1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, see
20 * <http://www.gnu.org/licenses/>.
22 * Please send any bug reports or fixes you make to the
24 * lksctp developers <linux-sctp@vger.kernel.org>
26 * Written or modified by:
27 * Vlad Yasevich <vladislav.yasevich@hp.com>
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
37 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
39 /* id 0 is reserved. as all 0 */
40 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
43 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
44 .hmac_name
= "hmac(sha1)",
45 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
48 /* id 2 is reserved as well */
49 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
53 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
54 .hmac_name
= "hmac(sha256)",
55 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
61 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
66 if (refcount_dec_and_test(&key
->refcnt
)) {
68 SCTP_DBG_OBJCNT_DEC(keys
);
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
75 struct sctp_auth_bytes
*key
;
77 /* Verify that we are not going to overflow INT_MAX */
78 if (key_len
> (INT_MAX
- sizeof(struct sctp_auth_bytes
)))
81 /* Allocate the shared key */
82 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
87 refcount_set(&key
->refcnt
, 1);
88 SCTP_DBG_OBJCNT_INC(keys
);
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
96 struct sctp_shared_key
*new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
103 INIT_LIST_HEAD(&new->key_list
);
104 refcount_set(&new->refcnt
, 1);
105 new->key_id
= key_id
;
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_destroy(struct sctp_shared_key
*sh_key
)
113 BUG_ON(!list_empty(&sh_key
->key_list
));
114 sctp_auth_key_put(sh_key
->key
);
119 void sctp_auth_shkey_release(struct sctp_shared_key
*sh_key
)
121 if (refcount_dec_and_test(&sh_key
->refcnt
))
122 sctp_auth_shkey_destroy(sh_key
);
125 void sctp_auth_shkey_hold(struct sctp_shared_key
*sh_key
)
127 refcount_inc(&sh_key
->refcnt
);
130 /* Destroy the entire key list. This is done during the
131 * associon and endpoint free process.
133 void sctp_auth_destroy_keys(struct list_head
*keys
)
135 struct sctp_shared_key
*ep_key
;
136 struct sctp_shared_key
*tmp
;
138 if (list_empty(keys
))
141 key_for_each_safe(ep_key
, tmp
, keys
) {
142 list_del_init(&ep_key
->key_list
);
143 sctp_auth_shkey_release(ep_key
);
147 /* Compare two byte vectors as numbers. Return values
149 * 0 - vectors are equal
150 * < 0 - vector 1 is smaller than vector2
151 * > 0 - vector 1 is greater than vector2
154 * This is performed by selecting the numerically smaller key vector...
155 * If the key vectors are equal as numbers but differ in length ...
156 * the shorter vector is considered smaller
158 * Examples (with small values):
159 * 000123456789 > 123456789 (first number is longer)
160 * 000123456789 < 234567891 (second number is larger numerically)
161 * 123456789 > 2345678 (first number is both larger & longer)
163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
164 struct sctp_auth_bytes
*vector2
)
170 diff
= vector1
->len
- vector2
->len
;
172 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
174 /* Check to see if the longer number is
175 * lead-zero padded. If it is not, it
176 * is automatically larger numerically.
178 for (i
= 0; i
< abs(diff
); i
++) {
184 /* lengths are the same, compare numbers */
185 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
189 * Create a key vector as described in SCTP-AUTH, Section 6.1
190 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191 * parameter sent by each endpoint are concatenated as byte vectors.
192 * These parameters include the parameter type, parameter length, and
193 * the parameter value, but padding is omitted; all padding MUST be
194 * removed from this concatenation before proceeding with further
195 * computation of keys. Parameters which were not sent are simply
196 * omitted from the concatenation process. The resulting two vectors
197 * are called the two key vectors.
199 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
200 struct sctp_random_param
*random
,
201 struct sctp_chunks_param
*chunks
,
202 struct sctp_hmac_algo_param
*hmacs
,
205 struct sctp_auth_bytes
*new;
208 __u16 random_len
, hmacs_len
, chunks_len
= 0;
210 random_len
= ntohs(random
->param_hdr
.length
);
211 hmacs_len
= ntohs(hmacs
->param_hdr
.length
);
213 chunks_len
= ntohs(chunks
->param_hdr
.length
);
215 len
= random_len
+ hmacs_len
+ chunks_len
;
217 new = sctp_auth_create_key(len
, gfp
);
221 memcpy(new->data
, random
, random_len
);
222 offset
+= random_len
;
225 memcpy(new->data
+ offset
, chunks
, chunks_len
);
226 offset
+= chunks_len
;
229 memcpy(new->data
+ offset
, hmacs
, hmacs_len
);
235 /* Make a key vector based on our local parameters */
236 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
237 const struct sctp_association
*asoc
,
240 return sctp_auth_make_key_vector(
241 (struct sctp_random_param
*)asoc
->c
.auth_random
,
242 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
,
243 (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
, gfp
);
246 /* Make a key vector based on peer's parameters */
247 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
248 const struct sctp_association
*asoc
,
251 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
252 asoc
->peer
.peer_chunks
,
253 asoc
->peer
.peer_hmacs
,
258 /* Set the value of the association shared key base on the parameters
259 * given. The algorithm is:
260 * From the endpoint pair shared keys and the key vectors the
261 * association shared keys are computed. This is performed by selecting
262 * the numerically smaller key vector and concatenating it to the
263 * endpoint pair shared key, and then concatenating the numerically
264 * larger key vector to that. The result of the concatenation is the
265 * association shared key.
267 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
268 struct sctp_shared_key
*ep_key
,
269 struct sctp_auth_bytes
*first_vector
,
270 struct sctp_auth_bytes
*last_vector
,
273 struct sctp_auth_bytes
*secret
;
277 auth_len
= first_vector
->len
+ last_vector
->len
;
279 auth_len
+= ep_key
->key
->len
;
281 secret
= sctp_auth_create_key(auth_len
, gfp
);
286 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
287 offset
+= ep_key
->key
->len
;
290 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
291 offset
+= first_vector
->len
;
293 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
298 /* Create an association shared key. Follow the algorithm
299 * described in SCTP-AUTH, Section 6.1
301 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
302 const struct sctp_association
*asoc
,
303 struct sctp_shared_key
*ep_key
,
306 struct sctp_auth_bytes
*local_key_vector
;
307 struct sctp_auth_bytes
*peer_key_vector
;
308 struct sctp_auth_bytes
*first_vector
,
310 struct sctp_auth_bytes
*secret
= NULL
;
314 /* Now we need to build the key vectors
315 * SCTP-AUTH , Section 6.1
316 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 * parameter sent by each endpoint are concatenated as byte vectors.
318 * These parameters include the parameter type, parameter length, and
319 * the parameter value, but padding is omitted; all padding MUST be
320 * removed from this concatenation before proceeding with further
321 * computation of keys. Parameters which were not sent are simply
322 * omitted from the concatenation process. The resulting two vectors
323 * are called the two key vectors.
326 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
327 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
329 if (!peer_key_vector
|| !local_key_vector
)
332 /* Figure out the order in which the key_vectors will be
333 * added to the endpoint shared key.
334 * SCTP-AUTH, Section 6.1:
335 * This is performed by selecting the numerically smaller key
336 * vector and concatenating it to the endpoint pair shared
337 * key, and then concatenating the numerically larger key
338 * vector to that. If the key vectors are equal as numbers
339 * but differ in length, then the concatenation order is the
340 * endpoint shared key, followed by the shorter key vector,
341 * followed by the longer key vector. Otherwise, the key
342 * vectors are identical, and may be concatenated to the
343 * endpoint pair key in any order.
345 cmp
= sctp_auth_compare_vectors(local_key_vector
,
348 first_vector
= local_key_vector
;
349 last_vector
= peer_key_vector
;
351 first_vector
= peer_key_vector
;
352 last_vector
= local_key_vector
;
355 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
358 sctp_auth_key_put(local_key_vector
);
359 sctp_auth_key_put(peer_key_vector
);
365 * Populate the association overlay list with the list
368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
369 struct sctp_association
*asoc
,
372 struct sctp_shared_key
*sh_key
;
373 struct sctp_shared_key
*new;
375 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
377 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
378 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
382 new->key
= sh_key
->key
;
383 sctp_auth_key_hold(new->key
);
384 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
390 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
395 /* Public interface to create the association shared key.
396 * See code above for the algorithm.
398 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
400 struct sctp_auth_bytes
*secret
;
401 struct sctp_shared_key
*ep_key
;
402 struct sctp_chunk
*chunk
;
404 /* If we don't support AUTH, or peer is not capable
405 * we don't need to do anything.
407 if (!asoc
->ep
->auth_enable
|| !asoc
->peer
.auth_capable
)
410 /* If the key_id is non-zero and we couldn't find an
411 * endpoint pair shared key, we can't compute the
413 * For key_id 0, endpoint pair shared key is a NULL key.
415 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
418 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
422 sctp_auth_key_put(asoc
->asoc_shared_key
);
423 asoc
->asoc_shared_key
= secret
;
424 asoc
->shkey
= ep_key
;
426 /* Update send queue in case any chunk already in there now
427 * needs authenticating
429 list_for_each_entry(chunk
, &asoc
->outqueue
.out_chunk_list
, list
) {
430 if (sctp_auth_send_cid(chunk
->chunk_hdr
->type
, asoc
)) {
433 chunk
->shkey
= asoc
->shkey
;
434 sctp_auth_shkey_hold(chunk
->shkey
);
443 /* Find the endpoint pair shared key based on the key_id */
444 struct sctp_shared_key
*sctp_auth_get_shkey(
445 const struct sctp_association
*asoc
,
448 struct sctp_shared_key
*key
;
450 /* First search associations set of endpoint pair shared keys */
451 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
452 if (key
->key_id
== key_id
) {
453 if (!key
->deactivated
)
463 * Initialize all the possible digest transforms that we can use. Right now
464 * now, the supported digests are SHA1 and SHA256. We do this here once
465 * because of the restrictiong that transforms may only be allocated in
466 * user context. This forces us to pre-allocated all possible transforms
467 * at the endpoint init time.
469 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
471 struct crypto_shash
*tfm
= NULL
;
474 /* If AUTH extension is disabled, we are done */
475 if (!ep
->auth_enable
) {
476 ep
->auth_hmacs
= NULL
;
480 /* If the transforms are already allocated, we are done */
484 /* Allocated the array of pointers to transorms */
485 ep
->auth_hmacs
= kcalloc(SCTP_AUTH_NUM_HMACS
,
486 sizeof(struct crypto_shash
*),
491 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
493 /* See is we support the id. Supported IDs have name and
494 * length fields set, so that we can allocated and use
495 * them. We can safely just check for name, for without the
496 * name, we can't allocate the TFM.
498 if (!sctp_hmac_list
[id
].hmac_name
)
501 /* If this TFM has been allocated, we are all set */
502 if (ep
->auth_hmacs
[id
])
505 /* Allocate the ID */
506 tfm
= crypto_alloc_shash(sctp_hmac_list
[id
].hmac_name
, 0, 0);
510 ep
->auth_hmacs
[id
] = tfm
;
516 /* Clean up any successful allocations */
517 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
521 /* Destroy the hmac tfm array */
522 void sctp_auth_destroy_hmacs(struct crypto_shash
*auth_hmacs
[])
529 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++) {
530 crypto_free_shash(auth_hmacs
[i
]);
536 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
538 return &sctp_hmac_list
[hmac_id
];
541 /* Get an hmac description information that we can use to build
544 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
546 struct sctp_hmac_algo_param
*hmacs
;
551 /* If we have a default entry, use it */
552 if (asoc
->default_hmac_id
)
553 return &sctp_hmac_list
[asoc
->default_hmac_id
];
555 /* Since we do not have a default entry, find the first entry
556 * we support and return that. Do not cache that id.
558 hmacs
= asoc
->peer
.peer_hmacs
;
562 n_elt
= (ntohs(hmacs
->param_hdr
.length
) -
563 sizeof(struct sctp_paramhdr
)) >> 1;
564 for (i
= 0; i
< n_elt
; i
++) {
565 id
= ntohs(hmacs
->hmac_ids
[i
]);
567 /* Check the id is in the supported range. And
568 * see if we support the id. Supported IDs have name and
569 * length fields set, so that we can allocate and use
570 * them. We can safely just check for name, for without the
571 * name, we can't allocate the TFM.
573 if (id
> SCTP_AUTH_HMAC_ID_MAX
||
574 !sctp_hmac_list
[id
].hmac_name
) {
585 return &sctp_hmac_list
[id
];
588 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
593 for (i
= 0; i
< n_elts
; i
++) {
594 if (hmac_id
== hmacs
[i
]) {
603 /* See if the HMAC_ID is one that we claim as supported */
604 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
607 struct sctp_hmac_algo_param
*hmacs
;
613 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
614 n_elt
= (ntohs(hmacs
->param_hdr
.length
) -
615 sizeof(struct sctp_paramhdr
)) >> 1;
617 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
621 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
623 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
624 * algorithm it supports.
626 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
627 struct sctp_hmac_algo_param
*hmacs
)
629 struct sctp_endpoint
*ep
;
634 /* if the default id is already set, use it */
635 if (asoc
->default_hmac_id
)
638 n_params
= (ntohs(hmacs
->param_hdr
.length
) -
639 sizeof(struct sctp_paramhdr
)) >> 1;
641 for (i
= 0; i
< n_params
; i
++) {
642 id
= ntohs(hmacs
->hmac_ids
[i
]);
644 /* Check the id is in the supported range */
645 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
648 /* If this TFM has been allocated, use this id */
649 if (ep
->auth_hmacs
[id
]) {
650 asoc
->default_hmac_id
= id
;
657 /* Check to see if the given chunk is supposed to be authenticated */
658 static int __sctp_auth_cid(enum sctp_cid chunk
, struct sctp_chunks_param
*param
)
664 if (!param
|| param
->param_hdr
.length
== 0)
667 len
= ntohs(param
->param_hdr
.length
) - sizeof(struct sctp_paramhdr
);
669 /* SCTP-AUTH, Section 3.2
670 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
671 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
672 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
673 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
675 for (i
= 0; !found
&& i
< len
; i
++) {
676 switch (param
->chunks
[i
]) {
678 case SCTP_CID_INIT_ACK
:
679 case SCTP_CID_SHUTDOWN_COMPLETE
:
684 if (param
->chunks
[i
] == chunk
)
693 /* Check if peer requested that this chunk is authenticated */
694 int sctp_auth_send_cid(enum sctp_cid chunk
, const struct sctp_association
*asoc
)
699 if (!asoc
->ep
->auth_enable
|| !asoc
->peer
.auth_capable
)
702 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
705 /* Check if we requested that peer authenticate this chunk. */
706 int sctp_auth_recv_cid(enum sctp_cid chunk
, const struct sctp_association
*asoc
)
711 if (!asoc
->ep
->auth_enable
)
714 return __sctp_auth_cid(chunk
,
715 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
718 /* SCTP-AUTH: Section 6.2:
719 * The sender MUST calculate the MAC as described in RFC2104 [2] using
720 * the hash function H as described by the MAC Identifier and the shared
721 * association key K based on the endpoint pair shared key described by
722 * the shared key identifier. The 'data' used for the computation of
723 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
724 * zero (as shown in Figure 6) followed by all chunks that are placed
725 * after the AUTH chunk in the SCTP packet.
727 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
728 struct sk_buff
*skb
, struct sctp_auth_chunk
*auth
,
729 struct sctp_shared_key
*ep_key
, gfp_t gfp
)
731 struct sctp_auth_bytes
*asoc_key
;
732 struct crypto_shash
*tfm
;
733 __u16 key_id
, hmac_id
;
738 /* Extract the info we need:
742 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
743 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
745 if (key_id
== asoc
->active_key_id
)
746 asoc_key
= asoc
->asoc_shared_key
;
748 /* ep_key can't be NULL here */
749 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
756 /* set up scatter list */
757 end
= skb_tail_pointer(skb
);
759 tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
761 digest
= auth
->auth_hdr
.hmac
;
762 if (crypto_shash_setkey(tfm
, &asoc_key
->data
[0], asoc_key
->len
))
766 SHASH_DESC_ON_STACK(desc
, tfm
);
770 crypto_shash_digest(desc
, (u8
*)auth
,
771 end
- (unsigned char *)auth
, digest
);
772 shash_desc_zero(desc
);
777 sctp_auth_key_put(asoc_key
);
782 /* Add a chunk to the endpoint authenticated chunk list */
783 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
785 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
789 /* If this chunk is already specified, we are done */
790 if (__sctp_auth_cid(chunk_id
, p
))
793 /* Check if we can add this chunk to the array */
794 param_len
= ntohs(p
->param_hdr
.length
);
795 nchunks
= param_len
- sizeof(struct sctp_paramhdr
);
796 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
799 p
->chunks
[nchunks
] = chunk_id
;
800 p
->param_hdr
.length
= htons(param_len
+ 1);
804 /* Add hmac identifires to the endpoint list of supported hmac ids */
805 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
806 struct sctp_hmacalgo
*hmacs
)
812 /* Scan the list looking for unsupported id. Also make sure that
815 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
816 id
= hmacs
->shmac_idents
[i
];
818 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
821 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
824 if (!sctp_hmac_list
[id
].hmac_name
)
831 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++)
832 ep
->auth_hmacs_list
->hmac_ids
[i
] =
833 htons(hmacs
->shmac_idents
[i
]);
834 ep
->auth_hmacs_list
->param_hdr
.length
=
835 htons(sizeof(struct sctp_paramhdr
) +
836 hmacs
->shmac_num_idents
* sizeof(__u16
));
840 /* Set a new shared key on either endpoint or association. If the
841 * the key with a same ID already exists, replace the key (remove the
842 * old key and add a new one).
844 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
845 struct sctp_association
*asoc
,
846 struct sctp_authkey
*auth_key
)
848 struct sctp_shared_key
*cur_key
, *shkey
;
849 struct sctp_auth_bytes
*key
;
850 struct list_head
*sh_keys
;
853 /* Try to find the given key id to see if
854 * we are doing a replace, or adding a new key
857 sh_keys
= &asoc
->endpoint_shared_keys
;
859 sh_keys
= &ep
->endpoint_shared_keys
;
861 key_for_each(shkey
, sh_keys
) {
862 if (shkey
->key_id
== auth_key
->sca_keynumber
) {
868 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
, GFP_KERNEL
);
872 /* Create a new key data based on the info passed in */
873 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
879 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
883 list_del_init(&shkey
->key_list
);
884 sctp_auth_shkey_release(shkey
);
886 list_add(&cur_key
->key_list
, sh_keys
);
891 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
892 struct sctp_association
*asoc
,
895 struct sctp_shared_key
*key
;
896 struct list_head
*sh_keys
;
899 /* The key identifier MUST correst to an existing key */
901 sh_keys
= &asoc
->endpoint_shared_keys
;
903 sh_keys
= &ep
->endpoint_shared_keys
;
905 key_for_each(key
, sh_keys
) {
906 if (key
->key_id
== key_id
) {
912 if (!found
|| key
->deactivated
)
916 asoc
->active_key_id
= key_id
;
917 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
919 ep
->active_key_id
= key_id
;
924 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
925 struct sctp_association
*asoc
,
928 struct sctp_shared_key
*key
;
929 struct list_head
*sh_keys
;
932 /* The key identifier MUST NOT be the current active key
933 * The key identifier MUST correst to an existing key
936 if (asoc
->active_key_id
== key_id
)
939 sh_keys
= &asoc
->endpoint_shared_keys
;
941 if (ep
->active_key_id
== key_id
)
944 sh_keys
= &ep
->endpoint_shared_keys
;
947 key_for_each(key
, sh_keys
) {
948 if (key
->key_id
== key_id
) {
957 /* Delete the shared key */
958 list_del_init(&key
->key_list
);
959 sctp_auth_shkey_release(key
);
964 int sctp_auth_deact_key_id(struct sctp_endpoint
*ep
,
965 struct sctp_association
*asoc
, __u16 key_id
)
967 struct sctp_shared_key
*key
;
968 struct list_head
*sh_keys
;
971 /* The key identifier MUST NOT be the current active key
972 * The key identifier MUST correst to an existing key
975 if (asoc
->active_key_id
== key_id
)
978 sh_keys
= &asoc
->endpoint_shared_keys
;
980 if (ep
->active_key_id
== key_id
)
983 sh_keys
= &ep
->endpoint_shared_keys
;
986 key_for_each(key
, sh_keys
) {
987 if (key
->key_id
== key_id
) {
996 /* refcnt == 1 and !list_empty mean it's not being used anywhere
997 * and deactivated will be set, so it's time to notify userland
998 * that this shkey can be freed.
1000 if (asoc
&& !list_empty(&key
->key_list
) &&
1001 refcount_read(&key
->refcnt
) == 1) {
1002 struct sctp_ulpevent
*ev
;
1004 ev
= sctp_ulpevent_make_authkey(asoc
, key
->key_id
,
1005 SCTP_AUTH_FREE_KEY
, GFP_KERNEL
);
1007 asoc
->stream
.si
->enqueue_event(&asoc
->ulpq
, ev
);
1010 key
->deactivated
= 1;