Linux 4.19.133
[linux/fpc-iii.git] / net / sctp / associola.c
blobd17708800652a38b442b162cff4435470013554b
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
63 /* 1st Level Abstractions. */
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 struct sctp_association *asoc,
68 const struct sctp_endpoint *ep,
69 const struct sock *sk,
70 enum sctp_scope scope, gfp_t gfp)
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 struct sctp_paramhdr *p;
75 int i;
77 /* Retrieve the SCTP per socket area. */
78 sp = sctp_sk((struct sock *)sk);
80 /* Discarding const is appropriate here. */
81 asoc->ep = (struct sctp_endpoint *)ep;
82 asoc->base.sk = (struct sock *)sk;
83 asoc->base.net = sock_net(sk);
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
91 /* Initialize the object handling fields. */
92 refcount_set(&asoc->base.refcnt, 1);
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
119 asoc->flowlabel = sp->flowlabel;
120 asoc->dscp = sp->dscp;
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
129 asoc->param_flags = sp->param_flags;
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
134 asoc->max_burst = sp->max_burst;
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
155 /* Pull default initialization values from the sock options.
156 * Note: This assumes that the values have already been
157 * validated in the sock.
159 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
160 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
161 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163 asoc->max_init_timeo =
164 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 /* Set the local window size for receive.
167 * This is also the rcvbuf space per association.
168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 * 1500 bytes in one SCTP packet.
171 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
172 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
173 else
174 asoc->rwnd = sk->sk_rcvbuf/2;
176 asoc->a_rwnd = asoc->rwnd;
178 /* Use my own max window until I learn something better. */
179 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 /* Initialize the receive memory counter */
182 atomic_set(&asoc->rmem_alloc, 0);
184 init_waitqueue_head(&asoc->wait);
186 asoc->c.my_vtag = sctp_generate_tag(ep);
187 asoc->c.my_port = ep->base.bind_addr.port;
189 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 asoc->next_tsn = asoc->c.initial_tsn;
193 asoc->ctsn_ack_point = asoc->next_tsn - 1;
194 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
195 asoc->highest_sacked = asoc->ctsn_ack_point;
196 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 * When an endpoint has an ASCONF signaled change to be sent to the
201 * remote endpoint it should do the following:
202 * ...
203 * A2) a serial number should be assigned to the chunk. The serial
204 * number SHOULD be a monotonically increasing number. The serial
205 * numbers SHOULD be initialized at the start of the
206 * association to the same value as the initial TSN.
208 asoc->addip_serial = asoc->c.initial_tsn;
209 asoc->strreset_outseq = asoc->c.initial_tsn;
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
217 /* RFC 2960 5.1 Normal Establishment of an Association
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
225 * [We implement this by telling a new association that it
226 * already received one packet.]
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
249 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
250 0, gfp))
251 goto fail_init;
253 /* Initialize default path MTU. */
254 asoc->pathmtu = sp->pathmtu;
255 sctp_assoc_update_frag_point(asoc);
257 /* Assume that peer would support both address types unless we are
258 * told otherwise.
260 asoc->peer.ipv4_address = 1;
261 if (asoc->base.sk->sk_family == PF_INET6)
262 asoc->peer.ipv6_address = 1;
263 INIT_LIST_HEAD(&asoc->asocs);
265 asoc->default_stream = sp->default_stream;
266 asoc->default_ppid = sp->default_ppid;
267 asoc->default_flags = sp->default_flags;
268 asoc->default_context = sp->default_context;
269 asoc->default_timetolive = sp->default_timetolive;
270 asoc->default_rcv_context = sp->default_rcv_context;
272 /* AUTH related initializations */
273 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
274 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
275 goto stream_free;
277 asoc->active_key_id = ep->active_key_id;
278 asoc->prsctp_enable = ep->prsctp_enable;
279 asoc->reconf_enable = ep->reconf_enable;
280 asoc->strreset_enable = ep->strreset_enable;
282 /* Save the hmacs and chunks list into this association */
283 if (ep->auth_hmacs_list)
284 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
285 ntohs(ep->auth_hmacs_list->param_hdr.length));
286 if (ep->auth_chunk_list)
287 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
288 ntohs(ep->auth_chunk_list->param_hdr.length));
290 /* Get the AUTH random number for this association */
291 p = (struct sctp_paramhdr *)asoc->c.auth_random;
292 p->type = SCTP_PARAM_RANDOM;
293 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
294 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
296 return asoc;
298 stream_free:
299 sctp_stream_free(&asoc->stream);
300 fail_init:
301 sock_put(asoc->base.sk);
302 sctp_endpoint_put(asoc->ep);
303 return NULL;
306 /* Allocate and initialize a new association */
307 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
308 const struct sock *sk,
309 enum sctp_scope scope, gfp_t gfp)
311 struct sctp_association *asoc;
313 asoc = kzalloc(sizeof(*asoc), gfp);
314 if (!asoc)
315 goto fail;
317 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
318 goto fail_init;
320 SCTP_DBG_OBJCNT_INC(assoc);
322 pr_debug("Created asoc %p\n", asoc);
324 return asoc;
326 fail_init:
327 kfree(asoc);
328 fail:
329 return NULL;
332 /* Free this association if possible. There may still be users, so
333 * the actual deallocation may be delayed.
335 void sctp_association_free(struct sctp_association *asoc)
337 struct sock *sk = asoc->base.sk;
338 struct sctp_transport *transport;
339 struct list_head *pos, *temp;
340 int i;
342 /* Only real associations count against the endpoint, so
343 * don't bother for if this is a temporary association.
345 if (!list_empty(&asoc->asocs)) {
346 list_del(&asoc->asocs);
348 /* Decrement the backlog value for a TCP-style listening
349 * socket.
351 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
352 sk->sk_ack_backlog--;
355 /* Mark as dead, so other users can know this structure is
356 * going away.
358 asoc->base.dead = true;
360 /* Dispose of any data lying around in the outqueue. */
361 sctp_outq_free(&asoc->outqueue);
363 /* Dispose of any pending messages for the upper layer. */
364 sctp_ulpq_free(&asoc->ulpq);
366 /* Dispose of any pending chunks on the inqueue. */
367 sctp_inq_free(&asoc->base.inqueue);
369 sctp_tsnmap_free(&asoc->peer.tsn_map);
371 /* Free stream information. */
372 sctp_stream_free(&asoc->stream);
374 if (asoc->strreset_chunk)
375 sctp_chunk_free(asoc->strreset_chunk);
377 /* Clean up the bound address list. */
378 sctp_bind_addr_free(&asoc->base.bind_addr);
380 /* Do we need to go through all of our timers and
381 * delete them? To be safe we will try to delete all, but we
382 * should be able to go through and make a guess based
383 * on our state.
385 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
386 if (del_timer(&asoc->timers[i]))
387 sctp_association_put(asoc);
390 /* Free peer's cached cookie. */
391 kfree(asoc->peer.cookie);
392 kfree(asoc->peer.peer_random);
393 kfree(asoc->peer.peer_chunks);
394 kfree(asoc->peer.peer_hmacs);
396 /* Release the transport structures. */
397 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
398 transport = list_entry(pos, struct sctp_transport, transports);
399 list_del_rcu(pos);
400 sctp_unhash_transport(transport);
401 sctp_transport_free(transport);
404 asoc->peer.transport_count = 0;
406 sctp_asconf_queue_teardown(asoc);
408 /* Free pending address space being deleted */
409 kfree(asoc->asconf_addr_del_pending);
411 /* AUTH - Free the endpoint shared keys */
412 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
414 /* AUTH - Free the association shared key */
415 sctp_auth_key_put(asoc->asoc_shared_key);
417 sctp_association_put(asoc);
420 /* Cleanup and free up an association. */
421 static void sctp_association_destroy(struct sctp_association *asoc)
423 if (unlikely(!asoc->base.dead)) {
424 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
425 return;
428 sctp_endpoint_put(asoc->ep);
429 sock_put(asoc->base.sk);
431 if (asoc->assoc_id != 0) {
432 spin_lock_bh(&sctp_assocs_id_lock);
433 idr_remove(&sctp_assocs_id, asoc->assoc_id);
434 spin_unlock_bh(&sctp_assocs_id_lock);
437 WARN_ON(atomic_read(&asoc->rmem_alloc));
439 kfree_rcu(asoc, rcu);
440 SCTP_DBG_OBJCNT_DEC(assoc);
443 /* Change the primary destination address for the peer. */
444 void sctp_assoc_set_primary(struct sctp_association *asoc,
445 struct sctp_transport *transport)
447 int changeover = 0;
449 /* it's a changeover only if we already have a primary path
450 * that we are changing
452 if (asoc->peer.primary_path != NULL &&
453 asoc->peer.primary_path != transport)
454 changeover = 1 ;
456 asoc->peer.primary_path = transport;
458 /* Set a default msg_name for events. */
459 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
460 sizeof(union sctp_addr));
462 /* If the primary path is changing, assume that the
463 * user wants to use this new path.
465 if ((transport->state == SCTP_ACTIVE) ||
466 (transport->state == SCTP_UNKNOWN))
467 asoc->peer.active_path = transport;
470 * SFR-CACC algorithm:
471 * Upon the receipt of a request to change the primary
472 * destination address, on the data structure for the new
473 * primary destination, the sender MUST do the following:
475 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
476 * to this destination address earlier. The sender MUST set
477 * CYCLING_CHANGEOVER to indicate that this switch is a
478 * double switch to the same destination address.
480 * Really, only bother is we have data queued or outstanding on
481 * the association.
483 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
484 return;
486 if (transport->cacc.changeover_active)
487 transport->cacc.cycling_changeover = changeover;
489 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
490 * a changeover has occurred.
492 transport->cacc.changeover_active = changeover;
494 /* 3) The sender MUST store the next TSN to be sent in
495 * next_tsn_at_change.
497 transport->cacc.next_tsn_at_change = asoc->next_tsn;
500 /* Remove a transport from an association. */
501 void sctp_assoc_rm_peer(struct sctp_association *asoc,
502 struct sctp_transport *peer)
504 struct sctp_transport *transport;
505 struct list_head *pos;
506 struct sctp_chunk *ch;
508 pr_debug("%s: association:%p addr:%pISpc\n",
509 __func__, asoc, &peer->ipaddr.sa);
511 /* If we are to remove the current retran_path, update it
512 * to the next peer before removing this peer from the list.
514 if (asoc->peer.retran_path == peer)
515 sctp_assoc_update_retran_path(asoc);
517 /* Remove this peer from the list. */
518 list_del_rcu(&peer->transports);
519 /* Remove this peer from the transport hashtable */
520 sctp_unhash_transport(peer);
522 /* Get the first transport of asoc. */
523 pos = asoc->peer.transport_addr_list.next;
524 transport = list_entry(pos, struct sctp_transport, transports);
526 /* Update any entries that match the peer to be deleted. */
527 if (asoc->peer.primary_path == peer)
528 sctp_assoc_set_primary(asoc, transport);
529 if (asoc->peer.active_path == peer)
530 asoc->peer.active_path = transport;
531 if (asoc->peer.retran_path == peer)
532 asoc->peer.retran_path = transport;
533 if (asoc->peer.last_data_from == peer)
534 asoc->peer.last_data_from = transport;
536 if (asoc->strreset_chunk &&
537 asoc->strreset_chunk->transport == peer) {
538 asoc->strreset_chunk->transport = transport;
539 sctp_transport_reset_reconf_timer(transport);
542 /* If we remove the transport an INIT was last sent to, set it to
543 * NULL. Combined with the update of the retran path above, this
544 * will cause the next INIT to be sent to the next available
545 * transport, maintaining the cycle.
547 if (asoc->init_last_sent_to == peer)
548 asoc->init_last_sent_to = NULL;
550 /* If we remove the transport an SHUTDOWN was last sent to, set it
551 * to NULL. Combined with the update of the retran path above, this
552 * will cause the next SHUTDOWN to be sent to the next available
553 * transport, maintaining the cycle.
555 if (asoc->shutdown_last_sent_to == peer)
556 asoc->shutdown_last_sent_to = NULL;
558 /* If we remove the transport an ASCONF was last sent to, set it to
559 * NULL.
561 if (asoc->addip_last_asconf &&
562 asoc->addip_last_asconf->transport == peer)
563 asoc->addip_last_asconf->transport = NULL;
565 /* If we have something on the transmitted list, we have to
566 * save it off. The best place is the active path.
568 if (!list_empty(&peer->transmitted)) {
569 struct sctp_transport *active = asoc->peer.active_path;
571 /* Reset the transport of each chunk on this list */
572 list_for_each_entry(ch, &peer->transmitted,
573 transmitted_list) {
574 ch->transport = NULL;
575 ch->rtt_in_progress = 0;
578 list_splice_tail_init(&peer->transmitted,
579 &active->transmitted);
581 /* Start a T3 timer here in case it wasn't running so
582 * that these migrated packets have a chance to get
583 * retransmitted.
585 if (!timer_pending(&active->T3_rtx_timer))
586 if (!mod_timer(&active->T3_rtx_timer,
587 jiffies + active->rto))
588 sctp_transport_hold(active);
591 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
592 if (ch->transport == peer)
593 ch->transport = NULL;
595 asoc->peer.transport_count--;
597 sctp_transport_free(peer);
600 /* Add a transport address to an association. */
601 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
602 const union sctp_addr *addr,
603 const gfp_t gfp,
604 const int peer_state)
606 struct net *net = sock_net(asoc->base.sk);
607 struct sctp_transport *peer;
608 struct sctp_sock *sp;
609 unsigned short port;
611 sp = sctp_sk(asoc->base.sk);
613 /* AF_INET and AF_INET6 share common port field. */
614 port = ntohs(addr->v4.sin_port);
616 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
617 asoc, &addr->sa, peer_state);
619 /* Set the port if it has not been set yet. */
620 if (0 == asoc->peer.port)
621 asoc->peer.port = port;
623 /* Check to see if this is a duplicate. */
624 peer = sctp_assoc_lookup_paddr(asoc, addr);
625 if (peer) {
626 /* An UNKNOWN state is only set on transports added by
627 * user in sctp_connectx() call. Such transports should be
628 * considered CONFIRMED per RFC 4960, Section 5.4.
630 if (peer->state == SCTP_UNKNOWN) {
631 peer->state = SCTP_ACTIVE;
633 return peer;
636 peer = sctp_transport_new(net, addr, gfp);
637 if (!peer)
638 return NULL;
640 sctp_transport_set_owner(peer, asoc);
642 /* Initialize the peer's heartbeat interval based on the
643 * association configured value.
645 peer->hbinterval = asoc->hbinterval;
647 /* Set the path max_retrans. */
648 peer->pathmaxrxt = asoc->pathmaxrxt;
650 /* And the partial failure retrans threshold */
651 peer->pf_retrans = asoc->pf_retrans;
653 /* Initialize the peer's SACK delay timeout based on the
654 * association configured value.
656 peer->sackdelay = asoc->sackdelay;
657 peer->sackfreq = asoc->sackfreq;
659 if (addr->sa.sa_family == AF_INET6) {
660 __be32 info = addr->v6.sin6_flowinfo;
662 if (info) {
663 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
664 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
665 } else {
666 peer->flowlabel = asoc->flowlabel;
669 peer->dscp = asoc->dscp;
671 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
672 * based on association setting.
674 peer->param_flags = asoc->param_flags;
676 /* Initialize the pmtu of the transport. */
677 sctp_transport_route(peer, NULL, sp);
679 /* If this is the first transport addr on this association,
680 * initialize the association PMTU to the peer's PMTU.
681 * If not and the current association PMTU is higher than the new
682 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
684 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
685 min_t(int, peer->pathmtu, asoc->pathmtu) :
686 peer->pathmtu);
688 peer->pmtu_pending = 0;
690 /* The asoc->peer.port might not be meaningful yet, but
691 * initialize the packet structure anyway.
693 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
694 asoc->peer.port);
696 /* 7.2.1 Slow-Start
698 * o The initial cwnd before DATA transmission or after a sufficiently
699 * long idle period MUST be set to
700 * min(4*MTU, max(2*MTU, 4380 bytes))
702 * o The initial value of ssthresh MAY be arbitrarily high
703 * (for example, implementations MAY use the size of the
704 * receiver advertised window).
706 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
708 /* At this point, we may not have the receiver's advertised window,
709 * so initialize ssthresh to the default value and it will be set
710 * later when we process the INIT.
712 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
714 peer->partial_bytes_acked = 0;
715 peer->flight_size = 0;
716 peer->burst_limited = 0;
718 /* Set the transport's RTO.initial value */
719 peer->rto = asoc->rto_initial;
720 sctp_max_rto(asoc, peer);
722 /* Set the peer's active state. */
723 peer->state = peer_state;
725 /* Add this peer into the transport hashtable */
726 if (sctp_hash_transport(peer)) {
727 sctp_transport_free(peer);
728 return NULL;
731 /* Attach the remote transport to our asoc. */
732 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
733 asoc->peer.transport_count++;
735 /* If we do not yet have a primary path, set one. */
736 if (!asoc->peer.primary_path) {
737 sctp_assoc_set_primary(asoc, peer);
738 asoc->peer.retran_path = peer;
741 if (asoc->peer.active_path == asoc->peer.retran_path &&
742 peer->state != SCTP_UNCONFIRMED) {
743 asoc->peer.retran_path = peer;
746 return peer;
749 /* Delete a transport address from an association. */
750 void sctp_assoc_del_peer(struct sctp_association *asoc,
751 const union sctp_addr *addr)
753 struct list_head *pos;
754 struct list_head *temp;
755 struct sctp_transport *transport;
757 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
758 transport = list_entry(pos, struct sctp_transport, transports);
759 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
760 /* Do book keeping for removing the peer and free it. */
761 sctp_assoc_rm_peer(asoc, transport);
762 break;
767 /* Lookup a transport by address. */
768 struct sctp_transport *sctp_assoc_lookup_paddr(
769 const struct sctp_association *asoc,
770 const union sctp_addr *address)
772 struct sctp_transport *t;
774 /* Cycle through all transports searching for a peer address. */
776 list_for_each_entry(t, &asoc->peer.transport_addr_list,
777 transports) {
778 if (sctp_cmp_addr_exact(address, &t->ipaddr))
779 return t;
782 return NULL;
785 /* Remove all transports except a give one */
786 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
787 struct sctp_transport *primary)
789 struct sctp_transport *temp;
790 struct sctp_transport *t;
792 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
793 transports) {
794 /* if the current transport is not the primary one, delete it */
795 if (t != primary)
796 sctp_assoc_rm_peer(asoc, t);
800 /* Engage in transport control operations.
801 * Mark the transport up or down and send a notification to the user.
802 * Select and update the new active and retran paths.
804 void sctp_assoc_control_transport(struct sctp_association *asoc,
805 struct sctp_transport *transport,
806 enum sctp_transport_cmd command,
807 sctp_sn_error_t error)
809 struct sctp_ulpevent *event;
810 struct sockaddr_storage addr;
811 int spc_state = 0;
812 bool ulp_notify = true;
814 /* Record the transition on the transport. */
815 switch (command) {
816 case SCTP_TRANSPORT_UP:
817 /* If we are moving from UNCONFIRMED state due
818 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
819 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
821 if (SCTP_UNCONFIRMED == transport->state &&
822 SCTP_HEARTBEAT_SUCCESS == error)
823 spc_state = SCTP_ADDR_CONFIRMED;
824 else
825 spc_state = SCTP_ADDR_AVAILABLE;
826 /* Don't inform ULP about transition from PF to
827 * active state and set cwnd to 1 MTU, see SCTP
828 * Quick failover draft section 5.1, point 5
830 if (transport->state == SCTP_PF) {
831 ulp_notify = false;
832 transport->cwnd = asoc->pathmtu;
834 transport->state = SCTP_ACTIVE;
835 break;
837 case SCTP_TRANSPORT_DOWN:
838 /* If the transport was never confirmed, do not transition it
839 * to inactive state. Also, release the cached route since
840 * there may be a better route next time.
842 if (transport->state != SCTP_UNCONFIRMED)
843 transport->state = SCTP_INACTIVE;
844 else {
845 sctp_transport_dst_release(transport);
846 ulp_notify = false;
849 spc_state = SCTP_ADDR_UNREACHABLE;
850 break;
852 case SCTP_TRANSPORT_PF:
853 transport->state = SCTP_PF;
854 ulp_notify = false;
855 break;
857 default:
858 return;
861 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
862 * to the user.
864 if (ulp_notify) {
865 memset(&addr, 0, sizeof(struct sockaddr_storage));
866 memcpy(&addr, &transport->ipaddr,
867 transport->af_specific->sockaddr_len);
869 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
870 0, spc_state, error, GFP_ATOMIC);
871 if (event)
872 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
875 /* Select new active and retran paths. */
876 sctp_select_active_and_retran_path(asoc);
879 /* Hold a reference to an association. */
880 void sctp_association_hold(struct sctp_association *asoc)
882 refcount_inc(&asoc->base.refcnt);
885 /* Release a reference to an association and cleanup
886 * if there are no more references.
888 void sctp_association_put(struct sctp_association *asoc)
890 if (refcount_dec_and_test(&asoc->base.refcnt))
891 sctp_association_destroy(asoc);
894 /* Allocate the next TSN, Transmission Sequence Number, for the given
895 * association.
897 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
899 /* From Section 1.6 Serial Number Arithmetic:
900 * Transmission Sequence Numbers wrap around when they reach
901 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
902 * after transmitting TSN = 2*32 - 1 is TSN = 0.
904 __u32 retval = asoc->next_tsn;
905 asoc->next_tsn++;
906 asoc->unack_data++;
908 return retval;
911 /* Compare two addresses to see if they match. Wildcard addresses
912 * only match themselves.
914 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
915 const union sctp_addr *ss2)
917 struct sctp_af *af;
919 af = sctp_get_af_specific(ss1->sa.sa_family);
920 if (unlikely(!af))
921 return 0;
923 return af->cmp_addr(ss1, ss2);
926 /* Return an ecne chunk to get prepended to a packet.
927 * Note: We are sly and return a shared, prealloced chunk. FIXME:
928 * No we don't, but we could/should.
930 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
932 if (!asoc->need_ecne)
933 return NULL;
935 /* Send ECNE if needed.
936 * Not being able to allocate a chunk here is not deadly.
938 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
942 * Find which transport this TSN was sent on.
944 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
945 __u32 tsn)
947 struct sctp_transport *active;
948 struct sctp_transport *match;
949 struct sctp_transport *transport;
950 struct sctp_chunk *chunk;
951 __be32 key = htonl(tsn);
953 match = NULL;
956 * FIXME: In general, find a more efficient data structure for
957 * searching.
961 * The general strategy is to search each transport's transmitted
962 * list. Return which transport this TSN lives on.
964 * Let's be hopeful and check the active_path first.
965 * Another optimization would be to know if there is only one
966 * outbound path and not have to look for the TSN at all.
970 active = asoc->peer.active_path;
972 list_for_each_entry(chunk, &active->transmitted,
973 transmitted_list) {
975 if (key == chunk->subh.data_hdr->tsn) {
976 match = active;
977 goto out;
981 /* If not found, go search all the other transports. */
982 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
983 transports) {
985 if (transport == active)
986 continue;
987 list_for_each_entry(chunk, &transport->transmitted,
988 transmitted_list) {
989 if (key == chunk->subh.data_hdr->tsn) {
990 match = transport;
991 goto out;
995 out:
996 return match;
999 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1000 static void sctp_assoc_bh_rcv(struct work_struct *work)
1002 struct sctp_association *asoc =
1003 container_of(work, struct sctp_association,
1004 base.inqueue.immediate);
1005 struct net *net = sock_net(asoc->base.sk);
1006 union sctp_subtype subtype;
1007 struct sctp_endpoint *ep;
1008 struct sctp_chunk *chunk;
1009 struct sctp_inq *inqueue;
1010 int first_time = 1; /* is this the first time through the loop */
1011 int error = 0;
1012 int state;
1014 /* The association should be held so we should be safe. */
1015 ep = asoc->ep;
1017 inqueue = &asoc->base.inqueue;
1018 sctp_association_hold(asoc);
1019 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1020 state = asoc->state;
1021 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1023 /* If the first chunk in the packet is AUTH, do special
1024 * processing specified in Section 6.3 of SCTP-AUTH spec
1026 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1027 struct sctp_chunkhdr *next_hdr;
1029 next_hdr = sctp_inq_peek(inqueue);
1030 if (!next_hdr)
1031 goto normal;
1033 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1034 * chunk while saving a pointer to it so we can do
1035 * Authentication later (during cookie-echo
1036 * processing).
1038 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1039 chunk->auth_chunk = skb_clone(chunk->skb,
1040 GFP_ATOMIC);
1041 chunk->auth = 1;
1042 continue;
1046 normal:
1047 /* SCTP-AUTH, Section 6.3:
1048 * The receiver has a list of chunk types which it expects
1049 * to be received only after an AUTH-chunk. This list has
1050 * been sent to the peer during the association setup. It
1051 * MUST silently discard these chunks if they are not placed
1052 * after an AUTH chunk in the packet.
1054 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1055 continue;
1057 /* Remember where the last DATA chunk came from so we
1058 * know where to send the SACK.
1060 if (sctp_chunk_is_data(chunk))
1061 asoc->peer.last_data_from = chunk->transport;
1062 else {
1063 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1064 asoc->stats.ictrlchunks++;
1065 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1066 asoc->stats.isacks++;
1069 if (chunk->transport)
1070 chunk->transport->last_time_heard = ktime_get();
1072 /* Run through the state machine. */
1073 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1074 state, ep, asoc, chunk, GFP_ATOMIC);
1076 /* Check to see if the association is freed in response to
1077 * the incoming chunk. If so, get out of the while loop.
1079 if (asoc->base.dead)
1080 break;
1082 /* If there is an error on chunk, discard this packet. */
1083 if (error && chunk)
1084 chunk->pdiscard = 1;
1086 if (first_time)
1087 first_time = 0;
1089 sctp_association_put(asoc);
1092 /* This routine moves an association from its old sk to a new sk. */
1093 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1095 struct sctp_sock *newsp = sctp_sk(newsk);
1096 struct sock *oldsk = assoc->base.sk;
1098 /* Delete the association from the old endpoint's list of
1099 * associations.
1101 list_del_init(&assoc->asocs);
1103 /* Decrement the backlog value for a TCP-style socket. */
1104 if (sctp_style(oldsk, TCP))
1105 oldsk->sk_ack_backlog--;
1107 /* Release references to the old endpoint and the sock. */
1108 sctp_endpoint_put(assoc->ep);
1109 sock_put(assoc->base.sk);
1111 /* Get a reference to the new endpoint. */
1112 assoc->ep = newsp->ep;
1113 sctp_endpoint_hold(assoc->ep);
1115 /* Get a reference to the new sock. */
1116 assoc->base.sk = newsk;
1117 sock_hold(assoc->base.sk);
1119 /* Add the association to the new endpoint's list of associations. */
1120 sctp_endpoint_add_asoc(newsp->ep, assoc);
1123 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1124 int sctp_assoc_update(struct sctp_association *asoc,
1125 struct sctp_association *new)
1127 struct sctp_transport *trans;
1128 struct list_head *pos, *temp;
1130 /* Copy in new parameters of peer. */
1131 asoc->c = new->c;
1132 asoc->peer.rwnd = new->peer.rwnd;
1133 asoc->peer.sack_needed = new->peer.sack_needed;
1134 asoc->peer.auth_capable = new->peer.auth_capable;
1135 asoc->peer.i = new->peer.i;
1137 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1138 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1139 return -ENOMEM;
1141 /* Remove any peer addresses not present in the new association. */
1142 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1143 trans = list_entry(pos, struct sctp_transport, transports);
1144 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1145 sctp_assoc_rm_peer(asoc, trans);
1146 continue;
1149 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1150 sctp_transport_reset(trans);
1153 /* If the case is A (association restart), use
1154 * initial_tsn as next_tsn. If the case is B, use
1155 * current next_tsn in case data sent to peer
1156 * has been discarded and needs retransmission.
1158 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1159 asoc->next_tsn = new->next_tsn;
1160 asoc->ctsn_ack_point = new->ctsn_ack_point;
1161 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1163 /* Reinitialize SSN for both local streams
1164 * and peer's streams.
1166 sctp_stream_clear(&asoc->stream);
1168 /* Flush the ULP reassembly and ordered queue.
1169 * Any data there will now be stale and will
1170 * cause problems.
1172 sctp_ulpq_flush(&asoc->ulpq);
1174 /* reset the overall association error count so
1175 * that the restarted association doesn't get torn
1176 * down on the next retransmission timer.
1178 asoc->overall_error_count = 0;
1180 } else {
1181 /* Add any peer addresses from the new association. */
1182 list_for_each_entry(trans, &new->peer.transport_addr_list,
1183 transports)
1184 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1185 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1186 GFP_ATOMIC, trans->state))
1187 return -ENOMEM;
1189 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1190 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1192 if (sctp_state(asoc, COOKIE_WAIT))
1193 sctp_stream_update(&asoc->stream, &new->stream);
1195 /* get a new assoc id if we don't have one yet. */
1196 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1197 return -ENOMEM;
1200 /* SCTP-AUTH: Save the peer parameters from the new associations
1201 * and also move the association shared keys over
1203 kfree(asoc->peer.peer_random);
1204 asoc->peer.peer_random = new->peer.peer_random;
1205 new->peer.peer_random = NULL;
1207 kfree(asoc->peer.peer_chunks);
1208 asoc->peer.peer_chunks = new->peer.peer_chunks;
1209 new->peer.peer_chunks = NULL;
1211 kfree(asoc->peer.peer_hmacs);
1212 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1213 new->peer.peer_hmacs = NULL;
1215 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1218 /* Update the retran path for sending a retransmitted packet.
1219 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1221 * When there is outbound data to send and the primary path
1222 * becomes inactive (e.g., due to failures), or where the
1223 * SCTP user explicitly requests to send data to an
1224 * inactive destination transport address, before reporting
1225 * an error to its ULP, the SCTP endpoint should try to send
1226 * the data to an alternate active destination transport
1227 * address if one exists.
1229 * When retransmitting data that timed out, if the endpoint
1230 * is multihomed, it should consider each source-destination
1231 * address pair in its retransmission selection policy.
1232 * When retransmitting timed-out data, the endpoint should
1233 * attempt to pick the most divergent source-destination
1234 * pair from the original source-destination pair to which
1235 * the packet was transmitted.
1237 * Note: Rules for picking the most divergent source-destination
1238 * pair are an implementation decision and are not specified
1239 * within this document.
1241 * Our basic strategy is to round-robin transports in priorities
1242 * according to sctp_trans_score() e.g., if no such
1243 * transport with state SCTP_ACTIVE exists, round-robin through
1244 * SCTP_UNKNOWN, etc. You get the picture.
1246 static u8 sctp_trans_score(const struct sctp_transport *trans)
1248 switch (trans->state) {
1249 case SCTP_ACTIVE:
1250 return 3; /* best case */
1251 case SCTP_UNKNOWN:
1252 return 2;
1253 case SCTP_PF:
1254 return 1;
1255 default: /* case SCTP_INACTIVE */
1256 return 0; /* worst case */
1260 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1261 struct sctp_transport *trans2)
1263 if (trans1->error_count > trans2->error_count) {
1264 return trans2;
1265 } else if (trans1->error_count == trans2->error_count &&
1266 ktime_after(trans2->last_time_heard,
1267 trans1->last_time_heard)) {
1268 return trans2;
1269 } else {
1270 return trans1;
1274 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1275 struct sctp_transport *best)
1277 u8 score_curr, score_best;
1279 if (best == NULL || curr == best)
1280 return curr;
1282 score_curr = sctp_trans_score(curr);
1283 score_best = sctp_trans_score(best);
1285 /* First, try a score-based selection if both transport states
1286 * differ. If we're in a tie, lets try to make a more clever
1287 * decision here based on error counts and last time heard.
1289 if (score_curr > score_best)
1290 return curr;
1291 else if (score_curr == score_best)
1292 return sctp_trans_elect_tie(best, curr);
1293 else
1294 return best;
1297 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1299 struct sctp_transport *trans = asoc->peer.retran_path;
1300 struct sctp_transport *trans_next = NULL;
1302 /* We're done as we only have the one and only path. */
1303 if (asoc->peer.transport_count == 1)
1304 return;
1305 /* If active_path and retran_path are the same and active,
1306 * then this is the only active path. Use it.
1308 if (asoc->peer.active_path == asoc->peer.retran_path &&
1309 asoc->peer.active_path->state == SCTP_ACTIVE)
1310 return;
1312 /* Iterate from retran_path's successor back to retran_path. */
1313 for (trans = list_next_entry(trans, transports); 1;
1314 trans = list_next_entry(trans, transports)) {
1315 /* Manually skip the head element. */
1316 if (&trans->transports == &asoc->peer.transport_addr_list)
1317 continue;
1318 if (trans->state == SCTP_UNCONFIRMED)
1319 continue;
1320 trans_next = sctp_trans_elect_best(trans, trans_next);
1321 /* Active is good enough for immediate return. */
1322 if (trans_next->state == SCTP_ACTIVE)
1323 break;
1324 /* We've reached the end, time to update path. */
1325 if (trans == asoc->peer.retran_path)
1326 break;
1329 asoc->peer.retran_path = trans_next;
1331 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1332 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1335 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1337 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1338 struct sctp_transport *trans_pf = NULL;
1340 /* Look for the two most recently used active transports. */
1341 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1342 transports) {
1343 /* Skip uninteresting transports. */
1344 if (trans->state == SCTP_INACTIVE ||
1345 trans->state == SCTP_UNCONFIRMED)
1346 continue;
1347 /* Keep track of the best PF transport from our
1348 * list in case we don't find an active one.
1350 if (trans->state == SCTP_PF) {
1351 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1352 continue;
1354 /* For active transports, pick the most recent ones. */
1355 if (trans_pri == NULL ||
1356 ktime_after(trans->last_time_heard,
1357 trans_pri->last_time_heard)) {
1358 trans_sec = trans_pri;
1359 trans_pri = trans;
1360 } else if (trans_sec == NULL ||
1361 ktime_after(trans->last_time_heard,
1362 trans_sec->last_time_heard)) {
1363 trans_sec = trans;
1367 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1369 * By default, an endpoint should always transmit to the primary
1370 * path, unless the SCTP user explicitly specifies the
1371 * destination transport address (and possibly source transport
1372 * address) to use. [If the primary is active but not most recent,
1373 * bump the most recently used transport.]
1375 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1376 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1377 asoc->peer.primary_path != trans_pri) {
1378 trans_sec = trans_pri;
1379 trans_pri = asoc->peer.primary_path;
1382 /* We did not find anything useful for a possible retransmission
1383 * path; either primary path that we found is the the same as
1384 * the current one, or we didn't generally find an active one.
1386 if (trans_sec == NULL)
1387 trans_sec = trans_pri;
1389 /* If we failed to find a usable transport, just camp on the
1390 * active or pick a PF iff it's the better choice.
1392 if (trans_pri == NULL) {
1393 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1394 trans_sec = trans_pri;
1397 /* Set the active and retran transports. */
1398 asoc->peer.active_path = trans_pri;
1399 asoc->peer.retran_path = trans_sec;
1402 struct sctp_transport *
1403 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1404 struct sctp_transport *last_sent_to)
1406 /* If this is the first time packet is sent, use the active path,
1407 * else use the retran path. If the last packet was sent over the
1408 * retran path, update the retran path and use it.
1410 if (last_sent_to == NULL) {
1411 return asoc->peer.active_path;
1412 } else {
1413 if (last_sent_to == asoc->peer.retran_path)
1414 sctp_assoc_update_retran_path(asoc);
1416 return asoc->peer.retran_path;
1420 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1422 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1423 sctp_datachk_len(&asoc->stream));
1425 if (asoc->user_frag)
1426 frag = min_t(int, frag, asoc->user_frag);
1428 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1429 sctp_datachk_len(&asoc->stream));
1431 asoc->frag_point = SCTP_TRUNC4(frag);
1434 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1436 if (asoc->pathmtu != pmtu) {
1437 asoc->pathmtu = pmtu;
1438 sctp_assoc_update_frag_point(asoc);
1441 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1442 asoc->pathmtu, asoc->frag_point);
1445 /* Update the association's pmtu and frag_point by going through all the
1446 * transports. This routine is called when a transport's PMTU has changed.
1448 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1450 struct sctp_transport *t;
1451 __u32 pmtu = 0;
1453 if (!asoc)
1454 return;
1456 /* Get the lowest pmtu of all the transports. */
1457 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1458 if (t->pmtu_pending && t->dst) {
1459 sctp_transport_update_pmtu(t,
1460 atomic_read(&t->mtu_info));
1461 t->pmtu_pending = 0;
1463 if (!pmtu || (t->pathmtu < pmtu))
1464 pmtu = t->pathmtu;
1467 sctp_assoc_set_pmtu(asoc, pmtu);
1470 /* Should we send a SACK to update our peer? */
1471 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1473 struct net *net = sock_net(asoc->base.sk);
1474 switch (asoc->state) {
1475 case SCTP_STATE_ESTABLISHED:
1476 case SCTP_STATE_SHUTDOWN_PENDING:
1477 case SCTP_STATE_SHUTDOWN_RECEIVED:
1478 case SCTP_STATE_SHUTDOWN_SENT:
1479 if ((asoc->rwnd > asoc->a_rwnd) &&
1480 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1481 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1482 asoc->pathmtu)))
1483 return true;
1484 break;
1485 default:
1486 break;
1488 return false;
1491 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1492 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1494 struct sctp_chunk *sack;
1495 struct timer_list *timer;
1497 if (asoc->rwnd_over) {
1498 if (asoc->rwnd_over >= len) {
1499 asoc->rwnd_over -= len;
1500 } else {
1501 asoc->rwnd += (len - asoc->rwnd_over);
1502 asoc->rwnd_over = 0;
1504 } else {
1505 asoc->rwnd += len;
1508 /* If we had window pressure, start recovering it
1509 * once our rwnd had reached the accumulated pressure
1510 * threshold. The idea is to recover slowly, but up
1511 * to the initial advertised window.
1513 if (asoc->rwnd_press) {
1514 int change = min(asoc->pathmtu, asoc->rwnd_press);
1515 asoc->rwnd += change;
1516 asoc->rwnd_press -= change;
1519 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1520 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1521 asoc->a_rwnd);
1523 /* Send a window update SACK if the rwnd has increased by at least the
1524 * minimum of the association's PMTU and half of the receive buffer.
1525 * The algorithm used is similar to the one described in
1526 * Section 4.2.3.3 of RFC 1122.
1528 if (sctp_peer_needs_update(asoc)) {
1529 asoc->a_rwnd = asoc->rwnd;
1531 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1532 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1533 asoc->a_rwnd);
1535 sack = sctp_make_sack(asoc);
1536 if (!sack)
1537 return;
1539 asoc->peer.sack_needed = 0;
1541 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1543 /* Stop the SACK timer. */
1544 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1545 if (del_timer(timer))
1546 sctp_association_put(asoc);
1550 /* Decrease asoc's rwnd by len. */
1551 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1553 int rx_count;
1554 int over = 0;
1556 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1557 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1558 "asoc->rwnd_over:%u!\n", __func__, asoc,
1559 asoc->rwnd, asoc->rwnd_over);
1561 if (asoc->ep->rcvbuf_policy)
1562 rx_count = atomic_read(&asoc->rmem_alloc);
1563 else
1564 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1566 /* If we've reached or overflowed our receive buffer, announce
1567 * a 0 rwnd if rwnd would still be positive. Store the
1568 * the potential pressure overflow so that the window can be restored
1569 * back to original value.
1571 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1572 over = 1;
1574 if (asoc->rwnd >= len) {
1575 asoc->rwnd -= len;
1576 if (over) {
1577 asoc->rwnd_press += asoc->rwnd;
1578 asoc->rwnd = 0;
1580 } else {
1581 asoc->rwnd_over += len - asoc->rwnd;
1582 asoc->rwnd = 0;
1585 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1586 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1587 asoc->rwnd_press);
1590 /* Build the bind address list for the association based on info from the
1591 * local endpoint and the remote peer.
1593 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1594 enum sctp_scope scope, gfp_t gfp)
1596 struct sock *sk = asoc->base.sk;
1597 int flags;
1599 /* Use scoping rules to determine the subset of addresses from
1600 * the endpoint.
1602 flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1603 if (!inet_v6_ipv6only(sk))
1604 flags |= SCTP_ADDR4_ALLOWED;
1605 if (asoc->peer.ipv4_address)
1606 flags |= SCTP_ADDR4_PEERSUPP;
1607 if (asoc->peer.ipv6_address)
1608 flags |= SCTP_ADDR6_PEERSUPP;
1610 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1611 &asoc->base.bind_addr,
1612 &asoc->ep->base.bind_addr,
1613 scope, gfp, flags);
1616 /* Build the association's bind address list from the cookie. */
1617 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1618 struct sctp_cookie *cookie,
1619 gfp_t gfp)
1621 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1622 int var_size3 = cookie->raw_addr_list_len;
1623 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1625 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1626 asoc->ep->base.bind_addr.port, gfp);
1629 /* Lookup laddr in the bind address list of an association. */
1630 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1631 const union sctp_addr *laddr)
1633 int found = 0;
1635 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1636 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1637 sctp_sk(asoc->base.sk)))
1638 found = 1;
1640 return found;
1643 /* Set an association id for a given association */
1644 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1646 bool preload = gfpflags_allow_blocking(gfp);
1647 int ret;
1649 /* If the id is already assigned, keep it. */
1650 if (asoc->assoc_id)
1651 return 0;
1653 if (preload)
1654 idr_preload(gfp);
1655 spin_lock_bh(&sctp_assocs_id_lock);
1656 /* 0 is not a valid assoc_id, must be >= 1 */
1657 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1658 spin_unlock_bh(&sctp_assocs_id_lock);
1659 if (preload)
1660 idr_preload_end();
1661 if (ret < 0)
1662 return ret;
1664 asoc->assoc_id = (sctp_assoc_t)ret;
1665 return 0;
1668 /* Free the ASCONF queue */
1669 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1671 struct sctp_chunk *asconf;
1672 struct sctp_chunk *tmp;
1674 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1675 list_del_init(&asconf->list);
1676 sctp_chunk_free(asconf);
1680 /* Free asconf_ack cache */
1681 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1683 struct sctp_chunk *ack;
1684 struct sctp_chunk *tmp;
1686 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1687 transmitted_list) {
1688 list_del_init(&ack->transmitted_list);
1689 sctp_chunk_free(ack);
1693 /* Clean up the ASCONF_ACK queue */
1694 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1696 struct sctp_chunk *ack;
1697 struct sctp_chunk *tmp;
1699 /* We can remove all the entries from the queue up to
1700 * the "Peer-Sequence-Number".
1702 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1703 transmitted_list) {
1704 if (ack->subh.addip_hdr->serial ==
1705 htonl(asoc->peer.addip_serial))
1706 break;
1708 list_del_init(&ack->transmitted_list);
1709 sctp_chunk_free(ack);
1713 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1714 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1715 const struct sctp_association *asoc,
1716 __be32 serial)
1718 struct sctp_chunk *ack;
1720 /* Walk through the list of cached ASCONF-ACKs and find the
1721 * ack chunk whose serial number matches that of the request.
1723 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1724 if (sctp_chunk_pending(ack))
1725 continue;
1726 if (ack->subh.addip_hdr->serial == serial) {
1727 sctp_chunk_hold(ack);
1728 return ack;
1732 return NULL;
1735 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1737 /* Free any cached ASCONF_ACK chunk. */
1738 sctp_assoc_free_asconf_acks(asoc);
1740 /* Free the ASCONF queue. */
1741 sctp_assoc_free_asconf_queue(asoc);
1743 /* Free any cached ASCONF chunk. */
1744 if (asoc->addip_last_asconf)
1745 sctp_chunk_free(asoc->addip_last_asconf);