Linux 4.19.133
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / rpc_rdma.c
blobf2eaf264726be9bbf37ab5a63175a1d9d7ea83b8
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * rpc_rdma.c
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
50 #include <linux/highmem.h>
52 #include <linux/sunrpc/svc_rdma.h>
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
61 /* Returns size of largest RPC-over-RDMA header in a Call message
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
68 unsigned int size;
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
73 /* Maximum Read list size */
74 maxsegs += 2; /* segment for head and tail buffers */
75 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
77 /* Minimal Read chunk size */
78 size += sizeof(__be32); /* segment count */
79 size += rpcrdma_segment_maxsz * sizeof(__be32);
80 size += sizeof(__be32); /* list discriminator */
82 dprintk("RPC: %s: max call header size = %u\n",
83 __func__, size);
84 return size;
87 /* Returns size of largest RPC-over-RDMA header in a Reply message
89 * There is only one Write list or one Reply chunk per Reply
90 * message. The larger list is the Write list.
92 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
94 unsigned int size;
96 /* Fixed header fields and list discriminators */
97 size = RPCRDMA_HDRLEN_MIN;
99 /* Maximum Write list size */
100 maxsegs += 2; /* segment for head and tail buffers */
101 size = sizeof(__be32); /* segment count */
102 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
103 size += sizeof(__be32); /* list discriminator */
105 dprintk("RPC: %s: max reply header size = %u\n",
106 __func__, size);
107 return size;
110 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
112 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
113 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
114 unsigned int maxsegs = ia->ri_max_segs;
116 ia->ri_max_inline_write = cdata->inline_wsize -
117 rpcrdma_max_call_header_size(maxsegs);
118 ia->ri_max_inline_read = cdata->inline_rsize -
119 rpcrdma_max_reply_header_size(maxsegs);
122 /* The client can send a request inline as long as the RPCRDMA header
123 * plus the RPC call fit under the transport's inline limit. If the
124 * combined call message size exceeds that limit, the client must use
125 * a Read chunk for this operation.
127 * A Read chunk is also required if sending the RPC call inline would
128 * exceed this device's max_sge limit.
130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 struct rpc_rqst *rqst)
133 struct xdr_buf *xdr = &rqst->rq_snd_buf;
134 unsigned int count, remaining, offset;
136 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
137 return false;
139 if (xdr->page_len) {
140 remaining = xdr->page_len;
141 offset = offset_in_page(xdr->page_base);
142 count = RPCRDMA_MIN_SEND_SGES;
143 while (remaining) {
144 remaining -= min_t(unsigned int,
145 PAGE_SIZE - offset, remaining);
146 offset = 0;
147 if (++count > r_xprt->rx_ia.ri_max_send_sges)
148 return false;
152 return true;
155 /* The client can't know how large the actual reply will be. Thus it
156 * plans for the largest possible reply for that particular ULP
157 * operation. If the maximum combined reply message size exceeds that
158 * limit, the client must provide a write list or a reply chunk for
159 * this request.
161 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
162 struct rpc_rqst *rqst)
164 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
166 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
169 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
170 * a byte range. Other modes coalesce these SGEs into a single MR
171 * when they can.
173 * Returns pointer to next available SGE, and bumps the total number
174 * of SGEs consumed.
176 static struct rpcrdma_mr_seg *
177 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
178 unsigned int *n)
180 u32 remaining, page_offset;
181 char *base;
183 base = vec->iov_base;
184 page_offset = offset_in_page(base);
185 remaining = vec->iov_len;
186 while (remaining) {
187 seg->mr_page = NULL;
188 seg->mr_offset = base;
189 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
190 remaining -= seg->mr_len;
191 base += seg->mr_len;
192 ++seg;
193 ++(*n);
194 page_offset = 0;
196 return seg;
199 /* Convert @xdrbuf into SGEs no larger than a page each. As they
200 * are registered, these SGEs are then coalesced into RDMA segments
201 * when the selected memreg mode supports it.
203 * Returns positive number of SGEs consumed, or a negative errno.
206 static int
207 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
208 unsigned int pos, enum rpcrdma_chunktype type,
209 struct rpcrdma_mr_seg *seg)
211 unsigned long page_base;
212 unsigned int len, n;
213 struct page **ppages;
215 n = 0;
216 if (pos == 0)
217 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
219 len = xdrbuf->page_len;
220 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
221 page_base = offset_in_page(xdrbuf->page_base);
222 while (len) {
223 if (unlikely(!*ppages)) {
224 /* XXX: Certain upper layer operations do
225 * not provide receive buffer pages.
227 *ppages = alloc_page(GFP_ATOMIC);
228 if (!*ppages)
229 return -ENOBUFS;
231 seg->mr_page = *ppages;
232 seg->mr_offset = (char *)page_base;
233 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
234 len -= seg->mr_len;
235 ++ppages;
236 ++seg;
237 ++n;
238 page_base = 0;
241 /* When encoding a Read chunk, the tail iovec contains an
242 * XDR pad and may be omitted.
244 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
245 goto out;
247 /* When encoding a Write chunk, some servers need to see an
248 * extra segment for non-XDR-aligned Write chunks. The upper
249 * layer provides space in the tail iovec that may be used
250 * for this purpose.
252 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
253 goto out;
255 if (xdrbuf->tail[0].iov_len)
256 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
258 out:
259 if (unlikely(n > RPCRDMA_MAX_SEGS))
260 return -EIO;
261 return n;
264 static inline int
265 encode_item_present(struct xdr_stream *xdr)
267 __be32 *p;
269 p = xdr_reserve_space(xdr, sizeof(*p));
270 if (unlikely(!p))
271 return -EMSGSIZE;
273 *p = xdr_one;
274 return 0;
277 static inline int
278 encode_item_not_present(struct xdr_stream *xdr)
280 __be32 *p;
282 p = xdr_reserve_space(xdr, sizeof(*p));
283 if (unlikely(!p))
284 return -EMSGSIZE;
286 *p = xdr_zero;
287 return 0;
290 static void
291 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
293 *iptr++ = cpu_to_be32(mr->mr_handle);
294 *iptr++ = cpu_to_be32(mr->mr_length);
295 xdr_encode_hyper(iptr, mr->mr_offset);
298 static int
299 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
301 __be32 *p;
303 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
304 if (unlikely(!p))
305 return -EMSGSIZE;
307 xdr_encode_rdma_segment(p, mr);
308 return 0;
311 static int
312 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
313 u32 position)
315 __be32 *p;
317 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
318 if (unlikely(!p))
319 return -EMSGSIZE;
321 *p++ = xdr_one; /* Item present */
322 *p++ = cpu_to_be32(position);
323 xdr_encode_rdma_segment(p, mr);
324 return 0;
327 /* Register and XDR encode the Read list. Supports encoding a list of read
328 * segments that belong to a single read chunk.
330 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
332 * Read chunklist (a linked list):
333 * N elements, position P (same P for all chunks of same arg!):
334 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
336 * Returns zero on success, or a negative errno if a failure occurred.
337 * @xdr is advanced to the next position in the stream.
339 * Only a single @pos value is currently supported.
341 static noinline int
342 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
343 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
345 struct xdr_stream *xdr = &req->rl_stream;
346 struct rpcrdma_mr_seg *seg;
347 struct rpcrdma_mr *mr;
348 unsigned int pos;
349 int nsegs;
351 pos = rqst->rq_snd_buf.head[0].iov_len;
352 if (rtype == rpcrdma_areadch)
353 pos = 0;
354 seg = req->rl_segments;
355 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
356 rtype, seg);
357 if (nsegs < 0)
358 return nsegs;
360 do {
361 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
362 false, &mr);
363 if (IS_ERR(seg))
364 return PTR_ERR(seg);
365 rpcrdma_mr_push(mr, &req->rl_registered);
367 if (encode_read_segment(xdr, mr, pos) < 0)
368 return -EMSGSIZE;
370 trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs);
371 r_xprt->rx_stats.read_chunk_count++;
372 nsegs -= mr->mr_nents;
373 } while (nsegs);
375 return 0;
378 /* Register and XDR encode the Write list. Supports encoding a list
379 * containing one array of plain segments that belong to a single
380 * write chunk.
382 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
384 * Write chunklist (a list of (one) counted array):
385 * N elements:
386 * 1 - N - HLOO - HLOO - ... - HLOO - 0
388 * Returns zero on success, or a negative errno if a failure occurred.
389 * @xdr is advanced to the next position in the stream.
391 * Only a single Write chunk is currently supported.
393 static noinline int
394 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
395 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
397 struct xdr_stream *xdr = &req->rl_stream;
398 struct rpcrdma_mr_seg *seg;
399 struct rpcrdma_mr *mr;
400 int nsegs, nchunks;
401 __be32 *segcount;
403 seg = req->rl_segments;
404 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
405 rqst->rq_rcv_buf.head[0].iov_len,
406 wtype, seg);
407 if (nsegs < 0)
408 return nsegs;
410 if (encode_item_present(xdr) < 0)
411 return -EMSGSIZE;
412 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
413 if (unlikely(!segcount))
414 return -EMSGSIZE;
415 /* Actual value encoded below */
417 nchunks = 0;
418 do {
419 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
420 true, &mr);
421 if (IS_ERR(seg))
422 return PTR_ERR(seg);
423 rpcrdma_mr_push(mr, &req->rl_registered);
425 if (encode_rdma_segment(xdr, mr) < 0)
426 return -EMSGSIZE;
428 trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs);
429 r_xprt->rx_stats.write_chunk_count++;
430 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
431 nchunks++;
432 nsegs -= mr->mr_nents;
433 } while (nsegs);
435 /* Update count of segments in this Write chunk */
436 *segcount = cpu_to_be32(nchunks);
438 return 0;
441 /* Register and XDR encode the Reply chunk. Supports encoding an array
442 * of plain segments that belong to a single write (reply) chunk.
444 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
446 * Reply chunk (a counted array):
447 * N elements:
448 * 1 - N - HLOO - HLOO - ... - HLOO
450 * Returns zero on success, or a negative errno if a failure occurred.
451 * @xdr is advanced to the next position in the stream.
453 static noinline int
454 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
455 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
457 struct xdr_stream *xdr = &req->rl_stream;
458 struct rpcrdma_mr_seg *seg;
459 struct rpcrdma_mr *mr;
460 int nsegs, nchunks;
461 __be32 *segcount;
463 seg = req->rl_segments;
464 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
465 if (nsegs < 0)
466 return nsegs;
468 if (encode_item_present(xdr) < 0)
469 return -EMSGSIZE;
470 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
471 if (unlikely(!segcount))
472 return -EMSGSIZE;
473 /* Actual value encoded below */
475 nchunks = 0;
476 do {
477 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
478 true, &mr);
479 if (IS_ERR(seg))
480 return PTR_ERR(seg);
481 rpcrdma_mr_push(mr, &req->rl_registered);
483 if (encode_rdma_segment(xdr, mr) < 0)
484 return -EMSGSIZE;
486 trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs);
487 r_xprt->rx_stats.reply_chunk_count++;
488 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
489 nchunks++;
490 nsegs -= mr->mr_nents;
491 } while (nsegs);
493 /* Update count of segments in the Reply chunk */
494 *segcount = cpu_to_be32(nchunks);
496 return 0;
500 * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
501 * @sc: sendctx containing SGEs to unmap
504 void
505 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
507 struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
508 struct ib_sge *sge;
509 unsigned int count;
511 /* The first two SGEs contain the transport header and
512 * the inline buffer. These are always left mapped so
513 * they can be cheaply re-used.
515 sge = &sc->sc_sges[2];
516 for (count = sc->sc_unmap_count; count; ++sge, --count)
517 ib_dma_unmap_page(ia->ri_device,
518 sge->addr, sge->length, DMA_TO_DEVICE);
520 if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
521 smp_mb__after_atomic();
522 wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
526 /* Prepare an SGE for the RPC-over-RDMA transport header.
528 static bool
529 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
530 u32 len)
532 struct rpcrdma_sendctx *sc = req->rl_sendctx;
533 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
534 struct ib_sge *sge = sc->sc_sges;
536 if (!rpcrdma_dma_map_regbuf(ia, rb))
537 goto out_regbuf;
538 sge->addr = rdmab_addr(rb);
539 sge->length = len;
540 sge->lkey = rdmab_lkey(rb);
542 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
543 sge->length, DMA_TO_DEVICE);
544 sc->sc_wr.num_sge++;
545 return true;
547 out_regbuf:
548 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
549 return false;
552 /* Prepare the Send SGEs. The head and tail iovec, and each entry
553 * in the page list, gets its own SGE.
555 static bool
556 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
557 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
559 struct rpcrdma_sendctx *sc = req->rl_sendctx;
560 unsigned int sge_no, page_base, len, remaining;
561 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
562 struct ib_device *device = ia->ri_device;
563 struct ib_sge *sge = sc->sc_sges;
564 u32 lkey = ia->ri_pd->local_dma_lkey;
565 struct page *page, **ppages;
567 /* The head iovec is straightforward, as it is already
568 * DMA-mapped. Sync the content that has changed.
570 if (!rpcrdma_dma_map_regbuf(ia, rb))
571 goto out_regbuf;
572 sge_no = 1;
573 sge[sge_no].addr = rdmab_addr(rb);
574 sge[sge_no].length = xdr->head[0].iov_len;
575 sge[sge_no].lkey = rdmab_lkey(rb);
576 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
577 sge[sge_no].length, DMA_TO_DEVICE);
579 /* If there is a Read chunk, the page list is being handled
580 * via explicit RDMA, and thus is skipped here. However, the
581 * tail iovec may include an XDR pad for the page list, as
582 * well as additional content, and may not reside in the
583 * same page as the head iovec.
585 if (rtype == rpcrdma_readch) {
586 len = xdr->tail[0].iov_len;
588 /* Do not include the tail if it is only an XDR pad */
589 if (len < 4)
590 goto out;
592 page = virt_to_page(xdr->tail[0].iov_base);
593 page_base = offset_in_page(xdr->tail[0].iov_base);
595 /* If the content in the page list is an odd length,
596 * xdr_write_pages() has added a pad at the beginning
597 * of the tail iovec. Force the tail's non-pad content
598 * to land at the next XDR position in the Send message.
600 page_base += len & 3;
601 len -= len & 3;
602 goto map_tail;
605 /* If there is a page list present, temporarily DMA map
606 * and prepare an SGE for each page to be sent.
608 if (xdr->page_len) {
609 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
610 page_base = offset_in_page(xdr->page_base);
611 remaining = xdr->page_len;
612 while (remaining) {
613 sge_no++;
614 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
615 goto out_mapping_overflow;
617 len = min_t(u32, PAGE_SIZE - page_base, remaining);
618 sge[sge_no].addr = ib_dma_map_page(device, *ppages,
619 page_base, len,
620 DMA_TO_DEVICE);
621 if (ib_dma_mapping_error(device, sge[sge_no].addr))
622 goto out_mapping_err;
623 sge[sge_no].length = len;
624 sge[sge_no].lkey = lkey;
626 sc->sc_unmap_count++;
627 ppages++;
628 remaining -= len;
629 page_base = 0;
633 /* The tail iovec is not always constructed in the same
634 * page where the head iovec resides (see, for example,
635 * gss_wrap_req_priv). To neatly accommodate that case,
636 * DMA map it separately.
638 if (xdr->tail[0].iov_len) {
639 page = virt_to_page(xdr->tail[0].iov_base);
640 page_base = offset_in_page(xdr->tail[0].iov_base);
641 len = xdr->tail[0].iov_len;
643 map_tail:
644 sge_no++;
645 sge[sge_no].addr = ib_dma_map_page(device, page,
646 page_base, len,
647 DMA_TO_DEVICE);
648 if (ib_dma_mapping_error(device, sge[sge_no].addr))
649 goto out_mapping_err;
650 sge[sge_no].length = len;
651 sge[sge_no].lkey = lkey;
652 sc->sc_unmap_count++;
655 out:
656 sc->sc_wr.num_sge += sge_no;
657 if (sc->sc_unmap_count)
658 __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
659 return true;
661 out_regbuf:
662 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
663 return false;
665 out_mapping_overflow:
666 rpcrdma_unmap_sendctx(sc);
667 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
668 return false;
670 out_mapping_err:
671 rpcrdma_unmap_sendctx(sc);
672 pr_err("rpcrdma: Send mapping error\n");
673 return false;
677 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
678 * @r_xprt: controlling transport
679 * @req: context of RPC Call being marshalled
680 * @hdrlen: size of transport header, in bytes
681 * @xdr: xdr_buf containing RPC Call
682 * @rtype: chunk type being encoded
684 * Returns 0 on success; otherwise a negative errno is returned.
687 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
688 struct rpcrdma_req *req, u32 hdrlen,
689 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
691 req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
692 if (!req->rl_sendctx)
693 return -EAGAIN;
694 req->rl_sendctx->sc_wr.num_sge = 0;
695 req->rl_sendctx->sc_unmap_count = 0;
696 req->rl_sendctx->sc_req = req;
697 __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
699 if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
700 return -EIO;
702 if (rtype != rpcrdma_areadch)
703 if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
704 return -EIO;
706 return 0;
710 * rpcrdma_marshal_req - Marshal and send one RPC request
711 * @r_xprt: controlling transport
712 * @rqst: RPC request to be marshaled
714 * For the RPC in "rqst", this function:
715 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
716 * - Registers Read, Write, and Reply chunks
717 * - Constructs the transport header
718 * - Posts a Send WR to send the transport header and request
720 * Returns:
721 * %0 if the RPC was sent successfully,
722 * %-ENOTCONN if the connection was lost,
723 * %-EAGAIN if the caller should call again with the same arguments,
724 * %-ENOBUFS if the caller should call again after a delay,
725 * %-EMSGSIZE if the transport header is too small,
726 * %-EIO if a permanent problem occurred while marshaling.
729 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
731 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
732 struct xdr_stream *xdr = &req->rl_stream;
733 enum rpcrdma_chunktype rtype, wtype;
734 bool ddp_allowed;
735 __be32 *p;
736 int ret;
738 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
739 xdr_init_encode(xdr, &req->rl_hdrbuf,
740 req->rl_rdmabuf->rg_base);
742 /* Fixed header fields */
743 ret = -EMSGSIZE;
744 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
745 if (!p)
746 goto out_err;
747 *p++ = rqst->rq_xid;
748 *p++ = rpcrdma_version;
749 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
751 /* When the ULP employs a GSS flavor that guarantees integrity
752 * or privacy, direct data placement of individual data items
753 * is not allowed.
755 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
756 RPCAUTH_AUTH_DATATOUCH);
759 * Chunks needed for results?
761 * o If the expected result is under the inline threshold, all ops
762 * return as inline.
763 * o Large read ops return data as write chunk(s), header as
764 * inline.
765 * o Large non-read ops return as a single reply chunk.
767 if (rpcrdma_results_inline(r_xprt, rqst))
768 wtype = rpcrdma_noch;
769 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
770 wtype = rpcrdma_writech;
771 else
772 wtype = rpcrdma_replych;
775 * Chunks needed for arguments?
777 * o If the total request is under the inline threshold, all ops
778 * are sent as inline.
779 * o Large write ops transmit data as read chunk(s), header as
780 * inline.
781 * o Large non-write ops are sent with the entire message as a
782 * single read chunk (protocol 0-position special case).
784 * This assumes that the upper layer does not present a request
785 * that both has a data payload, and whose non-data arguments
786 * by themselves are larger than the inline threshold.
788 if (rpcrdma_args_inline(r_xprt, rqst)) {
789 *p++ = rdma_msg;
790 rtype = rpcrdma_noch;
791 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
792 *p++ = rdma_msg;
793 rtype = rpcrdma_readch;
794 } else {
795 r_xprt->rx_stats.nomsg_call_count++;
796 *p++ = rdma_nomsg;
797 rtype = rpcrdma_areadch;
800 /* If this is a retransmit, discard previously registered
801 * chunks. Very likely the connection has been replaced,
802 * so these registrations are invalid and unusable.
804 while (unlikely(!list_empty(&req->rl_registered))) {
805 struct rpcrdma_mr *mr;
807 mr = rpcrdma_mr_pop(&req->rl_registered);
808 rpcrdma_mr_defer_recovery(mr);
811 /* This implementation supports the following combinations
812 * of chunk lists in one RPC-over-RDMA Call message:
814 * - Read list
815 * - Write list
816 * - Reply chunk
817 * - Read list + Reply chunk
819 * It might not yet support the following combinations:
821 * - Read list + Write list
823 * It does not support the following combinations:
825 * - Write list + Reply chunk
826 * - Read list + Write list + Reply chunk
828 * This implementation supports only a single chunk in each
829 * Read or Write list. Thus for example the client cannot
830 * send a Call message with a Position Zero Read chunk and a
831 * regular Read chunk at the same time.
833 if (rtype != rpcrdma_noch) {
834 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
835 if (ret)
836 goto out_err;
838 ret = encode_item_not_present(xdr);
839 if (ret)
840 goto out_err;
842 if (wtype == rpcrdma_writech) {
843 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
844 if (ret)
845 goto out_err;
847 ret = encode_item_not_present(xdr);
848 if (ret)
849 goto out_err;
851 if (wtype != rpcrdma_replych)
852 ret = encode_item_not_present(xdr);
853 else
854 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
855 if (ret)
856 goto out_err;
858 trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
860 ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
861 &rqst->rq_snd_buf, rtype);
862 if (ret)
863 goto out_err;
864 return 0;
866 out_err:
867 switch (ret) {
868 case -EAGAIN:
869 xprt_wait_for_buffer_space(rqst->rq_task, NULL);
870 break;
871 case -ENOBUFS:
872 break;
873 default:
874 r_xprt->rx_stats.failed_marshal_count++;
876 return ret;
880 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
881 * @rqst: controlling RPC request
882 * @srcp: points to RPC message payload in receive buffer
883 * @copy_len: remaining length of receive buffer content
884 * @pad: Write chunk pad bytes needed (zero for pure inline)
886 * The upper layer has set the maximum number of bytes it can
887 * receive in each component of rq_rcv_buf. These values are set in
888 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
890 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
891 * many cases this function simply updates iov_base pointers in
892 * rq_rcv_buf to point directly to the received reply data, to
893 * avoid copying reply data.
895 * Returns the count of bytes which had to be memcopied.
897 static unsigned long
898 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
900 unsigned long fixup_copy_count;
901 int i, npages, curlen;
902 char *destp;
903 struct page **ppages;
904 int page_base;
906 /* The head iovec is redirected to the RPC reply message
907 * in the receive buffer, to avoid a memcopy.
909 rqst->rq_rcv_buf.head[0].iov_base = srcp;
910 rqst->rq_private_buf.head[0].iov_base = srcp;
912 /* The contents of the receive buffer that follow
913 * head.iov_len bytes are copied into the page list.
915 curlen = rqst->rq_rcv_buf.head[0].iov_len;
916 if (curlen > copy_len)
917 curlen = copy_len;
918 trace_xprtrdma_fixup(rqst, copy_len, curlen);
919 srcp += curlen;
920 copy_len -= curlen;
922 ppages = rqst->rq_rcv_buf.pages +
923 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
924 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
925 fixup_copy_count = 0;
926 if (copy_len && rqst->rq_rcv_buf.page_len) {
927 int pagelist_len;
929 pagelist_len = rqst->rq_rcv_buf.page_len;
930 if (pagelist_len > copy_len)
931 pagelist_len = copy_len;
932 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
933 for (i = 0; i < npages; i++) {
934 curlen = PAGE_SIZE - page_base;
935 if (curlen > pagelist_len)
936 curlen = pagelist_len;
938 trace_xprtrdma_fixup_pg(rqst, i, srcp,
939 copy_len, curlen);
940 destp = kmap_atomic(ppages[i]);
941 memcpy(destp + page_base, srcp, curlen);
942 flush_dcache_page(ppages[i]);
943 kunmap_atomic(destp);
944 srcp += curlen;
945 copy_len -= curlen;
946 fixup_copy_count += curlen;
947 pagelist_len -= curlen;
948 if (!pagelist_len)
949 break;
950 page_base = 0;
953 /* Implicit padding for the last segment in a Write
954 * chunk is inserted inline at the front of the tail
955 * iovec. The upper layer ignores the content of
956 * the pad. Simply ensure inline content in the tail
957 * that follows the Write chunk is properly aligned.
959 if (pad)
960 srcp -= pad;
963 /* The tail iovec is redirected to the remaining data
964 * in the receive buffer, to avoid a memcopy.
966 if (copy_len || pad) {
967 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
968 rqst->rq_private_buf.tail[0].iov_base = srcp;
971 return fixup_copy_count;
974 /* By convention, backchannel calls arrive via rdma_msg type
975 * messages, and never populate the chunk lists. This makes
976 * the RPC/RDMA header small and fixed in size, so it is
977 * straightforward to check the RPC header's direction field.
979 static bool
980 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
981 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
983 struct xdr_stream *xdr = &rep->rr_stream;
984 __be32 *p;
986 if (rep->rr_proc != rdma_msg)
987 return false;
989 /* Peek at stream contents without advancing. */
990 p = xdr_inline_decode(xdr, 0);
992 /* Chunk lists */
993 if (*p++ != xdr_zero)
994 return false;
995 if (*p++ != xdr_zero)
996 return false;
997 if (*p++ != xdr_zero)
998 return false;
1000 /* RPC header */
1001 if (*p++ != rep->rr_xid)
1002 return false;
1003 if (*p != cpu_to_be32(RPC_CALL))
1004 return false;
1006 /* Now that we are sure this is a backchannel call,
1007 * advance to the RPC header.
1009 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1010 if (unlikely(!p))
1011 goto out_short;
1013 rpcrdma_bc_receive_call(r_xprt, rep);
1014 return true;
1016 out_short:
1017 pr_warn("RPC/RDMA short backward direction call\n");
1018 return true;
1020 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1022 return false;
1024 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1026 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1028 u32 handle;
1029 u64 offset;
1030 __be32 *p;
1032 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1033 if (unlikely(!p))
1034 return -EIO;
1036 handle = be32_to_cpup(p++);
1037 *length = be32_to_cpup(p++);
1038 xdr_decode_hyper(p, &offset);
1040 trace_xprtrdma_decode_seg(handle, *length, offset);
1041 return 0;
1044 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1046 u32 segcount, seglength;
1047 __be32 *p;
1049 p = xdr_inline_decode(xdr, sizeof(*p));
1050 if (unlikely(!p))
1051 return -EIO;
1053 *length = 0;
1054 segcount = be32_to_cpup(p);
1055 while (segcount--) {
1056 if (decode_rdma_segment(xdr, &seglength))
1057 return -EIO;
1058 *length += seglength;
1061 return 0;
1064 /* In RPC-over-RDMA Version One replies, a Read list is never
1065 * expected. This decoder is a stub that returns an error if
1066 * a Read list is present.
1068 static int decode_read_list(struct xdr_stream *xdr)
1070 __be32 *p;
1072 p = xdr_inline_decode(xdr, sizeof(*p));
1073 if (unlikely(!p))
1074 return -EIO;
1075 if (unlikely(*p != xdr_zero))
1076 return -EIO;
1077 return 0;
1080 /* Supports only one Write chunk in the Write list
1082 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1084 u32 chunklen;
1085 bool first;
1086 __be32 *p;
1088 *length = 0;
1089 first = true;
1090 do {
1091 p = xdr_inline_decode(xdr, sizeof(*p));
1092 if (unlikely(!p))
1093 return -EIO;
1094 if (*p == xdr_zero)
1095 break;
1096 if (!first)
1097 return -EIO;
1099 if (decode_write_chunk(xdr, &chunklen))
1100 return -EIO;
1101 *length += chunklen;
1102 first = false;
1103 } while (true);
1104 return 0;
1107 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1109 __be32 *p;
1111 p = xdr_inline_decode(xdr, sizeof(*p));
1112 if (unlikely(!p))
1113 return -EIO;
1115 *length = 0;
1116 if (*p != xdr_zero)
1117 if (decode_write_chunk(xdr, length))
1118 return -EIO;
1119 return 0;
1122 static int
1123 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1124 struct rpc_rqst *rqst)
1126 struct xdr_stream *xdr = &rep->rr_stream;
1127 u32 writelist, replychunk, rpclen;
1128 char *base;
1130 /* Decode the chunk lists */
1131 if (decode_read_list(xdr))
1132 return -EIO;
1133 if (decode_write_list(xdr, &writelist))
1134 return -EIO;
1135 if (decode_reply_chunk(xdr, &replychunk))
1136 return -EIO;
1138 /* RDMA_MSG sanity checks */
1139 if (unlikely(replychunk))
1140 return -EIO;
1142 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1143 base = (char *)xdr_inline_decode(xdr, 0);
1144 rpclen = xdr_stream_remaining(xdr);
1145 r_xprt->rx_stats.fixup_copy_count +=
1146 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1148 r_xprt->rx_stats.total_rdma_reply += writelist;
1149 return rpclen + xdr_align_size(writelist);
1152 static noinline int
1153 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1155 struct xdr_stream *xdr = &rep->rr_stream;
1156 u32 writelist, replychunk;
1158 /* Decode the chunk lists */
1159 if (decode_read_list(xdr))
1160 return -EIO;
1161 if (decode_write_list(xdr, &writelist))
1162 return -EIO;
1163 if (decode_reply_chunk(xdr, &replychunk))
1164 return -EIO;
1166 /* RDMA_NOMSG sanity checks */
1167 if (unlikely(writelist))
1168 return -EIO;
1169 if (unlikely(!replychunk))
1170 return -EIO;
1172 /* Reply chunk buffer already is the reply vector */
1173 r_xprt->rx_stats.total_rdma_reply += replychunk;
1174 return replychunk;
1177 static noinline int
1178 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1179 struct rpc_rqst *rqst)
1181 struct xdr_stream *xdr = &rep->rr_stream;
1182 __be32 *p;
1184 p = xdr_inline_decode(xdr, sizeof(*p));
1185 if (unlikely(!p))
1186 return -EIO;
1188 switch (*p) {
1189 case err_vers:
1190 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1191 if (!p)
1192 break;
1193 dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1194 rqst->rq_task->tk_pid, __func__,
1195 be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1196 break;
1197 case err_chunk:
1198 dprintk("RPC: %5u: %s: server reports header decoding error\n",
1199 rqst->rq_task->tk_pid, __func__);
1200 break;
1201 default:
1202 dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1203 rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1206 r_xprt->rx_stats.bad_reply_count++;
1207 return -EREMOTEIO;
1210 /* Perform XID lookup, reconstruction of the RPC reply, and
1211 * RPC completion while holding the transport lock to ensure
1212 * the rep, rqst, and rq_task pointers remain stable.
1214 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1216 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1217 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1218 struct rpc_rqst *rqst = rep->rr_rqst;
1219 unsigned long cwnd;
1220 int status;
1222 xprt->reestablish_timeout = 0;
1224 switch (rep->rr_proc) {
1225 case rdma_msg:
1226 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1227 break;
1228 case rdma_nomsg:
1229 status = rpcrdma_decode_nomsg(r_xprt, rep);
1230 break;
1231 case rdma_error:
1232 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1233 break;
1234 default:
1235 status = -EIO;
1237 if (status < 0)
1238 goto out_badheader;
1240 out:
1241 spin_lock(&xprt->recv_lock);
1242 cwnd = xprt->cwnd;
1243 xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT;
1244 if (xprt->cwnd > cwnd)
1245 xprt_release_rqst_cong(rqst->rq_task);
1247 xprt_complete_rqst(rqst->rq_task, status);
1248 xprt_unpin_rqst(rqst);
1249 spin_unlock(&xprt->recv_lock);
1250 return;
1252 /* If the incoming reply terminated a pending RPC, the next
1253 * RPC call will post a replacement receive buffer as it is
1254 * being marshaled.
1256 out_badheader:
1257 trace_xprtrdma_reply_hdr(rep);
1258 r_xprt->rx_stats.bad_reply_count++;
1259 status = -EIO;
1260 goto out;
1263 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1265 /* Invalidate and unmap the data payloads before waking
1266 * the waiting application. This guarantees the memory
1267 * regions are properly fenced from the server before the
1268 * application accesses the data. It also ensures proper
1269 * send flow control: waking the next RPC waits until this
1270 * RPC has relinquished all its Send Queue entries.
1272 if (!list_empty(&req->rl_registered))
1273 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1274 &req->rl_registered);
1276 /* Ensure that any DMA mapped pages associated with
1277 * the Send of the RPC Call have been unmapped before
1278 * allowing the RPC to complete. This protects argument
1279 * memory not controlled by the RPC client from being
1280 * re-used before we're done with it.
1282 if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1283 r_xprt->rx_stats.reply_waits_for_send++;
1284 out_of_line_wait_on_bit(&req->rl_flags,
1285 RPCRDMA_REQ_F_TX_RESOURCES,
1286 bit_wait,
1287 TASK_UNINTERRUPTIBLE);
1291 /* Reply handling runs in the poll worker thread. Anything that
1292 * might wait is deferred to a separate workqueue.
1294 void rpcrdma_deferred_completion(struct work_struct *work)
1296 struct rpcrdma_rep *rep =
1297 container_of(work, struct rpcrdma_rep, rr_work);
1298 struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1299 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1301 trace_xprtrdma_defer_cmp(rep);
1302 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1303 r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered);
1304 rpcrdma_release_rqst(r_xprt, req);
1305 rpcrdma_complete_rqst(rep);
1308 /* Process received RPC/RDMA messages.
1310 * Errors must result in the RPC task either being awakened, or
1311 * allowed to timeout, to discover the errors at that time.
1313 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1315 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1316 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1317 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1318 struct rpcrdma_req *req;
1319 struct rpc_rqst *rqst;
1320 u32 credits;
1321 __be32 *p;
1323 --buf->rb_posted_receives;
1325 if (rep->rr_hdrbuf.head[0].iov_len == 0)
1326 goto out_badstatus;
1328 /* Fixed transport header fields */
1329 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1330 rep->rr_hdrbuf.head[0].iov_base);
1331 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1332 if (unlikely(!p))
1333 goto out_shortreply;
1334 rep->rr_xid = *p++;
1335 rep->rr_vers = *p++;
1336 credits = be32_to_cpu(*p++);
1337 rep->rr_proc = *p++;
1339 if (rep->rr_vers != rpcrdma_version)
1340 goto out_badversion;
1342 if (rpcrdma_is_bcall(r_xprt, rep))
1343 return;
1345 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1346 * get context for handling any incoming chunks.
1348 spin_lock(&xprt->recv_lock);
1349 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1350 if (!rqst)
1351 goto out_norqst;
1352 xprt_pin_rqst(rqst);
1354 if (credits == 0)
1355 credits = 1; /* don't deadlock */
1356 else if (credits > buf->rb_max_requests)
1357 credits = buf->rb_max_requests;
1358 buf->rb_credits = credits;
1360 spin_unlock(&xprt->recv_lock);
1362 req = rpcr_to_rdmar(rqst);
1363 if (req->rl_reply) {
1364 trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1365 rpcrdma_recv_buffer_put(req->rl_reply);
1367 req->rl_reply = rep;
1368 rep->rr_rqst = rqst;
1369 clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1371 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1373 rpcrdma_post_recvs(r_xprt, false);
1374 queue_work(rpcrdma_receive_wq, &rep->rr_work);
1375 return;
1377 out_badversion:
1378 trace_xprtrdma_reply_vers(rep);
1379 goto repost;
1381 /* The RPC transaction has already been terminated, or the header
1382 * is corrupt.
1384 out_norqst:
1385 spin_unlock(&xprt->recv_lock);
1386 trace_xprtrdma_reply_rqst(rep);
1387 goto repost;
1389 out_shortreply:
1390 trace_xprtrdma_reply_short(rep);
1392 /* If no pending RPC transaction was matched, post a replacement
1393 * receive buffer before returning.
1395 repost:
1396 rpcrdma_post_recvs(r_xprt, false);
1397 out_badstatus:
1398 rpcrdma_recv_buffer_put(rep);