.
1289 if (score_curr
> score_best
)
1291 else if (score_curr
== score_best
)
1292 return sctp_trans_elect_tie(best
, curr
);
1297 void sctp_assoc_update_retran_path(struct sctp_association
*asoc
)
1299 struct sctp_transport
*trans
= asoc
->peer
.retran_path
;
1300 struct sctp_transport
*trans_next
= NULL
;
1302 /* We're done as we only have the one and only path. */
1303 if (asoc
->peer
.transport_count
== 1)
1305 /* If active_path and retran_path are the same and active,
1306 * then this is the only active path. Use it.
1308 if (asoc
->peer
.active_path
== asoc
->peer
.retran_path
&&
1309 asoc
->peer
.active_path
->state
== SCTP_ACTIVE
)
1312 /* Iterate from retran_path's successor back to retran_path. */
1313 for (trans
= list_next_entry(trans
, transports
); 1;
1314 trans
= list_next_entry(trans
, transports
)) {
1315 /* Manually skip the head element. */
1316 if (&trans
->transports
== &asoc
->peer
.transport_addr_list
)
1318 if (trans
->state
== SCTP_UNCONFIRMED
)
1320 trans_next
= sctp_trans_elect_best(trans
, trans_next
);
1321 /* Active is good enough for immediate return. */
1322 if (trans_next
->state
== SCTP_ACTIVE
)
1324 /* We've reached the end, time to update path. */
1325 if (trans
== asoc
->peer
.retran_path
)
1329 asoc
->peer
.retran_path
= trans_next
;
1331 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1332 __func__
, asoc
, &asoc
->peer
.retran_path
->ipaddr
.sa
);
1335 static void sctp_select_active_and_retran_path(struct sctp_association
*asoc
)
1337 struct sctp_transport
*trans
, *trans_pri
= NULL
, *trans_sec
= NULL
;
1338 struct sctp_transport
*trans_pf
= NULL
;
1340 /* Look for the two most recently used active transports. */
1341 list_for_each_entry(trans
, &asoc
->peer
.transport_addr_list
,
1343 /* Skip uninteresting transports. */
1344 if (trans
->state
== SCTP_INACTIVE
||
1345 trans
->state
== SCTP_UNCONFIRMED
)
1347 /* Keep track of the best PF transport from our
1348 * list in case we don't find an active one.
1350 if (trans
->state
== SCTP_PF
) {
1351 trans_pf
= sctp_trans_elect_best(trans
, trans_pf
);
1354 /* For active transports, pick the most recent ones. */
1355 if (trans_pri
== NULL
||
1356 ktime_after(trans
->last_time_heard
,
1357 trans_pri
->last_time_heard
)) {
1358 trans_sec
= trans_pri
;
1360 } else if (trans_sec
== NULL
||
1361 ktime_after(trans
->last_time_heard
,
1362 trans_sec
->last_time_heard
)) {
1367 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1369 * By default, an endpoint should always transmit to the primary
1370 * path, unless the SCTP user explicitly specifies the
1371 * destination transport address (and possibly source transport
1372 * address) to use. [If the primary is active but not most recent,
1373 * bump the most recently used transport.]
1375 if ((asoc
->peer
.primary_path
->state
== SCTP_ACTIVE
||
1376 asoc
->peer
.primary_path
->state
== SCTP_UNKNOWN
) &&
1377 asoc
->peer
.primary_path
!= trans_pri
) {
1378 trans_sec
= trans_pri
;
1379 trans_pri
= asoc
->peer
.primary_path
;
1382 /* We did not find anything useful for a possible retransmission
1383 * path; either primary path that we found is the the same as
1384 * the current one, or we didn't generally find an active one.
1386 if (trans_sec
== NULL
)
1387 trans_sec
= trans_pri
;
1389 /* If we failed to find a usable transport, just camp on the
1390 * active or pick a PF iff it's the better choice.
1392 if (trans_pri
== NULL
) {
1393 trans_pri
= sctp_trans_elect_best(asoc
->peer
.active_path
, trans_pf
);
1394 trans_sec
= trans_pri
;
1397 /* Set the active and retran transports. */
1398 asoc
->peer
.active_path
= trans_pri
;
1399 asoc
->peer
.retran_path
= trans_sec
;
1402 struct sctp_transport
*
1403 sctp_assoc_choose_alter_transport(struct sctp_association
*asoc
,
1404 struct sctp_transport
*last_sent_to
)
1406 /* If this is the first time packet is sent, use the active path,
1407 * else use the retran path. If the last packet was sent over the
1408 * retran path, update the retran path and use it.
1410 if (last_sent_to
== NULL
) {
1411 return asoc
->peer
.active_path
;
1413 if (last_sent_to
== asoc
->peer
.retran_path
)
1414 sctp_assoc_update_retran_path(asoc
);
1416 return asoc
->peer
.retran_path
;
1420 void sctp_assoc_update_frag_point(struct sctp_association
*asoc
)
1422 int frag
= sctp_mtu_payload(sctp_sk(asoc
->base
.sk
), asoc
->pathmtu
,
1423 sctp_datachk_len(&asoc
->stream
));
1425 if (asoc
->user_frag
)
1426 frag
= min_t(int, frag
, asoc
->user_frag
);
1428 frag
= min_t(int, frag
, SCTP_MAX_CHUNK_LEN
-
1429 sctp_datachk_len(&asoc
->stream
));
1431 asoc
->frag_point
= SCTP_TRUNC4(frag
);
1434 void sctp_assoc_set_pmtu(struct sctp_association
*asoc
, __u32 pmtu
)
1436 if (asoc
->pathmtu
!= pmtu
) {
1437 asoc
->pathmtu
= pmtu
;
1438 sctp_assoc_update_frag_point(asoc
);
1441 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__
, asoc
,
1442 asoc
->pathmtu
, asoc
->frag_point
);
1445 /* Update the association's pmtu and frag_point by going through all the
1446 * transports. This routine is called when a transport's PMTU has changed.
1448 void sctp_assoc_sync_pmtu(struct sctp_association
*asoc
)
1450 struct sctp_transport
*t
;
1456 /* Get the lowest pmtu of all the transports. */
1457 list_for_each_entry(t
, &asoc
->peer
.transport_addr_list
, transports
) {
1458 if (t
->pmtu_pending
&& t
->dst
) {
1459 sctp_transport_update_pmtu(t
,
1460 atomic_read(&t
->mtu_info
));
1461 t
->pmtu_pending
= 0;
1463 if (!pmtu
|| (t
->pathmtu
< pmtu
))
1467 sctp_assoc_set_pmtu(asoc
, pmtu
);
1470 /* Should we send a SACK to update our peer? */
1471 static inline bool sctp_peer_needs_update(struct sctp_association
*asoc
)
1473 struct net
*net
= sock_net(asoc
->base
.sk
);
1474 switch (asoc
->state
) {
1475 case SCTP_STATE_ESTABLISHED
:
1476 case SCTP_STATE_SHUTDOWN_PENDING
:
1477 case SCTP_STATE_SHUTDOWN_RECEIVED
:
1478 case SCTP_STATE_SHUTDOWN_SENT
:
1479 if ((asoc
->rwnd
> asoc
->a_rwnd
) &&
1480 ((asoc
->rwnd
- asoc
->a_rwnd
) >= max_t(__u32
,
1481 (asoc
->base
.sk
->sk_rcvbuf
>> net
->sctp
.rwnd_upd_shift
),
1491 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1492 void sctp_assoc_rwnd_increase(struct sctp_association
*asoc
, unsigned int len
)
1494 struct sctp_chunk
*sack
;
1495 struct timer_list
*timer
;
1497 if (asoc
->rwnd_over
) {
1498 if (asoc
->rwnd_over
>= len
) {
1499 asoc
->rwnd_over
-= len
;
1501 asoc
->rwnd
+= (len
- asoc
->rwnd_over
);
1502 asoc
->rwnd_over
= 0;
1508 /* If we had window pressure, start recovering it
1509 * once our rwnd had reached the accumulated pressure
1510 * threshold. The idea is to recover slowly, but up
1511 * to the initial advertised window.
1513 if (asoc
->rwnd_press
) {
1514 int change
= min(asoc
->pathmtu
, asoc
->rwnd_press
);
1515 asoc
->rwnd
+= change
;
1516 asoc
->rwnd_press
-= change
;
1519 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1520 __func__
, asoc
, len
, asoc
->rwnd
, asoc
->rwnd_over
,
1523 /* Send a window update SACK if the rwnd has increased by at least the
1524 * minimum of the association's PMTU and half of the receive buffer.
1525 * The algorithm used is similar to the one described in
1526 * Section 4.2.3.3 of RFC 1122.
1528 if (sctp_peer_needs_update(asoc
)) {
1529 asoc
->a_rwnd
= asoc
->rwnd
;
1531 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1532 "a_rwnd:%u\n", __func__
, asoc
, asoc
->rwnd
,
1535 sack
= sctp_make_sack(asoc
);
1539 asoc
->peer
.sack_needed
= 0;
1541 sctp_outq_tail(&asoc
->outqueue
, sack
, GFP_ATOMIC
);
1543 /* Stop the SACK timer. */
1544 timer
= &asoc
->timers
[SCTP_EVENT_TIMEOUT_SACK
];
1545 if (del_timer(timer
))
1546 sctp_association_put(asoc
);
1550 /* Decrease asoc's rwnd by len. */
1551 void sctp_assoc_rwnd_decrease(struct sctp_association
*asoc
, unsigned int len
)
1556 if (unlikely(!asoc
->rwnd
|| asoc
->rwnd_over
))
1557 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1558 "asoc->rwnd_over:%u!\n", __func__
, asoc
,
1559 asoc
->rwnd
, asoc
->rwnd_over
);
1561 if (asoc
->ep
->rcvbuf_policy
)
1562 rx_count
= atomic_read(&asoc
->rmem_alloc
);
1564 rx_count
= atomic_read(&asoc
->base
.sk
->sk_rmem_alloc
);
1566 /* If we've reached or overflowed our receive buffer, announce
1567 * a 0 rwnd if rwnd would still be positive. Store the
1568 * the potential pressure overflow so that the window can be restored
1569 * back to original value.
1571 if (rx_count
>= asoc
->base
.sk
->sk_rcvbuf
)
1574 if (asoc
->rwnd
>= len
) {
1577 asoc
->rwnd_press
+= asoc
->rwnd
;
1581 asoc
->rwnd_over
+= len
- asoc
->rwnd
;
1585 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1586 __func__
, asoc
, len
, asoc
->rwnd
, asoc
->rwnd_over
,
1590 /* Build the bind address list for the association based on info from the
1591 * local endpoint and the remote peer.
1593 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association
*asoc
,
1594 enum sctp_scope scope
, gfp_t gfp
)
1596 struct sock
*sk
= asoc
->base
.sk
;
1599 /* Use scoping rules to determine the subset of addresses from
1602 flags
= (PF_INET6
== sk
->sk_family
) ? SCTP_ADDR6_ALLOWED
: 0;
1603 if (!inet_v6_ipv6only(sk
))
1604 flags
|= SCTP_ADDR4_ALLOWED
;
1605 if (asoc
->peer
.ipv4_address
)
1606 flags
|= SCTP_ADDR4_PEERSUPP
;
1607 if (asoc
->peer
.ipv6_address
)
1608 flags
|= SCTP_ADDR6_PEERSUPP
;
1610 return sctp_bind_addr_copy(sock_net(asoc
->base
.sk
),
1611 &asoc
->base
.bind_addr
,
1612 &asoc
->ep
->base
.bind_addr
,
1616 /* Build the association's bind address list from the cookie. */
1617 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association
*asoc
,
1618 struct sctp_cookie
*cookie
,
1621 int var_size2
= ntohs(cookie
->peer_init
->chunk_hdr
.length
);
1622 int var_size3
= cookie
->raw_addr_list_len
;
1623 __u8
*raw
= (__u8
*)cookie
->peer_init
+ var_size2
;
1625 return sctp_raw_to_bind_addrs(&asoc
->base
.bind_addr
, raw
, var_size3
,
1626 asoc
->ep
->base
.bind_addr
.port
, gfp
);
1629 /* Lookup laddr in the bind address list of an association. */
1630 int sctp_assoc_lookup_laddr(struct sctp_association
*asoc
,
1631 const union sctp_addr
*laddr
)
1635 if ((asoc
->base
.bind_addr
.port
== ntohs(laddr
->v4
.sin_port
)) &&
1636 sctp_bind_addr_match(&asoc
->base
.bind_addr
, laddr
,
1637 sctp_sk(asoc
->base
.sk
)))
1643 /* Set an association id for a given association */
1644 int sctp_assoc_set_id(struct sctp_association
*asoc
, gfp_t gfp
)
1646 bool preload
= gfpflags_allow_blocking(gfp
);
1649 /* If the id is already assigned, keep it. */
1655 spin_lock_bh(&sctp_assocs_id_lock
);
1656 /* 0 is not a valid assoc_id, must be >= 1 */
1657 ret
= idr_alloc_cyclic(&sctp_assocs_id
, asoc
, 1, 0, GFP_NOWAIT
);
1658 spin_unlock_bh(&sctp_assocs_id_lock
);
1664 asoc
->assoc_id
= (sctp_assoc_t
)ret
;
1668 /* Free the ASCONF queue */
1669 static void sctp_assoc_free_asconf_queue(struct sctp_association
*asoc
)
1671 struct sctp_chunk
*asconf
;
1672 struct sctp_chunk
*tmp
;
1674 list_for_each_entry_safe(asconf
, tmp
, &asoc
->addip_chunk_list
, list
) {
1675 list_del_init(&asconf
->list
);
1676 sctp_chunk_free(asconf
);
1680 /* Free asconf_ack cache */
1681 static void sctp_assoc_free_asconf_acks(struct sctp_association
*asoc
)
1683 struct sctp_chunk
*ack
;
1684 struct sctp_chunk
*tmp
;
1686 list_for_each_entry_safe(ack
, tmp
, &asoc
->asconf_ack_list
,
1688 list_del_init(&ack
->transmitted_list
);
1689 sctp_chunk_free(ack
);
1693 /* Clean up the ASCONF_ACK queue */
1694 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association
*asoc
)
1696 struct sctp_chunk
*ack
;
1697 struct sctp_chunk
*tmp
;
1699 /* We can remove all the entries from the queue up to
1700 * the "Peer-Sequence-Number".
1702 list_for_each_entry_safe(ack
, tmp
, &asoc
->asconf_ack_list
,
1704 if (ack
->subh
.addip_hdr
->serial
==
1705 htonl(asoc
->peer
.addip_serial
))
1708 list_del_init(&ack
->transmitted_list
);
1709 sctp_chunk_free(ack
);
1713 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1714 struct sctp_chunk
*sctp_assoc_lookup_asconf_ack(
1715 const struct sctp_association
*asoc
,
1718 struct sctp_chunk
*ack
;
1720 /* Walk through the list of cached ASCONF-ACKs and find the
1721 * ack chunk whose serial number matches that of the request.
1723 list_for_each_entry(ack
, &asoc
->asconf_ack_list
, transmitted_list
) {
1724 if (sctp_chunk_pending(ack
))
1726 if (ack
->subh
.addip_hdr
->serial
== serial
) {
1727 sctp_chunk_hold(ack
);
1735 void sctp_asconf_queue_teardown(struct sctp_association
*asoc
)
1737 /* Free any cached ASCONF_ACK chunk. */
1738 sctp_assoc_free_asconf_acks(asoc
);
1740 /* Free the ASCONF queue. */
1741 sctp_assoc_free_asconf_queue(asoc
);
1743 /* Free any cached ASCONF chunk. */
1744 if (asoc
->addip_last_asconf
)
1745 sctp_chunk_free(asoc
->addip_last_asconf
);