Linux 4.19.133
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / svc_rdma_rw.c
blob4fc0ce12708949443425cf5831170fd587998fcc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
5 * Use the core R/W API to move RPC-over-RDMA Read and Write chunks.
6 */
8 #include <rdma/rw.h>
10 #include <linux/sunrpc/rpc_rdma.h>
11 #include <linux/sunrpc/svc_rdma.h>
12 #include <linux/sunrpc/debug.h>
14 #include "xprt_rdma.h"
15 #include <trace/events/rpcrdma.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc);
20 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc);
22 /* Each R/W context contains state for one chain of RDMA Read or
23 * Write Work Requests.
25 * Each WR chain handles a single contiguous server-side buffer,
26 * because scatterlist entries after the first have to start on
27 * page alignment. xdr_buf iovecs cannot guarantee alignment.
29 * Each WR chain handles only one R_key. Each RPC-over-RDMA segment
30 * from a client may contain a unique R_key, so each WR chain moves
31 * up to one segment at a time.
33 * The scatterlist makes this data structure over 4KB in size. To
34 * make it less likely to fail, and to handle the allocation for
35 * smaller I/O requests without disabling bottom-halves, these
36 * contexts are created on demand, but cached and reused until the
37 * controlling svcxprt_rdma is destroyed.
39 struct svc_rdma_rw_ctxt {
40 struct list_head rw_list;
41 struct rdma_rw_ctx rw_ctx;
42 int rw_nents;
43 struct sg_table rw_sg_table;
44 struct scatterlist rw_first_sgl[0];
47 static inline struct svc_rdma_rw_ctxt *
48 svc_rdma_next_ctxt(struct list_head *list)
50 return list_first_entry_or_null(list, struct svc_rdma_rw_ctxt,
51 rw_list);
54 static struct svc_rdma_rw_ctxt *
55 svc_rdma_get_rw_ctxt(struct svcxprt_rdma *rdma, unsigned int sges)
57 struct svc_rdma_rw_ctxt *ctxt;
59 spin_lock(&rdma->sc_rw_ctxt_lock);
61 ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts);
62 if (ctxt) {
63 list_del(&ctxt->rw_list);
64 spin_unlock(&rdma->sc_rw_ctxt_lock);
65 } else {
66 spin_unlock(&rdma->sc_rw_ctxt_lock);
67 ctxt = kmalloc(sizeof(*ctxt) +
68 SG_CHUNK_SIZE * sizeof(struct scatterlist),
69 GFP_KERNEL);
70 if (!ctxt)
71 goto out;
72 INIT_LIST_HEAD(&ctxt->rw_list);
75 ctxt->rw_sg_table.sgl = ctxt->rw_first_sgl;
76 if (sg_alloc_table_chained(&ctxt->rw_sg_table, sges,
77 ctxt->rw_sg_table.sgl)) {
78 kfree(ctxt);
79 ctxt = NULL;
81 out:
82 return ctxt;
85 static void svc_rdma_put_rw_ctxt(struct svcxprt_rdma *rdma,
86 struct svc_rdma_rw_ctxt *ctxt)
88 sg_free_table_chained(&ctxt->rw_sg_table, true);
90 spin_lock(&rdma->sc_rw_ctxt_lock);
91 list_add(&ctxt->rw_list, &rdma->sc_rw_ctxts);
92 spin_unlock(&rdma->sc_rw_ctxt_lock);
95 /**
96 * svc_rdma_destroy_rw_ctxts - Free accumulated R/W contexts
97 * @rdma: transport about to be destroyed
100 void svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma *rdma)
102 struct svc_rdma_rw_ctxt *ctxt;
104 while ((ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts)) != NULL) {
105 list_del(&ctxt->rw_list);
106 kfree(ctxt);
110 /* A chunk context tracks all I/O for moving one Read or Write
111 * chunk. This is a a set of rdma_rw's that handle data movement
112 * for all segments of one chunk.
114 * These are small, acquired with a single allocator call, and
115 * no more than one is needed per chunk. They are allocated on
116 * demand, and not cached.
118 struct svc_rdma_chunk_ctxt {
119 struct ib_cqe cc_cqe;
120 struct svcxprt_rdma *cc_rdma;
121 struct list_head cc_rwctxts;
122 int cc_sqecount;
125 static void svc_rdma_cc_init(struct svcxprt_rdma *rdma,
126 struct svc_rdma_chunk_ctxt *cc)
128 cc->cc_rdma = rdma;
129 svc_xprt_get(&rdma->sc_xprt);
131 INIT_LIST_HEAD(&cc->cc_rwctxts);
132 cc->cc_sqecount = 0;
135 static void svc_rdma_cc_release(struct svc_rdma_chunk_ctxt *cc,
136 enum dma_data_direction dir)
138 struct svcxprt_rdma *rdma = cc->cc_rdma;
139 struct svc_rdma_rw_ctxt *ctxt;
141 while ((ctxt = svc_rdma_next_ctxt(&cc->cc_rwctxts)) != NULL) {
142 list_del(&ctxt->rw_list);
144 rdma_rw_ctx_destroy(&ctxt->rw_ctx, rdma->sc_qp,
145 rdma->sc_port_num, ctxt->rw_sg_table.sgl,
146 ctxt->rw_nents, dir);
147 svc_rdma_put_rw_ctxt(rdma, ctxt);
149 svc_xprt_put(&rdma->sc_xprt);
152 /* State for sending a Write or Reply chunk.
153 * - Tracks progress of writing one chunk over all its segments
154 * - Stores arguments for the SGL constructor functions
156 struct svc_rdma_write_info {
157 /* write state of this chunk */
158 unsigned int wi_seg_off;
159 unsigned int wi_seg_no;
160 unsigned int wi_nsegs;
161 __be32 *wi_segs;
163 /* SGL constructor arguments */
164 struct xdr_buf *wi_xdr;
165 unsigned char *wi_base;
166 unsigned int wi_next_off;
168 struct svc_rdma_chunk_ctxt wi_cc;
171 static struct svc_rdma_write_info *
172 svc_rdma_write_info_alloc(struct svcxprt_rdma *rdma, __be32 *chunk)
174 struct svc_rdma_write_info *info;
176 info = kmalloc(sizeof(*info), GFP_KERNEL);
177 if (!info)
178 return info;
180 info->wi_seg_off = 0;
181 info->wi_seg_no = 0;
182 info->wi_nsegs = be32_to_cpup(++chunk);
183 info->wi_segs = ++chunk;
184 svc_rdma_cc_init(rdma, &info->wi_cc);
185 info->wi_cc.cc_cqe.done = svc_rdma_write_done;
186 return info;
189 static void svc_rdma_write_info_free(struct svc_rdma_write_info *info)
191 svc_rdma_cc_release(&info->wi_cc, DMA_TO_DEVICE);
192 kfree(info);
196 * svc_rdma_write_done - Write chunk completion
197 * @cq: controlling Completion Queue
198 * @wc: Work Completion
200 * Pages under I/O are freed by a subsequent Send completion.
202 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
204 struct ib_cqe *cqe = wc->wr_cqe;
205 struct svc_rdma_chunk_ctxt *cc =
206 container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
207 struct svcxprt_rdma *rdma = cc->cc_rdma;
208 struct svc_rdma_write_info *info =
209 container_of(cc, struct svc_rdma_write_info, wi_cc);
211 trace_svcrdma_wc_write(wc);
213 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
214 wake_up(&rdma->sc_send_wait);
216 if (unlikely(wc->status != IB_WC_SUCCESS)) {
217 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
218 if (wc->status != IB_WC_WR_FLUSH_ERR)
219 pr_err("svcrdma: write ctx: %s (%u/0x%x)\n",
220 ib_wc_status_msg(wc->status),
221 wc->status, wc->vendor_err);
224 svc_rdma_write_info_free(info);
227 /* State for pulling a Read chunk.
229 struct svc_rdma_read_info {
230 struct svc_rdma_recv_ctxt *ri_readctxt;
231 unsigned int ri_position;
232 unsigned int ri_pageno;
233 unsigned int ri_pageoff;
234 unsigned int ri_chunklen;
236 struct svc_rdma_chunk_ctxt ri_cc;
239 static struct svc_rdma_read_info *
240 svc_rdma_read_info_alloc(struct svcxprt_rdma *rdma)
242 struct svc_rdma_read_info *info;
244 info = kmalloc(sizeof(*info), GFP_KERNEL);
245 if (!info)
246 return info;
248 svc_rdma_cc_init(rdma, &info->ri_cc);
249 info->ri_cc.cc_cqe.done = svc_rdma_wc_read_done;
250 return info;
253 static void svc_rdma_read_info_free(struct svc_rdma_read_info *info)
255 svc_rdma_cc_release(&info->ri_cc, DMA_FROM_DEVICE);
256 kfree(info);
260 * svc_rdma_wc_read_done - Handle completion of an RDMA Read ctx
261 * @cq: controlling Completion Queue
262 * @wc: Work Completion
265 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc)
267 struct ib_cqe *cqe = wc->wr_cqe;
268 struct svc_rdma_chunk_ctxt *cc =
269 container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
270 struct svcxprt_rdma *rdma = cc->cc_rdma;
271 struct svc_rdma_read_info *info =
272 container_of(cc, struct svc_rdma_read_info, ri_cc);
274 trace_svcrdma_wc_read(wc);
276 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
277 wake_up(&rdma->sc_send_wait);
279 if (unlikely(wc->status != IB_WC_SUCCESS)) {
280 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
281 if (wc->status != IB_WC_WR_FLUSH_ERR)
282 pr_err("svcrdma: read ctx: %s (%u/0x%x)\n",
283 ib_wc_status_msg(wc->status),
284 wc->status, wc->vendor_err);
285 svc_rdma_recv_ctxt_put(rdma, info->ri_readctxt);
286 } else {
287 spin_lock(&rdma->sc_rq_dto_lock);
288 list_add_tail(&info->ri_readctxt->rc_list,
289 &rdma->sc_read_complete_q);
290 spin_unlock(&rdma->sc_rq_dto_lock);
292 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
293 svc_xprt_enqueue(&rdma->sc_xprt);
296 svc_rdma_read_info_free(info);
299 /* This function sleeps when the transport's Send Queue is congested.
301 * Assumptions:
302 * - If ib_post_send() succeeds, only one completion is expected,
303 * even if one or more WRs are flushed. This is true when posting
304 * an rdma_rw_ctx or when posting a single signaled WR.
306 static int svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt *cc)
308 struct svcxprt_rdma *rdma = cc->cc_rdma;
309 struct svc_xprt *xprt = &rdma->sc_xprt;
310 struct ib_send_wr *first_wr;
311 const struct ib_send_wr *bad_wr;
312 struct list_head *tmp;
313 struct ib_cqe *cqe;
314 int ret;
316 if (cc->cc_sqecount > rdma->sc_sq_depth)
317 return -EINVAL;
319 first_wr = NULL;
320 cqe = &cc->cc_cqe;
321 list_for_each(tmp, &cc->cc_rwctxts) {
322 struct svc_rdma_rw_ctxt *ctxt;
324 ctxt = list_entry(tmp, struct svc_rdma_rw_ctxt, rw_list);
325 first_wr = rdma_rw_ctx_wrs(&ctxt->rw_ctx, rdma->sc_qp,
326 rdma->sc_port_num, cqe, first_wr);
327 cqe = NULL;
330 do {
331 if (atomic_sub_return(cc->cc_sqecount,
332 &rdma->sc_sq_avail) > 0) {
333 ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
334 if (ret)
335 break;
336 return 0;
339 trace_svcrdma_sq_full(rdma);
340 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
341 wait_event(rdma->sc_send_wait,
342 atomic_read(&rdma->sc_sq_avail) > cc->cc_sqecount);
343 trace_svcrdma_sq_retry(rdma);
344 } while (1);
346 trace_svcrdma_sq_post_err(rdma, ret);
347 set_bit(XPT_CLOSE, &xprt->xpt_flags);
349 /* If even one was posted, there will be a completion. */
350 if (bad_wr != first_wr)
351 return 0;
353 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
354 wake_up(&rdma->sc_send_wait);
355 return -ENOTCONN;
358 /* Build and DMA-map an SGL that covers one kvec in an xdr_buf
360 static void svc_rdma_vec_to_sg(struct svc_rdma_write_info *info,
361 unsigned int len,
362 struct svc_rdma_rw_ctxt *ctxt)
364 struct scatterlist *sg = ctxt->rw_sg_table.sgl;
366 sg_set_buf(&sg[0], info->wi_base, len);
367 info->wi_base += len;
369 ctxt->rw_nents = 1;
372 /* Build and DMA-map an SGL that covers part of an xdr_buf's pagelist.
374 static void svc_rdma_pagelist_to_sg(struct svc_rdma_write_info *info,
375 unsigned int remaining,
376 struct svc_rdma_rw_ctxt *ctxt)
378 unsigned int sge_no, sge_bytes, page_off, page_no;
379 struct xdr_buf *xdr = info->wi_xdr;
380 struct scatterlist *sg;
381 struct page **page;
383 page_off = info->wi_next_off + xdr->page_base;
384 page_no = page_off >> PAGE_SHIFT;
385 page_off = offset_in_page(page_off);
386 page = xdr->pages + page_no;
387 info->wi_next_off += remaining;
388 sg = ctxt->rw_sg_table.sgl;
389 sge_no = 0;
390 do {
391 sge_bytes = min_t(unsigned int, remaining,
392 PAGE_SIZE - page_off);
393 sg_set_page(sg, *page, sge_bytes, page_off);
395 remaining -= sge_bytes;
396 sg = sg_next(sg);
397 page_off = 0;
398 sge_no++;
399 page++;
400 } while (remaining);
402 ctxt->rw_nents = sge_no;
405 /* Construct RDMA Write WRs to send a portion of an xdr_buf containing
406 * an RPC Reply.
408 static int
409 svc_rdma_build_writes(struct svc_rdma_write_info *info,
410 void (*constructor)(struct svc_rdma_write_info *info,
411 unsigned int len,
412 struct svc_rdma_rw_ctxt *ctxt),
413 unsigned int remaining)
415 struct svc_rdma_chunk_ctxt *cc = &info->wi_cc;
416 struct svcxprt_rdma *rdma = cc->cc_rdma;
417 struct svc_rdma_rw_ctxt *ctxt;
418 __be32 *seg;
419 int ret;
421 seg = info->wi_segs + info->wi_seg_no * rpcrdma_segment_maxsz;
422 do {
423 unsigned int write_len;
424 u32 seg_length, seg_handle;
425 u64 seg_offset;
427 if (info->wi_seg_no >= info->wi_nsegs)
428 goto out_overflow;
430 seg_handle = be32_to_cpup(seg);
431 seg_length = be32_to_cpup(seg + 1);
432 xdr_decode_hyper(seg + 2, &seg_offset);
433 seg_offset += info->wi_seg_off;
435 write_len = min(remaining, seg_length - info->wi_seg_off);
436 ctxt = svc_rdma_get_rw_ctxt(rdma,
437 (write_len >> PAGE_SHIFT) + 2);
438 if (!ctxt)
439 goto out_noctx;
441 constructor(info, write_len, ctxt);
442 ret = rdma_rw_ctx_init(&ctxt->rw_ctx, rdma->sc_qp,
443 rdma->sc_port_num, ctxt->rw_sg_table.sgl,
444 ctxt->rw_nents, 0, seg_offset,
445 seg_handle, DMA_TO_DEVICE);
446 if (ret < 0)
447 goto out_initerr;
449 trace_svcrdma_encode_wseg(seg_handle, write_len, seg_offset);
450 list_add(&ctxt->rw_list, &cc->cc_rwctxts);
451 cc->cc_sqecount += ret;
452 if (write_len == seg_length - info->wi_seg_off) {
453 seg += 4;
454 info->wi_seg_no++;
455 info->wi_seg_off = 0;
456 } else {
457 info->wi_seg_off += write_len;
459 remaining -= write_len;
460 } while (remaining);
462 return 0;
464 out_overflow:
465 dprintk("svcrdma: inadequate space in Write chunk (%u)\n",
466 info->wi_nsegs);
467 return -E2BIG;
469 out_noctx:
470 dprintk("svcrdma: no R/W ctxs available\n");
471 return -ENOMEM;
473 out_initerr:
474 svc_rdma_put_rw_ctxt(rdma, ctxt);
475 trace_svcrdma_dma_map_rwctx(rdma, ret);
476 return -EIO;
479 /* Send one of an xdr_buf's kvecs by itself. To send a Reply
480 * chunk, the whole RPC Reply is written back to the client.
481 * This function writes either the head or tail of the xdr_buf
482 * containing the Reply.
484 static int svc_rdma_send_xdr_kvec(struct svc_rdma_write_info *info,
485 struct kvec *vec)
487 info->wi_base = vec->iov_base;
488 return svc_rdma_build_writes(info, svc_rdma_vec_to_sg,
489 vec->iov_len);
492 /* Send an xdr_buf's page list by itself. A Write chunk is
493 * just the page list. a Reply chunk is the head, page list,
494 * and tail. This function is shared between the two types
495 * of chunk.
497 static int svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info *info,
498 struct xdr_buf *xdr)
500 info->wi_xdr = xdr;
501 info->wi_next_off = 0;
502 return svc_rdma_build_writes(info, svc_rdma_pagelist_to_sg,
503 xdr->page_len);
507 * svc_rdma_send_write_chunk - Write all segments in a Write chunk
508 * @rdma: controlling RDMA transport
509 * @wr_ch: Write chunk provided by client
510 * @xdr: xdr_buf containing the data payload
512 * Returns a non-negative number of bytes the chunk consumed, or
513 * %-E2BIG if the payload was larger than the Write chunk,
514 * %-EINVAL if client provided too many segments,
515 * %-ENOMEM if rdma_rw context pool was exhausted,
516 * %-ENOTCONN if posting failed (connection is lost),
517 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
519 int svc_rdma_send_write_chunk(struct svcxprt_rdma *rdma, __be32 *wr_ch,
520 struct xdr_buf *xdr)
522 struct svc_rdma_write_info *info;
523 int ret;
525 if (!xdr->page_len)
526 return 0;
528 info = svc_rdma_write_info_alloc(rdma, wr_ch);
529 if (!info)
530 return -ENOMEM;
532 ret = svc_rdma_send_xdr_pagelist(info, xdr);
533 if (ret < 0)
534 goto out_err;
536 ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
537 if (ret < 0)
538 goto out_err;
540 trace_svcrdma_encode_write(xdr->page_len);
541 return xdr->page_len;
543 out_err:
544 svc_rdma_write_info_free(info);
545 return ret;
549 * svc_rdma_send_reply_chunk - Write all segments in the Reply chunk
550 * @rdma: controlling RDMA transport
551 * @rp_ch: Reply chunk provided by client
552 * @writelist: true if client provided a Write list
553 * @xdr: xdr_buf containing an RPC Reply
555 * Returns a non-negative number of bytes the chunk consumed, or
556 * %-E2BIG if the payload was larger than the Reply chunk,
557 * %-EINVAL if client provided too many segments,
558 * %-ENOMEM if rdma_rw context pool was exhausted,
559 * %-ENOTCONN if posting failed (connection is lost),
560 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
562 int svc_rdma_send_reply_chunk(struct svcxprt_rdma *rdma, __be32 *rp_ch,
563 bool writelist, struct xdr_buf *xdr)
565 struct svc_rdma_write_info *info;
566 int consumed, ret;
568 info = svc_rdma_write_info_alloc(rdma, rp_ch);
569 if (!info)
570 return -ENOMEM;
572 ret = svc_rdma_send_xdr_kvec(info, &xdr->head[0]);
573 if (ret < 0)
574 goto out_err;
575 consumed = xdr->head[0].iov_len;
577 /* Send the page list in the Reply chunk only if the
578 * client did not provide Write chunks.
580 if (!writelist && xdr->page_len) {
581 ret = svc_rdma_send_xdr_pagelist(info, xdr);
582 if (ret < 0)
583 goto out_err;
584 consumed += xdr->page_len;
587 if (xdr->tail[0].iov_len) {
588 ret = svc_rdma_send_xdr_kvec(info, &xdr->tail[0]);
589 if (ret < 0)
590 goto out_err;
591 consumed += xdr->tail[0].iov_len;
594 ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
595 if (ret < 0)
596 goto out_err;
598 trace_svcrdma_encode_reply(consumed);
599 return consumed;
601 out_err:
602 svc_rdma_write_info_free(info);
603 return ret;
606 static int svc_rdma_build_read_segment(struct svc_rdma_read_info *info,
607 struct svc_rqst *rqstp,
608 u32 rkey, u32 len, u64 offset)
610 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
611 struct svc_rdma_chunk_ctxt *cc = &info->ri_cc;
612 struct svc_rdma_rw_ctxt *ctxt;
613 unsigned int sge_no, seg_len;
614 struct scatterlist *sg;
615 int ret;
617 sge_no = PAGE_ALIGN(info->ri_pageoff + len) >> PAGE_SHIFT;
618 ctxt = svc_rdma_get_rw_ctxt(cc->cc_rdma, sge_no);
619 if (!ctxt)
620 goto out_noctx;
621 ctxt->rw_nents = sge_no;
623 sg = ctxt->rw_sg_table.sgl;
624 for (sge_no = 0; sge_no < ctxt->rw_nents; sge_no++) {
625 seg_len = min_t(unsigned int, len,
626 PAGE_SIZE - info->ri_pageoff);
628 head->rc_arg.pages[info->ri_pageno] =
629 rqstp->rq_pages[info->ri_pageno];
630 if (!info->ri_pageoff)
631 head->rc_page_count++;
633 sg_set_page(sg, rqstp->rq_pages[info->ri_pageno],
634 seg_len, info->ri_pageoff);
635 sg = sg_next(sg);
637 info->ri_pageoff += seg_len;
638 if (info->ri_pageoff == PAGE_SIZE) {
639 info->ri_pageno++;
640 info->ri_pageoff = 0;
642 len -= seg_len;
644 /* Safety check */
645 if (len &&
646 &rqstp->rq_pages[info->ri_pageno + 1] > rqstp->rq_page_end)
647 goto out_overrun;
650 ret = rdma_rw_ctx_init(&ctxt->rw_ctx, cc->cc_rdma->sc_qp,
651 cc->cc_rdma->sc_port_num,
652 ctxt->rw_sg_table.sgl, ctxt->rw_nents,
653 0, offset, rkey, DMA_FROM_DEVICE);
654 if (ret < 0)
655 goto out_initerr;
657 list_add(&ctxt->rw_list, &cc->cc_rwctxts);
658 cc->cc_sqecount += ret;
659 return 0;
661 out_noctx:
662 dprintk("svcrdma: no R/W ctxs available\n");
663 return -ENOMEM;
665 out_overrun:
666 dprintk("svcrdma: request overruns rq_pages\n");
667 return -EINVAL;
669 out_initerr:
670 trace_svcrdma_dma_map_rwctx(cc->cc_rdma, ret);
671 svc_rdma_put_rw_ctxt(cc->cc_rdma, ctxt);
672 return -EIO;
675 /* Walk the segments in the Read chunk starting at @p and construct
676 * RDMA Read operations to pull the chunk to the server.
678 static int svc_rdma_build_read_chunk(struct svc_rqst *rqstp,
679 struct svc_rdma_read_info *info,
680 __be32 *p)
682 unsigned int i;
683 int ret;
685 ret = -EINVAL;
686 info->ri_chunklen = 0;
687 while (*p++ != xdr_zero && be32_to_cpup(p++) == info->ri_position) {
688 u32 rs_handle, rs_length;
689 u64 rs_offset;
691 rs_handle = be32_to_cpup(p++);
692 rs_length = be32_to_cpup(p++);
693 p = xdr_decode_hyper(p, &rs_offset);
695 ret = svc_rdma_build_read_segment(info, rqstp,
696 rs_handle, rs_length,
697 rs_offset);
698 if (ret < 0)
699 break;
701 trace_svcrdma_encode_rseg(rs_handle, rs_length, rs_offset);
702 info->ri_chunklen += rs_length;
705 /* Pages under I/O have been copied to head->rc_pages.
706 * Prevent their premature release by svc_xprt_release() .
708 for (i = 0; i < info->ri_readctxt->rc_page_count; i++)
709 rqstp->rq_pages[i] = NULL;
711 return ret;
714 /* Construct RDMA Reads to pull over a normal Read chunk. The chunk
715 * data lands in the page list of head->rc_arg.pages.
717 * Currently NFSD does not look at the head->rc_arg.tail[0] iovec.
718 * Therefore, XDR round-up of the Read chunk and trailing
719 * inline content must both be added at the end of the pagelist.
721 static int svc_rdma_build_normal_read_chunk(struct svc_rqst *rqstp,
722 struct svc_rdma_read_info *info,
723 __be32 *p)
725 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
726 int ret;
728 ret = svc_rdma_build_read_chunk(rqstp, info, p);
729 if (ret < 0)
730 goto out;
732 trace_svcrdma_encode_read(info->ri_chunklen, info->ri_position);
734 head->rc_hdr_count = 0;
736 /* Split the Receive buffer between the head and tail
737 * buffers at Read chunk's position. XDR roundup of the
738 * chunk is not included in either the pagelist or in
739 * the tail.
741 head->rc_arg.tail[0].iov_base =
742 head->rc_arg.head[0].iov_base + info->ri_position;
743 head->rc_arg.tail[0].iov_len =
744 head->rc_arg.head[0].iov_len - info->ri_position;
745 head->rc_arg.head[0].iov_len = info->ri_position;
747 /* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
749 * If the client already rounded up the chunk length, the
750 * length does not change. Otherwise, the length of the page
751 * list is increased to include XDR round-up.
753 * Currently these chunks always start at page offset 0,
754 * thus the rounded-up length never crosses a page boundary.
756 info->ri_chunklen = XDR_QUADLEN(info->ri_chunklen) << 2;
758 head->rc_arg.page_len = info->ri_chunklen;
759 head->rc_arg.len += info->ri_chunklen;
760 head->rc_arg.buflen += info->ri_chunklen;
762 out:
763 return ret;
766 /* Construct RDMA Reads to pull over a Position Zero Read chunk.
767 * The start of the data lands in the first page just after
768 * the Transport header, and the rest lands in the page list of
769 * head->rc_arg.pages.
771 * Assumptions:
772 * - A PZRC has an XDR-aligned length (no implicit round-up).
773 * - There can be no trailing inline content (IOW, we assume
774 * a PZRC is never sent in an RDMA_MSG message, though it's
775 * allowed by spec).
777 static int svc_rdma_build_pz_read_chunk(struct svc_rqst *rqstp,
778 struct svc_rdma_read_info *info,
779 __be32 *p)
781 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
782 int ret;
784 ret = svc_rdma_build_read_chunk(rqstp, info, p);
785 if (ret < 0)
786 goto out;
788 trace_svcrdma_encode_pzr(info->ri_chunklen);
790 head->rc_arg.len += info->ri_chunklen;
791 head->rc_arg.buflen += info->ri_chunklen;
793 head->rc_hdr_count = 1;
794 head->rc_arg.head[0].iov_base = page_address(head->rc_pages[0]);
795 head->rc_arg.head[0].iov_len = min_t(size_t, PAGE_SIZE,
796 info->ri_chunklen);
798 head->rc_arg.page_len = info->ri_chunklen -
799 head->rc_arg.head[0].iov_len;
801 out:
802 return ret;
806 * svc_rdma_recv_read_chunk - Pull a Read chunk from the client
807 * @rdma: controlling RDMA transport
808 * @rqstp: set of pages to use as Read sink buffers
809 * @head: pages under I/O collect here
810 * @p: pointer to start of Read chunk
812 * Returns:
813 * %0 if all needed RDMA Reads were posted successfully,
814 * %-EINVAL if client provided too many segments,
815 * %-ENOMEM if rdma_rw context pool was exhausted,
816 * %-ENOTCONN if posting failed (connection is lost),
817 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
819 * Assumptions:
820 * - All Read segments in @p have the same Position value.
822 int svc_rdma_recv_read_chunk(struct svcxprt_rdma *rdma, struct svc_rqst *rqstp,
823 struct svc_rdma_recv_ctxt *head, __be32 *p)
825 struct svc_rdma_read_info *info;
826 int ret;
828 /* The request (with page list) is constructed in
829 * head->rc_arg. Pages involved with RDMA Read I/O are
830 * transferred there.
832 head->rc_arg.head[0] = rqstp->rq_arg.head[0];
833 head->rc_arg.tail[0] = rqstp->rq_arg.tail[0];
834 head->rc_arg.pages = head->rc_pages;
835 head->rc_arg.page_base = 0;
836 head->rc_arg.page_len = 0;
837 head->rc_arg.len = rqstp->rq_arg.len;
838 head->rc_arg.buflen = rqstp->rq_arg.buflen;
840 info = svc_rdma_read_info_alloc(rdma);
841 if (!info)
842 return -ENOMEM;
843 info->ri_readctxt = head;
844 info->ri_pageno = 0;
845 info->ri_pageoff = 0;
847 info->ri_position = be32_to_cpup(p + 1);
848 if (info->ri_position)
849 ret = svc_rdma_build_normal_read_chunk(rqstp, info, p);
850 else
851 ret = svc_rdma_build_pz_read_chunk(rqstp, info, p);
852 if (ret < 0)
853 goto out_err;
855 ret = svc_rdma_post_chunk_ctxt(&info->ri_cc);
856 if (ret < 0)
857 goto out_err;
858 return 0;
860 out_err:
861 svc_rdma_read_info_free(info);
862 return ret;