Linux 4.19.133
[linux/fpc-iii.git] / net / sctp / input.c
blobf64d882c86985e46cc8207702f8972c0368fb96b
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions handle all input from the IP layer into SCTP.
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
61 /* Forward declarations for internal helpers. */
62 static int sctp_rcv_ootb(struct sk_buff *);
63 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 struct sk_buff *skb,
65 const union sctp_addr *paddr,
66 const union sctp_addr *laddr,
67 struct sctp_transport **transportp);
68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 const union sctp_addr *laddr);
70 static struct sctp_association *__sctp_lookup_association(
71 struct net *net,
72 const union sctp_addr *local,
73 const union sctp_addr *peer,
74 struct sctp_transport **pt);
76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
79 /* Calculate the SCTP checksum of an SCTP packet. */
80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
82 struct sctphdr *sh = sctp_hdr(skb);
83 __le32 cmp = sh->checksum;
84 __le32 val = sctp_compute_cksum(skb, 0);
86 if (val != cmp) {
87 /* CRC failure, dump it. */
88 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
89 return -1;
91 return 0;
95 * This is the routine which IP calls when receiving an SCTP packet.
97 int sctp_rcv(struct sk_buff *skb)
99 struct sock *sk;
100 struct sctp_association *asoc;
101 struct sctp_endpoint *ep = NULL;
102 struct sctp_ep_common *rcvr;
103 struct sctp_transport *transport = NULL;
104 struct sctp_chunk *chunk;
105 union sctp_addr src;
106 union sctp_addr dest;
107 int family;
108 struct sctp_af *af;
109 struct net *net = dev_net(skb->dev);
110 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
112 if (skb->pkt_type != PACKET_HOST)
113 goto discard_it;
115 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
117 /* If packet is too small to contain a single chunk, let's not
118 * waste time on it anymore.
120 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
121 skb_transport_offset(skb))
122 goto discard_it;
124 /* If the packet is fragmented and we need to do crc checking,
125 * it's better to just linearize it otherwise crc computing
126 * takes longer.
128 if ((!is_gso && skb_linearize(skb)) ||
129 !pskb_may_pull(skb, sizeof(struct sctphdr)))
130 goto discard_it;
132 /* Pull up the IP header. */
133 __skb_pull(skb, skb_transport_offset(skb));
135 skb->csum_valid = 0; /* Previous value not applicable */
136 if (skb_csum_unnecessary(skb))
137 __skb_decr_checksum_unnecessary(skb);
138 else if (!sctp_checksum_disable &&
139 !is_gso &&
140 sctp_rcv_checksum(net, skb) < 0)
141 goto discard_it;
142 skb->csum_valid = 1;
144 __skb_pull(skb, sizeof(struct sctphdr));
146 family = ipver2af(ip_hdr(skb)->version);
147 af = sctp_get_af_specific(family);
148 if (unlikely(!af))
149 goto discard_it;
150 SCTP_INPUT_CB(skb)->af = af;
152 /* Initialize local addresses for lookups. */
153 af->from_skb(&src, skb, 1);
154 af->from_skb(&dest, skb, 0);
156 /* If the packet is to or from a non-unicast address,
157 * silently discard the packet.
159 * This is not clearly defined in the RFC except in section
160 * 8.4 - OOTB handling. However, based on the book "Stream Control
161 * Transmission Protocol" 2.1, "It is important to note that the
162 * IP address of an SCTP transport address must be a routable
163 * unicast address. In other words, IP multicast addresses and
164 * IP broadcast addresses cannot be used in an SCTP transport
165 * address."
167 if (!af->addr_valid(&src, NULL, skb) ||
168 !af->addr_valid(&dest, NULL, skb))
169 goto discard_it;
171 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
173 if (!asoc)
174 ep = __sctp_rcv_lookup_endpoint(net, &dest);
176 /* Retrieve the common input handling substructure. */
177 rcvr = asoc ? &asoc->base : &ep->base;
178 sk = rcvr->sk;
181 * If a frame arrives on an interface and the receiving socket is
182 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
184 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 if (transport) {
186 sctp_transport_put(transport);
187 asoc = NULL;
188 transport = NULL;
189 } else {
190 sctp_endpoint_put(ep);
191 ep = NULL;
193 sk = net->sctp.ctl_sock;
194 ep = sctp_sk(sk)->ep;
195 sctp_endpoint_hold(ep);
196 rcvr = &ep->base;
200 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 * An SCTP packet is called an "out of the blue" (OOTB)
202 * packet if it is correctly formed, i.e., passed the
203 * receiver's checksum check, but the receiver is not
204 * able to identify the association to which this
205 * packet belongs.
207 if (!asoc) {
208 if (sctp_rcv_ootb(skb)) {
209 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
210 goto discard_release;
214 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 goto discard_release;
216 nf_reset(skb);
218 if (sk_filter(sk, skb))
219 goto discard_release;
221 /* Create an SCTP packet structure. */
222 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 if (!chunk)
224 goto discard_release;
225 SCTP_INPUT_CB(skb)->chunk = chunk;
227 /* Remember what endpoint is to handle this packet. */
228 chunk->rcvr = rcvr;
230 /* Remember the SCTP header. */
231 chunk->sctp_hdr = sctp_hdr(skb);
233 /* Set the source and destination addresses of the incoming chunk. */
234 sctp_init_addrs(chunk, &src, &dest);
236 /* Remember where we came from. */
237 chunk->transport = transport;
239 /* Acquire access to the sock lock. Note: We are safe from other
240 * bottom halves on this lock, but a user may be in the lock too,
241 * so check if it is busy.
243 bh_lock_sock(sk);
245 if (sk != rcvr->sk) {
246 /* Our cached sk is different from the rcvr->sk. This is
247 * because migrate()/accept() may have moved the association
248 * to a new socket and released all the sockets. So now we
249 * are holding a lock on the old socket while the user may
250 * be doing something with the new socket. Switch our veiw
251 * of the current sk.
253 bh_unlock_sock(sk);
254 sk = rcvr->sk;
255 bh_lock_sock(sk);
258 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
259 if (sctp_add_backlog(sk, skb)) {
260 bh_unlock_sock(sk);
261 sctp_chunk_free(chunk);
262 skb = NULL; /* sctp_chunk_free already freed the skb */
263 goto discard_release;
265 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 } else {
267 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
271 bh_unlock_sock(sk);
273 /* Release the asoc/ep ref we took in the lookup calls. */
274 if (transport)
275 sctp_transport_put(transport);
276 else
277 sctp_endpoint_put(ep);
279 return 0;
281 discard_it:
282 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
283 kfree_skb(skb);
284 return 0;
286 discard_release:
287 /* Release the asoc/ep ref we took in the lookup calls. */
288 if (transport)
289 sctp_transport_put(transport);
290 else
291 sctp_endpoint_put(ep);
293 goto discard_it;
296 /* Process the backlog queue of the socket. Every skb on
297 * the backlog holds a ref on an association or endpoint.
298 * We hold this ref throughout the state machine to make
299 * sure that the structure we need is still around.
301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
303 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 struct sctp_transport *t = chunk->transport;
306 struct sctp_ep_common *rcvr = NULL;
307 int backloged = 0;
309 rcvr = chunk->rcvr;
311 /* If the rcvr is dead then the association or endpoint
312 * has been deleted and we can safely drop the chunk
313 * and refs that we are holding.
315 if (rcvr->dead) {
316 sctp_chunk_free(chunk);
317 goto done;
320 if (unlikely(rcvr->sk != sk)) {
321 /* In this case, the association moved from one socket to
322 * another. We are currently sitting on the backlog of the
323 * old socket, so we need to move.
324 * However, since we are here in the process context we
325 * need to take make sure that the user doesn't own
326 * the new socket when we process the packet.
327 * If the new socket is user-owned, queue the chunk to the
328 * backlog of the new socket without dropping any refs.
329 * Otherwise, we can safely push the chunk on the inqueue.
332 sk = rcvr->sk;
333 local_bh_disable();
334 bh_lock_sock(sk);
336 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
337 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 sctp_chunk_free(chunk);
339 else
340 backloged = 1;
341 } else
342 sctp_inq_push(inqueue, chunk);
344 bh_unlock_sock(sk);
345 local_bh_enable();
347 /* If the chunk was backloged again, don't drop refs */
348 if (backloged)
349 return 0;
350 } else {
351 if (!sctp_newsk_ready(sk)) {
352 if (!sk_add_backlog(sk, skb, sk->sk_rcvbuf))
353 return 0;
354 sctp_chunk_free(chunk);
355 } else {
356 sctp_inq_push(inqueue, chunk);
360 done:
361 /* Release the refs we took in sctp_add_backlog */
362 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
363 sctp_transport_put(t);
364 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
365 sctp_endpoint_put(sctp_ep(rcvr));
366 else
367 BUG();
369 return 0;
372 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
375 struct sctp_transport *t = chunk->transport;
376 struct sctp_ep_common *rcvr = chunk->rcvr;
377 int ret;
379 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
380 if (!ret) {
381 /* Hold the assoc/ep while hanging on the backlog queue.
382 * This way, we know structures we need will not disappear
383 * from us
385 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386 sctp_transport_hold(t);
387 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388 sctp_endpoint_hold(sctp_ep(rcvr));
389 else
390 BUG();
392 return ret;
396 /* Handle icmp frag needed error. */
397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398 struct sctp_transport *t, __u32 pmtu)
400 if (!t || (t->pathmtu <= pmtu))
401 return;
403 if (sock_owned_by_user(sk)) {
404 atomic_set(&t->mtu_info, pmtu);
405 asoc->pmtu_pending = 1;
406 t->pmtu_pending = 1;
407 return;
410 if (!(t->param_flags & SPP_PMTUD_ENABLE))
411 /* We can't allow retransmitting in such case, as the
412 * retransmission would be sized just as before, and thus we
413 * would get another icmp, and retransmit again.
415 return;
417 /* Update transports view of the MTU. Return if no update was needed.
418 * If an update wasn't needed/possible, it also doesn't make sense to
419 * try to retransmit now.
421 if (!sctp_transport_update_pmtu(t, pmtu))
422 return;
424 /* Update association pmtu. */
425 sctp_assoc_sync_pmtu(asoc);
427 /* Retransmit with the new pmtu setting. */
428 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
431 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
432 struct sk_buff *skb)
434 struct dst_entry *dst;
436 if (sock_owned_by_user(sk) || !t)
437 return;
438 dst = sctp_transport_dst_check(t);
439 if (dst)
440 dst->ops->redirect(dst, sk, skb);
444 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
446 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
447 * or a "Protocol Unreachable" treat this message as an abort
448 * with the T bit set.
450 * This function sends an event to the state machine, which will abort the
451 * association.
454 void sctp_icmp_proto_unreachable(struct sock *sk,
455 struct sctp_association *asoc,
456 struct sctp_transport *t)
458 if (sock_owned_by_user(sk)) {
459 if (timer_pending(&t->proto_unreach_timer))
460 return;
461 else {
462 if (!mod_timer(&t->proto_unreach_timer,
463 jiffies + (HZ/20)))
464 sctp_association_hold(asoc);
466 } else {
467 struct net *net = sock_net(sk);
469 pr_debug("%s: unrecognized next header type "
470 "encountered!\n", __func__);
472 if (del_timer(&t->proto_unreach_timer))
473 sctp_association_put(asoc);
475 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
476 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
477 asoc->state, asoc->ep, asoc, t,
478 GFP_ATOMIC);
482 /* Common lookup code for icmp/icmpv6 error handler. */
483 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
484 struct sctphdr *sctphdr,
485 struct sctp_association **app,
486 struct sctp_transport **tpp)
488 struct sctp_init_chunk *chunkhdr, _chunkhdr;
489 union sctp_addr saddr;
490 union sctp_addr daddr;
491 struct sctp_af *af;
492 struct sock *sk = NULL;
493 struct sctp_association *asoc;
494 struct sctp_transport *transport = NULL;
495 __u32 vtag = ntohl(sctphdr->vtag);
497 *app = NULL; *tpp = NULL;
499 af = sctp_get_af_specific(family);
500 if (unlikely(!af)) {
501 return NULL;
504 /* Initialize local addresses for lookups. */
505 af->from_skb(&saddr, skb, 1);
506 af->from_skb(&daddr, skb, 0);
508 /* Look for an association that matches the incoming ICMP error
509 * packet.
511 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
512 if (!asoc)
513 return NULL;
515 sk = asoc->base.sk;
517 /* RFC 4960, Appendix C. ICMP Handling
519 * ICMP6) An implementation MUST validate that the Verification Tag
520 * contained in the ICMP message matches the Verification Tag of
521 * the peer. If the Verification Tag is not 0 and does NOT
522 * match, discard the ICMP message. If it is 0 and the ICMP
523 * message contains enough bytes to verify that the chunk type is
524 * an INIT chunk and that the Initiate Tag matches the tag of the
525 * peer, continue with ICMP7. If the ICMP message is too short
526 * or the chunk type or the Initiate Tag does not match, silently
527 * discard the packet.
529 if (vtag == 0) {
530 /* chunk header + first 4 octects of init header */
531 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
532 sizeof(struct sctphdr),
533 sizeof(struct sctp_chunkhdr) +
534 sizeof(__be32), &_chunkhdr);
535 if (!chunkhdr ||
536 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
537 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
538 goto out;
540 } else if (vtag != asoc->c.peer_vtag) {
541 goto out;
544 bh_lock_sock(sk);
546 /* If too many ICMPs get dropped on busy
547 * servers this needs to be solved differently.
549 if (sock_owned_by_user(sk))
550 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
552 *app = asoc;
553 *tpp = transport;
554 return sk;
556 out:
557 sctp_transport_put(transport);
558 return NULL;
561 /* Common cleanup code for icmp/icmpv6 error handler. */
562 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
564 bh_unlock_sock(sk);
565 sctp_transport_put(t);
569 * This routine is called by the ICMP module when it gets some
570 * sort of error condition. If err < 0 then the socket should
571 * be closed and the error returned to the user. If err > 0
572 * it's just the icmp type << 8 | icmp code. After adjustment
573 * header points to the first 8 bytes of the sctp header. We need
574 * to find the appropriate port.
576 * The locking strategy used here is very "optimistic". When
577 * someone else accesses the socket the ICMP is just dropped
578 * and for some paths there is no check at all.
579 * A more general error queue to queue errors for later handling
580 * is probably better.
583 void sctp_v4_err(struct sk_buff *skb, __u32 info)
585 const struct iphdr *iph = (const struct iphdr *)skb->data;
586 const int ihlen = iph->ihl * 4;
587 const int type = icmp_hdr(skb)->type;
588 const int code = icmp_hdr(skb)->code;
589 struct sock *sk;
590 struct sctp_association *asoc = NULL;
591 struct sctp_transport *transport;
592 struct inet_sock *inet;
593 __u16 saveip, savesctp;
594 int err;
595 struct net *net = dev_net(skb->dev);
597 /* Fix up skb to look at the embedded net header. */
598 saveip = skb->network_header;
599 savesctp = skb->transport_header;
600 skb_reset_network_header(skb);
601 skb_set_transport_header(skb, ihlen);
602 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
603 /* Put back, the original values. */
604 skb->network_header = saveip;
605 skb->transport_header = savesctp;
606 if (!sk) {
607 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
608 return;
610 /* Warning: The sock lock is held. Remember to call
611 * sctp_err_finish!
614 switch (type) {
615 case ICMP_PARAMETERPROB:
616 err = EPROTO;
617 break;
618 case ICMP_DEST_UNREACH:
619 if (code > NR_ICMP_UNREACH)
620 goto out_unlock;
622 /* PMTU discovery (RFC1191) */
623 if (ICMP_FRAG_NEEDED == code) {
624 sctp_icmp_frag_needed(sk, asoc, transport,
625 SCTP_TRUNC4(info));
626 goto out_unlock;
627 } else {
628 if (ICMP_PROT_UNREACH == code) {
629 sctp_icmp_proto_unreachable(sk, asoc,
630 transport);
631 goto out_unlock;
634 err = icmp_err_convert[code].errno;
635 break;
636 case ICMP_TIME_EXCEEDED:
637 /* Ignore any time exceeded errors due to fragment reassembly
638 * timeouts.
640 if (ICMP_EXC_FRAGTIME == code)
641 goto out_unlock;
643 err = EHOSTUNREACH;
644 break;
645 case ICMP_REDIRECT:
646 sctp_icmp_redirect(sk, transport, skb);
647 /* Fall through to out_unlock. */
648 default:
649 goto out_unlock;
652 inet = inet_sk(sk);
653 if (!sock_owned_by_user(sk) && inet->recverr) {
654 sk->sk_err = err;
655 sk->sk_error_report(sk);
656 } else { /* Only an error on timeout */
657 sk->sk_err_soft = err;
660 out_unlock:
661 sctp_err_finish(sk, transport);
665 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
667 * This function scans all the chunks in the OOTB packet to determine if
668 * the packet should be discarded right away. If a response might be needed
669 * for this packet, or, if further processing is possible, the packet will
670 * be queued to a proper inqueue for the next phase of handling.
672 * Output:
673 * Return 0 - If further processing is needed.
674 * Return 1 - If the packet can be discarded right away.
676 static int sctp_rcv_ootb(struct sk_buff *skb)
678 struct sctp_chunkhdr *ch, _ch;
679 int ch_end, offset = 0;
681 /* Scan through all the chunks in the packet. */
682 do {
683 /* Make sure we have at least the header there */
684 if (offset + sizeof(_ch) > skb->len)
685 break;
687 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
689 /* Break out if chunk length is less then minimal. */
690 if (ntohs(ch->length) < sizeof(_ch))
691 break;
693 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
694 if (ch_end > skb->len)
695 break;
697 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
698 * receiver MUST silently discard the OOTB packet and take no
699 * further action.
701 if (SCTP_CID_ABORT == ch->type)
702 goto discard;
704 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
705 * chunk, the receiver should silently discard the packet
706 * and take no further action.
708 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
709 goto discard;
711 /* RFC 4460, 2.11.2
712 * This will discard packets with INIT chunk bundled as
713 * subsequent chunks in the packet. When INIT is first,
714 * the normal INIT processing will discard the chunk.
716 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
717 goto discard;
719 offset = ch_end;
720 } while (ch_end < skb->len);
722 return 0;
724 discard:
725 return 1;
728 /* Insert endpoint into the hash table. */
729 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
731 struct net *net = sock_net(ep->base.sk);
732 struct sctp_ep_common *epb;
733 struct sctp_hashbucket *head;
735 epb = &ep->base;
737 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
738 head = &sctp_ep_hashtable[epb->hashent];
740 write_lock(&head->lock);
741 hlist_add_head(&epb->node, &head->chain);
742 write_unlock(&head->lock);
745 /* Add an endpoint to the hash. Local BH-safe. */
746 void sctp_hash_endpoint(struct sctp_endpoint *ep)
748 local_bh_disable();
749 __sctp_hash_endpoint(ep);
750 local_bh_enable();
753 /* Remove endpoint from the hash table. */
754 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
756 struct net *net = sock_net(ep->base.sk);
757 struct sctp_hashbucket *head;
758 struct sctp_ep_common *epb;
760 epb = &ep->base;
762 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
764 head = &sctp_ep_hashtable[epb->hashent];
766 write_lock(&head->lock);
767 hlist_del_init(&epb->node);
768 write_unlock(&head->lock);
771 /* Remove endpoint from the hash. Local BH-safe. */
772 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
774 local_bh_disable();
775 __sctp_unhash_endpoint(ep);
776 local_bh_enable();
779 /* Look up an endpoint. */
780 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
781 const union sctp_addr *laddr)
783 struct sctp_hashbucket *head;
784 struct sctp_ep_common *epb;
785 struct sctp_endpoint *ep;
786 int hash;
788 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
789 head = &sctp_ep_hashtable[hash];
790 read_lock(&head->lock);
791 sctp_for_each_hentry(epb, &head->chain) {
792 ep = sctp_ep(epb);
793 if (sctp_endpoint_is_match(ep, net, laddr))
794 goto hit;
797 ep = sctp_sk(net->sctp.ctl_sock)->ep;
799 hit:
800 sctp_endpoint_hold(ep);
801 read_unlock(&head->lock);
802 return ep;
805 /* rhashtable for transport */
806 struct sctp_hash_cmp_arg {
807 const union sctp_addr *paddr;
808 const struct net *net;
809 __be16 lport;
812 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
813 const void *ptr)
815 struct sctp_transport *t = (struct sctp_transport *)ptr;
816 const struct sctp_hash_cmp_arg *x = arg->key;
817 int err = 1;
819 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
820 return err;
821 if (!sctp_transport_hold(t))
822 return err;
824 if (!net_eq(t->asoc->base.net, x->net))
825 goto out;
826 if (x->lport != htons(t->asoc->base.bind_addr.port))
827 goto out;
829 err = 0;
830 out:
831 sctp_transport_put(t);
832 return err;
835 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
837 const struct sctp_transport *t = data;
838 const union sctp_addr *paddr = &t->ipaddr;
839 const struct net *net = t->asoc->base.net;
840 __be16 lport = htons(t->asoc->base.bind_addr.port);
841 __u32 addr;
843 if (paddr->sa.sa_family == AF_INET6)
844 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
845 else
846 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
848 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
849 (__force __u32)lport, net_hash_mix(net), seed);
852 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
854 const struct sctp_hash_cmp_arg *x = data;
855 const union sctp_addr *paddr = x->paddr;
856 const struct net *net = x->net;
857 __be16 lport = x->lport;
858 __u32 addr;
860 if (paddr->sa.sa_family == AF_INET6)
861 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
862 else
863 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
865 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
866 (__force __u32)lport, net_hash_mix(net), seed);
869 static const struct rhashtable_params sctp_hash_params = {
870 .head_offset = offsetof(struct sctp_transport, node),
871 .hashfn = sctp_hash_key,
872 .obj_hashfn = sctp_hash_obj,
873 .obj_cmpfn = sctp_hash_cmp,
874 .automatic_shrinking = true,
877 int sctp_transport_hashtable_init(void)
879 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
882 void sctp_transport_hashtable_destroy(void)
884 rhltable_destroy(&sctp_transport_hashtable);
887 int sctp_hash_transport(struct sctp_transport *t)
889 struct sctp_transport *transport;
890 struct rhlist_head *tmp, *list;
891 struct sctp_hash_cmp_arg arg;
892 int err;
894 if (t->asoc->temp)
895 return 0;
897 arg.net = sock_net(t->asoc->base.sk);
898 arg.paddr = &t->ipaddr;
899 arg.lport = htons(t->asoc->base.bind_addr.port);
901 rcu_read_lock();
902 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
903 sctp_hash_params);
905 rhl_for_each_entry_rcu(transport, tmp, list, node)
906 if (transport->asoc->ep == t->asoc->ep) {
907 rcu_read_unlock();
908 return -EEXIST;
910 rcu_read_unlock();
912 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
913 &t->node, sctp_hash_params);
914 if (err)
915 pr_err_once("insert transport fail, errno %d\n", err);
917 return err;
920 void sctp_unhash_transport(struct sctp_transport *t)
922 if (t->asoc->temp)
923 return;
925 rhltable_remove(&sctp_transport_hashtable, &t->node,
926 sctp_hash_params);
929 /* return a transport with holding it */
930 struct sctp_transport *sctp_addrs_lookup_transport(
931 struct net *net,
932 const union sctp_addr *laddr,
933 const union sctp_addr *paddr)
935 struct rhlist_head *tmp, *list;
936 struct sctp_transport *t;
937 struct sctp_hash_cmp_arg arg = {
938 .paddr = paddr,
939 .net = net,
940 .lport = laddr->v4.sin_port,
943 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
944 sctp_hash_params);
946 rhl_for_each_entry_rcu(t, tmp, list, node) {
947 if (!sctp_transport_hold(t))
948 continue;
950 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
951 laddr, sctp_sk(t->asoc->base.sk)))
952 return t;
953 sctp_transport_put(t);
956 return NULL;
959 /* return a transport without holding it, as it's only used under sock lock */
960 struct sctp_transport *sctp_epaddr_lookup_transport(
961 const struct sctp_endpoint *ep,
962 const union sctp_addr *paddr)
964 struct net *net = sock_net(ep->base.sk);
965 struct rhlist_head *tmp, *list;
966 struct sctp_transport *t;
967 struct sctp_hash_cmp_arg arg = {
968 .paddr = paddr,
969 .net = net,
970 .lport = htons(ep->base.bind_addr.port),
973 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
974 sctp_hash_params);
976 rhl_for_each_entry_rcu(t, tmp, list, node)
977 if (ep == t->asoc->ep)
978 return t;
980 return NULL;
983 /* Look up an association. */
984 static struct sctp_association *__sctp_lookup_association(
985 struct net *net,
986 const union sctp_addr *local,
987 const union sctp_addr *peer,
988 struct sctp_transport **pt)
990 struct sctp_transport *t;
991 struct sctp_association *asoc = NULL;
993 t = sctp_addrs_lookup_transport(net, local, peer);
994 if (!t)
995 goto out;
997 asoc = t->asoc;
998 *pt = t;
1000 out:
1001 return asoc;
1004 /* Look up an association. protected by RCU read lock */
1005 static
1006 struct sctp_association *sctp_lookup_association(struct net *net,
1007 const union sctp_addr *laddr,
1008 const union sctp_addr *paddr,
1009 struct sctp_transport **transportp)
1011 struct sctp_association *asoc;
1013 rcu_read_lock();
1014 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1015 rcu_read_unlock();
1017 return asoc;
1020 /* Is there an association matching the given local and peer addresses? */
1021 bool sctp_has_association(struct net *net,
1022 const union sctp_addr *laddr,
1023 const union sctp_addr *paddr)
1025 struct sctp_transport *transport;
1027 if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1028 sctp_transport_put(transport);
1029 return true;
1032 return false;
1036 * SCTP Implementors Guide, 2.18 Handling of address
1037 * parameters within the INIT or INIT-ACK.
1039 * D) When searching for a matching TCB upon reception of an INIT
1040 * or INIT-ACK chunk the receiver SHOULD use not only the
1041 * source address of the packet (containing the INIT or
1042 * INIT-ACK) but the receiver SHOULD also use all valid
1043 * address parameters contained within the chunk.
1045 * 2.18.3 Solution description
1047 * This new text clearly specifies to an implementor the need
1048 * to look within the INIT or INIT-ACK. Any implementation that
1049 * does not do this, may not be able to establish associations
1050 * in certain circumstances.
1053 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1054 struct sk_buff *skb,
1055 const union sctp_addr *laddr, struct sctp_transport **transportp)
1057 struct sctp_association *asoc;
1058 union sctp_addr addr;
1059 union sctp_addr *paddr = &addr;
1060 struct sctphdr *sh = sctp_hdr(skb);
1061 union sctp_params params;
1062 struct sctp_init_chunk *init;
1063 struct sctp_af *af;
1066 * This code will NOT touch anything inside the chunk--it is
1067 * strictly READ-ONLY.
1069 * RFC 2960 3 SCTP packet Format
1071 * Multiple chunks can be bundled into one SCTP packet up to
1072 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1073 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1074 * other chunk in a packet. See Section 6.10 for more details
1075 * on chunk bundling.
1078 /* Find the start of the TLVs and the end of the chunk. This is
1079 * the region we search for address parameters.
1081 init = (struct sctp_init_chunk *)skb->data;
1083 /* Walk the parameters looking for embedded addresses. */
1084 sctp_walk_params(params, init, init_hdr.params) {
1086 /* Note: Ignoring hostname addresses. */
1087 af = sctp_get_af_specific(param_type2af(params.p->type));
1088 if (!af)
1089 continue;
1091 af->from_addr_param(paddr, params.addr, sh->source, 0);
1093 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1094 if (asoc)
1095 return asoc;
1098 return NULL;
1101 /* ADD-IP, Section 5.2
1102 * When an endpoint receives an ASCONF Chunk from the remote peer
1103 * special procedures may be needed to identify the association the
1104 * ASCONF Chunk is associated with. To properly find the association
1105 * the following procedures SHOULD be followed:
1107 * D2) If the association is not found, use the address found in the
1108 * Address Parameter TLV combined with the port number found in the
1109 * SCTP common header. If found proceed to rule D4.
1111 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1112 * address found in the ASCONF Address Parameter TLV of each of the
1113 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1115 static struct sctp_association *__sctp_rcv_asconf_lookup(
1116 struct net *net,
1117 struct sctp_chunkhdr *ch,
1118 const union sctp_addr *laddr,
1119 __be16 peer_port,
1120 struct sctp_transport **transportp)
1122 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1123 struct sctp_af *af;
1124 union sctp_addr_param *param;
1125 union sctp_addr paddr;
1127 /* Skip over the ADDIP header and find the Address parameter */
1128 param = (union sctp_addr_param *)(asconf + 1);
1130 af = sctp_get_af_specific(param_type2af(param->p.type));
1131 if (unlikely(!af))
1132 return NULL;
1134 af->from_addr_param(&paddr, param, peer_port, 0);
1136 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1140 /* SCTP-AUTH, Section 6.3:
1141 * If the receiver does not find a STCB for a packet containing an AUTH
1142 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1143 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1144 * association.
1146 * This means that any chunks that can help us identify the association need
1147 * to be looked at to find this association.
1149 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1150 struct sk_buff *skb,
1151 const union sctp_addr *laddr,
1152 struct sctp_transport **transportp)
1154 struct sctp_association *asoc = NULL;
1155 struct sctp_chunkhdr *ch;
1156 int have_auth = 0;
1157 unsigned int chunk_num = 1;
1158 __u8 *ch_end;
1160 /* Walk through the chunks looking for AUTH or ASCONF chunks
1161 * to help us find the association.
1163 ch = (struct sctp_chunkhdr *)skb->data;
1164 do {
1165 /* Break out if chunk length is less then minimal. */
1166 if (ntohs(ch->length) < sizeof(*ch))
1167 break;
1169 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1170 if (ch_end > skb_tail_pointer(skb))
1171 break;
1173 switch (ch->type) {
1174 case SCTP_CID_AUTH:
1175 have_auth = chunk_num;
1176 break;
1178 case SCTP_CID_COOKIE_ECHO:
1179 /* If a packet arrives containing an AUTH chunk as
1180 * a first chunk, a COOKIE-ECHO chunk as the second
1181 * chunk, and possibly more chunks after them, and
1182 * the receiver does not have an STCB for that
1183 * packet, then authentication is based on
1184 * the contents of the COOKIE- ECHO chunk.
1186 if (have_auth == 1 && chunk_num == 2)
1187 return NULL;
1188 break;
1190 case SCTP_CID_ASCONF:
1191 if (have_auth || net->sctp.addip_noauth)
1192 asoc = __sctp_rcv_asconf_lookup(
1193 net, ch, laddr,
1194 sctp_hdr(skb)->source,
1195 transportp);
1196 default:
1197 break;
1200 if (asoc)
1201 break;
1203 ch = (struct sctp_chunkhdr *)ch_end;
1204 chunk_num++;
1205 } while (ch_end < skb_tail_pointer(skb));
1207 return asoc;
1211 * There are circumstances when we need to look inside the SCTP packet
1212 * for information to help us find the association. Examples
1213 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1214 * chunks.
1216 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1217 struct sk_buff *skb,
1218 const union sctp_addr *laddr,
1219 struct sctp_transport **transportp)
1221 struct sctp_chunkhdr *ch;
1223 /* We do not allow GSO frames here as we need to linearize and
1224 * then cannot guarantee frame boundaries. This shouldn't be an
1225 * issue as packets hitting this are mostly INIT or INIT-ACK and
1226 * those cannot be on GSO-style anyway.
1228 if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1229 return NULL;
1231 ch = (struct sctp_chunkhdr *)skb->data;
1233 /* The code below will attempt to walk the chunk and extract
1234 * parameter information. Before we do that, we need to verify
1235 * that the chunk length doesn't cause overflow. Otherwise, we'll
1236 * walk off the end.
1238 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1239 return NULL;
1241 /* If this is INIT/INIT-ACK look inside the chunk too. */
1242 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1243 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1245 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1248 /* Lookup an association for an inbound skb. */
1249 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1250 struct sk_buff *skb,
1251 const union sctp_addr *paddr,
1252 const union sctp_addr *laddr,
1253 struct sctp_transport **transportp)
1255 struct sctp_association *asoc;
1257 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1258 if (asoc)
1259 goto out;
1261 /* Further lookup for INIT/INIT-ACK packets.
1262 * SCTP Implementors Guide, 2.18 Handling of address
1263 * parameters within the INIT or INIT-ACK.
1265 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1266 if (asoc)
1267 goto out;
1269 if (paddr->sa.sa_family == AF_INET)
1270 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1271 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1272 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1273 else
1274 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1275 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1276 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1278 out:
1279 return asoc;