2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment
{
89 static struct regulatory_request core_request_world
= {
90 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
95 .country_ie_env
= ENVIRON_ANY
,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu
*last_request
=
103 (void __force __rcu
*)&core_request_world
;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device
*reg_pdev
;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint
;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor
;
129 static spinlock_t reg_indoor_lock
;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid
;
134 static void restore_regulatory_settings(bool reset_user
);
136 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
138 return rcu_dereference_rtnl(cfg80211_regdomain
);
141 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
143 return rcu_dereference_rtnl(wiphy
->regd
);
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
148 switch (dfs_region
) {
149 case NL80211_DFS_UNSET
:
151 case NL80211_DFS_FCC
:
153 case NL80211_DFS_ETSI
:
161 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
163 const struct ieee80211_regdomain
*regd
= NULL
;
164 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
166 regd
= get_cfg80211_regdom();
170 wiphy_regd
= get_wiphy_regdom(wiphy
);
174 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy
->dev
),
179 reg_dfs_region_str(wiphy_regd
->dfs_region
),
180 reg_dfs_region_str(regd
->dfs_region
));
183 return regd
->dfs_region
;
186 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
190 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
193 static struct regulatory_request
*get_last_request(void)
195 return rcu_dereference_rtnl(last_request
);
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list
);
200 static spinlock_t reg_requests_lock
;
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons
);
204 static spinlock_t reg_pending_beacons_lock
;
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list
);
210 struct list_head list
;
211 struct ieee80211_channel chan
;
214 static void reg_check_chans_work(struct work_struct
*work
);
215 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
217 static void reg_todo(struct work_struct
*work
);
218 static DECLARE_WORK(reg_work
, reg_todo
);
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom
= {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_OFDM
),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_AUTO_BW
),
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_AUTO_BW
|
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
264 static char *ieee80211_regdom
= "00";
265 static char user_alpha2
[2];
267 module_param(ieee80211_regdom
, charp
, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
270 static void reg_free_request(struct regulatory_request
*request
)
272 if (request
== &core_request_world
)
275 if (request
!= get_last_request())
279 static void reg_free_last_request(void)
281 struct regulatory_request
*lr
= get_last_request();
283 if (lr
!= &core_request_world
&& lr
)
284 kfree_rcu(lr
, rcu_head
);
287 static void reg_update_last_request(struct regulatory_request
*request
)
289 struct regulatory_request
*lr
;
291 lr
= get_last_request();
295 reg_free_last_request();
296 rcu_assign_pointer(last_request
, request
);
299 static void reset_regdomains(bool full_reset
,
300 const struct ieee80211_regdomain
*new_regdom
)
302 const struct ieee80211_regdomain
*r
;
306 r
= get_cfg80211_regdom();
308 /* avoid freeing static information or freeing something twice */
309 if (r
== cfg80211_world_regdom
)
311 if (cfg80211_world_regdom
== &world_regdom
)
312 cfg80211_world_regdom
= NULL
;
313 if (r
== &world_regdom
)
317 rcu_free_regdom(cfg80211_world_regdom
);
319 cfg80211_world_regdom
= &world_regdom
;
320 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
325 reg_update_last_request(&core_request_world
);
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
332 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
334 struct regulatory_request
*lr
;
336 lr
= get_last_request();
340 reset_regdomains(false, rd
);
342 cfg80211_world_regdom
= rd
;
345 bool is_world_regdom(const char *alpha2
)
349 return alpha2
[0] == '0' && alpha2
[1] == '0';
352 static bool is_alpha2_set(const char *alpha2
)
356 return alpha2
[0] && alpha2
[1];
359 static bool is_unknown_alpha2(const char *alpha2
)
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
367 return alpha2
[0] == '9' && alpha2
[1] == '9';
370 static bool is_intersected_alpha2(const char *alpha2
)
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
379 return alpha2
[0] == '9' && alpha2
[1] == '8';
382 static bool is_an_alpha2(const char *alpha2
)
386 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
389 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
391 if (!alpha2_x
|| !alpha2_y
)
393 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
396 static bool regdom_changes(const char *alpha2
)
398 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
402 return !alpha2_equal(r
->alpha2
, alpha2
);
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
410 static bool is_user_regdom_saved(void)
412 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2
[0], user_alpha2
[1]))
424 static const struct ieee80211_regdomain
*
425 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
427 struct ieee80211_regdomain
*regd
;
432 sizeof(struct ieee80211_regdomain
) +
433 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
435 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
437 return ERR_PTR(-ENOMEM
);
439 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
441 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
442 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
443 sizeof(struct ieee80211_reg_rule
));
448 struct reg_regdb_apply_request
{
449 struct list_head list
;
450 const struct ieee80211_regdomain
*regdom
;
453 static LIST_HEAD(reg_regdb_apply_list
);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
456 static void reg_regdb_apply(struct work_struct
*work
)
458 struct reg_regdb_apply_request
*request
;
462 mutex_lock(®_regdb_apply_mutex
);
463 while (!list_empty(®_regdb_apply_list
)) {
464 request
= list_first_entry(®_regdb_apply_list
,
465 struct reg_regdb_apply_request
,
467 list_del(&request
->list
);
469 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
472 mutex_unlock(®_regdb_apply_mutex
);
477 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
479 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
481 struct reg_regdb_apply_request
*request
;
483 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
489 request
->regdom
= regdom
;
491 mutex_lock(®_regdb_apply_mutex
);
492 list_add_tail(&request
->list
, ®_regdb_apply_list
);
493 mutex_unlock(®_regdb_apply_mutex
);
495 schedule_work(®_regdb_work
);
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
503 static u32 reg_crda_timeouts
;
505 static void crda_timeout_work(struct work_struct
*work
);
506 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
508 static void crda_timeout_work(struct work_struct
*work
)
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
513 restore_regulatory_settings(true);
517 static void cancel_crda_timeout(void)
519 cancel_delayed_work(&crda_timeout
);
522 static void cancel_crda_timeout_sync(void)
524 cancel_delayed_work_sync(&crda_timeout
);
527 static void reset_crda_timeouts(void)
529 reg_crda_timeouts
= 0;
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
536 static int call_crda(const char *alpha2
)
539 char *env
[] = { country
, NULL
};
542 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
543 alpha2
[0], alpha2
[1]);
545 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
550 if (!is_world_regdom((char *) alpha2
))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2
[0], alpha2
[1]);
554 pr_debug("Calling CRDA to update world regulatory domain\n");
556 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
560 queue_delayed_work(system_power_efficient_wq
,
561 &crda_timeout
, msecs_to_jiffies(3142));
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2
)
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header
*regdb
;
577 struct fwdb_country
{
580 /* this struct cannot be extended */
581 } __packed
__aligned(4);
583 struct fwdb_collection
{
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed
__aligned(4);
592 FWDB_FLAG_NO_OFDM
= BIT(0),
593 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
594 FWDB_FLAG_DFS
= BIT(2),
595 FWDB_FLAG_NO_IR
= BIT(3),
596 FWDB_FLAG_AUTO_BW
= BIT(4),
605 struct fwdb_wmm_rule
{
606 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
607 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
614 __be32 start
, end
, max_bw
;
615 /* start of optional data */
618 } __packed
__aligned(4);
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
626 struct fwdb_country country
[];
627 } __packed
__aligned(4);
629 static int ecw2cw(int ecw
)
631 return (1 << ecw
) - 1;
634 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
636 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
639 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
640 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
641 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
642 u8 aifsn
= ac
[i
].aifsn
;
644 if (cw_min
>= cw_max
)
654 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
656 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
658 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
661 /* mandatory fields */
662 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
664 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
665 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
666 struct fwdb_wmm_rule
*wmm
;
668 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
671 wmm
= (void *)(data
+ wmm_ptr
);
679 static bool valid_country(const u8
*data
, unsigned int size
,
680 const struct fwdb_country
*country
)
682 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
683 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
687 /* make sure we can read len/n_rules */
688 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
691 /* make sure base struct and all rules fit */
692 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
693 (coll
->n_rules
* 2) > data
+ size
)
696 /* mandatory fields must exist */
697 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
700 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
702 for (i
= 0; i
< coll
->n_rules
; i
++) {
703 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
705 if (!valid_rule(data
, size
, rule_ptr
))
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key
*builtin_regdb_keys
;
715 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
717 const u8
*end
= p
+ buflen
;
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
730 plen
= (p
[2] << 8) | p
[3];
735 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
736 "asymmetric", NULL
, p
, plen
,
737 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
738 KEY_USR_VIEW
| KEY_USR_READ
),
739 KEY_ALLOC_NOT_IN_QUOTA
|
741 KEY_ALLOC_BYPASS_RESTRICTION
);
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key
)->description
);
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
759 static int __init
load_builtin_regdb_keys(void)
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
765 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
766 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
767 if (IS_ERR(builtin_regdb_keys
))
768 return PTR_ERR(builtin_regdb_keys
);
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
783 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
785 const struct firmware
*sig
;
788 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
791 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
793 VERIFYING_UNSPECIFIED_SIGNATURE
,
796 release_firmware(sig
);
801 static void free_regdb_keyring(void)
803 key_put(builtin_regdb_keys
);
806 static int load_builtin_regdb_keys(void)
811 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
816 static void free_regdb_keyring(void)
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
821 static bool valid_regdb(const u8
*data
, unsigned int size
)
823 const struct fwdb_header
*hdr
= (void *)data
;
824 const struct fwdb_country
*country
;
826 if (size
< sizeof(*hdr
))
829 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
832 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
835 if (!regdb_has_valid_signature(data
, size
))
838 country
= &hdr
->country
[0];
839 while ((u8
*)(country
+ 1) <= data
+ size
) {
840 if (!country
->coll_ptr
)
842 if (!valid_country(data
, size
, country
))
850 static void set_wmm_rule(const struct fwdb_header
*db
,
851 const struct fwdb_country
*country
,
852 const struct fwdb_rule
*rule
,
853 struct ieee80211_reg_rule
*rrule
)
855 struct ieee80211_wmm_rule
*wmm_rule
= &rrule
->wmm_rule
;
856 struct fwdb_wmm_rule
*wmm
;
857 unsigned int i
, wmm_ptr
;
859 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
860 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
862 if (!valid_wmm(wmm
)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule
->start
), be32_to_cpu(rule
->end
),
865 country
->alpha2
[0], country
->alpha2
[1]);
869 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
870 wmm_rule
->client
[i
].cw_min
=
871 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
872 wmm_rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
873 wmm_rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
874 wmm_rule
->client
[i
].cot
=
875 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
876 wmm_rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
877 wmm_rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
878 wmm_rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
879 wmm_rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
882 rrule
->has_wmm
= true;
885 static int __regdb_query_wmm(const struct fwdb_header
*db
,
886 const struct fwdb_country
*country
, int freq
,
887 struct ieee80211_reg_rule
*rrule
)
889 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
890 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
893 for (i
= 0; i
< coll
->n_rules
; i
++) {
894 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
895 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
896 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
898 if (rule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
901 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rule
->start
)) &&
902 freq
<= KHZ_TO_MHZ(be32_to_cpu(rule
->end
))) {
903 set_wmm_rule(db
, country
, rule
, rrule
);
911 int reg_query_regdb_wmm(char *alpha2
, int freq
, struct ieee80211_reg_rule
*rule
)
913 const struct fwdb_header
*hdr
= regdb
;
914 const struct fwdb_country
*country
;
920 return PTR_ERR(regdb
);
922 country
= &hdr
->country
[0];
923 while (country
->coll_ptr
) {
924 if (alpha2_equal(alpha2
, country
->alpha2
))
925 return __regdb_query_wmm(regdb
, country
, freq
, rule
);
932 EXPORT_SYMBOL(reg_query_regdb_wmm
);
934 static int regdb_query_country(const struct fwdb_header
*db
,
935 const struct fwdb_country
*country
)
937 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
938 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
939 struct ieee80211_regdomain
*regdom
;
940 unsigned int size_of_regd
, i
;
942 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
943 coll
->n_rules
* sizeof(struct ieee80211_reg_rule
);
945 regdom
= kzalloc(size_of_regd
, GFP_KERNEL
);
949 regdom
->n_reg_rules
= coll
->n_rules
;
950 regdom
->alpha2
[0] = country
->alpha2
[0];
951 regdom
->alpha2
[1] = country
->alpha2
[1];
952 regdom
->dfs_region
= coll
->dfs_region
;
954 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
955 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
956 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
957 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
958 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
960 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
961 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
962 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
964 rrule
->power_rule
.max_antenna_gain
= 0;
965 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
968 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
969 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
970 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
971 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
972 if (rule
->flags
& FWDB_FLAG_DFS
)
973 rrule
->flags
|= NL80211_RRF_DFS
;
974 if (rule
->flags
& FWDB_FLAG_NO_IR
)
975 rrule
->flags
|= NL80211_RRF_NO_IR
;
976 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
977 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
979 rrule
->dfs_cac_ms
= 0;
981 /* handle optional data */
982 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
984 1000 * be16_to_cpu(rule
->cac_timeout
);
985 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
))
986 set_wmm_rule(db
, country
, rule
, rrule
);
989 return reg_schedule_apply(regdom
);
992 static int query_regdb(const char *alpha2
)
994 const struct fwdb_header
*hdr
= regdb
;
995 const struct fwdb_country
*country
;
1000 return PTR_ERR(regdb
);
1002 country
= &hdr
->country
[0];
1003 while (country
->coll_ptr
) {
1004 if (alpha2_equal(alpha2
, country
->alpha2
))
1005 return regdb_query_country(regdb
, country
);
1012 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1015 bool restore
= true;
1019 pr_info("failed to load regulatory.db\n");
1020 set_error
= -ENODATA
;
1021 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error
= -EINVAL
;
1027 if (WARN_ON(regdb
&& !IS_ERR(regdb
))) {
1028 /* just restore and free new db */
1029 } else if (set_error
) {
1030 regdb
= ERR_PTR(set_error
);
1032 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1035 restore
= context
&& query_regdb(context
);
1042 restore_regulatory_settings(true);
1048 release_firmware(fw
);
1051 static int query_regdb_file(const char *alpha2
)
1056 return query_regdb(alpha2
);
1058 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1062 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1063 ®_pdev
->dev
, GFP_KERNEL
,
1064 (void *)alpha2
, regdb_fw_cb
);
1067 int reg_reload_regdb(void)
1069 const struct firmware
*fw
;
1073 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1077 if (!valid_regdb(fw
->data
, fw
->size
)) {
1082 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1089 if (!IS_ERR_OR_NULL(regdb
))
1095 release_firmware(fw
);
1099 static bool reg_query_database(struct regulatory_request
*request
)
1101 if (query_regdb_file(request
->alpha2
) == 0)
1104 if (call_crda(request
->alpha2
) == 0)
1110 bool reg_is_valid_request(const char *alpha2
)
1112 struct regulatory_request
*lr
= get_last_request();
1114 if (!lr
|| lr
->processed
)
1117 return alpha2_equal(lr
->alpha2
, alpha2
);
1120 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1122 struct regulatory_request
*lr
= get_last_request();
1125 * Follow the driver's regulatory domain, if present, unless a country
1126 * IE has been processed or a user wants to help complaince further
1128 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1129 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1131 return get_wiphy_regdom(wiphy
);
1133 return get_cfg80211_regdom();
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1138 const struct ieee80211_reg_rule
*rule
)
1140 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1141 const struct ieee80211_freq_range
*freq_range_tmp
;
1142 const struct ieee80211_reg_rule
*tmp
;
1143 u32 start_freq
, end_freq
, idx
, no
;
1145 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1146 if (rule
== &rd
->reg_rules
[idx
])
1149 if (idx
== rd
->n_reg_rules
)
1152 /* get start_freq */
1156 tmp
= &rd
->reg_rules
[--no
];
1157 freq_range_tmp
= &tmp
->freq_range
;
1159 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1162 freq_range
= freq_range_tmp
;
1165 start_freq
= freq_range
->start_freq_khz
;
1168 freq_range
= &rule
->freq_range
;
1171 while (no
< rd
->n_reg_rules
- 1) {
1172 tmp
= &rd
->reg_rules
[++no
];
1173 freq_range_tmp
= &tmp
->freq_range
;
1175 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1178 freq_range
= freq_range_tmp
;
1181 end_freq
= freq_range
->end_freq_khz
;
1183 return end_freq
- start_freq
;
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1187 const struct ieee80211_reg_rule
*rule
)
1189 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1191 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1192 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1193 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1194 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1200 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1201 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1202 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1210 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1213 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1216 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1219 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1221 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1222 freq_range
->max_bandwidth_khz
> freq_diff
)
1228 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1230 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1233 if (!rd
->n_reg_rules
)
1236 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1239 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1240 reg_rule
= &rd
->reg_rules
[i
];
1241 if (!is_valid_reg_rule(reg_rule
))
1249 * freq_in_rule_band - tells us if a frequency is in a frequency band
1250 * @freq_range: frequency rule we want to query
1251 * @freq_khz: frequency we are inquiring about
1253 * This lets us know if a specific frequency rule is or is not relevant to
1254 * a specific frequency's band. Bands are device specific and artificial
1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256 * however it is safe for now to assume that a frequency rule should not be
1257 * part of a frequency's band if the start freq or end freq are off by more
1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1260 * This resolution can be lowered and should be considered as we add
1261 * regulatory rule support for other "bands".
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1266 #define ONE_GHZ_IN_KHZ 1000000
1268 * From 802.11ad: directional multi-gigabit (DMG):
1269 * Pertaining to operation in a frequency band containing a channel
1270 * with the Channel starting frequency above 45 GHz.
1272 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1273 20 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1274 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1276 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1279 #undef ONE_GHZ_IN_KHZ
1283 * Later on we can perhaps use the more restrictive DFS
1284 * region but we don't have information for that yet so
1285 * for now simply disallow conflicts.
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1289 const enum nl80211_dfs_regions dfs_region2
)
1291 if (dfs_region1
!= dfs_region2
)
1292 return NL80211_DFS_UNSET
;
1296 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac
*wmm_ac1
,
1297 const struct ieee80211_wmm_ac
*wmm_ac2
,
1298 struct ieee80211_wmm_ac
*intersect
)
1300 intersect
->cw_min
= max_t(u16
, wmm_ac1
->cw_min
, wmm_ac2
->cw_min
);
1301 intersect
->cw_max
= max_t(u16
, wmm_ac1
->cw_max
, wmm_ac2
->cw_max
);
1302 intersect
->cot
= min_t(u16
, wmm_ac1
->cot
, wmm_ac2
->cot
);
1303 intersect
->aifsn
= max_t(u8
, wmm_ac1
->aifsn
, wmm_ac2
->aifsn
);
1307 * Helper for regdom_intersect(), this does the real
1308 * mathematical intersection fun
1310 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1311 const struct ieee80211_regdomain
*rd2
,
1312 const struct ieee80211_reg_rule
*rule1
,
1313 const struct ieee80211_reg_rule
*rule2
,
1314 struct ieee80211_reg_rule
*intersected_rule
)
1316 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1317 struct ieee80211_freq_range
*freq_range
;
1318 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1319 struct ieee80211_power_rule
*power_rule
;
1320 const struct ieee80211_wmm_rule
*wmm_rule1
, *wmm_rule2
;
1321 struct ieee80211_wmm_rule
*wmm_rule
;
1322 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1324 freq_range1
= &rule1
->freq_range
;
1325 freq_range2
= &rule2
->freq_range
;
1326 freq_range
= &intersected_rule
->freq_range
;
1328 power_rule1
= &rule1
->power_rule
;
1329 power_rule2
= &rule2
->power_rule
;
1330 power_rule
= &intersected_rule
->power_rule
;
1332 wmm_rule1
= &rule1
->wmm_rule
;
1333 wmm_rule2
= &rule2
->wmm_rule
;
1334 wmm_rule
= &intersected_rule
->wmm_rule
;
1336 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1337 freq_range2
->start_freq_khz
);
1338 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1339 freq_range2
->end_freq_khz
);
1341 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1342 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1344 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1345 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1346 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1347 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1349 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1351 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1354 * In case NL80211_RRF_AUTO_BW requested for both rules
1355 * set AUTO_BW in intersected rule also. Next we will
1356 * calculate BW correctly in handle_channel function.
1357 * In other case remove AUTO_BW flag while we calculate
1358 * maximum bandwidth correctly and auto calculation is
1361 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1362 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1363 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1365 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1367 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1368 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1369 freq_range
->max_bandwidth_khz
= freq_diff
;
1371 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1372 power_rule2
->max_eirp
);
1373 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1374 power_rule2
->max_antenna_gain
);
1376 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1379 if (rule1
->has_wmm
&& rule2
->has_wmm
) {
1382 for (ac
= 0; ac
< IEEE80211_NUM_ACS
; ac
++) {
1383 reg_wmm_rules_intersect(&wmm_rule1
->client
[ac
],
1384 &wmm_rule2
->client
[ac
],
1385 &wmm_rule
->client
[ac
]);
1386 reg_wmm_rules_intersect(&wmm_rule1
->ap
[ac
],
1391 intersected_rule
->has_wmm
= true;
1392 } else if (rule1
->has_wmm
) {
1393 *wmm_rule
= *wmm_rule1
;
1394 intersected_rule
->has_wmm
= true;
1395 } else if (rule2
->has_wmm
) {
1396 *wmm_rule
= *wmm_rule2
;
1397 intersected_rule
->has_wmm
= true;
1399 intersected_rule
->has_wmm
= false;
1402 if (!is_valid_reg_rule(intersected_rule
))
1408 /* check whether old rule contains new rule */
1409 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1410 struct ieee80211_reg_rule
*r2
)
1412 /* for simplicity, currently consider only same flags */
1413 if (r1
->flags
!= r2
->flags
)
1416 /* verify r1 is more restrictive */
1417 if ((r1
->power_rule
.max_antenna_gain
>
1418 r2
->power_rule
.max_antenna_gain
) ||
1419 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1422 /* make sure r2's range is contained within r1 */
1423 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1424 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1427 /* and finally verify that r1.max_bw >= r2.max_bw */
1428 if (r1
->freq_range
.max_bandwidth_khz
<
1429 r2
->freq_range
.max_bandwidth_khz
)
1435 /* add or extend current rules. do nothing if rule is already contained */
1436 static void add_rule(struct ieee80211_reg_rule
*rule
,
1437 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1439 struct ieee80211_reg_rule
*tmp_rule
;
1442 for (i
= 0; i
< *n_rules
; i
++) {
1443 tmp_rule
= ®_rules
[i
];
1444 /* rule is already contained - do nothing */
1445 if (rule_contains(tmp_rule
, rule
))
1448 /* extend rule if possible */
1449 if (rule_contains(rule
, tmp_rule
)) {
1450 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1455 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1460 * regdom_intersect - do the intersection between two regulatory domains
1461 * @rd1: first regulatory domain
1462 * @rd2: second regulatory domain
1464 * Use this function to get the intersection between two regulatory domains.
1465 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1466 * as no one single alpha2 can represent this regulatory domain.
1468 * Returns a pointer to the regulatory domain structure which will hold the
1469 * resulting intersection of rules between rd1 and rd2. We will
1470 * kzalloc() this structure for you.
1472 static struct ieee80211_regdomain
*
1473 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1474 const struct ieee80211_regdomain
*rd2
)
1476 int r
, size_of_regd
;
1478 unsigned int num_rules
= 0;
1479 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1480 struct ieee80211_reg_rule intersected_rule
;
1481 struct ieee80211_regdomain
*rd
;
1487 * First we get a count of the rules we'll need, then we actually
1488 * build them. This is to so we can malloc() and free() a
1489 * regdomain once. The reason we use reg_rules_intersect() here
1490 * is it will return -EINVAL if the rule computed makes no sense.
1491 * All rules that do check out OK are valid.
1494 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1495 rule1
= &rd1
->reg_rules
[x
];
1496 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1497 rule2
= &rd2
->reg_rules
[y
];
1498 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1507 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1508 num_rules
* sizeof(struct ieee80211_reg_rule
);
1510 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1514 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1515 rule1
= &rd1
->reg_rules
[x
];
1516 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1517 rule2
= &rd2
->reg_rules
[y
];
1518 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1521 * No need to memset here the intersected rule here as
1522 * we're not using the stack anymore
1527 add_rule(&intersected_rule
, rd
->reg_rules
,
1532 rd
->alpha2
[0] = '9';
1533 rd
->alpha2
[1] = '8';
1534 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1541 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1542 * want to just have the channel structure use these
1544 static u32
map_regdom_flags(u32 rd_flags
)
1546 u32 channel_flags
= 0;
1547 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1548 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1549 if (rd_flags
& NL80211_RRF_DFS
)
1550 channel_flags
|= IEEE80211_CHAN_RADAR
;
1551 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1552 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1553 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1554 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1555 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1556 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1557 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1558 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1559 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1560 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1561 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1562 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1563 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1564 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1565 return channel_flags
;
1568 static const struct ieee80211_reg_rule
*
1569 freq_reg_info_regd(u32 center_freq
,
1570 const struct ieee80211_regdomain
*regd
, u32 bw
)
1573 bool band_rule_found
= false;
1574 bool bw_fits
= false;
1577 return ERR_PTR(-EINVAL
);
1579 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1580 const struct ieee80211_reg_rule
*rr
;
1581 const struct ieee80211_freq_range
*fr
= NULL
;
1583 rr
= ®d
->reg_rules
[i
];
1584 fr
= &rr
->freq_range
;
1587 * We only need to know if one frequency rule was
1588 * was in center_freq's band, that's enough, so lets
1589 * not overwrite it once found
1591 if (!band_rule_found
)
1592 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1594 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1596 if (band_rule_found
&& bw_fits
)
1600 if (!band_rule_found
)
1601 return ERR_PTR(-ERANGE
);
1603 return ERR_PTR(-EINVAL
);
1606 static const struct ieee80211_reg_rule
*
1607 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1609 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1610 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1613 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1614 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1615 if (!IS_ERR(reg_rule
))
1622 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1625 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1627 EXPORT_SYMBOL(freq_reg_info
);
1629 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1631 switch (initiator
) {
1632 case NL80211_REGDOM_SET_BY_CORE
:
1634 case NL80211_REGDOM_SET_BY_USER
:
1636 case NL80211_REGDOM_SET_BY_DRIVER
:
1638 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1639 return "country element";
1645 EXPORT_SYMBOL(reg_initiator_name
);
1647 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1648 const struct ieee80211_reg_rule
*reg_rule
,
1649 const struct ieee80211_channel
*chan
)
1651 const struct ieee80211_freq_range
*freq_range
= NULL
;
1652 u32 max_bandwidth_khz
, bw_flags
= 0;
1654 freq_range
= ®_rule
->freq_range
;
1656 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1657 /* Check if auto calculation requested */
1658 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1659 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1661 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1662 if (!cfg80211_does_bw_fit_range(freq_range
,
1663 MHZ_TO_KHZ(chan
->center_freq
),
1665 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1666 if (!cfg80211_does_bw_fit_range(freq_range
,
1667 MHZ_TO_KHZ(chan
->center_freq
),
1669 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1671 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1672 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1673 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1674 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1675 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1676 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1677 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1678 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1679 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1680 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1685 * Note that right now we assume the desired channel bandwidth
1686 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1687 * per channel, the primary and the extension channel).
1689 static void handle_channel(struct wiphy
*wiphy
,
1690 enum nl80211_reg_initiator initiator
,
1691 struct ieee80211_channel
*chan
)
1693 u32 flags
, bw_flags
= 0;
1694 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1695 const struct ieee80211_power_rule
*power_rule
= NULL
;
1696 struct wiphy
*request_wiphy
= NULL
;
1697 struct regulatory_request
*lr
= get_last_request();
1698 const struct ieee80211_regdomain
*regd
;
1700 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1702 flags
= chan
->orig_flags
;
1704 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1705 if (IS_ERR(reg_rule
)) {
1707 * We will disable all channels that do not match our
1708 * received regulatory rule unless the hint is coming
1709 * from a Country IE and the Country IE had no information
1710 * about a band. The IEEE 802.11 spec allows for an AP
1711 * to send only a subset of the regulatory rules allowed,
1712 * so an AP in the US that only supports 2.4 GHz may only send
1713 * a country IE with information for the 2.4 GHz band
1714 * while 5 GHz is still supported.
1716 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1717 PTR_ERR(reg_rule
) == -ERANGE
)
1720 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1721 request_wiphy
&& request_wiphy
== wiphy
&&
1722 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1723 pr_debug("Disabling freq %d MHz for good\n",
1725 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1726 chan
->flags
= chan
->orig_flags
;
1728 pr_debug("Disabling freq %d MHz\n",
1730 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1735 regd
= reg_get_regdomain(wiphy
);
1737 power_rule
= ®_rule
->power_rule
;
1738 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1740 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1741 request_wiphy
&& request_wiphy
== wiphy
&&
1742 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1744 * This guarantees the driver's requested regulatory domain
1745 * will always be used as a base for further regulatory
1748 chan
->flags
= chan
->orig_flags
=
1749 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1750 chan
->max_antenna_gain
= chan
->orig_mag
=
1751 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1752 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1753 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1755 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1756 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1757 if (reg_rule
->dfs_cac_ms
)
1758 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1764 chan
->dfs_state
= NL80211_DFS_USABLE
;
1765 chan
->dfs_state_entered
= jiffies
;
1767 chan
->beacon_found
= false;
1768 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1769 chan
->max_antenna_gain
=
1770 min_t(int, chan
->orig_mag
,
1771 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1772 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1774 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1775 if (reg_rule
->dfs_cac_ms
)
1776 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1778 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1781 if (chan
->orig_mpwr
) {
1783 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1784 * will always follow the passed country IE power settings.
1786 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1787 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1788 chan
->max_power
= chan
->max_reg_power
;
1790 chan
->max_power
= min(chan
->orig_mpwr
,
1791 chan
->max_reg_power
);
1793 chan
->max_power
= chan
->max_reg_power
;
1796 static void handle_band(struct wiphy
*wiphy
,
1797 enum nl80211_reg_initiator initiator
,
1798 struct ieee80211_supported_band
*sband
)
1805 for (i
= 0; i
< sband
->n_channels
; i
++)
1806 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1809 static bool reg_request_cell_base(struct regulatory_request
*request
)
1811 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1813 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1816 bool reg_last_request_cell_base(void)
1818 return reg_request_cell_base(get_last_request());
1821 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1822 /* Core specific check */
1823 static enum reg_request_treatment
1824 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1826 struct regulatory_request
*lr
= get_last_request();
1828 if (!reg_num_devs_support_basehint
)
1829 return REG_REQ_IGNORE
;
1831 if (reg_request_cell_base(lr
) &&
1832 !regdom_changes(pending_request
->alpha2
))
1833 return REG_REQ_ALREADY_SET
;
1838 /* Device specific check */
1839 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1841 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1844 static enum reg_request_treatment
1845 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1847 return REG_REQ_IGNORE
;
1850 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1856 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1858 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1859 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1864 static bool ignore_reg_update(struct wiphy
*wiphy
,
1865 enum nl80211_reg_initiator initiator
)
1867 struct regulatory_request
*lr
= get_last_request();
1869 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1873 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1874 reg_initiator_name(initiator
));
1878 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1879 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1880 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1881 reg_initiator_name(initiator
));
1886 * wiphy->regd will be set once the device has its own
1887 * desired regulatory domain set
1889 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1890 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1891 !is_world_regdom(lr
->alpha2
)) {
1892 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1893 reg_initiator_name(initiator
));
1897 if (reg_request_cell_base(lr
))
1898 return reg_dev_ignore_cell_hint(wiphy
);
1903 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1905 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1906 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1907 struct regulatory_request
*lr
= get_last_request();
1909 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1912 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1913 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1919 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1920 struct reg_beacon
*reg_beacon
)
1922 struct ieee80211_supported_band
*sband
;
1923 struct ieee80211_channel
*chan
;
1924 bool channel_changed
= false;
1925 struct ieee80211_channel chan_before
;
1927 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1928 chan
= &sband
->channels
[chan_idx
];
1930 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1933 if (chan
->beacon_found
)
1936 chan
->beacon_found
= true;
1938 if (!reg_is_world_roaming(wiphy
))
1941 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1944 chan_before
= *chan
;
1946 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1947 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1948 channel_changed
= true;
1951 if (channel_changed
)
1952 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1956 * Called when a scan on a wiphy finds a beacon on
1959 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1960 struct reg_beacon
*reg_beacon
)
1963 struct ieee80211_supported_band
*sband
;
1965 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1968 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1970 for (i
= 0; i
< sband
->n_channels
; i
++)
1971 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1975 * Called upon reg changes or a new wiphy is added
1977 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1980 struct ieee80211_supported_band
*sband
;
1981 struct reg_beacon
*reg_beacon
;
1983 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1984 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1986 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1987 for (i
= 0; i
< sband
->n_channels
; i
++)
1988 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1992 /* Reap the advantages of previously found beacons */
1993 static void reg_process_beacons(struct wiphy
*wiphy
)
1996 * Means we are just firing up cfg80211, so no beacons would
1997 * have been processed yet.
2001 wiphy_update_beacon_reg(wiphy
);
2004 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
2008 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
2010 /* This would happen when regulatory rules disallow HT40 completely */
2011 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
2016 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
2017 struct ieee80211_channel
*channel
)
2019 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
2020 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
2021 const struct ieee80211_regdomain
*regd
;
2025 if (!is_ht40_allowed(channel
)) {
2026 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
2031 * We need to ensure the extension channels exist to
2032 * be able to use HT40- or HT40+, this finds them (or not)
2034 for (i
= 0; i
< sband
->n_channels
; i
++) {
2035 struct ieee80211_channel
*c
= &sband
->channels
[i
];
2037 if (c
->center_freq
== (channel
->center_freq
- 20))
2039 if (c
->center_freq
== (channel
->center_freq
+ 20))
2044 regd
= get_wiphy_regdom(wiphy
);
2046 const struct ieee80211_reg_rule
*reg_rule
=
2047 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2048 regd
, MHZ_TO_KHZ(20));
2050 if (!IS_ERR(reg_rule
))
2051 flags
= reg_rule
->flags
;
2055 * Please note that this assumes target bandwidth is 20 MHz,
2056 * if that ever changes we also need to change the below logic
2057 * to include that as well.
2059 if (!is_ht40_allowed(channel_before
) ||
2060 flags
& NL80211_RRF_NO_HT40MINUS
)
2061 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2063 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2065 if (!is_ht40_allowed(channel_after
) ||
2066 flags
& NL80211_RRF_NO_HT40PLUS
)
2067 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2069 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2072 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2073 struct ieee80211_supported_band
*sband
)
2080 for (i
= 0; i
< sband
->n_channels
; i
++)
2081 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2084 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2086 enum nl80211_band band
;
2091 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2092 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2095 static void reg_call_notifier(struct wiphy
*wiphy
,
2096 struct regulatory_request
*request
)
2098 if (wiphy
->reg_notifier
)
2099 wiphy
->reg_notifier(wiphy
, request
);
2102 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2104 struct cfg80211_chan_def chandef
= {};
2105 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2106 enum nl80211_iftype iftype
;
2109 iftype
= wdev
->iftype
;
2111 /* make sure the interface is active */
2112 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2113 goto wdev_inactive_unlock
;
2116 case NL80211_IFTYPE_AP
:
2117 case NL80211_IFTYPE_P2P_GO
:
2118 if (!wdev
->beacon_interval
)
2119 goto wdev_inactive_unlock
;
2120 chandef
= wdev
->chandef
;
2122 case NL80211_IFTYPE_ADHOC
:
2123 if (!wdev
->ssid_len
)
2124 goto wdev_inactive_unlock
;
2125 chandef
= wdev
->chandef
;
2127 case NL80211_IFTYPE_STATION
:
2128 case NL80211_IFTYPE_P2P_CLIENT
:
2129 if (!wdev
->current_bss
||
2130 !wdev
->current_bss
->pub
.channel
)
2131 goto wdev_inactive_unlock
;
2133 if (!rdev
->ops
->get_channel
||
2134 rdev_get_channel(rdev
, wdev
, &chandef
))
2135 cfg80211_chandef_create(&chandef
,
2136 wdev
->current_bss
->pub
.channel
,
2137 NL80211_CHAN_NO_HT
);
2139 case NL80211_IFTYPE_MONITOR
:
2140 case NL80211_IFTYPE_AP_VLAN
:
2141 case NL80211_IFTYPE_P2P_DEVICE
:
2142 /* no enforcement required */
2145 /* others not implemented for now */
2153 case NL80211_IFTYPE_AP
:
2154 case NL80211_IFTYPE_P2P_GO
:
2155 case NL80211_IFTYPE_ADHOC
:
2156 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
2157 case NL80211_IFTYPE_STATION
:
2158 case NL80211_IFTYPE_P2P_CLIENT
:
2159 return cfg80211_chandef_usable(wiphy
, &chandef
,
2160 IEEE80211_CHAN_DISABLED
);
2167 wdev_inactive_unlock
:
2172 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2174 struct wireless_dev
*wdev
;
2175 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2179 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2180 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2181 cfg80211_leave(rdev
, wdev
);
2184 static void reg_check_chans_work(struct work_struct
*work
)
2186 struct cfg80211_registered_device
*rdev
;
2188 pr_debug("Verifying active interfaces after reg change\n");
2191 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2192 if (!(rdev
->wiphy
.regulatory_flags
&
2193 REGULATORY_IGNORE_STALE_KICKOFF
))
2194 reg_leave_invalid_chans(&rdev
->wiphy
);
2199 static void reg_check_channels(void)
2202 * Give usermode a chance to do something nicer (move to another
2203 * channel, orderly disconnection), before forcing a disconnection.
2205 mod_delayed_work(system_power_efficient_wq
,
2207 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2210 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2211 enum nl80211_reg_initiator initiator
)
2213 enum nl80211_band band
;
2214 struct regulatory_request
*lr
= get_last_request();
2216 if (ignore_reg_update(wiphy
, initiator
)) {
2218 * Regulatory updates set by CORE are ignored for custom
2219 * regulatory cards. Let us notify the changes to the driver,
2220 * as some drivers used this to restore its orig_* reg domain.
2222 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2223 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
&&
2224 !(wiphy
->regulatory_flags
&
2225 REGULATORY_WIPHY_SELF_MANAGED
))
2226 reg_call_notifier(wiphy
, lr
);
2230 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2232 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2233 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2235 reg_process_beacons(wiphy
);
2236 reg_process_ht_flags(wiphy
);
2237 reg_call_notifier(wiphy
, lr
);
2240 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2242 struct cfg80211_registered_device
*rdev
;
2243 struct wiphy
*wiphy
;
2247 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2248 wiphy
= &rdev
->wiphy
;
2249 wiphy_update_regulatory(wiphy
, initiator
);
2252 reg_check_channels();
2255 static void handle_channel_custom(struct wiphy
*wiphy
,
2256 struct ieee80211_channel
*chan
,
2257 const struct ieee80211_regdomain
*regd
,
2261 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2262 const struct ieee80211_power_rule
*power_rule
= NULL
;
2265 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
2266 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
2268 if (!IS_ERR(reg_rule
))
2272 if (IS_ERR_OR_NULL(reg_rule
)) {
2273 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2275 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2276 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2278 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2279 chan
->flags
= chan
->orig_flags
;
2284 power_rule
= ®_rule
->power_rule
;
2285 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2287 chan
->dfs_state_entered
= jiffies
;
2288 chan
->dfs_state
= NL80211_DFS_USABLE
;
2290 chan
->beacon_found
= false;
2292 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2293 chan
->flags
= chan
->orig_flags
| bw_flags
|
2294 map_regdom_flags(reg_rule
->flags
);
2296 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2298 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2299 chan
->max_reg_power
= chan
->max_power
=
2300 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2302 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2303 if (reg_rule
->dfs_cac_ms
)
2304 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2306 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2309 chan
->max_power
= chan
->max_reg_power
;
2312 static void handle_band_custom(struct wiphy
*wiphy
,
2313 struct ieee80211_supported_band
*sband
,
2314 const struct ieee80211_regdomain
*regd
)
2322 * We currently assume that you always want at least 20 MHz,
2323 * otherwise channel 12 might get enabled if this rule is
2324 * compatible to US, which permits 2402 - 2472 MHz.
2326 for (i
= 0; i
< sband
->n_channels
; i
++)
2327 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
,
2331 /* Used by drivers prior to wiphy registration */
2332 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2333 const struct ieee80211_regdomain
*regd
)
2335 enum nl80211_band band
;
2336 unsigned int bands_set
= 0;
2338 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2339 "wiphy should have REGULATORY_CUSTOM_REG\n");
2340 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2342 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2343 if (!wiphy
->bands
[band
])
2345 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2350 * no point in calling this if it won't have any effect
2351 * on your device's supported bands.
2353 WARN_ON(!bands_set
);
2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2357 static void reg_set_request_processed(void)
2359 bool need_more_processing
= false;
2360 struct regulatory_request
*lr
= get_last_request();
2362 lr
->processed
= true;
2364 spin_lock(®_requests_lock
);
2365 if (!list_empty(®_requests_list
))
2366 need_more_processing
= true;
2367 spin_unlock(®_requests_lock
);
2369 cancel_crda_timeout();
2371 if (need_more_processing
)
2372 schedule_work(®_work
);
2376 * reg_process_hint_core - process core regulatory requests
2377 * @pending_request: a pending core regulatory request
2379 * The wireless subsystem can use this function to process
2380 * a regulatory request issued by the regulatory core.
2382 static enum reg_request_treatment
2383 reg_process_hint_core(struct regulatory_request
*core_request
)
2385 if (reg_query_database(core_request
)) {
2386 core_request
->intersect
= false;
2387 core_request
->processed
= false;
2388 reg_update_last_request(core_request
);
2392 return REG_REQ_IGNORE
;
2395 static enum reg_request_treatment
2396 __reg_process_hint_user(struct regulatory_request
*user_request
)
2398 struct regulatory_request
*lr
= get_last_request();
2400 if (reg_request_cell_base(user_request
))
2401 return reg_ignore_cell_hint(user_request
);
2403 if (reg_request_cell_base(lr
))
2404 return REG_REQ_IGNORE
;
2406 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2407 return REG_REQ_INTERSECT
;
2409 * If the user knows better the user should set the regdom
2410 * to their country before the IE is picked up
2412 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2414 return REG_REQ_IGNORE
;
2416 * Process user requests only after previous user/driver/core
2417 * requests have been processed
2419 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2420 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2421 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2422 regdom_changes(lr
->alpha2
))
2423 return REG_REQ_IGNORE
;
2425 if (!regdom_changes(user_request
->alpha2
))
2426 return REG_REQ_ALREADY_SET
;
2432 * reg_process_hint_user - process user regulatory requests
2433 * @user_request: a pending user regulatory request
2435 * The wireless subsystem can use this function to process
2436 * a regulatory request initiated by userspace.
2438 static enum reg_request_treatment
2439 reg_process_hint_user(struct regulatory_request
*user_request
)
2441 enum reg_request_treatment treatment
;
2443 treatment
= __reg_process_hint_user(user_request
);
2444 if (treatment
== REG_REQ_IGNORE
||
2445 treatment
== REG_REQ_ALREADY_SET
)
2446 return REG_REQ_IGNORE
;
2448 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2449 user_request
->processed
= false;
2451 if (reg_query_database(user_request
)) {
2452 reg_update_last_request(user_request
);
2453 user_alpha2
[0] = user_request
->alpha2
[0];
2454 user_alpha2
[1] = user_request
->alpha2
[1];
2458 return REG_REQ_IGNORE
;
2461 static enum reg_request_treatment
2462 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2464 struct regulatory_request
*lr
= get_last_request();
2466 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2467 if (regdom_changes(driver_request
->alpha2
))
2469 return REG_REQ_ALREADY_SET
;
2473 * This would happen if you unplug and plug your card
2474 * back in or if you add a new device for which the previously
2475 * loaded card also agrees on the regulatory domain.
2477 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2478 !regdom_changes(driver_request
->alpha2
))
2479 return REG_REQ_ALREADY_SET
;
2481 return REG_REQ_INTERSECT
;
2485 * reg_process_hint_driver - process driver regulatory requests
2486 * @driver_request: a pending driver regulatory request
2488 * The wireless subsystem can use this function to process
2489 * a regulatory request issued by an 802.11 driver.
2491 * Returns one of the different reg request treatment values.
2493 static enum reg_request_treatment
2494 reg_process_hint_driver(struct wiphy
*wiphy
,
2495 struct regulatory_request
*driver_request
)
2497 const struct ieee80211_regdomain
*regd
, *tmp
;
2498 enum reg_request_treatment treatment
;
2500 treatment
= __reg_process_hint_driver(driver_request
);
2502 switch (treatment
) {
2505 case REG_REQ_IGNORE
:
2506 return REG_REQ_IGNORE
;
2507 case REG_REQ_INTERSECT
:
2508 case REG_REQ_ALREADY_SET
:
2509 regd
= reg_copy_regd(get_cfg80211_regdom());
2511 return REG_REQ_IGNORE
;
2513 tmp
= get_wiphy_regdom(wiphy
);
2514 rcu_assign_pointer(wiphy
->regd
, regd
);
2515 rcu_free_regdom(tmp
);
2519 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2520 driver_request
->processed
= false;
2523 * Since CRDA will not be called in this case as we already
2524 * have applied the requested regulatory domain before we just
2525 * inform userspace we have processed the request
2527 if (treatment
== REG_REQ_ALREADY_SET
) {
2528 nl80211_send_reg_change_event(driver_request
);
2529 reg_update_last_request(driver_request
);
2530 reg_set_request_processed();
2531 return REG_REQ_ALREADY_SET
;
2534 if (reg_query_database(driver_request
)) {
2535 reg_update_last_request(driver_request
);
2539 return REG_REQ_IGNORE
;
2542 static enum reg_request_treatment
2543 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2544 struct regulatory_request
*country_ie_request
)
2546 struct wiphy
*last_wiphy
= NULL
;
2547 struct regulatory_request
*lr
= get_last_request();
2549 if (reg_request_cell_base(lr
)) {
2550 /* Trust a Cell base station over the AP's country IE */
2551 if (regdom_changes(country_ie_request
->alpha2
))
2552 return REG_REQ_IGNORE
;
2553 return REG_REQ_ALREADY_SET
;
2555 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2556 return REG_REQ_IGNORE
;
2559 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2562 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2565 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2567 if (last_wiphy
!= wiphy
) {
2569 * Two cards with two APs claiming different
2570 * Country IE alpha2s. We could
2571 * intersect them, but that seems unlikely
2572 * to be correct. Reject second one for now.
2574 if (regdom_changes(country_ie_request
->alpha2
))
2575 return REG_REQ_IGNORE
;
2576 return REG_REQ_ALREADY_SET
;
2579 if (regdom_changes(country_ie_request
->alpha2
))
2581 return REG_REQ_ALREADY_SET
;
2585 * reg_process_hint_country_ie - process regulatory requests from country IEs
2586 * @country_ie_request: a regulatory request from a country IE
2588 * The wireless subsystem can use this function to process
2589 * a regulatory request issued by a country Information Element.
2591 * Returns one of the different reg request treatment values.
2593 static enum reg_request_treatment
2594 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2595 struct regulatory_request
*country_ie_request
)
2597 enum reg_request_treatment treatment
;
2599 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2601 switch (treatment
) {
2604 case REG_REQ_IGNORE
:
2605 return REG_REQ_IGNORE
;
2606 case REG_REQ_ALREADY_SET
:
2607 reg_free_request(country_ie_request
);
2608 return REG_REQ_ALREADY_SET
;
2609 case REG_REQ_INTERSECT
:
2611 * This doesn't happen yet, not sure we
2612 * ever want to support it for this case.
2614 WARN_ONCE(1, "Unexpected intersection for country elements");
2615 return REG_REQ_IGNORE
;
2618 country_ie_request
->intersect
= false;
2619 country_ie_request
->processed
= false;
2621 if (reg_query_database(country_ie_request
)) {
2622 reg_update_last_request(country_ie_request
);
2626 return REG_REQ_IGNORE
;
2629 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2631 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2632 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2633 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2634 bool dfs_domain_same
;
2638 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2639 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2641 wiphy1_regd
= cfg80211_regd
;
2643 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2645 wiphy2_regd
= cfg80211_regd
;
2647 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2651 return dfs_domain_same
;
2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2655 struct ieee80211_channel
*src_chan
)
2657 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2658 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2661 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2662 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2665 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2666 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2667 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2668 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2672 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2673 struct wiphy
*src_wiphy
)
2675 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2676 struct ieee80211_channel
*src_chan
, *dst_chan
;
2679 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2682 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2683 dst_sband
= dst_wiphy
->bands
[band
];
2684 src_sband
= src_wiphy
->bands
[band
];
2685 if (!dst_sband
|| !src_sband
)
2688 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2689 dst_chan
= &dst_sband
->channels
[i
];
2690 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2691 src_chan
= &src_sband
->channels
[j
];
2692 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2698 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2700 struct cfg80211_registered_device
*rdev
;
2704 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2705 if (wiphy
== &rdev
->wiphy
)
2707 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2711 /* This processes *all* regulatory hints */
2712 static void reg_process_hint(struct regulatory_request
*reg_request
)
2714 struct wiphy
*wiphy
= NULL
;
2715 enum reg_request_treatment treatment
;
2716 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
2718 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2719 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2721 switch (initiator
) {
2722 case NL80211_REGDOM_SET_BY_CORE
:
2723 treatment
= reg_process_hint_core(reg_request
);
2725 case NL80211_REGDOM_SET_BY_USER
:
2726 treatment
= reg_process_hint_user(reg_request
);
2728 case NL80211_REGDOM_SET_BY_DRIVER
:
2731 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2733 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2736 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2739 WARN(1, "invalid initiator %d\n", initiator
);
2743 if (treatment
== REG_REQ_IGNORE
)
2746 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2747 "unexpected treatment value %d\n", treatment
);
2749 /* This is required so that the orig_* parameters are saved.
2750 * NOTE: treatment must be set for any case that reaches here!
2752 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2753 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2754 wiphy_update_regulatory(wiphy
, initiator
);
2755 wiphy_all_share_dfs_chan_state(wiphy
);
2756 reg_check_channels();
2762 reg_free_request(reg_request
);
2765 static void notify_self_managed_wiphys(struct regulatory_request
*request
)
2767 struct cfg80211_registered_device
*rdev
;
2768 struct wiphy
*wiphy
;
2770 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2771 wiphy
= &rdev
->wiphy
;
2772 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
&&
2773 request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2774 request
->user_reg_hint_type
==
2775 NL80211_USER_REG_HINT_CELL_BASE
)
2776 reg_call_notifier(wiphy
, request
);
2781 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2782 * Regulatory hints come on a first come first serve basis and we
2783 * must process each one atomically.
2785 static void reg_process_pending_hints(void)
2787 struct regulatory_request
*reg_request
, *lr
;
2789 lr
= get_last_request();
2791 /* When last_request->processed becomes true this will be rescheduled */
2792 if (lr
&& !lr
->processed
) {
2793 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2797 spin_lock(®_requests_lock
);
2799 if (list_empty(®_requests_list
)) {
2800 spin_unlock(®_requests_lock
);
2804 reg_request
= list_first_entry(®_requests_list
,
2805 struct regulatory_request
,
2807 list_del_init(®_request
->list
);
2809 spin_unlock(®_requests_lock
);
2811 notify_self_managed_wiphys(reg_request
);
2813 reg_process_hint(reg_request
);
2815 lr
= get_last_request();
2817 spin_lock(®_requests_lock
);
2818 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2819 schedule_work(®_work
);
2820 spin_unlock(®_requests_lock
);
2823 /* Processes beacon hints -- this has nothing to do with country IEs */
2824 static void reg_process_pending_beacon_hints(void)
2826 struct cfg80211_registered_device
*rdev
;
2827 struct reg_beacon
*pending_beacon
, *tmp
;
2829 /* This goes through the _pending_ beacon list */
2830 spin_lock_bh(®_pending_beacons_lock
);
2832 list_for_each_entry_safe(pending_beacon
, tmp
,
2833 ®_pending_beacons
, list
) {
2834 list_del_init(&pending_beacon
->list
);
2836 /* Applies the beacon hint to current wiphys */
2837 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2838 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2840 /* Remembers the beacon hint for new wiphys or reg changes */
2841 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2844 spin_unlock_bh(®_pending_beacons_lock
);
2847 static void reg_process_self_managed_hints(void)
2849 struct cfg80211_registered_device
*rdev
;
2850 struct wiphy
*wiphy
;
2851 const struct ieee80211_regdomain
*tmp
;
2852 const struct ieee80211_regdomain
*regd
;
2853 enum nl80211_band band
;
2854 struct regulatory_request request
= {};
2856 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2857 wiphy
= &rdev
->wiphy
;
2859 spin_lock(®_requests_lock
);
2860 regd
= rdev
->requested_regd
;
2861 rdev
->requested_regd
= NULL
;
2862 spin_unlock(®_requests_lock
);
2867 tmp
= get_wiphy_regdom(wiphy
);
2868 rcu_assign_pointer(wiphy
->regd
, regd
);
2869 rcu_free_regdom(tmp
);
2871 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2872 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2874 reg_process_ht_flags(wiphy
);
2876 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2877 request
.alpha2
[0] = regd
->alpha2
[0];
2878 request
.alpha2
[1] = regd
->alpha2
[1];
2879 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2881 nl80211_send_wiphy_reg_change_event(&request
);
2884 reg_check_channels();
2887 static void reg_todo(struct work_struct
*work
)
2890 reg_process_pending_hints();
2891 reg_process_pending_beacon_hints();
2892 reg_process_self_managed_hints();
2896 static void queue_regulatory_request(struct regulatory_request
*request
)
2898 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2899 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2901 spin_lock(®_requests_lock
);
2902 list_add_tail(&request
->list
, ®_requests_list
);
2903 spin_unlock(®_requests_lock
);
2905 schedule_work(®_work
);
2909 * Core regulatory hint -- happens during cfg80211_init()
2910 * and when we restore regulatory settings.
2912 static int regulatory_hint_core(const char *alpha2
)
2914 struct regulatory_request
*request
;
2916 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2920 request
->alpha2
[0] = alpha2
[0];
2921 request
->alpha2
[1] = alpha2
[1];
2922 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2923 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2925 queue_regulatory_request(request
);
2931 int regulatory_hint_user(const char *alpha2
,
2932 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2934 struct regulatory_request
*request
;
2936 if (WARN_ON(!alpha2
))
2939 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2943 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2944 request
->alpha2
[0] = alpha2
[0];
2945 request
->alpha2
[1] = alpha2
[1];
2946 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2947 request
->user_reg_hint_type
= user_reg_hint_type
;
2949 /* Allow calling CRDA again */
2950 reset_crda_timeouts();
2952 queue_regulatory_request(request
);
2957 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2959 spin_lock(®_indoor_lock
);
2961 /* It is possible that more than one user space process is trying to
2962 * configure the indoor setting. To handle such cases, clear the indoor
2963 * setting in case that some process does not think that the device
2964 * is operating in an indoor environment. In addition, if a user space
2965 * process indicates that it is controlling the indoor setting, save its
2966 * portid, i.e., make it the owner.
2968 reg_is_indoor
= is_indoor
;
2969 if (reg_is_indoor
) {
2970 if (!reg_is_indoor_portid
)
2971 reg_is_indoor_portid
= portid
;
2973 reg_is_indoor_portid
= 0;
2976 spin_unlock(®_indoor_lock
);
2979 reg_check_channels();
2984 void regulatory_netlink_notify(u32 portid
)
2986 spin_lock(®_indoor_lock
);
2988 if (reg_is_indoor_portid
!= portid
) {
2989 spin_unlock(®_indoor_lock
);
2993 reg_is_indoor
= false;
2994 reg_is_indoor_portid
= 0;
2996 spin_unlock(®_indoor_lock
);
2998 reg_check_channels();
3002 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
3004 struct regulatory_request
*request
;
3006 if (WARN_ON(!alpha2
|| !wiphy
))
3009 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
3011 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3015 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3017 request
->alpha2
[0] = alpha2
[0];
3018 request
->alpha2
[1] = alpha2
[1];
3019 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3021 /* Allow calling CRDA again */
3022 reset_crda_timeouts();
3024 queue_regulatory_request(request
);
3028 EXPORT_SYMBOL(regulatory_hint
);
3030 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
3031 const u8
*country_ie
, u8 country_ie_len
)
3034 enum environment_cap env
= ENVIRON_ANY
;
3035 struct regulatory_request
*request
= NULL
, *lr
;
3037 /* IE len must be evenly divisible by 2 */
3038 if (country_ie_len
& 0x01)
3041 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
3044 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3048 alpha2
[0] = country_ie
[0];
3049 alpha2
[1] = country_ie
[1];
3051 if (country_ie
[2] == 'I')
3052 env
= ENVIRON_INDOOR
;
3053 else if (country_ie
[2] == 'O')
3054 env
= ENVIRON_OUTDOOR
;
3057 lr
= get_last_request();
3063 * We will run this only upon a successful connection on cfg80211.
3064 * We leave conflict resolution to the workqueue, where can hold
3067 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3068 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3071 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3072 request
->alpha2
[0] = alpha2
[0];
3073 request
->alpha2
[1] = alpha2
[1];
3074 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3075 request
->country_ie_env
= env
;
3077 /* Allow calling CRDA again */
3078 reset_crda_timeouts();
3080 queue_regulatory_request(request
);
3087 static void restore_alpha2(char *alpha2
, bool reset_user
)
3089 /* indicates there is no alpha2 to consider for restoration */
3093 /* The user setting has precedence over the module parameter */
3094 if (is_user_regdom_saved()) {
3095 /* Unless we're asked to ignore it and reset it */
3097 pr_debug("Restoring regulatory settings including user preference\n");
3098 user_alpha2
[0] = '9';
3099 user_alpha2
[1] = '7';
3102 * If we're ignoring user settings, we still need to
3103 * check the module parameter to ensure we put things
3104 * back as they were for a full restore.
3106 if (!is_world_regdom(ieee80211_regdom
)) {
3107 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3108 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3109 alpha2
[0] = ieee80211_regdom
[0];
3110 alpha2
[1] = ieee80211_regdom
[1];
3113 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3114 user_alpha2
[0], user_alpha2
[1]);
3115 alpha2
[0] = user_alpha2
[0];
3116 alpha2
[1] = user_alpha2
[1];
3118 } else if (!is_world_regdom(ieee80211_regdom
)) {
3119 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3120 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3121 alpha2
[0] = ieee80211_regdom
[0];
3122 alpha2
[1] = ieee80211_regdom
[1];
3124 pr_debug("Restoring regulatory settings\n");
3127 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3129 struct ieee80211_supported_band
*sband
;
3130 enum nl80211_band band
;
3131 struct ieee80211_channel
*chan
;
3134 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3135 sband
= wiphy
->bands
[band
];
3138 for (i
= 0; i
< sband
->n_channels
; i
++) {
3139 chan
= &sband
->channels
[i
];
3140 chan
->flags
= chan
->orig_flags
;
3141 chan
->max_antenna_gain
= chan
->orig_mag
;
3142 chan
->max_power
= chan
->orig_mpwr
;
3143 chan
->beacon_found
= false;
3149 * Restoring regulatory settings involves ingoring any
3150 * possibly stale country IE information and user regulatory
3151 * settings if so desired, this includes any beacon hints
3152 * learned as we could have traveled outside to another country
3153 * after disconnection. To restore regulatory settings we do
3154 * exactly what we did at bootup:
3156 * - send a core regulatory hint
3157 * - send a user regulatory hint if applicable
3159 * Device drivers that send a regulatory hint for a specific country
3160 * keep their own regulatory domain on wiphy->regd so that does does
3161 * not need to be remembered.
3163 static void restore_regulatory_settings(bool reset_user
)
3166 char world_alpha2
[2];
3167 struct reg_beacon
*reg_beacon
, *btmp
;
3168 LIST_HEAD(tmp_reg_req_list
);
3169 struct cfg80211_registered_device
*rdev
;
3174 * Clear the indoor setting in case that it is not controlled by user
3175 * space, as otherwise there is no guarantee that the device is still
3176 * operating in an indoor environment.
3178 spin_lock(®_indoor_lock
);
3179 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3180 reg_is_indoor
= false;
3181 reg_check_channels();
3183 spin_unlock(®_indoor_lock
);
3185 reset_regdomains(true, &world_regdom
);
3186 restore_alpha2(alpha2
, reset_user
);
3189 * If there's any pending requests we simply
3190 * stash them to a temporary pending queue and
3191 * add then after we've restored regulatory
3194 spin_lock(®_requests_lock
);
3195 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3196 spin_unlock(®_requests_lock
);
3198 /* Clear beacon hints */
3199 spin_lock_bh(®_pending_beacons_lock
);
3200 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3201 list_del(®_beacon
->list
);
3204 spin_unlock_bh(®_pending_beacons_lock
);
3206 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3207 list_del(®_beacon
->list
);
3211 /* First restore to the basic regulatory settings */
3212 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3213 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3215 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3216 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3218 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3219 restore_custom_reg_settings(&rdev
->wiphy
);
3222 regulatory_hint_core(world_alpha2
);
3225 * This restores the ieee80211_regdom module parameter
3226 * preference or the last user requested regulatory
3227 * settings, user regulatory settings takes precedence.
3229 if (is_an_alpha2(alpha2
))
3230 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3232 spin_lock(®_requests_lock
);
3233 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3234 spin_unlock(®_requests_lock
);
3236 pr_debug("Kicking the queue\n");
3238 schedule_work(®_work
);
3241 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag
)
3243 struct cfg80211_registered_device
*rdev
;
3244 struct wireless_dev
*wdev
;
3246 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3247 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3249 if (!(wdev
->wiphy
->regulatory_flags
& flag
)) {
3260 void regulatory_hint_disconnect(void)
3262 /* Restore of regulatory settings is not required when wiphy(s)
3263 * ignore IE from connected access point but clearance of beacon hints
3264 * is required when wiphy(s) supports beacon hints.
3266 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE
)) {
3267 struct reg_beacon
*reg_beacon
, *btmp
;
3269 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS
))
3272 spin_lock_bh(®_pending_beacons_lock
);
3273 list_for_each_entry_safe(reg_beacon
, btmp
,
3274 ®_pending_beacons
, list
) {
3275 list_del(®_beacon
->list
);
3278 spin_unlock_bh(®_pending_beacons_lock
);
3280 list_for_each_entry_safe(reg_beacon
, btmp
,
3281 ®_beacon_list
, list
) {
3282 list_del(®_beacon
->list
);
3289 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3290 restore_regulatory_settings(false);
3293 static bool freq_is_chan_12_13_14(u16 freq
)
3295 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3296 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3297 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3302 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3304 struct reg_beacon
*pending_beacon
;
3306 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3307 if (beacon_chan
->center_freq
==
3308 pending_beacon
->chan
.center_freq
)
3313 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3314 struct ieee80211_channel
*beacon_chan
,
3317 struct reg_beacon
*reg_beacon
;
3320 if (beacon_chan
->beacon_found
||
3321 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3322 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3323 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3326 spin_lock_bh(®_pending_beacons_lock
);
3327 processing
= pending_reg_beacon(beacon_chan
);
3328 spin_unlock_bh(®_pending_beacons_lock
);
3333 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3337 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3338 beacon_chan
->center_freq
,
3339 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
3342 memcpy(®_beacon
->chan
, beacon_chan
,
3343 sizeof(struct ieee80211_channel
));
3346 * Since we can be called from BH or and non-BH context
3347 * we must use spin_lock_bh()
3349 spin_lock_bh(®_pending_beacons_lock
);
3350 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3351 spin_unlock_bh(®_pending_beacons_lock
);
3353 schedule_work(®_work
);
3358 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3361 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3362 const struct ieee80211_freq_range
*freq_range
= NULL
;
3363 const struct ieee80211_power_rule
*power_rule
= NULL
;
3364 char bw
[32], cac_time
[32];
3366 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3368 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3369 reg_rule
= &rd
->reg_rules
[i
];
3370 freq_range
= ®_rule
->freq_range
;
3371 power_rule
= ®_rule
->power_rule
;
3373 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3374 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
3375 freq_range
->max_bandwidth_khz
,
3376 reg_get_max_bandwidth(rd
, reg_rule
));
3378 snprintf(bw
, sizeof(bw
), "%d KHz",
3379 freq_range
->max_bandwidth_khz
);
3381 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3382 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3383 reg_rule
->dfs_cac_ms
/1000);
3385 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3389 * There may not be documentation for max antenna gain
3390 * in certain regions
3392 if (power_rule
->max_antenna_gain
)
3393 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3394 freq_range
->start_freq_khz
,
3395 freq_range
->end_freq_khz
,
3397 power_rule
->max_antenna_gain
,
3398 power_rule
->max_eirp
,
3401 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3402 freq_range
->start_freq_khz
,
3403 freq_range
->end_freq_khz
,
3405 power_rule
->max_eirp
,
3410 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3412 switch (dfs_region
) {
3413 case NL80211_DFS_UNSET
:
3414 case NL80211_DFS_FCC
:
3415 case NL80211_DFS_ETSI
:
3416 case NL80211_DFS_JP
:
3419 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region
);
3424 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3426 struct regulatory_request
*lr
= get_last_request();
3428 if (is_intersected_alpha2(rd
->alpha2
)) {
3429 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3430 struct cfg80211_registered_device
*rdev
;
3431 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3433 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3434 rdev
->country_ie_alpha2
[0],
3435 rdev
->country_ie_alpha2
[1]);
3437 pr_debug("Current regulatory domain intersected:\n");
3439 pr_debug("Current regulatory domain intersected:\n");
3440 } else if (is_world_regdom(rd
->alpha2
)) {
3441 pr_debug("World regulatory domain updated:\n");
3443 if (is_unknown_alpha2(rd
->alpha2
))
3444 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3446 if (reg_request_cell_base(lr
))
3447 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3448 rd
->alpha2
[0], rd
->alpha2
[1]);
3450 pr_debug("Regulatory domain changed to country: %c%c\n",
3451 rd
->alpha2
[0], rd
->alpha2
[1]);
3455 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3459 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3461 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3465 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3467 if (!is_world_regdom(rd
->alpha2
))
3469 update_world_regdomain(rd
);
3473 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3474 struct regulatory_request
*user_request
)
3476 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3478 if (!regdom_changes(rd
->alpha2
))
3481 if (!is_valid_rd(rd
)) {
3482 pr_err("Invalid regulatory domain detected: %c%c\n",
3483 rd
->alpha2
[0], rd
->alpha2
[1]);
3484 print_regdomain_info(rd
);
3488 if (!user_request
->intersect
) {
3489 reset_regdomains(false, rd
);
3493 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3494 if (!intersected_rd
)
3499 reset_regdomains(false, intersected_rd
);
3504 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3505 struct regulatory_request
*driver_request
)
3507 const struct ieee80211_regdomain
*regd
;
3508 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3509 const struct ieee80211_regdomain
*tmp
;
3510 struct wiphy
*request_wiphy
;
3512 if (is_world_regdom(rd
->alpha2
))
3515 if (!regdom_changes(rd
->alpha2
))
3518 if (!is_valid_rd(rd
)) {
3519 pr_err("Invalid regulatory domain detected: %c%c\n",
3520 rd
->alpha2
[0], rd
->alpha2
[1]);
3521 print_regdomain_info(rd
);
3525 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3529 if (!driver_request
->intersect
) {
3530 if (request_wiphy
->regd
)
3533 regd
= reg_copy_regd(rd
);
3535 return PTR_ERR(regd
);
3537 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3538 reset_regdomains(false, rd
);
3542 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3543 if (!intersected_rd
)
3547 * We can trash what CRDA provided now.
3548 * However if a driver requested this specific regulatory
3549 * domain we keep it for its private use
3551 tmp
= get_wiphy_regdom(request_wiphy
);
3552 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3553 rcu_free_regdom(tmp
);
3557 reset_regdomains(false, intersected_rd
);
3562 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3563 struct regulatory_request
*country_ie_request
)
3565 struct wiphy
*request_wiphy
;
3567 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3568 !is_unknown_alpha2(rd
->alpha2
))
3572 * Lets only bother proceeding on the same alpha2 if the current
3573 * rd is non static (it means CRDA was present and was used last)
3574 * and the pending request came in from a country IE
3577 if (!is_valid_rd(rd
)) {
3578 pr_err("Invalid regulatory domain detected: %c%c\n",
3579 rd
->alpha2
[0], rd
->alpha2
[1]);
3580 print_regdomain_info(rd
);
3584 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3588 if (country_ie_request
->intersect
)
3591 reset_regdomains(false, rd
);
3596 * Use this call to set the current regulatory domain. Conflicts with
3597 * multiple drivers can be ironed out later. Caller must've already
3598 * kmalloc'd the rd structure.
3600 int set_regdom(const struct ieee80211_regdomain
*rd
,
3601 enum ieee80211_regd_source regd_src
)
3603 struct regulatory_request
*lr
;
3604 bool user_reset
= false;
3607 if (!reg_is_valid_request(rd
->alpha2
)) {
3612 if (regd_src
== REGD_SOURCE_CRDA
)
3613 reset_crda_timeouts();
3615 lr
= get_last_request();
3617 /* Note that this doesn't update the wiphys, this is done below */
3618 switch (lr
->initiator
) {
3619 case NL80211_REGDOM_SET_BY_CORE
:
3620 r
= reg_set_rd_core(rd
);
3622 case NL80211_REGDOM_SET_BY_USER
:
3623 r
= reg_set_rd_user(rd
, lr
);
3626 case NL80211_REGDOM_SET_BY_DRIVER
:
3627 r
= reg_set_rd_driver(rd
, lr
);
3629 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3630 r
= reg_set_rd_country_ie(rd
, lr
);
3633 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3641 reg_set_request_processed();
3644 /* Back to world regulatory in case of errors */
3645 restore_regulatory_settings(user_reset
);
3652 /* This would make this whole thing pointless */
3653 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3656 /* update all wiphys now with the new established regulatory domain */
3657 update_all_wiphy_regulatory(lr
->initiator
);
3659 print_regdomain(get_cfg80211_regdom());
3661 nl80211_send_reg_change_event(lr
);
3663 reg_set_request_processed();
3668 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3669 struct ieee80211_regdomain
*rd
)
3671 const struct ieee80211_regdomain
*regd
;
3672 const struct ieee80211_regdomain
*prev_regd
;
3673 struct cfg80211_registered_device
*rdev
;
3675 if (WARN_ON(!wiphy
|| !rd
))
3678 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3679 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3682 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3683 print_regdomain_info(rd
);
3687 regd
= reg_copy_regd(rd
);
3689 return PTR_ERR(regd
);
3691 rdev
= wiphy_to_rdev(wiphy
);
3693 spin_lock(®_requests_lock
);
3694 prev_regd
= rdev
->requested_regd
;
3695 rdev
->requested_regd
= regd
;
3696 spin_unlock(®_requests_lock
);
3702 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3703 struct ieee80211_regdomain
*rd
)
3705 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3710 schedule_work(®_work
);
3713 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3715 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3716 struct ieee80211_regdomain
*rd
)
3722 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3726 /* process the request immediately */
3727 reg_process_self_managed_hints();
3730 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3732 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3734 struct regulatory_request
*lr
= get_last_request();
3736 /* self-managed devices ignore beacon hints and country IE */
3737 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
3738 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3739 REGULATORY_COUNTRY_IE_IGNORE
;
3742 * The last request may have been received before this
3743 * registration call. Call the driver notifier if
3744 * initiator is USER and user type is CELL_BASE.
3746 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
3747 lr
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
)
3748 reg_call_notifier(wiphy
, lr
);
3751 if (!reg_dev_ignore_cell_hint(wiphy
))
3752 reg_num_devs_support_basehint
++;
3754 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3755 wiphy_all_share_dfs_chan_state(wiphy
);
3758 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3760 struct wiphy
*request_wiphy
= NULL
;
3761 struct regulatory_request
*lr
;
3763 lr
= get_last_request();
3765 if (!reg_dev_ignore_cell_hint(wiphy
))
3766 reg_num_devs_support_basehint
--;
3768 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3769 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3772 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3774 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3777 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3778 lr
->country_ie_env
= ENVIRON_ANY
;
3782 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3783 * UNII band definitions
3785 int cfg80211_get_unii(int freq
)
3788 if (freq
>= 5150 && freq
<= 5250)
3792 if (freq
> 5250 && freq
<= 5350)
3796 if (freq
> 5350 && freq
<= 5470)
3800 if (freq
> 5470 && freq
<= 5725)
3804 if (freq
> 5725 && freq
<= 5825)
3810 bool regulatory_indoor_allowed(void)
3812 return reg_is_indoor
;
3815 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3817 const struct ieee80211_regdomain
*regd
= NULL
;
3818 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3819 bool pre_cac_allowed
= false;
3823 regd
= rcu_dereference(cfg80211_regdomain
);
3824 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3826 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3827 pre_cac_allowed
= true;
3831 return pre_cac_allowed
;
3834 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3835 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3836 pre_cac_allowed
= true;
3840 return pre_cac_allowed
;
3843 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device
*rdev
)
3845 struct wireless_dev
*wdev
;
3846 /* If we finished CAC or received radar, we should end any
3847 * CAC running on the same channels.
3848 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3849 * either all channels are available - those the CAC_FINISHED
3850 * event has effected another wdev state, or there is a channel
3851 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3852 * event has effected another wdev state.
3853 * In both cases we should end the CAC on the wdev.
3855 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3856 if (wdev
->cac_started
&&
3857 !cfg80211_chandef_dfs_usable(&rdev
->wiphy
, &wdev
->chandef
))
3858 rdev_end_cac(rdev
, wdev
->netdev
);
3862 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3863 struct cfg80211_chan_def
*chandef
,
3864 enum nl80211_dfs_state dfs_state
,
3865 enum nl80211_radar_event event
)
3867 struct cfg80211_registered_device
*rdev
;
3871 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3874 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3875 if (wiphy
== &rdev
->wiphy
)
3878 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3881 if (!ieee80211_get_channel(&rdev
->wiphy
,
3882 chandef
->chan
->center_freq
))
3885 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3887 if (event
== NL80211_RADAR_DETECTED
||
3888 event
== NL80211_RADAR_CAC_FINISHED
) {
3889 cfg80211_sched_dfs_chan_update(rdev
);
3890 cfg80211_check_and_end_cac(rdev
);
3893 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3897 static int __init
regulatory_init_db(void)
3902 * It's possible that - due to other bugs/issues - cfg80211
3903 * never called regulatory_init() below, or that it failed;
3904 * in that case, don't try to do any further work here as
3905 * it's doomed to lead to crashes.
3907 if (IS_ERR_OR_NULL(reg_pdev
))
3910 err
= load_builtin_regdb_keys();
3914 /* We always try to get an update for the static regdomain */
3915 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3917 if (err
== -ENOMEM
) {
3918 platform_device_unregister(reg_pdev
);
3922 * N.B. kobject_uevent_env() can fail mainly for when we're out
3923 * memory which is handled and propagated appropriately above
3924 * but it can also fail during a netlink_broadcast() or during
3925 * early boot for call_usermodehelper(). For now treat these
3926 * errors as non-fatal.
3928 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3932 * Finally, if the user set the module parameter treat it
3935 if (!is_world_regdom(ieee80211_regdom
))
3936 regulatory_hint_user(ieee80211_regdom
,
3937 NL80211_USER_REG_HINT_USER
);
3942 late_initcall(regulatory_init_db
);
3945 int __init
regulatory_init(void)
3947 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3948 if (IS_ERR(reg_pdev
))
3949 return PTR_ERR(reg_pdev
);
3951 spin_lock_init(®_requests_lock
);
3952 spin_lock_init(®_pending_beacons_lock
);
3953 spin_lock_init(®_indoor_lock
);
3955 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3957 user_alpha2
[0] = '9';
3958 user_alpha2
[1] = '7';
3961 return regulatory_init_db();
3967 void regulatory_exit(void)
3969 struct regulatory_request
*reg_request
, *tmp
;
3970 struct reg_beacon
*reg_beacon
, *btmp
;
3972 cancel_work_sync(®_work
);
3973 cancel_crda_timeout_sync();
3974 cancel_delayed_work_sync(®_check_chans
);
3976 /* Lock to suppress warnings */
3978 reset_regdomains(true, NULL
);
3981 dev_set_uevent_suppress(®_pdev
->dev
, true);
3983 platform_device_unregister(reg_pdev
);
3985 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3986 list_del(®_beacon
->list
);
3990 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3991 list_del(®_beacon
->list
);
3995 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3996 list_del(®_request
->list
);
4000 if (!IS_ERR_OR_NULL(regdb
))
4003 free_regdb_keyring();