Linux 4.19.133
[linux/fpc-iii.git] / net / wireless / reg.c
blob32f575857e415b3611918e3ae097689b417f53b9
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /**
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
72 /**
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user);
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 return rcu_dereference_rtnl(cfg80211_regdomain);
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 return rcu_dereference_rtnl(wiphy->regd);
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
158 return "Unknown";
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
182 out:
183 return regd->dfs_region;
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
193 static struct regulatory_request *get_last_request(void)
195 return rcu_dereference_rtnl(last_request);
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
209 struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
270 static void reg_free_request(struct regulatory_request *request)
272 if (request == &core_request_world)
273 return;
275 if (request != get_last_request())
276 kfree(request);
279 static void reg_free_last_request(void)
281 struct regulatory_request *lr = get_last_request();
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
287 static void reg_update_last_request(struct regulatory_request *request)
289 struct regulatory_request *lr;
291 lr = get_last_request();
292 if (lr == request)
293 return;
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
299 static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
302 const struct ieee80211_regdomain *r;
304 ASSERT_RTNL();
306 r = get_cfg80211_regdom();
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
322 if (!full_reset)
323 return;
325 reg_update_last_request(&core_request_world);
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
334 struct regulatory_request *lr;
336 lr = get_last_request();
338 WARN_ON(!lr);
340 reset_regdomains(false, rd);
342 cfg80211_world_regdom = rd;
345 bool is_world_regdom(const char *alpha2)
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
352 static bool is_alpha2_set(const char *alpha2)
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
359 static bool is_unknown_alpha2(const char *alpha2)
361 if (!alpha2)
362 return false;
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
367 return alpha2[0] == '9' && alpha2[1] == '9';
370 static bool is_intersected_alpha2(const char *alpha2)
372 if (!alpha2)
373 return false;
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
379 return alpha2[0] == '9' && alpha2[1] == '8';
382 static bool is_an_alpha2(const char *alpha2)
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 static bool regdom_changes(const char *alpha2)
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
410 static bool is_user_regdom_saved(void)
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
421 return true;
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
427 struct ieee80211_regdomain *regd;
428 int size_of_regd;
429 unsigned int i;
431 size_of_regd =
432 sizeof(struct ieee80211_regdomain) +
433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 regd = kzalloc(size_of_regd, GFP_KERNEL);
436 if (!regd)
437 return ERR_PTR(-ENOMEM);
439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
441 for (i = 0; i < src_regd->n_reg_rules; i++)
442 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 sizeof(struct ieee80211_reg_rule));
445 return regd;
448 struct reg_regdb_apply_request {
449 struct list_head list;
450 const struct ieee80211_regdomain *regdom;
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
456 static void reg_regdb_apply(struct work_struct *work)
458 struct reg_regdb_apply_request *request;
460 rtnl_lock();
462 mutex_lock(&reg_regdb_apply_mutex);
463 while (!list_empty(&reg_regdb_apply_list)) {
464 request = list_first_entry(&reg_regdb_apply_list,
465 struct reg_regdb_apply_request,
466 list);
467 list_del(&request->list);
469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 kfree(request);
472 mutex_unlock(&reg_regdb_apply_mutex);
474 rtnl_unlock();
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
481 struct reg_regdb_apply_request *request;
483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 if (!request) {
485 kfree(regdom);
486 return -ENOMEM;
489 request->regdom = regdom;
491 mutex_lock(&reg_regdb_apply_mutex);
492 list_add_tail(&request->list, &reg_regdb_apply_list);
493 mutex_unlock(&reg_regdb_apply_mutex);
495 schedule_work(&reg_regdb_work);
496 return 0;
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
503 static u32 reg_crda_timeouts;
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
508 static void crda_timeout_work(struct work_struct *work)
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 rtnl_lock();
512 reg_crda_timeouts++;
513 restore_regulatory_settings(true);
514 rtnl_unlock();
517 static void cancel_crda_timeout(void)
519 cancel_delayed_work(&crda_timeout);
522 static void cancel_crda_timeout_sync(void)
524 cancel_delayed_work_sync(&crda_timeout);
527 static void reset_crda_timeouts(void)
529 reg_crda_timeouts = 0;
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
536 static int call_crda(const char *alpha2)
538 char country[12];
539 char *env[] = { country, NULL };
540 int ret;
542 snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 alpha2[0], alpha2[1]);
545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 return -EINVAL;
550 if (!is_world_regdom((char *) alpha2))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2[0], alpha2[1]);
553 else
554 pr_debug("Calling CRDA to update world regulatory domain\n");
556 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 if (ret)
558 return ret;
560 queue_delayed_work(system_power_efficient_wq,
561 &crda_timeout, msecs_to_jiffies(3142));
562 return 0;
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
570 return -ENODATA;
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
577 struct fwdb_country {
578 u8 alpha2[2];
579 __be16 coll_ptr;
580 /* this struct cannot be extended */
581 } __packed __aligned(4);
583 struct fwdb_collection {
584 u8 len;
585 u8 n_rules;
586 u8 dfs_region;
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
591 enum fwdb_flags {
592 FWDB_FLAG_NO_OFDM = BIT(0),
593 FWDB_FLAG_NO_OUTDOOR = BIT(1),
594 FWDB_FLAG_DFS = BIT(2),
595 FWDB_FLAG_NO_IR = BIT(3),
596 FWDB_FLAG_AUTO_BW = BIT(4),
599 struct fwdb_wmm_ac {
600 u8 ecw;
601 u8 aifsn;
602 __be16 cot;
603 } __packed;
605 struct fwdb_wmm_rule {
606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
610 struct fwdb_rule {
611 u8 len;
612 u8 flags;
613 __be16 max_eirp;
614 __be32 start, end, max_bw;
615 /* start of optional data */
616 __be16 cac_timeout;
617 __be16 wmm_ptr;
618 } __packed __aligned(4);
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
623 struct fwdb_header {
624 __be32 magic;
625 __be32 version;
626 struct fwdb_country country[];
627 } __packed __aligned(4);
629 static int ecw2cw(int ecw)
631 return (1 << ecw) - 1;
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 int i;
639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 u8 aifsn = ac[i].aifsn;
644 if (cw_min >= cw_max)
645 return false;
647 if (aifsn < 1)
648 return false;
651 return true;
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
658 if ((u8 *)rule + sizeof(rule->len) > data + size)
659 return false;
661 /* mandatory fields */
662 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 return false;
664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 struct fwdb_wmm_rule *wmm;
668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 return false;
671 wmm = (void *)(data + wmm_ptr);
673 if (!valid_wmm(wmm))
674 return false;
676 return true;
679 static bool valid_country(const u8 *data, unsigned int size,
680 const struct fwdb_country *country)
682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 struct fwdb_collection *coll = (void *)(data + ptr);
684 __be16 *rules_ptr;
685 unsigned int i;
687 /* make sure we can read len/n_rules */
688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 return false;
691 /* make sure base struct and all rules fit */
692 if ((u8 *)coll + ALIGN(coll->len, 2) +
693 (coll->n_rules * 2) > data + size)
694 return false;
696 /* mandatory fields must exist */
697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 return false;
700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
702 for (i = 0; i < coll->n_rules; i++) {
703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
705 if (!valid_rule(data, size, rule_ptr))
706 return false;
709 return true;
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
717 const u8 *end = p + buflen;
718 size_t plen;
719 key_ref_t key;
721 while (p < end) {
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
725 if (end - p < 4)
726 goto dodgy_cert;
727 if (p[0] != 0x30 &&
728 p[1] != 0x82)
729 goto dodgy_cert;
730 plen = (p[2] << 8) | p[3];
731 plen += 4;
732 if (plen > end - p)
733 goto dodgy_cert;
735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 "asymmetric", NULL, p, plen,
737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 KEY_USR_VIEW | KEY_USR_READ),
739 KEY_ALLOC_NOT_IN_QUOTA |
740 KEY_ALLOC_BUILT_IN |
741 KEY_ALLOC_BYPASS_RESTRICTION);
742 if (IS_ERR(key)) {
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 PTR_ERR(key));
745 } else {
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key)->description);
748 key_ref_put(key);
750 p += plen;
753 return;
755 dodgy_cert:
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
759 static int __init load_builtin_regdb_keys(void)
761 builtin_regdb_keys =
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 if (IS_ERR(builtin_regdb_keys))
768 return PTR_ERR(builtin_regdb_keys);
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
780 return 0;
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
785 const struct firmware *sig;
786 bool result;
788 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 return false;
791 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 builtin_regdb_keys,
793 VERIFYING_UNSPECIFIED_SIGNATURE,
794 NULL, NULL) == 0;
796 release_firmware(sig);
798 return result;
801 static void free_regdb_keyring(void)
803 key_put(builtin_regdb_keys);
805 #else
806 static int load_builtin_regdb_keys(void)
808 return 0;
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 return true;
816 static void free_regdb_keyring(void)
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
821 static bool valid_regdb(const u8 *data, unsigned int size)
823 const struct fwdb_header *hdr = (void *)data;
824 const struct fwdb_country *country;
826 if (size < sizeof(*hdr))
827 return false;
829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 return false;
832 if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 return false;
835 if (!regdb_has_valid_signature(data, size))
836 return false;
838 country = &hdr->country[0];
839 while ((u8 *)(country + 1) <= data + size) {
840 if (!country->coll_ptr)
841 break;
842 if (!valid_country(data, size, country))
843 return false;
844 country++;
847 return true;
850 static void set_wmm_rule(const struct fwdb_header *db,
851 const struct fwdb_country *country,
852 const struct fwdb_rule *rule,
853 struct ieee80211_reg_rule *rrule)
855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 struct fwdb_wmm_rule *wmm;
857 unsigned int i, wmm_ptr;
859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 wmm = (void *)((u8 *)db + wmm_ptr);
862 if (!valid_wmm(wmm)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 country->alpha2[0], country->alpha2[1]);
866 return;
869 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 wmm_rule->client[i].cw_min =
871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
874 wmm_rule->client[i].cot =
875 1000 * be16_to_cpu(wmm->client[i].cot);
876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
882 rrule->has_wmm = true;
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886 const struct fwdb_country *country, int freq,
887 struct ieee80211_reg_rule *rrule)
889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 int i;
893 for (i = 0; i < coll->n_rules; i++) {
894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 continue;
901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 set_wmm_rule(db, country, rule, rrule);
904 return 0;
908 return -ENODATA;
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
913 const struct fwdb_header *hdr = regdb;
914 const struct fwdb_country *country;
916 if (!regdb)
917 return -ENODATA;
919 if (IS_ERR(regdb))
920 return PTR_ERR(regdb);
922 country = &hdr->country[0];
923 while (country->coll_ptr) {
924 if (alpha2_equal(alpha2, country->alpha2))
925 return __regdb_query_wmm(regdb, country, freq, rule);
927 country++;
930 return -ENODATA;
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
934 static int regdb_query_country(const struct fwdb_header *db,
935 const struct fwdb_country *country)
937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 struct ieee80211_regdomain *regdom;
940 unsigned int size_of_regd, i;
942 size_of_regd = sizeof(struct ieee80211_regdomain) +
943 coll->n_rules * sizeof(struct ieee80211_reg_rule);
945 regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 if (!regdom)
947 return -ENOMEM;
949 regdom->n_reg_rules = coll->n_rules;
950 regdom->alpha2[0] = country->alpha2[0];
951 regdom->alpha2[1] = country->alpha2[1];
952 regdom->dfs_region = coll->dfs_region;
954 for (i = 0; i < regdom->n_reg_rules; i++) {
955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
964 rrule->power_rule.max_antenna_gain = 0;
965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
967 rrule->flags = 0;
968 if (rule->flags & FWDB_FLAG_NO_OFDM)
969 rrule->flags |= NL80211_RRF_NO_OFDM;
970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 if (rule->flags & FWDB_FLAG_DFS)
973 rrule->flags |= NL80211_RRF_DFS;
974 if (rule->flags & FWDB_FLAG_NO_IR)
975 rrule->flags |= NL80211_RRF_NO_IR;
976 if (rule->flags & FWDB_FLAG_AUTO_BW)
977 rrule->flags |= NL80211_RRF_AUTO_BW;
979 rrule->dfs_cac_ms = 0;
981 /* handle optional data */
982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 rrule->dfs_cac_ms =
984 1000 * be16_to_cpu(rule->cac_timeout);
985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 set_wmm_rule(db, country, rule, rrule);
989 return reg_schedule_apply(regdom);
992 static int query_regdb(const char *alpha2)
994 const struct fwdb_header *hdr = regdb;
995 const struct fwdb_country *country;
997 ASSERT_RTNL();
999 if (IS_ERR(regdb))
1000 return PTR_ERR(regdb);
1002 country = &hdr->country[0];
1003 while (country->coll_ptr) {
1004 if (alpha2_equal(alpha2, country->alpha2))
1005 return regdb_query_country(regdb, country);
1006 country++;
1009 return -ENODATA;
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1014 int set_error = 0;
1015 bool restore = true;
1016 void *db;
1018 if (!fw) {
1019 pr_info("failed to load regulatory.db\n");
1020 set_error = -ENODATA;
1021 } else if (!valid_regdb(fw->data, fw->size)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error = -EINVAL;
1026 rtnl_lock();
1027 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028 /* just restore and free new db */
1029 } else if (set_error) {
1030 regdb = ERR_PTR(set_error);
1031 } else if (fw) {
1032 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033 if (db) {
1034 regdb = db;
1035 restore = context && query_regdb(context);
1036 } else {
1037 restore = true;
1041 if (restore)
1042 restore_regulatory_settings(true);
1044 rtnl_unlock();
1046 kfree(context);
1048 release_firmware(fw);
1051 static int query_regdb_file(const char *alpha2)
1053 ASSERT_RTNL();
1055 if (regdb)
1056 return query_regdb(alpha2);
1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 if (!alpha2)
1060 return -ENOMEM;
1062 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 &reg_pdev->dev, GFP_KERNEL,
1064 (void *)alpha2, regdb_fw_cb);
1067 int reg_reload_regdb(void)
1069 const struct firmware *fw;
1070 void *db;
1071 int err;
1073 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074 if (err)
1075 return err;
1077 if (!valid_regdb(fw->data, fw->size)) {
1078 err = -ENODATA;
1079 goto out;
1082 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083 if (!db) {
1084 err = -ENOMEM;
1085 goto out;
1088 rtnl_lock();
1089 if (!IS_ERR_OR_NULL(regdb))
1090 kfree(regdb);
1091 regdb = db;
1092 rtnl_unlock();
1094 out:
1095 release_firmware(fw);
1096 return err;
1099 static bool reg_query_database(struct regulatory_request *request)
1101 if (query_regdb_file(request->alpha2) == 0)
1102 return true;
1104 if (call_crda(request->alpha2) == 0)
1105 return true;
1107 return false;
1110 bool reg_is_valid_request(const char *alpha2)
1112 struct regulatory_request *lr = get_last_request();
1114 if (!lr || lr->processed)
1115 return false;
1117 return alpha2_equal(lr->alpha2, alpha2);
1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1122 struct regulatory_request *lr = get_last_request();
1125 * Follow the driver's regulatory domain, if present, unless a country
1126 * IE has been processed or a user wants to help complaince further
1128 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130 wiphy->regd)
1131 return get_wiphy_regdom(wiphy);
1133 return get_cfg80211_regdom();
1136 static unsigned int
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138 const struct ieee80211_reg_rule *rule)
1140 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141 const struct ieee80211_freq_range *freq_range_tmp;
1142 const struct ieee80211_reg_rule *tmp;
1143 u32 start_freq, end_freq, idx, no;
1145 for (idx = 0; idx < rd->n_reg_rules; idx++)
1146 if (rule == &rd->reg_rules[idx])
1147 break;
1149 if (idx == rd->n_reg_rules)
1150 return 0;
1152 /* get start_freq */
1153 no = idx;
1155 while (no) {
1156 tmp = &rd->reg_rules[--no];
1157 freq_range_tmp = &tmp->freq_range;
1159 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160 break;
1162 freq_range = freq_range_tmp;
1165 start_freq = freq_range->start_freq_khz;
1167 /* get end_freq */
1168 freq_range = &rule->freq_range;
1169 no = idx;
1171 while (no < rd->n_reg_rules - 1) {
1172 tmp = &rd->reg_rules[++no];
1173 freq_range_tmp = &tmp->freq_range;
1175 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176 break;
1178 freq_range = freq_range_tmp;
1181 end_freq = freq_range->end_freq_khz;
1183 return end_freq - start_freq;
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187 const struct ieee80211_reg_rule *rule)
1189 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1191 if (rule->flags & NL80211_RRF_NO_160MHZ)
1192 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193 if (rule->flags & NL80211_RRF_NO_80MHZ)
1194 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198 * are not allowed.
1200 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201 rule->flags & NL80211_RRF_NO_HT40PLUS)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1204 return bw;
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1210 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211 u32 freq_diff;
1213 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214 return false;
1216 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217 return false;
1219 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1221 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222 freq_range->max_bandwidth_khz > freq_diff)
1223 return false;
1225 return true;
1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1230 const struct ieee80211_reg_rule *reg_rule = NULL;
1231 unsigned int i;
1233 if (!rd->n_reg_rules)
1234 return false;
1236 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237 return false;
1239 for (i = 0; i < rd->n_reg_rules; i++) {
1240 reg_rule = &rd->reg_rules[i];
1241 if (!is_valid_reg_rule(reg_rule))
1242 return false;
1245 return true;
1249 * freq_in_rule_band - tells us if a frequency is in a frequency band
1250 * @freq_range: frequency rule we want to query
1251 * @freq_khz: frequency we are inquiring about
1253 * This lets us know if a specific frequency rule is or is not relevant to
1254 * a specific frequency's band. Bands are device specific and artificial
1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256 * however it is safe for now to assume that a frequency rule should not be
1257 * part of a frequency's band if the start freq or end freq are off by more
1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1259 * 60 GHz band.
1260 * This resolution can be lowered and should be considered as we add
1261 * regulatory rule support for other "bands".
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264 u32 freq_khz)
1266 #define ONE_GHZ_IN_KHZ 1000000
1268 * From 802.11ad: directional multi-gigabit (DMG):
1269 * Pertaining to operation in a frequency band containing a channel
1270 * with the Channel starting frequency above 45 GHz.
1272 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275 return true;
1276 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277 return true;
1278 return false;
1279 #undef ONE_GHZ_IN_KHZ
1283 * Later on we can perhaps use the more restrictive DFS
1284 * region but we don't have information for that yet so
1285 * for now simply disallow conflicts.
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289 const enum nl80211_dfs_regions dfs_region2)
1291 if (dfs_region1 != dfs_region2)
1292 return NL80211_DFS_UNSET;
1293 return dfs_region1;
1296 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1297 const struct ieee80211_wmm_ac *wmm_ac2,
1298 struct ieee80211_wmm_ac *intersect)
1300 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1301 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1302 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1303 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1307 * Helper for regdom_intersect(), this does the real
1308 * mathematical intersection fun
1310 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1311 const struct ieee80211_regdomain *rd2,
1312 const struct ieee80211_reg_rule *rule1,
1313 const struct ieee80211_reg_rule *rule2,
1314 struct ieee80211_reg_rule *intersected_rule)
1316 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1317 struct ieee80211_freq_range *freq_range;
1318 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1319 struct ieee80211_power_rule *power_rule;
1320 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1321 struct ieee80211_wmm_rule *wmm_rule;
1322 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1324 freq_range1 = &rule1->freq_range;
1325 freq_range2 = &rule2->freq_range;
1326 freq_range = &intersected_rule->freq_range;
1328 power_rule1 = &rule1->power_rule;
1329 power_rule2 = &rule2->power_rule;
1330 power_rule = &intersected_rule->power_rule;
1332 wmm_rule1 = &rule1->wmm_rule;
1333 wmm_rule2 = &rule2->wmm_rule;
1334 wmm_rule = &intersected_rule->wmm_rule;
1336 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337 freq_range2->start_freq_khz);
1338 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339 freq_range2->end_freq_khz);
1341 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1344 if (rule1->flags & NL80211_RRF_AUTO_BW)
1345 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346 if (rule2->flags & NL80211_RRF_AUTO_BW)
1347 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1349 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1351 intersected_rule->flags = rule1->flags | rule2->flags;
1354 * In case NL80211_RRF_AUTO_BW requested for both rules
1355 * set AUTO_BW in intersected rule also. Next we will
1356 * calculate BW correctly in handle_channel function.
1357 * In other case remove AUTO_BW flag while we calculate
1358 * maximum bandwidth correctly and auto calculation is
1359 * not required.
1361 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362 (rule2->flags & NL80211_RRF_AUTO_BW))
1363 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364 else
1365 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1367 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368 if (freq_range->max_bandwidth_khz > freq_diff)
1369 freq_range->max_bandwidth_khz = freq_diff;
1371 power_rule->max_eirp = min(power_rule1->max_eirp,
1372 power_rule2->max_eirp);
1373 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374 power_rule2->max_antenna_gain);
1376 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377 rule2->dfs_cac_ms);
1379 if (rule1->has_wmm && rule2->has_wmm) {
1380 u8 ac;
1382 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1383 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1384 &wmm_rule2->client[ac],
1385 &wmm_rule->client[ac]);
1386 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1387 &wmm_rule2->ap[ac],
1388 &wmm_rule->ap[ac]);
1391 intersected_rule->has_wmm = true;
1392 } else if (rule1->has_wmm) {
1393 *wmm_rule = *wmm_rule1;
1394 intersected_rule->has_wmm = true;
1395 } else if (rule2->has_wmm) {
1396 *wmm_rule = *wmm_rule2;
1397 intersected_rule->has_wmm = true;
1398 } else {
1399 intersected_rule->has_wmm = false;
1402 if (!is_valid_reg_rule(intersected_rule))
1403 return -EINVAL;
1405 return 0;
1408 /* check whether old rule contains new rule */
1409 static bool rule_contains(struct ieee80211_reg_rule *r1,
1410 struct ieee80211_reg_rule *r2)
1412 /* for simplicity, currently consider only same flags */
1413 if (r1->flags != r2->flags)
1414 return false;
1416 /* verify r1 is more restrictive */
1417 if ((r1->power_rule.max_antenna_gain >
1418 r2->power_rule.max_antenna_gain) ||
1419 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1420 return false;
1422 /* make sure r2's range is contained within r1 */
1423 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1424 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1425 return false;
1427 /* and finally verify that r1.max_bw >= r2.max_bw */
1428 if (r1->freq_range.max_bandwidth_khz <
1429 r2->freq_range.max_bandwidth_khz)
1430 return false;
1432 return true;
1435 /* add or extend current rules. do nothing if rule is already contained */
1436 static void add_rule(struct ieee80211_reg_rule *rule,
1437 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1439 struct ieee80211_reg_rule *tmp_rule;
1440 int i;
1442 for (i = 0; i < *n_rules; i++) {
1443 tmp_rule = &reg_rules[i];
1444 /* rule is already contained - do nothing */
1445 if (rule_contains(tmp_rule, rule))
1446 return;
1448 /* extend rule if possible */
1449 if (rule_contains(rule, tmp_rule)) {
1450 memcpy(tmp_rule, rule, sizeof(*rule));
1451 return;
1455 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1456 (*n_rules)++;
1460 * regdom_intersect - do the intersection between two regulatory domains
1461 * @rd1: first regulatory domain
1462 * @rd2: second regulatory domain
1464 * Use this function to get the intersection between two regulatory domains.
1465 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1466 * as no one single alpha2 can represent this regulatory domain.
1468 * Returns a pointer to the regulatory domain structure which will hold the
1469 * resulting intersection of rules between rd1 and rd2. We will
1470 * kzalloc() this structure for you.
1472 static struct ieee80211_regdomain *
1473 regdom_intersect(const struct ieee80211_regdomain *rd1,
1474 const struct ieee80211_regdomain *rd2)
1476 int r, size_of_regd;
1477 unsigned int x, y;
1478 unsigned int num_rules = 0;
1479 const struct ieee80211_reg_rule *rule1, *rule2;
1480 struct ieee80211_reg_rule intersected_rule;
1481 struct ieee80211_regdomain *rd;
1483 if (!rd1 || !rd2)
1484 return NULL;
1487 * First we get a count of the rules we'll need, then we actually
1488 * build them. This is to so we can malloc() and free() a
1489 * regdomain once. The reason we use reg_rules_intersect() here
1490 * is it will return -EINVAL if the rule computed makes no sense.
1491 * All rules that do check out OK are valid.
1494 for (x = 0; x < rd1->n_reg_rules; x++) {
1495 rule1 = &rd1->reg_rules[x];
1496 for (y = 0; y < rd2->n_reg_rules; y++) {
1497 rule2 = &rd2->reg_rules[y];
1498 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1499 &intersected_rule))
1500 num_rules++;
1504 if (!num_rules)
1505 return NULL;
1507 size_of_regd = sizeof(struct ieee80211_regdomain) +
1508 num_rules * sizeof(struct ieee80211_reg_rule);
1510 rd = kzalloc(size_of_regd, GFP_KERNEL);
1511 if (!rd)
1512 return NULL;
1514 for (x = 0; x < rd1->n_reg_rules; x++) {
1515 rule1 = &rd1->reg_rules[x];
1516 for (y = 0; y < rd2->n_reg_rules; y++) {
1517 rule2 = &rd2->reg_rules[y];
1518 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1519 &intersected_rule);
1521 * No need to memset here the intersected rule here as
1522 * we're not using the stack anymore
1524 if (r)
1525 continue;
1527 add_rule(&intersected_rule, rd->reg_rules,
1528 &rd->n_reg_rules);
1532 rd->alpha2[0] = '9';
1533 rd->alpha2[1] = '8';
1534 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1535 rd2->dfs_region);
1537 return rd;
1541 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1542 * want to just have the channel structure use these
1544 static u32 map_regdom_flags(u32 rd_flags)
1546 u32 channel_flags = 0;
1547 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1548 channel_flags |= IEEE80211_CHAN_NO_IR;
1549 if (rd_flags & NL80211_RRF_DFS)
1550 channel_flags |= IEEE80211_CHAN_RADAR;
1551 if (rd_flags & NL80211_RRF_NO_OFDM)
1552 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1553 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1554 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1555 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1556 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1557 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1558 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1559 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1560 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1561 if (rd_flags & NL80211_RRF_NO_80MHZ)
1562 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1563 if (rd_flags & NL80211_RRF_NO_160MHZ)
1564 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1565 return channel_flags;
1568 static const struct ieee80211_reg_rule *
1569 freq_reg_info_regd(u32 center_freq,
1570 const struct ieee80211_regdomain *regd, u32 bw)
1572 int i;
1573 bool band_rule_found = false;
1574 bool bw_fits = false;
1576 if (!regd)
1577 return ERR_PTR(-EINVAL);
1579 for (i = 0; i < regd->n_reg_rules; i++) {
1580 const struct ieee80211_reg_rule *rr;
1581 const struct ieee80211_freq_range *fr = NULL;
1583 rr = &regd->reg_rules[i];
1584 fr = &rr->freq_range;
1587 * We only need to know if one frequency rule was
1588 * was in center_freq's band, that's enough, so lets
1589 * not overwrite it once found
1591 if (!band_rule_found)
1592 band_rule_found = freq_in_rule_band(fr, center_freq);
1594 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1596 if (band_rule_found && bw_fits)
1597 return rr;
1600 if (!band_rule_found)
1601 return ERR_PTR(-ERANGE);
1603 return ERR_PTR(-EINVAL);
1606 static const struct ieee80211_reg_rule *
1607 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1609 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1610 const struct ieee80211_reg_rule *reg_rule = NULL;
1611 u32 bw;
1613 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1614 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1615 if (!IS_ERR(reg_rule))
1616 return reg_rule;
1619 return reg_rule;
1622 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1623 u32 center_freq)
1625 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1627 EXPORT_SYMBOL(freq_reg_info);
1629 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1631 switch (initiator) {
1632 case NL80211_REGDOM_SET_BY_CORE:
1633 return "core";
1634 case NL80211_REGDOM_SET_BY_USER:
1635 return "user";
1636 case NL80211_REGDOM_SET_BY_DRIVER:
1637 return "driver";
1638 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1639 return "country element";
1640 default:
1641 WARN_ON(1);
1642 return "bug";
1645 EXPORT_SYMBOL(reg_initiator_name);
1647 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1648 const struct ieee80211_reg_rule *reg_rule,
1649 const struct ieee80211_channel *chan)
1651 const struct ieee80211_freq_range *freq_range = NULL;
1652 u32 max_bandwidth_khz, bw_flags = 0;
1654 freq_range = &reg_rule->freq_range;
1656 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1657 /* Check if auto calculation requested */
1658 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1659 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1661 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1662 if (!cfg80211_does_bw_fit_range(freq_range,
1663 MHZ_TO_KHZ(chan->center_freq),
1664 MHZ_TO_KHZ(10)))
1665 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1666 if (!cfg80211_does_bw_fit_range(freq_range,
1667 MHZ_TO_KHZ(chan->center_freq),
1668 MHZ_TO_KHZ(20)))
1669 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1671 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1672 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1674 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1676 bw_flags |= IEEE80211_CHAN_NO_HT40;
1677 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1678 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1679 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1680 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1681 return bw_flags;
1685 * Note that right now we assume the desired channel bandwidth
1686 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1687 * per channel, the primary and the extension channel).
1689 static void handle_channel(struct wiphy *wiphy,
1690 enum nl80211_reg_initiator initiator,
1691 struct ieee80211_channel *chan)
1693 u32 flags, bw_flags = 0;
1694 const struct ieee80211_reg_rule *reg_rule = NULL;
1695 const struct ieee80211_power_rule *power_rule = NULL;
1696 struct wiphy *request_wiphy = NULL;
1697 struct regulatory_request *lr = get_last_request();
1698 const struct ieee80211_regdomain *regd;
1700 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1702 flags = chan->orig_flags;
1704 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1705 if (IS_ERR(reg_rule)) {
1707 * We will disable all channels that do not match our
1708 * received regulatory rule unless the hint is coming
1709 * from a Country IE and the Country IE had no information
1710 * about a band. The IEEE 802.11 spec allows for an AP
1711 * to send only a subset of the regulatory rules allowed,
1712 * so an AP in the US that only supports 2.4 GHz may only send
1713 * a country IE with information for the 2.4 GHz band
1714 * while 5 GHz is still supported.
1716 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1717 PTR_ERR(reg_rule) == -ERANGE)
1718 return;
1720 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1721 request_wiphy && request_wiphy == wiphy &&
1722 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1723 pr_debug("Disabling freq %d MHz for good\n",
1724 chan->center_freq);
1725 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726 chan->flags = chan->orig_flags;
1727 } else {
1728 pr_debug("Disabling freq %d MHz\n",
1729 chan->center_freq);
1730 chan->flags |= IEEE80211_CHAN_DISABLED;
1732 return;
1735 regd = reg_get_regdomain(wiphy);
1737 power_rule = &reg_rule->power_rule;
1738 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1740 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741 request_wiphy && request_wiphy == wiphy &&
1742 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1744 * This guarantees the driver's requested regulatory domain
1745 * will always be used as a base for further regulatory
1746 * settings
1748 chan->flags = chan->orig_flags =
1749 map_regdom_flags(reg_rule->flags) | bw_flags;
1750 chan->max_antenna_gain = chan->orig_mag =
1751 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1752 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1753 (int) MBM_TO_DBM(power_rule->max_eirp);
1755 if (chan->flags & IEEE80211_CHAN_RADAR) {
1756 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1757 if (reg_rule->dfs_cac_ms)
1758 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1761 return;
1764 chan->dfs_state = NL80211_DFS_USABLE;
1765 chan->dfs_state_entered = jiffies;
1767 chan->beacon_found = false;
1768 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1769 chan->max_antenna_gain =
1770 min_t(int, chan->orig_mag,
1771 MBI_TO_DBI(power_rule->max_antenna_gain));
1772 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1774 if (chan->flags & IEEE80211_CHAN_RADAR) {
1775 if (reg_rule->dfs_cac_ms)
1776 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1777 else
1778 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1781 if (chan->orig_mpwr) {
1783 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1784 * will always follow the passed country IE power settings.
1786 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1787 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1788 chan->max_power = chan->max_reg_power;
1789 else
1790 chan->max_power = min(chan->orig_mpwr,
1791 chan->max_reg_power);
1792 } else
1793 chan->max_power = chan->max_reg_power;
1796 static void handle_band(struct wiphy *wiphy,
1797 enum nl80211_reg_initiator initiator,
1798 struct ieee80211_supported_band *sband)
1800 unsigned int i;
1802 if (!sband)
1803 return;
1805 for (i = 0; i < sband->n_channels; i++)
1806 handle_channel(wiphy, initiator, &sband->channels[i]);
1809 static bool reg_request_cell_base(struct regulatory_request *request)
1811 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1812 return false;
1813 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1816 bool reg_last_request_cell_base(void)
1818 return reg_request_cell_base(get_last_request());
1821 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1822 /* Core specific check */
1823 static enum reg_request_treatment
1824 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1826 struct regulatory_request *lr = get_last_request();
1828 if (!reg_num_devs_support_basehint)
1829 return REG_REQ_IGNORE;
1831 if (reg_request_cell_base(lr) &&
1832 !regdom_changes(pending_request->alpha2))
1833 return REG_REQ_ALREADY_SET;
1835 return REG_REQ_OK;
1838 /* Device specific check */
1839 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1841 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1843 #else
1844 static enum reg_request_treatment
1845 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1847 return REG_REQ_IGNORE;
1850 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1852 return true;
1854 #endif
1856 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1858 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1859 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1860 return true;
1861 return false;
1864 static bool ignore_reg_update(struct wiphy *wiphy,
1865 enum nl80211_reg_initiator initiator)
1867 struct regulatory_request *lr = get_last_request();
1869 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1870 return true;
1872 if (!lr) {
1873 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1874 reg_initiator_name(initiator));
1875 return true;
1878 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1879 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1880 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1881 reg_initiator_name(initiator));
1882 return true;
1886 * wiphy->regd will be set once the device has its own
1887 * desired regulatory domain set
1889 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1890 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1891 !is_world_regdom(lr->alpha2)) {
1892 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1893 reg_initiator_name(initiator));
1894 return true;
1897 if (reg_request_cell_base(lr))
1898 return reg_dev_ignore_cell_hint(wiphy);
1900 return false;
1903 static bool reg_is_world_roaming(struct wiphy *wiphy)
1905 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1906 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1907 struct regulatory_request *lr = get_last_request();
1909 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1910 return true;
1912 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1914 return true;
1916 return false;
1919 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1920 struct reg_beacon *reg_beacon)
1922 struct ieee80211_supported_band *sband;
1923 struct ieee80211_channel *chan;
1924 bool channel_changed = false;
1925 struct ieee80211_channel chan_before;
1927 sband = wiphy->bands[reg_beacon->chan.band];
1928 chan = &sband->channels[chan_idx];
1930 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1931 return;
1933 if (chan->beacon_found)
1934 return;
1936 chan->beacon_found = true;
1938 if (!reg_is_world_roaming(wiphy))
1939 return;
1941 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1942 return;
1944 chan_before = *chan;
1946 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1947 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1948 channel_changed = true;
1951 if (channel_changed)
1952 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1956 * Called when a scan on a wiphy finds a beacon on
1957 * new channel
1959 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1960 struct reg_beacon *reg_beacon)
1962 unsigned int i;
1963 struct ieee80211_supported_band *sband;
1965 if (!wiphy->bands[reg_beacon->chan.band])
1966 return;
1968 sband = wiphy->bands[reg_beacon->chan.band];
1970 for (i = 0; i < sband->n_channels; i++)
1971 handle_reg_beacon(wiphy, i, reg_beacon);
1975 * Called upon reg changes or a new wiphy is added
1977 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1979 unsigned int i;
1980 struct ieee80211_supported_band *sband;
1981 struct reg_beacon *reg_beacon;
1983 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1984 if (!wiphy->bands[reg_beacon->chan.band])
1985 continue;
1986 sband = wiphy->bands[reg_beacon->chan.band];
1987 for (i = 0; i < sband->n_channels; i++)
1988 handle_reg_beacon(wiphy, i, reg_beacon);
1992 /* Reap the advantages of previously found beacons */
1993 static void reg_process_beacons(struct wiphy *wiphy)
1996 * Means we are just firing up cfg80211, so no beacons would
1997 * have been processed yet.
1999 if (!last_request)
2000 return;
2001 wiphy_update_beacon_reg(wiphy);
2004 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2006 if (!chan)
2007 return false;
2008 if (chan->flags & IEEE80211_CHAN_DISABLED)
2009 return false;
2010 /* This would happen when regulatory rules disallow HT40 completely */
2011 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2012 return false;
2013 return true;
2016 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2017 struct ieee80211_channel *channel)
2019 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2020 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2021 const struct ieee80211_regdomain *regd;
2022 unsigned int i;
2023 u32 flags;
2025 if (!is_ht40_allowed(channel)) {
2026 channel->flags |= IEEE80211_CHAN_NO_HT40;
2027 return;
2031 * We need to ensure the extension channels exist to
2032 * be able to use HT40- or HT40+, this finds them (or not)
2034 for (i = 0; i < sband->n_channels; i++) {
2035 struct ieee80211_channel *c = &sband->channels[i];
2037 if (c->center_freq == (channel->center_freq - 20))
2038 channel_before = c;
2039 if (c->center_freq == (channel->center_freq + 20))
2040 channel_after = c;
2043 flags = 0;
2044 regd = get_wiphy_regdom(wiphy);
2045 if (regd) {
2046 const struct ieee80211_reg_rule *reg_rule =
2047 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2048 regd, MHZ_TO_KHZ(20));
2050 if (!IS_ERR(reg_rule))
2051 flags = reg_rule->flags;
2055 * Please note that this assumes target bandwidth is 20 MHz,
2056 * if that ever changes we also need to change the below logic
2057 * to include that as well.
2059 if (!is_ht40_allowed(channel_before) ||
2060 flags & NL80211_RRF_NO_HT40MINUS)
2061 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2062 else
2063 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2065 if (!is_ht40_allowed(channel_after) ||
2066 flags & NL80211_RRF_NO_HT40PLUS)
2067 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2068 else
2069 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2072 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2073 struct ieee80211_supported_band *sband)
2075 unsigned int i;
2077 if (!sband)
2078 return;
2080 for (i = 0; i < sband->n_channels; i++)
2081 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2084 static void reg_process_ht_flags(struct wiphy *wiphy)
2086 enum nl80211_band band;
2088 if (!wiphy)
2089 return;
2091 for (band = 0; band < NUM_NL80211_BANDS; band++)
2092 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2095 static void reg_call_notifier(struct wiphy *wiphy,
2096 struct regulatory_request *request)
2098 if (wiphy->reg_notifier)
2099 wiphy->reg_notifier(wiphy, request);
2102 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2104 struct cfg80211_chan_def chandef = {};
2105 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2106 enum nl80211_iftype iftype;
2108 wdev_lock(wdev);
2109 iftype = wdev->iftype;
2111 /* make sure the interface is active */
2112 if (!wdev->netdev || !netif_running(wdev->netdev))
2113 goto wdev_inactive_unlock;
2115 switch (iftype) {
2116 case NL80211_IFTYPE_AP:
2117 case NL80211_IFTYPE_P2P_GO:
2118 if (!wdev->beacon_interval)
2119 goto wdev_inactive_unlock;
2120 chandef = wdev->chandef;
2121 break;
2122 case NL80211_IFTYPE_ADHOC:
2123 if (!wdev->ssid_len)
2124 goto wdev_inactive_unlock;
2125 chandef = wdev->chandef;
2126 break;
2127 case NL80211_IFTYPE_STATION:
2128 case NL80211_IFTYPE_P2P_CLIENT:
2129 if (!wdev->current_bss ||
2130 !wdev->current_bss->pub.channel)
2131 goto wdev_inactive_unlock;
2133 if (!rdev->ops->get_channel ||
2134 rdev_get_channel(rdev, wdev, &chandef))
2135 cfg80211_chandef_create(&chandef,
2136 wdev->current_bss->pub.channel,
2137 NL80211_CHAN_NO_HT);
2138 break;
2139 case NL80211_IFTYPE_MONITOR:
2140 case NL80211_IFTYPE_AP_VLAN:
2141 case NL80211_IFTYPE_P2P_DEVICE:
2142 /* no enforcement required */
2143 break;
2144 default:
2145 /* others not implemented for now */
2146 WARN_ON(1);
2147 break;
2150 wdev_unlock(wdev);
2152 switch (iftype) {
2153 case NL80211_IFTYPE_AP:
2154 case NL80211_IFTYPE_P2P_GO:
2155 case NL80211_IFTYPE_ADHOC:
2156 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2157 case NL80211_IFTYPE_STATION:
2158 case NL80211_IFTYPE_P2P_CLIENT:
2159 return cfg80211_chandef_usable(wiphy, &chandef,
2160 IEEE80211_CHAN_DISABLED);
2161 default:
2162 break;
2165 return true;
2167 wdev_inactive_unlock:
2168 wdev_unlock(wdev);
2169 return true;
2172 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2174 struct wireless_dev *wdev;
2175 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2177 ASSERT_RTNL();
2179 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2180 if (!reg_wdev_chan_valid(wiphy, wdev))
2181 cfg80211_leave(rdev, wdev);
2184 static void reg_check_chans_work(struct work_struct *work)
2186 struct cfg80211_registered_device *rdev;
2188 pr_debug("Verifying active interfaces after reg change\n");
2189 rtnl_lock();
2191 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2192 if (!(rdev->wiphy.regulatory_flags &
2193 REGULATORY_IGNORE_STALE_KICKOFF))
2194 reg_leave_invalid_chans(&rdev->wiphy);
2196 rtnl_unlock();
2199 static void reg_check_channels(void)
2202 * Give usermode a chance to do something nicer (move to another
2203 * channel, orderly disconnection), before forcing a disconnection.
2205 mod_delayed_work(system_power_efficient_wq,
2206 &reg_check_chans,
2207 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2210 static void wiphy_update_regulatory(struct wiphy *wiphy,
2211 enum nl80211_reg_initiator initiator)
2213 enum nl80211_band band;
2214 struct regulatory_request *lr = get_last_request();
2216 if (ignore_reg_update(wiphy, initiator)) {
2218 * Regulatory updates set by CORE are ignored for custom
2219 * regulatory cards. Let us notify the changes to the driver,
2220 * as some drivers used this to restore its orig_* reg domain.
2222 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2223 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2224 !(wiphy->regulatory_flags &
2225 REGULATORY_WIPHY_SELF_MANAGED))
2226 reg_call_notifier(wiphy, lr);
2227 return;
2230 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2232 for (band = 0; band < NUM_NL80211_BANDS; band++)
2233 handle_band(wiphy, initiator, wiphy->bands[band]);
2235 reg_process_beacons(wiphy);
2236 reg_process_ht_flags(wiphy);
2237 reg_call_notifier(wiphy, lr);
2240 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2242 struct cfg80211_registered_device *rdev;
2243 struct wiphy *wiphy;
2245 ASSERT_RTNL();
2247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2248 wiphy = &rdev->wiphy;
2249 wiphy_update_regulatory(wiphy, initiator);
2252 reg_check_channels();
2255 static void handle_channel_custom(struct wiphy *wiphy,
2256 struct ieee80211_channel *chan,
2257 const struct ieee80211_regdomain *regd,
2258 u32 min_bw)
2260 u32 bw_flags = 0;
2261 const struct ieee80211_reg_rule *reg_rule = NULL;
2262 const struct ieee80211_power_rule *power_rule = NULL;
2263 u32 bw;
2265 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2266 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2267 regd, bw);
2268 if (!IS_ERR(reg_rule))
2269 break;
2272 if (IS_ERR_OR_NULL(reg_rule)) {
2273 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2274 chan->center_freq);
2275 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2276 chan->flags |= IEEE80211_CHAN_DISABLED;
2277 } else {
2278 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2279 chan->flags = chan->orig_flags;
2281 return;
2284 power_rule = &reg_rule->power_rule;
2285 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2287 chan->dfs_state_entered = jiffies;
2288 chan->dfs_state = NL80211_DFS_USABLE;
2290 chan->beacon_found = false;
2292 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2293 chan->flags = chan->orig_flags | bw_flags |
2294 map_regdom_flags(reg_rule->flags);
2295 else
2296 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2298 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2299 chan->max_reg_power = chan->max_power =
2300 (int) MBM_TO_DBM(power_rule->max_eirp);
2302 if (chan->flags & IEEE80211_CHAN_RADAR) {
2303 if (reg_rule->dfs_cac_ms)
2304 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2305 else
2306 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2309 chan->max_power = chan->max_reg_power;
2312 static void handle_band_custom(struct wiphy *wiphy,
2313 struct ieee80211_supported_band *sband,
2314 const struct ieee80211_regdomain *regd)
2316 unsigned int i;
2318 if (!sband)
2319 return;
2322 * We currently assume that you always want at least 20 MHz,
2323 * otherwise channel 12 might get enabled if this rule is
2324 * compatible to US, which permits 2402 - 2472 MHz.
2326 for (i = 0; i < sband->n_channels; i++)
2327 handle_channel_custom(wiphy, &sband->channels[i], regd,
2328 MHZ_TO_KHZ(20));
2331 /* Used by drivers prior to wiphy registration */
2332 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2333 const struct ieee80211_regdomain *regd)
2335 enum nl80211_band band;
2336 unsigned int bands_set = 0;
2338 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2339 "wiphy should have REGULATORY_CUSTOM_REG\n");
2340 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2342 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2343 if (!wiphy->bands[band])
2344 continue;
2345 handle_band_custom(wiphy, wiphy->bands[band], regd);
2346 bands_set++;
2350 * no point in calling this if it won't have any effect
2351 * on your device's supported bands.
2353 WARN_ON(!bands_set);
2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2357 static void reg_set_request_processed(void)
2359 bool need_more_processing = false;
2360 struct regulatory_request *lr = get_last_request();
2362 lr->processed = true;
2364 spin_lock(&reg_requests_lock);
2365 if (!list_empty(&reg_requests_list))
2366 need_more_processing = true;
2367 spin_unlock(&reg_requests_lock);
2369 cancel_crda_timeout();
2371 if (need_more_processing)
2372 schedule_work(&reg_work);
2376 * reg_process_hint_core - process core regulatory requests
2377 * @pending_request: a pending core regulatory request
2379 * The wireless subsystem can use this function to process
2380 * a regulatory request issued by the regulatory core.
2382 static enum reg_request_treatment
2383 reg_process_hint_core(struct regulatory_request *core_request)
2385 if (reg_query_database(core_request)) {
2386 core_request->intersect = false;
2387 core_request->processed = false;
2388 reg_update_last_request(core_request);
2389 return REG_REQ_OK;
2392 return REG_REQ_IGNORE;
2395 static enum reg_request_treatment
2396 __reg_process_hint_user(struct regulatory_request *user_request)
2398 struct regulatory_request *lr = get_last_request();
2400 if (reg_request_cell_base(user_request))
2401 return reg_ignore_cell_hint(user_request);
2403 if (reg_request_cell_base(lr))
2404 return REG_REQ_IGNORE;
2406 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2407 return REG_REQ_INTERSECT;
2409 * If the user knows better the user should set the regdom
2410 * to their country before the IE is picked up
2412 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2413 lr->intersect)
2414 return REG_REQ_IGNORE;
2416 * Process user requests only after previous user/driver/core
2417 * requests have been processed
2419 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2420 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2421 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2422 regdom_changes(lr->alpha2))
2423 return REG_REQ_IGNORE;
2425 if (!regdom_changes(user_request->alpha2))
2426 return REG_REQ_ALREADY_SET;
2428 return REG_REQ_OK;
2432 * reg_process_hint_user - process user regulatory requests
2433 * @user_request: a pending user regulatory request
2435 * The wireless subsystem can use this function to process
2436 * a regulatory request initiated by userspace.
2438 static enum reg_request_treatment
2439 reg_process_hint_user(struct regulatory_request *user_request)
2441 enum reg_request_treatment treatment;
2443 treatment = __reg_process_hint_user(user_request);
2444 if (treatment == REG_REQ_IGNORE ||
2445 treatment == REG_REQ_ALREADY_SET)
2446 return REG_REQ_IGNORE;
2448 user_request->intersect = treatment == REG_REQ_INTERSECT;
2449 user_request->processed = false;
2451 if (reg_query_database(user_request)) {
2452 reg_update_last_request(user_request);
2453 user_alpha2[0] = user_request->alpha2[0];
2454 user_alpha2[1] = user_request->alpha2[1];
2455 return REG_REQ_OK;
2458 return REG_REQ_IGNORE;
2461 static enum reg_request_treatment
2462 __reg_process_hint_driver(struct regulatory_request *driver_request)
2464 struct regulatory_request *lr = get_last_request();
2466 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2467 if (regdom_changes(driver_request->alpha2))
2468 return REG_REQ_OK;
2469 return REG_REQ_ALREADY_SET;
2473 * This would happen if you unplug and plug your card
2474 * back in or if you add a new device for which the previously
2475 * loaded card also agrees on the regulatory domain.
2477 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2478 !regdom_changes(driver_request->alpha2))
2479 return REG_REQ_ALREADY_SET;
2481 return REG_REQ_INTERSECT;
2485 * reg_process_hint_driver - process driver regulatory requests
2486 * @driver_request: a pending driver regulatory request
2488 * The wireless subsystem can use this function to process
2489 * a regulatory request issued by an 802.11 driver.
2491 * Returns one of the different reg request treatment values.
2493 static enum reg_request_treatment
2494 reg_process_hint_driver(struct wiphy *wiphy,
2495 struct regulatory_request *driver_request)
2497 const struct ieee80211_regdomain *regd, *tmp;
2498 enum reg_request_treatment treatment;
2500 treatment = __reg_process_hint_driver(driver_request);
2502 switch (treatment) {
2503 case REG_REQ_OK:
2504 break;
2505 case REG_REQ_IGNORE:
2506 return REG_REQ_IGNORE;
2507 case REG_REQ_INTERSECT:
2508 case REG_REQ_ALREADY_SET:
2509 regd = reg_copy_regd(get_cfg80211_regdom());
2510 if (IS_ERR(regd))
2511 return REG_REQ_IGNORE;
2513 tmp = get_wiphy_regdom(wiphy);
2514 rcu_assign_pointer(wiphy->regd, regd);
2515 rcu_free_regdom(tmp);
2519 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2520 driver_request->processed = false;
2523 * Since CRDA will not be called in this case as we already
2524 * have applied the requested regulatory domain before we just
2525 * inform userspace we have processed the request
2527 if (treatment == REG_REQ_ALREADY_SET) {
2528 nl80211_send_reg_change_event(driver_request);
2529 reg_update_last_request(driver_request);
2530 reg_set_request_processed();
2531 return REG_REQ_ALREADY_SET;
2534 if (reg_query_database(driver_request)) {
2535 reg_update_last_request(driver_request);
2536 return REG_REQ_OK;
2539 return REG_REQ_IGNORE;
2542 static enum reg_request_treatment
2543 __reg_process_hint_country_ie(struct wiphy *wiphy,
2544 struct regulatory_request *country_ie_request)
2546 struct wiphy *last_wiphy = NULL;
2547 struct regulatory_request *lr = get_last_request();
2549 if (reg_request_cell_base(lr)) {
2550 /* Trust a Cell base station over the AP's country IE */
2551 if (regdom_changes(country_ie_request->alpha2))
2552 return REG_REQ_IGNORE;
2553 return REG_REQ_ALREADY_SET;
2554 } else {
2555 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2556 return REG_REQ_IGNORE;
2559 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2560 return -EINVAL;
2562 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2563 return REG_REQ_OK;
2565 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2567 if (last_wiphy != wiphy) {
2569 * Two cards with two APs claiming different
2570 * Country IE alpha2s. We could
2571 * intersect them, but that seems unlikely
2572 * to be correct. Reject second one for now.
2574 if (regdom_changes(country_ie_request->alpha2))
2575 return REG_REQ_IGNORE;
2576 return REG_REQ_ALREADY_SET;
2579 if (regdom_changes(country_ie_request->alpha2))
2580 return REG_REQ_OK;
2581 return REG_REQ_ALREADY_SET;
2585 * reg_process_hint_country_ie - process regulatory requests from country IEs
2586 * @country_ie_request: a regulatory request from a country IE
2588 * The wireless subsystem can use this function to process
2589 * a regulatory request issued by a country Information Element.
2591 * Returns one of the different reg request treatment values.
2593 static enum reg_request_treatment
2594 reg_process_hint_country_ie(struct wiphy *wiphy,
2595 struct regulatory_request *country_ie_request)
2597 enum reg_request_treatment treatment;
2599 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2601 switch (treatment) {
2602 case REG_REQ_OK:
2603 break;
2604 case REG_REQ_IGNORE:
2605 return REG_REQ_IGNORE;
2606 case REG_REQ_ALREADY_SET:
2607 reg_free_request(country_ie_request);
2608 return REG_REQ_ALREADY_SET;
2609 case REG_REQ_INTERSECT:
2611 * This doesn't happen yet, not sure we
2612 * ever want to support it for this case.
2614 WARN_ONCE(1, "Unexpected intersection for country elements");
2615 return REG_REQ_IGNORE;
2618 country_ie_request->intersect = false;
2619 country_ie_request->processed = false;
2621 if (reg_query_database(country_ie_request)) {
2622 reg_update_last_request(country_ie_request);
2623 return REG_REQ_OK;
2626 return REG_REQ_IGNORE;
2629 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2631 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2632 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2633 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2634 bool dfs_domain_same;
2636 rcu_read_lock();
2638 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2639 wiphy1_regd = rcu_dereference(wiphy1->regd);
2640 if (!wiphy1_regd)
2641 wiphy1_regd = cfg80211_regd;
2643 wiphy2_regd = rcu_dereference(wiphy2->regd);
2644 if (!wiphy2_regd)
2645 wiphy2_regd = cfg80211_regd;
2647 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2649 rcu_read_unlock();
2651 return dfs_domain_same;
2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2655 struct ieee80211_channel *src_chan)
2657 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2658 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2659 return;
2661 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2662 src_chan->flags & IEEE80211_CHAN_DISABLED)
2663 return;
2665 if (src_chan->center_freq == dst_chan->center_freq &&
2666 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2667 dst_chan->dfs_state = src_chan->dfs_state;
2668 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2672 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2673 struct wiphy *src_wiphy)
2675 struct ieee80211_supported_band *src_sband, *dst_sband;
2676 struct ieee80211_channel *src_chan, *dst_chan;
2677 int i, j, band;
2679 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2680 return;
2682 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2683 dst_sband = dst_wiphy->bands[band];
2684 src_sband = src_wiphy->bands[band];
2685 if (!dst_sband || !src_sband)
2686 continue;
2688 for (i = 0; i < dst_sband->n_channels; i++) {
2689 dst_chan = &dst_sband->channels[i];
2690 for (j = 0; j < src_sband->n_channels; j++) {
2691 src_chan = &src_sband->channels[j];
2692 reg_copy_dfs_chan_state(dst_chan, src_chan);
2698 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2700 struct cfg80211_registered_device *rdev;
2702 ASSERT_RTNL();
2704 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2705 if (wiphy == &rdev->wiphy)
2706 continue;
2707 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2711 /* This processes *all* regulatory hints */
2712 static void reg_process_hint(struct regulatory_request *reg_request)
2714 struct wiphy *wiphy = NULL;
2715 enum reg_request_treatment treatment;
2716 enum nl80211_reg_initiator initiator = reg_request->initiator;
2718 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2719 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2721 switch (initiator) {
2722 case NL80211_REGDOM_SET_BY_CORE:
2723 treatment = reg_process_hint_core(reg_request);
2724 break;
2725 case NL80211_REGDOM_SET_BY_USER:
2726 treatment = reg_process_hint_user(reg_request);
2727 break;
2728 case NL80211_REGDOM_SET_BY_DRIVER:
2729 if (!wiphy)
2730 goto out_free;
2731 treatment = reg_process_hint_driver(wiphy, reg_request);
2732 break;
2733 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2734 if (!wiphy)
2735 goto out_free;
2736 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2737 break;
2738 default:
2739 WARN(1, "invalid initiator %d\n", initiator);
2740 goto out_free;
2743 if (treatment == REG_REQ_IGNORE)
2744 goto out_free;
2746 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2747 "unexpected treatment value %d\n", treatment);
2749 /* This is required so that the orig_* parameters are saved.
2750 * NOTE: treatment must be set for any case that reaches here!
2752 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2753 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2754 wiphy_update_regulatory(wiphy, initiator);
2755 wiphy_all_share_dfs_chan_state(wiphy);
2756 reg_check_channels();
2759 return;
2761 out_free:
2762 reg_free_request(reg_request);
2765 static void notify_self_managed_wiphys(struct regulatory_request *request)
2767 struct cfg80211_registered_device *rdev;
2768 struct wiphy *wiphy;
2770 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2771 wiphy = &rdev->wiphy;
2772 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2773 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2774 request->user_reg_hint_type ==
2775 NL80211_USER_REG_HINT_CELL_BASE)
2776 reg_call_notifier(wiphy, request);
2781 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2782 * Regulatory hints come on a first come first serve basis and we
2783 * must process each one atomically.
2785 static void reg_process_pending_hints(void)
2787 struct regulatory_request *reg_request, *lr;
2789 lr = get_last_request();
2791 /* When last_request->processed becomes true this will be rescheduled */
2792 if (lr && !lr->processed) {
2793 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2794 return;
2797 spin_lock(&reg_requests_lock);
2799 if (list_empty(&reg_requests_list)) {
2800 spin_unlock(&reg_requests_lock);
2801 return;
2804 reg_request = list_first_entry(&reg_requests_list,
2805 struct regulatory_request,
2806 list);
2807 list_del_init(&reg_request->list);
2809 spin_unlock(&reg_requests_lock);
2811 notify_self_managed_wiphys(reg_request);
2813 reg_process_hint(reg_request);
2815 lr = get_last_request();
2817 spin_lock(&reg_requests_lock);
2818 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2819 schedule_work(&reg_work);
2820 spin_unlock(&reg_requests_lock);
2823 /* Processes beacon hints -- this has nothing to do with country IEs */
2824 static void reg_process_pending_beacon_hints(void)
2826 struct cfg80211_registered_device *rdev;
2827 struct reg_beacon *pending_beacon, *tmp;
2829 /* This goes through the _pending_ beacon list */
2830 spin_lock_bh(&reg_pending_beacons_lock);
2832 list_for_each_entry_safe(pending_beacon, tmp,
2833 &reg_pending_beacons, list) {
2834 list_del_init(&pending_beacon->list);
2836 /* Applies the beacon hint to current wiphys */
2837 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2838 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2840 /* Remembers the beacon hint for new wiphys or reg changes */
2841 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2844 spin_unlock_bh(&reg_pending_beacons_lock);
2847 static void reg_process_self_managed_hints(void)
2849 struct cfg80211_registered_device *rdev;
2850 struct wiphy *wiphy;
2851 const struct ieee80211_regdomain *tmp;
2852 const struct ieee80211_regdomain *regd;
2853 enum nl80211_band band;
2854 struct regulatory_request request = {};
2856 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2857 wiphy = &rdev->wiphy;
2859 spin_lock(&reg_requests_lock);
2860 regd = rdev->requested_regd;
2861 rdev->requested_regd = NULL;
2862 spin_unlock(&reg_requests_lock);
2864 if (regd == NULL)
2865 continue;
2867 tmp = get_wiphy_regdom(wiphy);
2868 rcu_assign_pointer(wiphy->regd, regd);
2869 rcu_free_regdom(tmp);
2871 for (band = 0; band < NUM_NL80211_BANDS; band++)
2872 handle_band_custom(wiphy, wiphy->bands[band], regd);
2874 reg_process_ht_flags(wiphy);
2876 request.wiphy_idx = get_wiphy_idx(wiphy);
2877 request.alpha2[0] = regd->alpha2[0];
2878 request.alpha2[1] = regd->alpha2[1];
2879 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2881 nl80211_send_wiphy_reg_change_event(&request);
2884 reg_check_channels();
2887 static void reg_todo(struct work_struct *work)
2889 rtnl_lock();
2890 reg_process_pending_hints();
2891 reg_process_pending_beacon_hints();
2892 reg_process_self_managed_hints();
2893 rtnl_unlock();
2896 static void queue_regulatory_request(struct regulatory_request *request)
2898 request->alpha2[0] = toupper(request->alpha2[0]);
2899 request->alpha2[1] = toupper(request->alpha2[1]);
2901 spin_lock(&reg_requests_lock);
2902 list_add_tail(&request->list, &reg_requests_list);
2903 spin_unlock(&reg_requests_lock);
2905 schedule_work(&reg_work);
2909 * Core regulatory hint -- happens during cfg80211_init()
2910 * and when we restore regulatory settings.
2912 static int regulatory_hint_core(const char *alpha2)
2914 struct regulatory_request *request;
2916 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2917 if (!request)
2918 return -ENOMEM;
2920 request->alpha2[0] = alpha2[0];
2921 request->alpha2[1] = alpha2[1];
2922 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2923 request->wiphy_idx = WIPHY_IDX_INVALID;
2925 queue_regulatory_request(request);
2927 return 0;
2930 /* User hints */
2931 int regulatory_hint_user(const char *alpha2,
2932 enum nl80211_user_reg_hint_type user_reg_hint_type)
2934 struct regulatory_request *request;
2936 if (WARN_ON(!alpha2))
2937 return -EINVAL;
2939 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2940 if (!request)
2941 return -ENOMEM;
2943 request->wiphy_idx = WIPHY_IDX_INVALID;
2944 request->alpha2[0] = alpha2[0];
2945 request->alpha2[1] = alpha2[1];
2946 request->initiator = NL80211_REGDOM_SET_BY_USER;
2947 request->user_reg_hint_type = user_reg_hint_type;
2949 /* Allow calling CRDA again */
2950 reset_crda_timeouts();
2952 queue_regulatory_request(request);
2954 return 0;
2957 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2959 spin_lock(&reg_indoor_lock);
2961 /* It is possible that more than one user space process is trying to
2962 * configure the indoor setting. To handle such cases, clear the indoor
2963 * setting in case that some process does not think that the device
2964 * is operating in an indoor environment. In addition, if a user space
2965 * process indicates that it is controlling the indoor setting, save its
2966 * portid, i.e., make it the owner.
2968 reg_is_indoor = is_indoor;
2969 if (reg_is_indoor) {
2970 if (!reg_is_indoor_portid)
2971 reg_is_indoor_portid = portid;
2972 } else {
2973 reg_is_indoor_portid = 0;
2976 spin_unlock(&reg_indoor_lock);
2978 if (!is_indoor)
2979 reg_check_channels();
2981 return 0;
2984 void regulatory_netlink_notify(u32 portid)
2986 spin_lock(&reg_indoor_lock);
2988 if (reg_is_indoor_portid != portid) {
2989 spin_unlock(&reg_indoor_lock);
2990 return;
2993 reg_is_indoor = false;
2994 reg_is_indoor_portid = 0;
2996 spin_unlock(&reg_indoor_lock);
2998 reg_check_channels();
3001 /* Driver hints */
3002 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3004 struct regulatory_request *request;
3006 if (WARN_ON(!alpha2 || !wiphy))
3007 return -EINVAL;
3009 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3011 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3012 if (!request)
3013 return -ENOMEM;
3015 request->wiphy_idx = get_wiphy_idx(wiphy);
3017 request->alpha2[0] = alpha2[0];
3018 request->alpha2[1] = alpha2[1];
3019 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3021 /* Allow calling CRDA again */
3022 reset_crda_timeouts();
3024 queue_regulatory_request(request);
3026 return 0;
3028 EXPORT_SYMBOL(regulatory_hint);
3030 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3031 const u8 *country_ie, u8 country_ie_len)
3033 char alpha2[2];
3034 enum environment_cap env = ENVIRON_ANY;
3035 struct regulatory_request *request = NULL, *lr;
3037 /* IE len must be evenly divisible by 2 */
3038 if (country_ie_len & 0x01)
3039 return;
3041 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3042 return;
3044 request = kzalloc(sizeof(*request), GFP_KERNEL);
3045 if (!request)
3046 return;
3048 alpha2[0] = country_ie[0];
3049 alpha2[1] = country_ie[1];
3051 if (country_ie[2] == 'I')
3052 env = ENVIRON_INDOOR;
3053 else if (country_ie[2] == 'O')
3054 env = ENVIRON_OUTDOOR;
3056 rcu_read_lock();
3057 lr = get_last_request();
3059 if (unlikely(!lr))
3060 goto out;
3063 * We will run this only upon a successful connection on cfg80211.
3064 * We leave conflict resolution to the workqueue, where can hold
3065 * the RTNL.
3067 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3068 lr->wiphy_idx != WIPHY_IDX_INVALID)
3069 goto out;
3071 request->wiphy_idx = get_wiphy_idx(wiphy);
3072 request->alpha2[0] = alpha2[0];
3073 request->alpha2[1] = alpha2[1];
3074 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3075 request->country_ie_env = env;
3077 /* Allow calling CRDA again */
3078 reset_crda_timeouts();
3080 queue_regulatory_request(request);
3081 request = NULL;
3082 out:
3083 kfree(request);
3084 rcu_read_unlock();
3087 static void restore_alpha2(char *alpha2, bool reset_user)
3089 /* indicates there is no alpha2 to consider for restoration */
3090 alpha2[0] = '9';
3091 alpha2[1] = '7';
3093 /* The user setting has precedence over the module parameter */
3094 if (is_user_regdom_saved()) {
3095 /* Unless we're asked to ignore it and reset it */
3096 if (reset_user) {
3097 pr_debug("Restoring regulatory settings including user preference\n");
3098 user_alpha2[0] = '9';
3099 user_alpha2[1] = '7';
3102 * If we're ignoring user settings, we still need to
3103 * check the module parameter to ensure we put things
3104 * back as they were for a full restore.
3106 if (!is_world_regdom(ieee80211_regdom)) {
3107 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3108 ieee80211_regdom[0], ieee80211_regdom[1]);
3109 alpha2[0] = ieee80211_regdom[0];
3110 alpha2[1] = ieee80211_regdom[1];
3112 } else {
3113 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3114 user_alpha2[0], user_alpha2[1]);
3115 alpha2[0] = user_alpha2[0];
3116 alpha2[1] = user_alpha2[1];
3118 } else if (!is_world_regdom(ieee80211_regdom)) {
3119 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3120 ieee80211_regdom[0], ieee80211_regdom[1]);
3121 alpha2[0] = ieee80211_regdom[0];
3122 alpha2[1] = ieee80211_regdom[1];
3123 } else
3124 pr_debug("Restoring regulatory settings\n");
3127 static void restore_custom_reg_settings(struct wiphy *wiphy)
3129 struct ieee80211_supported_band *sband;
3130 enum nl80211_band band;
3131 struct ieee80211_channel *chan;
3132 int i;
3134 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3135 sband = wiphy->bands[band];
3136 if (!sband)
3137 continue;
3138 for (i = 0; i < sband->n_channels; i++) {
3139 chan = &sband->channels[i];
3140 chan->flags = chan->orig_flags;
3141 chan->max_antenna_gain = chan->orig_mag;
3142 chan->max_power = chan->orig_mpwr;
3143 chan->beacon_found = false;
3149 * Restoring regulatory settings involves ingoring any
3150 * possibly stale country IE information and user regulatory
3151 * settings if so desired, this includes any beacon hints
3152 * learned as we could have traveled outside to another country
3153 * after disconnection. To restore regulatory settings we do
3154 * exactly what we did at bootup:
3156 * - send a core regulatory hint
3157 * - send a user regulatory hint if applicable
3159 * Device drivers that send a regulatory hint for a specific country
3160 * keep their own regulatory domain on wiphy->regd so that does does
3161 * not need to be remembered.
3163 static void restore_regulatory_settings(bool reset_user)
3165 char alpha2[2];
3166 char world_alpha2[2];
3167 struct reg_beacon *reg_beacon, *btmp;
3168 LIST_HEAD(tmp_reg_req_list);
3169 struct cfg80211_registered_device *rdev;
3171 ASSERT_RTNL();
3174 * Clear the indoor setting in case that it is not controlled by user
3175 * space, as otherwise there is no guarantee that the device is still
3176 * operating in an indoor environment.
3178 spin_lock(&reg_indoor_lock);
3179 if (reg_is_indoor && !reg_is_indoor_portid) {
3180 reg_is_indoor = false;
3181 reg_check_channels();
3183 spin_unlock(&reg_indoor_lock);
3185 reset_regdomains(true, &world_regdom);
3186 restore_alpha2(alpha2, reset_user);
3189 * If there's any pending requests we simply
3190 * stash them to a temporary pending queue and
3191 * add then after we've restored regulatory
3192 * settings.
3194 spin_lock(&reg_requests_lock);
3195 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3196 spin_unlock(&reg_requests_lock);
3198 /* Clear beacon hints */
3199 spin_lock_bh(&reg_pending_beacons_lock);
3200 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3201 list_del(&reg_beacon->list);
3202 kfree(reg_beacon);
3204 spin_unlock_bh(&reg_pending_beacons_lock);
3206 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3207 list_del(&reg_beacon->list);
3208 kfree(reg_beacon);
3211 /* First restore to the basic regulatory settings */
3212 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3213 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3215 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3216 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3217 continue;
3218 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3219 restore_custom_reg_settings(&rdev->wiphy);
3222 regulatory_hint_core(world_alpha2);
3225 * This restores the ieee80211_regdom module parameter
3226 * preference or the last user requested regulatory
3227 * settings, user regulatory settings takes precedence.
3229 if (is_an_alpha2(alpha2))
3230 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3232 spin_lock(&reg_requests_lock);
3233 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3234 spin_unlock(&reg_requests_lock);
3236 pr_debug("Kicking the queue\n");
3238 schedule_work(&reg_work);
3241 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3243 struct cfg80211_registered_device *rdev;
3244 struct wireless_dev *wdev;
3246 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3247 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3248 wdev_lock(wdev);
3249 if (!(wdev->wiphy->regulatory_flags & flag)) {
3250 wdev_unlock(wdev);
3251 return false;
3253 wdev_unlock(wdev);
3257 return true;
3260 void regulatory_hint_disconnect(void)
3262 /* Restore of regulatory settings is not required when wiphy(s)
3263 * ignore IE from connected access point but clearance of beacon hints
3264 * is required when wiphy(s) supports beacon hints.
3266 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3267 struct reg_beacon *reg_beacon, *btmp;
3269 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3270 return;
3272 spin_lock_bh(&reg_pending_beacons_lock);
3273 list_for_each_entry_safe(reg_beacon, btmp,
3274 &reg_pending_beacons, list) {
3275 list_del(&reg_beacon->list);
3276 kfree(reg_beacon);
3278 spin_unlock_bh(&reg_pending_beacons_lock);
3280 list_for_each_entry_safe(reg_beacon, btmp,
3281 &reg_beacon_list, list) {
3282 list_del(&reg_beacon->list);
3283 kfree(reg_beacon);
3286 return;
3289 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3290 restore_regulatory_settings(false);
3293 static bool freq_is_chan_12_13_14(u16 freq)
3295 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3296 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3297 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3298 return true;
3299 return false;
3302 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3304 struct reg_beacon *pending_beacon;
3306 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3307 if (beacon_chan->center_freq ==
3308 pending_beacon->chan.center_freq)
3309 return true;
3310 return false;
3313 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3314 struct ieee80211_channel *beacon_chan,
3315 gfp_t gfp)
3317 struct reg_beacon *reg_beacon;
3318 bool processing;
3320 if (beacon_chan->beacon_found ||
3321 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3322 (beacon_chan->band == NL80211_BAND_2GHZ &&
3323 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3324 return 0;
3326 spin_lock_bh(&reg_pending_beacons_lock);
3327 processing = pending_reg_beacon(beacon_chan);
3328 spin_unlock_bh(&reg_pending_beacons_lock);
3330 if (processing)
3331 return 0;
3333 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3334 if (!reg_beacon)
3335 return -ENOMEM;
3337 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3338 beacon_chan->center_freq,
3339 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3340 wiphy_name(wiphy));
3342 memcpy(&reg_beacon->chan, beacon_chan,
3343 sizeof(struct ieee80211_channel));
3346 * Since we can be called from BH or and non-BH context
3347 * we must use spin_lock_bh()
3349 spin_lock_bh(&reg_pending_beacons_lock);
3350 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3351 spin_unlock_bh(&reg_pending_beacons_lock);
3353 schedule_work(&reg_work);
3355 return 0;
3358 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3360 unsigned int i;
3361 const struct ieee80211_reg_rule *reg_rule = NULL;
3362 const struct ieee80211_freq_range *freq_range = NULL;
3363 const struct ieee80211_power_rule *power_rule = NULL;
3364 char bw[32], cac_time[32];
3366 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3368 for (i = 0; i < rd->n_reg_rules; i++) {
3369 reg_rule = &rd->reg_rules[i];
3370 freq_range = &reg_rule->freq_range;
3371 power_rule = &reg_rule->power_rule;
3373 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3374 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3375 freq_range->max_bandwidth_khz,
3376 reg_get_max_bandwidth(rd, reg_rule));
3377 else
3378 snprintf(bw, sizeof(bw), "%d KHz",
3379 freq_range->max_bandwidth_khz);
3381 if (reg_rule->flags & NL80211_RRF_DFS)
3382 scnprintf(cac_time, sizeof(cac_time), "%u s",
3383 reg_rule->dfs_cac_ms/1000);
3384 else
3385 scnprintf(cac_time, sizeof(cac_time), "N/A");
3389 * There may not be documentation for max antenna gain
3390 * in certain regions
3392 if (power_rule->max_antenna_gain)
3393 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3394 freq_range->start_freq_khz,
3395 freq_range->end_freq_khz,
3397 power_rule->max_antenna_gain,
3398 power_rule->max_eirp,
3399 cac_time);
3400 else
3401 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3402 freq_range->start_freq_khz,
3403 freq_range->end_freq_khz,
3405 power_rule->max_eirp,
3406 cac_time);
3410 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3412 switch (dfs_region) {
3413 case NL80211_DFS_UNSET:
3414 case NL80211_DFS_FCC:
3415 case NL80211_DFS_ETSI:
3416 case NL80211_DFS_JP:
3417 return true;
3418 default:
3419 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3420 return false;
3424 static void print_regdomain(const struct ieee80211_regdomain *rd)
3426 struct regulatory_request *lr = get_last_request();
3428 if (is_intersected_alpha2(rd->alpha2)) {
3429 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3430 struct cfg80211_registered_device *rdev;
3431 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3432 if (rdev) {
3433 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3434 rdev->country_ie_alpha2[0],
3435 rdev->country_ie_alpha2[1]);
3436 } else
3437 pr_debug("Current regulatory domain intersected:\n");
3438 } else
3439 pr_debug("Current regulatory domain intersected:\n");
3440 } else if (is_world_regdom(rd->alpha2)) {
3441 pr_debug("World regulatory domain updated:\n");
3442 } else {
3443 if (is_unknown_alpha2(rd->alpha2))
3444 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3445 else {
3446 if (reg_request_cell_base(lr))
3447 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3448 rd->alpha2[0], rd->alpha2[1]);
3449 else
3450 pr_debug("Regulatory domain changed to country: %c%c\n",
3451 rd->alpha2[0], rd->alpha2[1]);
3455 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3456 print_rd_rules(rd);
3459 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3461 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3462 print_rd_rules(rd);
3465 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3467 if (!is_world_regdom(rd->alpha2))
3468 return -EINVAL;
3469 update_world_regdomain(rd);
3470 return 0;
3473 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3474 struct regulatory_request *user_request)
3476 const struct ieee80211_regdomain *intersected_rd = NULL;
3478 if (!regdom_changes(rd->alpha2))
3479 return -EALREADY;
3481 if (!is_valid_rd(rd)) {
3482 pr_err("Invalid regulatory domain detected: %c%c\n",
3483 rd->alpha2[0], rd->alpha2[1]);
3484 print_regdomain_info(rd);
3485 return -EINVAL;
3488 if (!user_request->intersect) {
3489 reset_regdomains(false, rd);
3490 return 0;
3493 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3494 if (!intersected_rd)
3495 return -EINVAL;
3497 kfree(rd);
3498 rd = NULL;
3499 reset_regdomains(false, intersected_rd);
3501 return 0;
3504 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3505 struct regulatory_request *driver_request)
3507 const struct ieee80211_regdomain *regd;
3508 const struct ieee80211_regdomain *intersected_rd = NULL;
3509 const struct ieee80211_regdomain *tmp;
3510 struct wiphy *request_wiphy;
3512 if (is_world_regdom(rd->alpha2))
3513 return -EINVAL;
3515 if (!regdom_changes(rd->alpha2))
3516 return -EALREADY;
3518 if (!is_valid_rd(rd)) {
3519 pr_err("Invalid regulatory domain detected: %c%c\n",
3520 rd->alpha2[0], rd->alpha2[1]);
3521 print_regdomain_info(rd);
3522 return -EINVAL;
3525 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3526 if (!request_wiphy)
3527 return -ENODEV;
3529 if (!driver_request->intersect) {
3530 if (request_wiphy->regd)
3531 return -EALREADY;
3533 regd = reg_copy_regd(rd);
3534 if (IS_ERR(regd))
3535 return PTR_ERR(regd);
3537 rcu_assign_pointer(request_wiphy->regd, regd);
3538 reset_regdomains(false, rd);
3539 return 0;
3542 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3543 if (!intersected_rd)
3544 return -EINVAL;
3547 * We can trash what CRDA provided now.
3548 * However if a driver requested this specific regulatory
3549 * domain we keep it for its private use
3551 tmp = get_wiphy_regdom(request_wiphy);
3552 rcu_assign_pointer(request_wiphy->regd, rd);
3553 rcu_free_regdom(tmp);
3555 rd = NULL;
3557 reset_regdomains(false, intersected_rd);
3559 return 0;
3562 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3563 struct regulatory_request *country_ie_request)
3565 struct wiphy *request_wiphy;
3567 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3568 !is_unknown_alpha2(rd->alpha2))
3569 return -EINVAL;
3572 * Lets only bother proceeding on the same alpha2 if the current
3573 * rd is non static (it means CRDA was present and was used last)
3574 * and the pending request came in from a country IE
3577 if (!is_valid_rd(rd)) {
3578 pr_err("Invalid regulatory domain detected: %c%c\n",
3579 rd->alpha2[0], rd->alpha2[1]);
3580 print_regdomain_info(rd);
3581 return -EINVAL;
3584 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3585 if (!request_wiphy)
3586 return -ENODEV;
3588 if (country_ie_request->intersect)
3589 return -EINVAL;
3591 reset_regdomains(false, rd);
3592 return 0;
3596 * Use this call to set the current regulatory domain. Conflicts with
3597 * multiple drivers can be ironed out later. Caller must've already
3598 * kmalloc'd the rd structure.
3600 int set_regdom(const struct ieee80211_regdomain *rd,
3601 enum ieee80211_regd_source regd_src)
3603 struct regulatory_request *lr;
3604 bool user_reset = false;
3605 int r;
3607 if (!reg_is_valid_request(rd->alpha2)) {
3608 kfree(rd);
3609 return -EINVAL;
3612 if (regd_src == REGD_SOURCE_CRDA)
3613 reset_crda_timeouts();
3615 lr = get_last_request();
3617 /* Note that this doesn't update the wiphys, this is done below */
3618 switch (lr->initiator) {
3619 case NL80211_REGDOM_SET_BY_CORE:
3620 r = reg_set_rd_core(rd);
3621 break;
3622 case NL80211_REGDOM_SET_BY_USER:
3623 r = reg_set_rd_user(rd, lr);
3624 user_reset = true;
3625 break;
3626 case NL80211_REGDOM_SET_BY_DRIVER:
3627 r = reg_set_rd_driver(rd, lr);
3628 break;
3629 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3630 r = reg_set_rd_country_ie(rd, lr);
3631 break;
3632 default:
3633 WARN(1, "invalid initiator %d\n", lr->initiator);
3634 kfree(rd);
3635 return -EINVAL;
3638 if (r) {
3639 switch (r) {
3640 case -EALREADY:
3641 reg_set_request_processed();
3642 break;
3643 default:
3644 /* Back to world regulatory in case of errors */
3645 restore_regulatory_settings(user_reset);
3648 kfree(rd);
3649 return r;
3652 /* This would make this whole thing pointless */
3653 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3654 return -EINVAL;
3656 /* update all wiphys now with the new established regulatory domain */
3657 update_all_wiphy_regulatory(lr->initiator);
3659 print_regdomain(get_cfg80211_regdom());
3661 nl80211_send_reg_change_event(lr);
3663 reg_set_request_processed();
3665 return 0;
3668 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3669 struct ieee80211_regdomain *rd)
3671 const struct ieee80211_regdomain *regd;
3672 const struct ieee80211_regdomain *prev_regd;
3673 struct cfg80211_registered_device *rdev;
3675 if (WARN_ON(!wiphy || !rd))
3676 return -EINVAL;
3678 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3679 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3680 return -EPERM;
3682 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3683 print_regdomain_info(rd);
3684 return -EINVAL;
3687 regd = reg_copy_regd(rd);
3688 if (IS_ERR(regd))
3689 return PTR_ERR(regd);
3691 rdev = wiphy_to_rdev(wiphy);
3693 spin_lock(&reg_requests_lock);
3694 prev_regd = rdev->requested_regd;
3695 rdev->requested_regd = regd;
3696 spin_unlock(&reg_requests_lock);
3698 kfree(prev_regd);
3699 return 0;
3702 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3703 struct ieee80211_regdomain *rd)
3705 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3707 if (ret)
3708 return ret;
3710 schedule_work(&reg_work);
3711 return 0;
3713 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3715 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3716 struct ieee80211_regdomain *rd)
3718 int ret;
3720 ASSERT_RTNL();
3722 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3723 if (ret)
3724 return ret;
3726 /* process the request immediately */
3727 reg_process_self_managed_hints();
3728 return 0;
3730 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3732 void wiphy_regulatory_register(struct wiphy *wiphy)
3734 struct regulatory_request *lr = get_last_request();
3736 /* self-managed devices ignore beacon hints and country IE */
3737 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3738 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3739 REGULATORY_COUNTRY_IE_IGNORE;
3742 * The last request may have been received before this
3743 * registration call. Call the driver notifier if
3744 * initiator is USER and user type is CELL_BASE.
3746 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3747 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3748 reg_call_notifier(wiphy, lr);
3751 if (!reg_dev_ignore_cell_hint(wiphy))
3752 reg_num_devs_support_basehint++;
3754 wiphy_update_regulatory(wiphy, lr->initiator);
3755 wiphy_all_share_dfs_chan_state(wiphy);
3758 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3760 struct wiphy *request_wiphy = NULL;
3761 struct regulatory_request *lr;
3763 lr = get_last_request();
3765 if (!reg_dev_ignore_cell_hint(wiphy))
3766 reg_num_devs_support_basehint--;
3768 rcu_free_regdom(get_wiphy_regdom(wiphy));
3769 RCU_INIT_POINTER(wiphy->regd, NULL);
3771 if (lr)
3772 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3774 if (!request_wiphy || request_wiphy != wiphy)
3775 return;
3777 lr->wiphy_idx = WIPHY_IDX_INVALID;
3778 lr->country_ie_env = ENVIRON_ANY;
3782 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3783 * UNII band definitions
3785 int cfg80211_get_unii(int freq)
3787 /* UNII-1 */
3788 if (freq >= 5150 && freq <= 5250)
3789 return 0;
3791 /* UNII-2A */
3792 if (freq > 5250 && freq <= 5350)
3793 return 1;
3795 /* UNII-2B */
3796 if (freq > 5350 && freq <= 5470)
3797 return 2;
3799 /* UNII-2C */
3800 if (freq > 5470 && freq <= 5725)
3801 return 3;
3803 /* UNII-3 */
3804 if (freq > 5725 && freq <= 5825)
3805 return 4;
3807 return -EINVAL;
3810 bool regulatory_indoor_allowed(void)
3812 return reg_is_indoor;
3815 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3817 const struct ieee80211_regdomain *regd = NULL;
3818 const struct ieee80211_regdomain *wiphy_regd = NULL;
3819 bool pre_cac_allowed = false;
3821 rcu_read_lock();
3823 regd = rcu_dereference(cfg80211_regdomain);
3824 wiphy_regd = rcu_dereference(wiphy->regd);
3825 if (!wiphy_regd) {
3826 if (regd->dfs_region == NL80211_DFS_ETSI)
3827 pre_cac_allowed = true;
3829 rcu_read_unlock();
3831 return pre_cac_allowed;
3834 if (regd->dfs_region == wiphy_regd->dfs_region &&
3835 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3836 pre_cac_allowed = true;
3838 rcu_read_unlock();
3840 return pre_cac_allowed;
3843 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3845 struct wireless_dev *wdev;
3846 /* If we finished CAC or received radar, we should end any
3847 * CAC running on the same channels.
3848 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3849 * either all channels are available - those the CAC_FINISHED
3850 * event has effected another wdev state, or there is a channel
3851 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3852 * event has effected another wdev state.
3853 * In both cases we should end the CAC on the wdev.
3855 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3856 if (wdev->cac_started &&
3857 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3858 rdev_end_cac(rdev, wdev->netdev);
3862 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3863 struct cfg80211_chan_def *chandef,
3864 enum nl80211_dfs_state dfs_state,
3865 enum nl80211_radar_event event)
3867 struct cfg80211_registered_device *rdev;
3869 ASSERT_RTNL();
3871 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3872 return;
3874 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3875 if (wiphy == &rdev->wiphy)
3876 continue;
3878 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3879 continue;
3881 if (!ieee80211_get_channel(&rdev->wiphy,
3882 chandef->chan->center_freq))
3883 continue;
3885 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3887 if (event == NL80211_RADAR_DETECTED ||
3888 event == NL80211_RADAR_CAC_FINISHED) {
3889 cfg80211_sched_dfs_chan_update(rdev);
3890 cfg80211_check_and_end_cac(rdev);
3893 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3897 static int __init regulatory_init_db(void)
3899 int err;
3902 * It's possible that - due to other bugs/issues - cfg80211
3903 * never called regulatory_init() below, or that it failed;
3904 * in that case, don't try to do any further work here as
3905 * it's doomed to lead to crashes.
3907 if (IS_ERR_OR_NULL(reg_pdev))
3908 return -EINVAL;
3910 err = load_builtin_regdb_keys();
3911 if (err)
3912 return err;
3914 /* We always try to get an update for the static regdomain */
3915 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3916 if (err) {
3917 if (err == -ENOMEM) {
3918 platform_device_unregister(reg_pdev);
3919 return err;
3922 * N.B. kobject_uevent_env() can fail mainly for when we're out
3923 * memory which is handled and propagated appropriately above
3924 * but it can also fail during a netlink_broadcast() or during
3925 * early boot for call_usermodehelper(). For now treat these
3926 * errors as non-fatal.
3928 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3932 * Finally, if the user set the module parameter treat it
3933 * as a user hint.
3935 if (!is_world_regdom(ieee80211_regdom))
3936 regulatory_hint_user(ieee80211_regdom,
3937 NL80211_USER_REG_HINT_USER);
3939 return 0;
3941 #ifndef MODULE
3942 late_initcall(regulatory_init_db);
3943 #endif
3945 int __init regulatory_init(void)
3947 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3948 if (IS_ERR(reg_pdev))
3949 return PTR_ERR(reg_pdev);
3951 spin_lock_init(&reg_requests_lock);
3952 spin_lock_init(&reg_pending_beacons_lock);
3953 spin_lock_init(&reg_indoor_lock);
3955 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3957 user_alpha2[0] = '9';
3958 user_alpha2[1] = '7';
3960 #ifdef MODULE
3961 return regulatory_init_db();
3962 #else
3963 return 0;
3964 #endif
3967 void regulatory_exit(void)
3969 struct regulatory_request *reg_request, *tmp;
3970 struct reg_beacon *reg_beacon, *btmp;
3972 cancel_work_sync(&reg_work);
3973 cancel_crda_timeout_sync();
3974 cancel_delayed_work_sync(&reg_check_chans);
3976 /* Lock to suppress warnings */
3977 rtnl_lock();
3978 reset_regdomains(true, NULL);
3979 rtnl_unlock();
3981 dev_set_uevent_suppress(&reg_pdev->dev, true);
3983 platform_device_unregister(reg_pdev);
3985 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3986 list_del(&reg_beacon->list);
3987 kfree(reg_beacon);
3990 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3991 list_del(&reg_beacon->list);
3992 kfree(reg_beacon);
3995 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3996 list_del(&reg_request->list);
3997 kfree(reg_request);
4000 if (!IS_ERR_OR_NULL(regdb))
4001 kfree(regdb);
4003 free_regdb_keyring();