Linux 4.19.133
[linux/fpc-iii.git] / net / wireless / scan.c
blobe5d61ba837addd63934d4b3e99a5f56aac31fd1e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/wireless.h>
14 #include <linux/nl80211.h>
15 #include <linux/etherdevice.h>
16 #include <net/arp.h>
17 #include <net/cfg80211.h>
18 #include <net/cfg80211-wext.h>
19 #include <net/iw_handler.h>
20 #include "core.h"
21 #include "nl80211.h"
22 #include "wext-compat.h"
23 #include "rdev-ops.h"
25 /**
26 * DOC: BSS tree/list structure
28 * At the top level, the BSS list is kept in both a list in each
29 * registered device (@bss_list) as well as an RB-tree for faster
30 * lookup. In the RB-tree, entries can be looked up using their
31 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
32 * for other BSSes.
34 * Due to the possibility of hidden SSIDs, there's a second level
35 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
36 * The hidden_list connects all BSSes belonging to a single AP
37 * that has a hidden SSID, and connects beacon and probe response
38 * entries. For a probe response entry for a hidden SSID, the
39 * hidden_beacon_bss pointer points to the BSS struct holding the
40 * beacon's information.
42 * Reference counting is done for all these references except for
43 * the hidden_list, so that a beacon BSS struct that is otherwise
44 * not referenced has one reference for being on the bss_list and
45 * one for each probe response entry that points to it using the
46 * hidden_beacon_bss pointer. When a BSS struct that has such a
47 * pointer is get/put, the refcount update is also propagated to
48 * the referenced struct, this ensure that it cannot get removed
49 * while somebody is using the probe response version.
51 * Note that the hidden_beacon_bss pointer never changes, due to
52 * the reference counting. Therefore, no locking is needed for
53 * it.
55 * Also note that the hidden_beacon_bss pointer is only relevant
56 * if the driver uses something other than the IEs, e.g. private
57 * data stored stored in the BSS struct, since the beacon IEs are
58 * also linked into the probe response struct.
62 * Limit the number of BSS entries stored in mac80211. Each one is
63 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
64 * If somebody wants to really attack this though, they'd likely
65 * use small beacons, and only one type of frame, limiting each of
66 * the entries to a much smaller size (in order to generate more
67 * entries in total, so overhead is bigger.)
69 static int bss_entries_limit = 1000;
70 module_param(bss_entries_limit, int, 0644);
71 MODULE_PARM_DESC(bss_entries_limit,
72 "limit to number of scan BSS entries (per wiphy, default 1000)");
74 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
76 static void bss_free(struct cfg80211_internal_bss *bss)
78 struct cfg80211_bss_ies *ies;
80 if (WARN_ON(atomic_read(&bss->hold)))
81 return;
83 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
84 if (ies && !bss->pub.hidden_beacon_bss)
85 kfree_rcu(ies, rcu_head);
86 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
87 if (ies)
88 kfree_rcu(ies, rcu_head);
91 * This happens when the module is removed, it doesn't
92 * really matter any more save for completeness
94 if (!list_empty(&bss->hidden_list))
95 list_del(&bss->hidden_list);
97 kfree(bss);
100 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
101 struct cfg80211_internal_bss *bss)
103 lockdep_assert_held(&rdev->bss_lock);
105 bss->refcount++;
106 if (bss->pub.hidden_beacon_bss) {
107 bss = container_of(bss->pub.hidden_beacon_bss,
108 struct cfg80211_internal_bss,
109 pub);
110 bss->refcount++;
114 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
115 struct cfg80211_internal_bss *bss)
117 lockdep_assert_held(&rdev->bss_lock);
119 if (bss->pub.hidden_beacon_bss) {
120 struct cfg80211_internal_bss *hbss;
121 hbss = container_of(bss->pub.hidden_beacon_bss,
122 struct cfg80211_internal_bss,
123 pub);
124 hbss->refcount--;
125 if (hbss->refcount == 0)
126 bss_free(hbss);
128 bss->refcount--;
129 if (bss->refcount == 0)
130 bss_free(bss);
133 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
134 struct cfg80211_internal_bss *bss)
136 lockdep_assert_held(&rdev->bss_lock);
138 if (!list_empty(&bss->hidden_list)) {
140 * don't remove the beacon entry if it has
141 * probe responses associated with it
143 if (!bss->pub.hidden_beacon_bss)
144 return false;
146 * if it's a probe response entry break its
147 * link to the other entries in the group
149 list_del_init(&bss->hidden_list);
152 list_del_init(&bss->list);
153 rb_erase(&bss->rbn, &rdev->bss_tree);
154 rdev->bss_entries--;
155 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
156 "rdev bss entries[%d]/list[empty:%d] corruption\n",
157 rdev->bss_entries, list_empty(&rdev->bss_list));
158 bss_ref_put(rdev, bss);
159 return true;
162 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
163 unsigned long expire_time)
165 struct cfg80211_internal_bss *bss, *tmp;
166 bool expired = false;
168 lockdep_assert_held(&rdev->bss_lock);
170 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
171 if (atomic_read(&bss->hold))
172 continue;
173 if (!time_after(expire_time, bss->ts))
174 continue;
176 if (__cfg80211_unlink_bss(rdev, bss))
177 expired = true;
180 if (expired)
181 rdev->bss_generation++;
184 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
186 struct cfg80211_internal_bss *bss, *oldest = NULL;
187 bool ret;
189 lockdep_assert_held(&rdev->bss_lock);
191 list_for_each_entry(bss, &rdev->bss_list, list) {
192 if (atomic_read(&bss->hold))
193 continue;
195 if (!list_empty(&bss->hidden_list) &&
196 !bss->pub.hidden_beacon_bss)
197 continue;
199 if (oldest && time_before(oldest->ts, bss->ts))
200 continue;
201 oldest = bss;
204 if (WARN_ON(!oldest))
205 return false;
208 * The callers make sure to increase rdev->bss_generation if anything
209 * gets removed (and a new entry added), so there's no need to also do
210 * it here.
213 ret = __cfg80211_unlink_bss(rdev, oldest);
214 WARN_ON(!ret);
215 return ret;
218 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
219 bool send_message)
221 struct cfg80211_scan_request *request;
222 struct wireless_dev *wdev;
223 struct sk_buff *msg;
224 #ifdef CONFIG_CFG80211_WEXT
225 union iwreq_data wrqu;
226 #endif
228 ASSERT_RTNL();
230 if (rdev->scan_msg) {
231 nl80211_send_scan_msg(rdev, rdev->scan_msg);
232 rdev->scan_msg = NULL;
233 return;
236 request = rdev->scan_req;
237 if (!request)
238 return;
240 wdev = request->wdev;
243 * This must be before sending the other events!
244 * Otherwise, wpa_supplicant gets completely confused with
245 * wext events.
247 if (wdev->netdev)
248 cfg80211_sme_scan_done(wdev->netdev);
250 if (!request->info.aborted &&
251 request->flags & NL80211_SCAN_FLAG_FLUSH) {
252 /* flush entries from previous scans */
253 spin_lock_bh(&rdev->bss_lock);
254 __cfg80211_bss_expire(rdev, request->scan_start);
255 spin_unlock_bh(&rdev->bss_lock);
258 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
260 #ifdef CONFIG_CFG80211_WEXT
261 if (wdev->netdev && !request->info.aborted) {
262 memset(&wrqu, 0, sizeof(wrqu));
264 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
266 #endif
268 if (wdev->netdev)
269 dev_put(wdev->netdev);
271 rdev->scan_req = NULL;
272 kfree(request);
274 if (!send_message)
275 rdev->scan_msg = msg;
276 else
277 nl80211_send_scan_msg(rdev, msg);
280 void __cfg80211_scan_done(struct work_struct *wk)
282 struct cfg80211_registered_device *rdev;
284 rdev = container_of(wk, struct cfg80211_registered_device,
285 scan_done_wk);
287 rtnl_lock();
288 ___cfg80211_scan_done(rdev, true);
289 rtnl_unlock();
292 void cfg80211_scan_done(struct cfg80211_scan_request *request,
293 struct cfg80211_scan_info *info)
295 trace_cfg80211_scan_done(request, info);
296 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
298 request->info = *info;
299 request->notified = true;
300 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
302 EXPORT_SYMBOL(cfg80211_scan_done);
304 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
305 struct cfg80211_sched_scan_request *req)
307 ASSERT_RTNL();
309 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
312 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
313 struct cfg80211_sched_scan_request *req)
315 ASSERT_RTNL();
317 list_del_rcu(&req->list);
318 kfree_rcu(req, rcu_head);
321 static struct cfg80211_sched_scan_request *
322 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
324 struct cfg80211_sched_scan_request *pos;
326 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
328 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
329 if (pos->reqid == reqid)
330 return pos;
332 return NULL;
336 * Determines if a scheduled scan request can be handled. When a legacy
337 * scheduled scan is running no other scheduled scan is allowed regardless
338 * whether the request is for legacy or multi-support scan. When a multi-support
339 * scheduled scan is running a request for legacy scan is not allowed. In this
340 * case a request for multi-support scan can be handled if resources are
341 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
343 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
344 bool want_multi)
346 struct cfg80211_sched_scan_request *pos;
347 int i = 0;
349 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
350 /* request id zero means legacy in progress */
351 if (!i && !pos->reqid)
352 return -EINPROGRESS;
353 i++;
356 if (i) {
357 /* no legacy allowed when multi request(s) are active */
358 if (!want_multi)
359 return -EINPROGRESS;
361 /* resource limit reached */
362 if (i == rdev->wiphy.max_sched_scan_reqs)
363 return -ENOSPC;
365 return 0;
368 void cfg80211_sched_scan_results_wk(struct work_struct *work)
370 struct cfg80211_registered_device *rdev;
371 struct cfg80211_sched_scan_request *req, *tmp;
373 rdev = container_of(work, struct cfg80211_registered_device,
374 sched_scan_res_wk);
376 rtnl_lock();
377 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
378 if (req->report_results) {
379 req->report_results = false;
380 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
381 /* flush entries from previous scans */
382 spin_lock_bh(&rdev->bss_lock);
383 __cfg80211_bss_expire(rdev, req->scan_start);
384 spin_unlock_bh(&rdev->bss_lock);
385 req->scan_start = jiffies;
387 nl80211_send_sched_scan(req,
388 NL80211_CMD_SCHED_SCAN_RESULTS);
391 rtnl_unlock();
394 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
396 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
397 struct cfg80211_sched_scan_request *request;
399 trace_cfg80211_sched_scan_results(wiphy, reqid);
400 /* ignore if we're not scanning */
402 rcu_read_lock();
403 request = cfg80211_find_sched_scan_req(rdev, reqid);
404 if (request) {
405 request->report_results = true;
406 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
408 rcu_read_unlock();
410 EXPORT_SYMBOL(cfg80211_sched_scan_results);
412 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
416 ASSERT_RTNL();
418 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
420 __cfg80211_stop_sched_scan(rdev, reqid, true);
422 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
424 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
426 rtnl_lock();
427 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
428 rtnl_unlock();
430 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
432 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
433 struct cfg80211_sched_scan_request *req,
434 bool driver_initiated)
436 ASSERT_RTNL();
438 if (!driver_initiated) {
439 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
440 if (err)
441 return err;
444 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
446 cfg80211_del_sched_scan_req(rdev, req);
448 return 0;
451 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
452 u64 reqid, bool driver_initiated)
454 struct cfg80211_sched_scan_request *sched_scan_req;
456 ASSERT_RTNL();
458 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
459 if (!sched_scan_req)
460 return -ENOENT;
462 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
463 driver_initiated);
466 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
467 unsigned long age_secs)
469 struct cfg80211_internal_bss *bss;
470 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
472 spin_lock_bh(&rdev->bss_lock);
473 list_for_each_entry(bss, &rdev->bss_list, list)
474 bss->ts -= age_jiffies;
475 spin_unlock_bh(&rdev->bss_lock);
478 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
480 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
483 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len,
484 const u8 *match, int match_len,
485 int match_offset)
487 const struct element *elem;
489 /* match_offset can't be smaller than 2, unless match_len is
490 * zero, in which case match_offset must be zero as well.
492 if (WARN_ON((match_len && match_offset < 2) ||
493 (!match_len && match_offset)))
494 return NULL;
496 for_each_element_id(elem, eid, ies, len) {
497 if (elem->datalen >= match_offset - 2 + match_len &&
498 !memcmp(elem->data + match_offset - 2, match, match_len))
499 return (void *)elem;
502 return NULL;
504 EXPORT_SYMBOL(cfg80211_find_ie_match);
506 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
507 const u8 *ies, int len)
509 const u8 *ie;
510 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
511 int match_len = (oui_type < 0) ? 3 : sizeof(match);
513 if (WARN_ON(oui_type > 0xff))
514 return NULL;
516 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
517 match, match_len, 2);
519 if (ie && (ie[1] < 4))
520 return NULL;
522 return ie;
524 EXPORT_SYMBOL(cfg80211_find_vendor_ie);
526 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
527 const u8 *ssid, size_t ssid_len)
529 const struct cfg80211_bss_ies *ies;
530 const u8 *ssidie;
532 if (bssid && !ether_addr_equal(a->bssid, bssid))
533 return false;
535 if (!ssid)
536 return true;
538 ies = rcu_access_pointer(a->ies);
539 if (!ies)
540 return false;
541 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
542 if (!ssidie)
543 return false;
544 if (ssidie[1] != ssid_len)
545 return false;
546 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
550 * enum bss_compare_mode - BSS compare mode
551 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
552 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
553 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
555 enum bss_compare_mode {
556 BSS_CMP_REGULAR,
557 BSS_CMP_HIDE_ZLEN,
558 BSS_CMP_HIDE_NUL,
561 static int cmp_bss(struct cfg80211_bss *a,
562 struct cfg80211_bss *b,
563 enum bss_compare_mode mode)
565 const struct cfg80211_bss_ies *a_ies, *b_ies;
566 const u8 *ie1 = NULL;
567 const u8 *ie2 = NULL;
568 int i, r;
570 if (a->channel != b->channel)
571 return b->channel->center_freq - a->channel->center_freq;
573 a_ies = rcu_access_pointer(a->ies);
574 if (!a_ies)
575 return -1;
576 b_ies = rcu_access_pointer(b->ies);
577 if (!b_ies)
578 return 1;
580 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
581 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
582 a_ies->data, a_ies->len);
583 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
584 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
585 b_ies->data, b_ies->len);
586 if (ie1 && ie2) {
587 int mesh_id_cmp;
589 if (ie1[1] == ie2[1])
590 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
591 else
592 mesh_id_cmp = ie2[1] - ie1[1];
594 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
595 a_ies->data, a_ies->len);
596 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
597 b_ies->data, b_ies->len);
598 if (ie1 && ie2) {
599 if (mesh_id_cmp)
600 return mesh_id_cmp;
601 if (ie1[1] != ie2[1])
602 return ie2[1] - ie1[1];
603 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
607 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
608 if (r)
609 return r;
611 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
612 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
614 if (!ie1 && !ie2)
615 return 0;
618 * Note that with "hide_ssid", the function returns a match if
619 * the already-present BSS ("b") is a hidden SSID beacon for
620 * the new BSS ("a").
623 /* sort missing IE before (left of) present IE */
624 if (!ie1)
625 return -1;
626 if (!ie2)
627 return 1;
629 switch (mode) {
630 case BSS_CMP_HIDE_ZLEN:
632 * In ZLEN mode we assume the BSS entry we're
633 * looking for has a zero-length SSID. So if
634 * the one we're looking at right now has that,
635 * return 0. Otherwise, return the difference
636 * in length, but since we're looking for the
637 * 0-length it's really equivalent to returning
638 * the length of the one we're looking at.
640 * No content comparison is needed as we assume
641 * the content length is zero.
643 return ie2[1];
644 case BSS_CMP_REGULAR:
645 default:
646 /* sort by length first, then by contents */
647 if (ie1[1] != ie2[1])
648 return ie2[1] - ie1[1];
649 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
650 case BSS_CMP_HIDE_NUL:
651 if (ie1[1] != ie2[1])
652 return ie2[1] - ie1[1];
653 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
654 for (i = 0; i < ie2[1]; i++)
655 if (ie2[i + 2])
656 return -1;
657 return 0;
661 static bool cfg80211_bss_type_match(u16 capability,
662 enum nl80211_band band,
663 enum ieee80211_bss_type bss_type)
665 bool ret = true;
666 u16 mask, val;
668 if (bss_type == IEEE80211_BSS_TYPE_ANY)
669 return ret;
671 if (band == NL80211_BAND_60GHZ) {
672 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
673 switch (bss_type) {
674 case IEEE80211_BSS_TYPE_ESS:
675 val = WLAN_CAPABILITY_DMG_TYPE_AP;
676 break;
677 case IEEE80211_BSS_TYPE_PBSS:
678 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
679 break;
680 case IEEE80211_BSS_TYPE_IBSS:
681 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
682 break;
683 default:
684 return false;
686 } else {
687 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
688 switch (bss_type) {
689 case IEEE80211_BSS_TYPE_ESS:
690 val = WLAN_CAPABILITY_ESS;
691 break;
692 case IEEE80211_BSS_TYPE_IBSS:
693 val = WLAN_CAPABILITY_IBSS;
694 break;
695 case IEEE80211_BSS_TYPE_MBSS:
696 val = 0;
697 break;
698 default:
699 return false;
703 ret = ((capability & mask) == val);
704 return ret;
707 /* Returned bss is reference counted and must be cleaned up appropriately. */
708 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
709 struct ieee80211_channel *channel,
710 const u8 *bssid,
711 const u8 *ssid, size_t ssid_len,
712 enum ieee80211_bss_type bss_type,
713 enum ieee80211_privacy privacy)
715 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
716 struct cfg80211_internal_bss *bss, *res = NULL;
717 unsigned long now = jiffies;
718 int bss_privacy;
720 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
721 privacy);
723 spin_lock_bh(&rdev->bss_lock);
725 list_for_each_entry(bss, &rdev->bss_list, list) {
726 if (!cfg80211_bss_type_match(bss->pub.capability,
727 bss->pub.channel->band, bss_type))
728 continue;
730 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
731 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
732 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
733 continue;
734 if (channel && bss->pub.channel != channel)
735 continue;
736 if (!is_valid_ether_addr(bss->pub.bssid))
737 continue;
738 /* Don't get expired BSS structs */
739 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
740 !atomic_read(&bss->hold))
741 continue;
742 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
743 res = bss;
744 bss_ref_get(rdev, res);
745 break;
749 spin_unlock_bh(&rdev->bss_lock);
750 if (!res)
751 return NULL;
752 trace_cfg80211_return_bss(&res->pub);
753 return &res->pub;
755 EXPORT_SYMBOL(cfg80211_get_bss);
757 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
758 struct cfg80211_internal_bss *bss)
760 struct rb_node **p = &rdev->bss_tree.rb_node;
761 struct rb_node *parent = NULL;
762 struct cfg80211_internal_bss *tbss;
763 int cmp;
765 while (*p) {
766 parent = *p;
767 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
769 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
771 if (WARN_ON(!cmp)) {
772 /* will sort of leak this BSS */
773 return;
776 if (cmp < 0)
777 p = &(*p)->rb_left;
778 else
779 p = &(*p)->rb_right;
782 rb_link_node(&bss->rbn, parent, p);
783 rb_insert_color(&bss->rbn, &rdev->bss_tree);
786 static struct cfg80211_internal_bss *
787 rb_find_bss(struct cfg80211_registered_device *rdev,
788 struct cfg80211_internal_bss *res,
789 enum bss_compare_mode mode)
791 struct rb_node *n = rdev->bss_tree.rb_node;
792 struct cfg80211_internal_bss *bss;
793 int r;
795 while (n) {
796 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
797 r = cmp_bss(&res->pub, &bss->pub, mode);
799 if (r == 0)
800 return bss;
801 else if (r < 0)
802 n = n->rb_left;
803 else
804 n = n->rb_right;
807 return NULL;
810 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
811 struct cfg80211_internal_bss *new)
813 const struct cfg80211_bss_ies *ies;
814 struct cfg80211_internal_bss *bss;
815 const u8 *ie;
816 int i, ssidlen;
817 u8 fold = 0;
818 u32 n_entries = 0;
820 ies = rcu_access_pointer(new->pub.beacon_ies);
821 if (WARN_ON(!ies))
822 return false;
824 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
825 if (!ie) {
826 /* nothing to do */
827 return true;
830 ssidlen = ie[1];
831 for (i = 0; i < ssidlen; i++)
832 fold |= ie[2 + i];
834 if (fold) {
835 /* not a hidden SSID */
836 return true;
839 /* This is the bad part ... */
841 list_for_each_entry(bss, &rdev->bss_list, list) {
843 * we're iterating all the entries anyway, so take the
844 * opportunity to validate the list length accounting
846 n_entries++;
848 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
849 continue;
850 if (bss->pub.channel != new->pub.channel)
851 continue;
852 if (bss->pub.scan_width != new->pub.scan_width)
853 continue;
854 if (rcu_access_pointer(bss->pub.beacon_ies))
855 continue;
856 ies = rcu_access_pointer(bss->pub.ies);
857 if (!ies)
858 continue;
859 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
860 if (!ie)
861 continue;
862 if (ssidlen && ie[1] != ssidlen)
863 continue;
864 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
865 continue;
866 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
867 list_del(&bss->hidden_list);
868 /* combine them */
869 list_add(&bss->hidden_list, &new->hidden_list);
870 bss->pub.hidden_beacon_bss = &new->pub;
871 new->refcount += bss->refcount;
872 rcu_assign_pointer(bss->pub.beacon_ies,
873 new->pub.beacon_ies);
876 WARN_ONCE(n_entries != rdev->bss_entries,
877 "rdev bss entries[%d]/list[len:%d] corruption\n",
878 rdev->bss_entries, n_entries);
880 return true;
883 /* Returned bss is reference counted and must be cleaned up appropriately. */
884 static struct cfg80211_internal_bss *
885 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
886 struct cfg80211_internal_bss *tmp,
887 bool signal_valid)
889 struct cfg80211_internal_bss *found = NULL;
891 if (WARN_ON(!tmp->pub.channel))
892 return NULL;
894 tmp->ts = jiffies;
896 spin_lock_bh(&rdev->bss_lock);
898 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
899 spin_unlock_bh(&rdev->bss_lock);
900 return NULL;
903 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
905 if (found) {
906 /* Update IEs */
907 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
908 const struct cfg80211_bss_ies *old;
910 old = rcu_access_pointer(found->pub.proberesp_ies);
912 rcu_assign_pointer(found->pub.proberesp_ies,
913 tmp->pub.proberesp_ies);
914 /* Override possible earlier Beacon frame IEs */
915 rcu_assign_pointer(found->pub.ies,
916 tmp->pub.proberesp_ies);
917 if (old)
918 kfree_rcu((struct cfg80211_bss_ies *)old,
919 rcu_head);
920 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
921 const struct cfg80211_bss_ies *old;
922 struct cfg80211_internal_bss *bss;
924 if (found->pub.hidden_beacon_bss &&
925 !list_empty(&found->hidden_list)) {
926 const struct cfg80211_bss_ies *f;
929 * The found BSS struct is one of the probe
930 * response members of a group, but we're
931 * receiving a beacon (beacon_ies in the tmp
932 * bss is used). This can only mean that the
933 * AP changed its beacon from not having an
934 * SSID to showing it, which is confusing so
935 * drop this information.
938 f = rcu_access_pointer(tmp->pub.beacon_ies);
939 kfree_rcu((struct cfg80211_bss_ies *)f,
940 rcu_head);
941 goto drop;
944 old = rcu_access_pointer(found->pub.beacon_ies);
946 rcu_assign_pointer(found->pub.beacon_ies,
947 tmp->pub.beacon_ies);
949 /* Override IEs if they were from a beacon before */
950 if (old == rcu_access_pointer(found->pub.ies))
951 rcu_assign_pointer(found->pub.ies,
952 tmp->pub.beacon_ies);
954 /* Assign beacon IEs to all sub entries */
955 list_for_each_entry(bss, &found->hidden_list,
956 hidden_list) {
957 const struct cfg80211_bss_ies *ies;
959 ies = rcu_access_pointer(bss->pub.beacon_ies);
960 WARN_ON(ies != old);
962 rcu_assign_pointer(bss->pub.beacon_ies,
963 tmp->pub.beacon_ies);
966 if (old)
967 kfree_rcu((struct cfg80211_bss_ies *)old,
968 rcu_head);
971 found->pub.beacon_interval = tmp->pub.beacon_interval;
973 * don't update the signal if beacon was heard on
974 * adjacent channel.
976 if (signal_valid)
977 found->pub.signal = tmp->pub.signal;
978 found->pub.capability = tmp->pub.capability;
979 found->ts = tmp->ts;
980 found->ts_boottime = tmp->ts_boottime;
981 found->parent_tsf = tmp->parent_tsf;
982 found->pub.chains = tmp->pub.chains;
983 memcpy(found->pub.chain_signal, tmp->pub.chain_signal,
984 IEEE80211_MAX_CHAINS);
985 ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
986 } else {
987 struct cfg80211_internal_bss *new;
988 struct cfg80211_internal_bss *hidden;
989 struct cfg80211_bss_ies *ies;
992 * create a copy -- the "res" variable that is passed in
993 * is allocated on the stack since it's not needed in the
994 * more common case of an update
996 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
997 GFP_ATOMIC);
998 if (!new) {
999 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1000 if (ies)
1001 kfree_rcu(ies, rcu_head);
1002 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1003 if (ies)
1004 kfree_rcu(ies, rcu_head);
1005 goto drop;
1007 memcpy(new, tmp, sizeof(*new));
1008 new->refcount = 1;
1009 INIT_LIST_HEAD(&new->hidden_list);
1011 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1012 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1013 if (!hidden)
1014 hidden = rb_find_bss(rdev, tmp,
1015 BSS_CMP_HIDE_NUL);
1016 if (hidden) {
1017 new->pub.hidden_beacon_bss = &hidden->pub;
1018 list_add(&new->hidden_list,
1019 &hidden->hidden_list);
1020 hidden->refcount++;
1021 rcu_assign_pointer(new->pub.beacon_ies,
1022 hidden->pub.beacon_ies);
1024 } else {
1026 * Ok so we found a beacon, and don't have an entry. If
1027 * it's a beacon with hidden SSID, we might be in for an
1028 * expensive search for any probe responses that should
1029 * be grouped with this beacon for updates ...
1031 if (!cfg80211_combine_bsses(rdev, new)) {
1032 kfree(new);
1033 goto drop;
1037 if (rdev->bss_entries >= bss_entries_limit &&
1038 !cfg80211_bss_expire_oldest(rdev)) {
1039 kfree(new);
1040 goto drop;
1043 list_add_tail(&new->list, &rdev->bss_list);
1044 rdev->bss_entries++;
1045 rb_insert_bss(rdev, new);
1046 found = new;
1049 rdev->bss_generation++;
1050 bss_ref_get(rdev, found);
1051 spin_unlock_bh(&rdev->bss_lock);
1053 return found;
1054 drop:
1055 spin_unlock_bh(&rdev->bss_lock);
1056 return NULL;
1060 * Update RX channel information based on the available frame payload
1061 * information. This is mainly for the 2.4 GHz band where frames can be received
1062 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1063 * element to indicate the current (transmitting) channel, but this might also
1064 * be needed on other bands if RX frequency does not match with the actual
1065 * operating channel of a BSS.
1067 static struct ieee80211_channel *
1068 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1069 struct ieee80211_channel *channel,
1070 enum nl80211_bss_scan_width scan_width)
1072 const u8 *tmp;
1073 u32 freq;
1074 int channel_number = -1;
1075 struct ieee80211_channel *alt_channel;
1077 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1078 if (tmp && tmp[1] == 1) {
1079 channel_number = tmp[2];
1080 } else {
1081 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1082 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1083 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1085 channel_number = htop->primary_chan;
1089 if (channel_number < 0) {
1090 /* No channel information in frame payload */
1091 return channel;
1094 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1095 alt_channel = ieee80211_get_channel(wiphy, freq);
1096 if (!alt_channel) {
1097 if (channel->band == NL80211_BAND_2GHZ) {
1099 * Better not allow unexpected channels when that could
1100 * be going beyond the 1-11 range (e.g., discovering
1101 * BSS on channel 12 when radio is configured for
1102 * channel 11.
1104 return NULL;
1107 /* No match for the payload channel number - ignore it */
1108 return channel;
1111 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1112 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1114 * Ignore channel number in 5 and 10 MHz channels where there
1115 * may not be an n:1 or 1:n mapping between frequencies and
1116 * channel numbers.
1118 return channel;
1122 * Use the channel determined through the payload channel number
1123 * instead of the RX channel reported by the driver.
1125 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1126 return NULL;
1127 return alt_channel;
1130 /* Returned bss is reference counted and must be cleaned up appropriately. */
1131 struct cfg80211_bss *
1132 cfg80211_inform_bss_data(struct wiphy *wiphy,
1133 struct cfg80211_inform_bss *data,
1134 enum cfg80211_bss_frame_type ftype,
1135 const u8 *bssid, u64 tsf, u16 capability,
1136 u16 beacon_interval, const u8 *ie, size_t ielen,
1137 gfp_t gfp)
1139 struct cfg80211_bss_ies *ies;
1140 struct ieee80211_channel *channel;
1141 struct cfg80211_internal_bss tmp = {}, *res;
1142 int bss_type;
1143 bool signal_valid;
1145 if (WARN_ON(!wiphy))
1146 return NULL;
1148 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1149 (data->signal < 0 || data->signal > 100)))
1150 return NULL;
1152 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1153 data->scan_width);
1154 if (!channel)
1155 return NULL;
1157 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1158 tmp.pub.channel = channel;
1159 tmp.pub.scan_width = data->scan_width;
1160 tmp.pub.signal = data->signal;
1161 tmp.pub.beacon_interval = beacon_interval;
1162 tmp.pub.capability = capability;
1163 tmp.ts_boottime = data->boottime_ns;
1166 * If we do not know here whether the IEs are from a Beacon or Probe
1167 * Response frame, we need to pick one of the options and only use it
1168 * with the driver that does not provide the full Beacon/Probe Response
1169 * frame. Use Beacon frame pointer to avoid indicating that this should
1170 * override the IEs pointer should we have received an earlier
1171 * indication of Probe Response data.
1173 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1174 if (!ies)
1175 return NULL;
1176 ies->len = ielen;
1177 ies->tsf = tsf;
1178 ies->from_beacon = false;
1179 memcpy(ies->data, ie, ielen);
1181 switch (ftype) {
1182 case CFG80211_BSS_FTYPE_BEACON:
1183 ies->from_beacon = true;
1184 /* fall through to assign */
1185 case CFG80211_BSS_FTYPE_UNKNOWN:
1186 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1187 break;
1188 case CFG80211_BSS_FTYPE_PRESP:
1189 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1190 break;
1192 rcu_assign_pointer(tmp.pub.ies, ies);
1194 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1195 wiphy->max_adj_channel_rssi_comp;
1196 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1197 if (!res)
1198 return NULL;
1200 if (channel->band == NL80211_BAND_60GHZ) {
1201 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1202 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1203 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1204 regulatory_hint_found_beacon(wiphy, channel, gfp);
1205 } else {
1206 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1207 regulatory_hint_found_beacon(wiphy, channel, gfp);
1210 trace_cfg80211_return_bss(&res->pub);
1211 /* cfg80211_bss_update gives us a referenced result */
1212 return &res->pub;
1214 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1216 /* cfg80211_inform_bss_width_frame helper */
1217 struct cfg80211_bss *
1218 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1219 struct cfg80211_inform_bss *data,
1220 struct ieee80211_mgmt *mgmt, size_t len,
1221 gfp_t gfp)
1224 struct cfg80211_internal_bss tmp = {}, *res;
1225 struct cfg80211_bss_ies *ies;
1226 struct ieee80211_channel *channel;
1227 bool signal_valid;
1228 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1229 u.probe_resp.variable);
1230 int bss_type;
1232 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1233 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1235 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1237 if (WARN_ON(!mgmt))
1238 return NULL;
1240 if (WARN_ON(!wiphy))
1241 return NULL;
1243 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1244 (data->signal < 0 || data->signal > 100)))
1245 return NULL;
1247 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1248 return NULL;
1250 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1251 ielen, data->chan, data->scan_width);
1252 if (!channel)
1253 return NULL;
1255 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1256 if (!ies)
1257 return NULL;
1258 ies->len = ielen;
1259 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1260 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1261 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1263 if (ieee80211_is_probe_resp(mgmt->frame_control))
1264 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1265 else
1266 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1267 rcu_assign_pointer(tmp.pub.ies, ies);
1269 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1270 tmp.pub.channel = channel;
1271 tmp.pub.scan_width = data->scan_width;
1272 tmp.pub.signal = data->signal;
1273 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1274 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1275 tmp.ts_boottime = data->boottime_ns;
1276 tmp.parent_tsf = data->parent_tsf;
1277 tmp.pub.chains = data->chains;
1278 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1279 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1281 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1282 wiphy->max_adj_channel_rssi_comp;
1283 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1284 if (!res)
1285 return NULL;
1287 if (channel->band == NL80211_BAND_60GHZ) {
1288 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1289 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1290 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1291 regulatory_hint_found_beacon(wiphy, channel, gfp);
1292 } else {
1293 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1294 regulatory_hint_found_beacon(wiphy, channel, gfp);
1297 trace_cfg80211_return_bss(&res->pub);
1298 /* cfg80211_bss_update gives us a referenced result */
1299 return &res->pub;
1301 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1303 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1305 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1306 struct cfg80211_internal_bss *bss;
1308 if (!pub)
1309 return;
1311 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1313 spin_lock_bh(&rdev->bss_lock);
1314 bss_ref_get(rdev, bss);
1315 spin_unlock_bh(&rdev->bss_lock);
1317 EXPORT_SYMBOL(cfg80211_ref_bss);
1319 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1321 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1322 struct cfg80211_internal_bss *bss;
1324 if (!pub)
1325 return;
1327 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1329 spin_lock_bh(&rdev->bss_lock);
1330 bss_ref_put(rdev, bss);
1331 spin_unlock_bh(&rdev->bss_lock);
1333 EXPORT_SYMBOL(cfg80211_put_bss);
1335 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1337 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1338 struct cfg80211_internal_bss *bss;
1340 if (WARN_ON(!pub))
1341 return;
1343 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1345 spin_lock_bh(&rdev->bss_lock);
1346 if (!list_empty(&bss->list)) {
1347 if (__cfg80211_unlink_bss(rdev, bss))
1348 rdev->bss_generation++;
1350 spin_unlock_bh(&rdev->bss_lock);
1352 EXPORT_SYMBOL(cfg80211_unlink_bss);
1354 #ifdef CONFIG_CFG80211_WEXT
1355 static struct cfg80211_registered_device *
1356 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1358 struct cfg80211_registered_device *rdev;
1359 struct net_device *dev;
1361 ASSERT_RTNL();
1363 dev = dev_get_by_index(net, ifindex);
1364 if (!dev)
1365 return ERR_PTR(-ENODEV);
1366 if (dev->ieee80211_ptr)
1367 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1368 else
1369 rdev = ERR_PTR(-ENODEV);
1370 dev_put(dev);
1371 return rdev;
1374 int cfg80211_wext_siwscan(struct net_device *dev,
1375 struct iw_request_info *info,
1376 union iwreq_data *wrqu, char *extra)
1378 struct cfg80211_registered_device *rdev;
1379 struct wiphy *wiphy;
1380 struct iw_scan_req *wreq = NULL;
1381 struct cfg80211_scan_request *creq = NULL;
1382 int i, err, n_channels = 0;
1383 enum nl80211_band band;
1385 if (!netif_running(dev))
1386 return -ENETDOWN;
1388 if (wrqu->data.length == sizeof(struct iw_scan_req))
1389 wreq = (struct iw_scan_req *)extra;
1391 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1393 if (IS_ERR(rdev))
1394 return PTR_ERR(rdev);
1396 if (rdev->scan_req || rdev->scan_msg) {
1397 err = -EBUSY;
1398 goto out;
1401 wiphy = &rdev->wiphy;
1403 /* Determine number of channels, needed to allocate creq */
1404 if (wreq && wreq->num_channels)
1405 n_channels = wreq->num_channels;
1406 else
1407 n_channels = ieee80211_get_num_supported_channels(wiphy);
1409 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1410 n_channels * sizeof(void *),
1411 GFP_ATOMIC);
1412 if (!creq) {
1413 err = -ENOMEM;
1414 goto out;
1417 creq->wiphy = wiphy;
1418 creq->wdev = dev->ieee80211_ptr;
1419 /* SSIDs come after channels */
1420 creq->ssids = (void *)&creq->channels[n_channels];
1421 creq->n_channels = n_channels;
1422 creq->n_ssids = 1;
1423 creq->scan_start = jiffies;
1425 /* translate "Scan on frequencies" request */
1426 i = 0;
1427 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1428 int j;
1430 if (!wiphy->bands[band])
1431 continue;
1433 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1434 /* ignore disabled channels */
1435 if (wiphy->bands[band]->channels[j].flags &
1436 IEEE80211_CHAN_DISABLED)
1437 continue;
1439 /* If we have a wireless request structure and the
1440 * wireless request specifies frequencies, then search
1441 * for the matching hardware channel.
1443 if (wreq && wreq->num_channels) {
1444 int k;
1445 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1446 for (k = 0; k < wreq->num_channels; k++) {
1447 struct iw_freq *freq =
1448 &wreq->channel_list[k];
1449 int wext_freq =
1450 cfg80211_wext_freq(freq);
1452 if (wext_freq == wiphy_freq)
1453 goto wext_freq_found;
1455 goto wext_freq_not_found;
1458 wext_freq_found:
1459 creq->channels[i] = &wiphy->bands[band]->channels[j];
1460 i++;
1461 wext_freq_not_found: ;
1464 /* No channels found? */
1465 if (!i) {
1466 err = -EINVAL;
1467 goto out;
1470 /* Set real number of channels specified in creq->channels[] */
1471 creq->n_channels = i;
1473 /* translate "Scan for SSID" request */
1474 if (wreq) {
1475 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1476 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1477 err = -EINVAL;
1478 goto out;
1480 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1481 creq->ssids[0].ssid_len = wreq->essid_len;
1483 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1484 creq->n_ssids = 0;
1487 for (i = 0; i < NUM_NL80211_BANDS; i++)
1488 if (wiphy->bands[i])
1489 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1491 eth_broadcast_addr(creq->bssid);
1493 rdev->scan_req = creq;
1494 err = rdev_scan(rdev, creq);
1495 if (err) {
1496 rdev->scan_req = NULL;
1497 /* creq will be freed below */
1498 } else {
1499 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1500 /* creq now owned by driver */
1501 creq = NULL;
1502 dev_hold(dev);
1504 out:
1505 kfree(creq);
1506 return err;
1508 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1510 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1511 const struct cfg80211_bss_ies *ies,
1512 char *current_ev, char *end_buf)
1514 const u8 *pos, *end, *next;
1515 struct iw_event iwe;
1517 if (!ies)
1518 return current_ev;
1521 * If needed, fragment the IEs buffer (at IE boundaries) into short
1522 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1524 pos = ies->data;
1525 end = pos + ies->len;
1527 while (end - pos > IW_GENERIC_IE_MAX) {
1528 next = pos + 2 + pos[1];
1529 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1530 next = next + 2 + next[1];
1532 memset(&iwe, 0, sizeof(iwe));
1533 iwe.cmd = IWEVGENIE;
1534 iwe.u.data.length = next - pos;
1535 current_ev = iwe_stream_add_point_check(info, current_ev,
1536 end_buf, &iwe,
1537 (void *)pos);
1538 if (IS_ERR(current_ev))
1539 return current_ev;
1540 pos = next;
1543 if (end > pos) {
1544 memset(&iwe, 0, sizeof(iwe));
1545 iwe.cmd = IWEVGENIE;
1546 iwe.u.data.length = end - pos;
1547 current_ev = iwe_stream_add_point_check(info, current_ev,
1548 end_buf, &iwe,
1549 (void *)pos);
1550 if (IS_ERR(current_ev))
1551 return current_ev;
1554 return current_ev;
1557 static char *
1558 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1559 struct cfg80211_internal_bss *bss, char *current_ev,
1560 char *end_buf)
1562 const struct cfg80211_bss_ies *ies;
1563 struct iw_event iwe;
1564 const u8 *ie;
1565 u8 buf[50];
1566 u8 *cfg, *p, *tmp;
1567 int rem, i, sig;
1568 bool ismesh = false;
1570 memset(&iwe, 0, sizeof(iwe));
1571 iwe.cmd = SIOCGIWAP;
1572 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1573 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1574 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1575 IW_EV_ADDR_LEN);
1576 if (IS_ERR(current_ev))
1577 return current_ev;
1579 memset(&iwe, 0, sizeof(iwe));
1580 iwe.cmd = SIOCGIWFREQ;
1581 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1582 iwe.u.freq.e = 0;
1583 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1584 IW_EV_FREQ_LEN);
1585 if (IS_ERR(current_ev))
1586 return current_ev;
1588 memset(&iwe, 0, sizeof(iwe));
1589 iwe.cmd = SIOCGIWFREQ;
1590 iwe.u.freq.m = bss->pub.channel->center_freq;
1591 iwe.u.freq.e = 6;
1592 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1593 IW_EV_FREQ_LEN);
1594 if (IS_ERR(current_ev))
1595 return current_ev;
1597 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1598 memset(&iwe, 0, sizeof(iwe));
1599 iwe.cmd = IWEVQUAL;
1600 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1601 IW_QUAL_NOISE_INVALID |
1602 IW_QUAL_QUAL_UPDATED;
1603 switch (wiphy->signal_type) {
1604 case CFG80211_SIGNAL_TYPE_MBM:
1605 sig = bss->pub.signal / 100;
1606 iwe.u.qual.level = sig;
1607 iwe.u.qual.updated |= IW_QUAL_DBM;
1608 if (sig < -110) /* rather bad */
1609 sig = -110;
1610 else if (sig > -40) /* perfect */
1611 sig = -40;
1612 /* will give a range of 0 .. 70 */
1613 iwe.u.qual.qual = sig + 110;
1614 break;
1615 case CFG80211_SIGNAL_TYPE_UNSPEC:
1616 iwe.u.qual.level = bss->pub.signal;
1617 /* will give range 0 .. 100 */
1618 iwe.u.qual.qual = bss->pub.signal;
1619 break;
1620 default:
1621 /* not reached */
1622 break;
1624 current_ev = iwe_stream_add_event_check(info, current_ev,
1625 end_buf, &iwe,
1626 IW_EV_QUAL_LEN);
1627 if (IS_ERR(current_ev))
1628 return current_ev;
1631 memset(&iwe, 0, sizeof(iwe));
1632 iwe.cmd = SIOCGIWENCODE;
1633 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1634 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1635 else
1636 iwe.u.data.flags = IW_ENCODE_DISABLED;
1637 iwe.u.data.length = 0;
1638 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1639 &iwe, "");
1640 if (IS_ERR(current_ev))
1641 return current_ev;
1643 rcu_read_lock();
1644 ies = rcu_dereference(bss->pub.ies);
1645 rem = ies->len;
1646 ie = ies->data;
1648 while (rem >= 2) {
1649 /* invalid data */
1650 if (ie[1] > rem - 2)
1651 break;
1653 switch (ie[0]) {
1654 case WLAN_EID_SSID:
1655 memset(&iwe, 0, sizeof(iwe));
1656 iwe.cmd = SIOCGIWESSID;
1657 iwe.u.data.length = ie[1];
1658 iwe.u.data.flags = 1;
1659 current_ev = iwe_stream_add_point_check(info,
1660 current_ev,
1661 end_buf, &iwe,
1662 (u8 *)ie + 2);
1663 if (IS_ERR(current_ev))
1664 goto unlock;
1665 break;
1666 case WLAN_EID_MESH_ID:
1667 memset(&iwe, 0, sizeof(iwe));
1668 iwe.cmd = SIOCGIWESSID;
1669 iwe.u.data.length = ie[1];
1670 iwe.u.data.flags = 1;
1671 current_ev = iwe_stream_add_point_check(info,
1672 current_ev,
1673 end_buf, &iwe,
1674 (u8 *)ie + 2);
1675 if (IS_ERR(current_ev))
1676 goto unlock;
1677 break;
1678 case WLAN_EID_MESH_CONFIG:
1679 ismesh = true;
1680 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1681 break;
1682 cfg = (u8 *)ie + 2;
1683 memset(&iwe, 0, sizeof(iwe));
1684 iwe.cmd = IWEVCUSTOM;
1685 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1686 "0x%02X", cfg[0]);
1687 iwe.u.data.length = strlen(buf);
1688 current_ev = iwe_stream_add_point_check(info,
1689 current_ev,
1690 end_buf,
1691 &iwe, buf);
1692 if (IS_ERR(current_ev))
1693 goto unlock;
1694 sprintf(buf, "Path Selection Metric ID: 0x%02X",
1695 cfg[1]);
1696 iwe.u.data.length = strlen(buf);
1697 current_ev = iwe_stream_add_point_check(info,
1698 current_ev,
1699 end_buf,
1700 &iwe, buf);
1701 if (IS_ERR(current_ev))
1702 goto unlock;
1703 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1704 cfg[2]);
1705 iwe.u.data.length = strlen(buf);
1706 current_ev = iwe_stream_add_point_check(info,
1707 current_ev,
1708 end_buf,
1709 &iwe, buf);
1710 if (IS_ERR(current_ev))
1711 goto unlock;
1712 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1713 iwe.u.data.length = strlen(buf);
1714 current_ev = iwe_stream_add_point_check(info,
1715 current_ev,
1716 end_buf,
1717 &iwe, buf);
1718 if (IS_ERR(current_ev))
1719 goto unlock;
1720 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1721 iwe.u.data.length = strlen(buf);
1722 current_ev = iwe_stream_add_point_check(info,
1723 current_ev,
1724 end_buf,
1725 &iwe, buf);
1726 if (IS_ERR(current_ev))
1727 goto unlock;
1728 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1729 iwe.u.data.length = strlen(buf);
1730 current_ev = iwe_stream_add_point_check(info,
1731 current_ev,
1732 end_buf,
1733 &iwe, buf);
1734 if (IS_ERR(current_ev))
1735 goto unlock;
1736 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1737 iwe.u.data.length = strlen(buf);
1738 current_ev = iwe_stream_add_point_check(info,
1739 current_ev,
1740 end_buf,
1741 &iwe, buf);
1742 if (IS_ERR(current_ev))
1743 goto unlock;
1744 break;
1745 case WLAN_EID_SUPP_RATES:
1746 case WLAN_EID_EXT_SUPP_RATES:
1747 /* display all supported rates in readable format */
1748 p = current_ev + iwe_stream_lcp_len(info);
1750 memset(&iwe, 0, sizeof(iwe));
1751 iwe.cmd = SIOCGIWRATE;
1752 /* Those two flags are ignored... */
1753 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1755 for (i = 0; i < ie[1]; i++) {
1756 iwe.u.bitrate.value =
1757 ((ie[i + 2] & 0x7f) * 500000);
1758 tmp = p;
1759 p = iwe_stream_add_value(info, current_ev, p,
1760 end_buf, &iwe,
1761 IW_EV_PARAM_LEN);
1762 if (p == tmp) {
1763 current_ev = ERR_PTR(-E2BIG);
1764 goto unlock;
1767 current_ev = p;
1768 break;
1770 rem -= ie[1] + 2;
1771 ie += ie[1] + 2;
1774 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1775 ismesh) {
1776 memset(&iwe, 0, sizeof(iwe));
1777 iwe.cmd = SIOCGIWMODE;
1778 if (ismesh)
1779 iwe.u.mode = IW_MODE_MESH;
1780 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1781 iwe.u.mode = IW_MODE_MASTER;
1782 else
1783 iwe.u.mode = IW_MODE_ADHOC;
1784 current_ev = iwe_stream_add_event_check(info, current_ev,
1785 end_buf, &iwe,
1786 IW_EV_UINT_LEN);
1787 if (IS_ERR(current_ev))
1788 goto unlock;
1791 memset(&iwe, 0, sizeof(iwe));
1792 iwe.cmd = IWEVCUSTOM;
1793 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1794 iwe.u.data.length = strlen(buf);
1795 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1796 &iwe, buf);
1797 if (IS_ERR(current_ev))
1798 goto unlock;
1799 memset(&iwe, 0, sizeof(iwe));
1800 iwe.cmd = IWEVCUSTOM;
1801 sprintf(buf, " Last beacon: %ums ago",
1802 elapsed_jiffies_msecs(bss->ts));
1803 iwe.u.data.length = strlen(buf);
1804 current_ev = iwe_stream_add_point_check(info, current_ev,
1805 end_buf, &iwe, buf);
1806 if (IS_ERR(current_ev))
1807 goto unlock;
1809 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1811 unlock:
1812 rcu_read_unlock();
1813 return current_ev;
1817 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1818 struct iw_request_info *info,
1819 char *buf, size_t len)
1821 char *current_ev = buf;
1822 char *end_buf = buf + len;
1823 struct cfg80211_internal_bss *bss;
1824 int err = 0;
1826 spin_lock_bh(&rdev->bss_lock);
1827 cfg80211_bss_expire(rdev);
1829 list_for_each_entry(bss, &rdev->bss_list, list) {
1830 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1831 err = -E2BIG;
1832 break;
1834 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1835 current_ev, end_buf);
1836 if (IS_ERR(current_ev)) {
1837 err = PTR_ERR(current_ev);
1838 break;
1841 spin_unlock_bh(&rdev->bss_lock);
1843 if (err)
1844 return err;
1845 return current_ev - buf;
1849 int cfg80211_wext_giwscan(struct net_device *dev,
1850 struct iw_request_info *info,
1851 struct iw_point *data, char *extra)
1853 struct cfg80211_registered_device *rdev;
1854 int res;
1856 if (!netif_running(dev))
1857 return -ENETDOWN;
1859 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1861 if (IS_ERR(rdev))
1862 return PTR_ERR(rdev);
1864 if (rdev->scan_req || rdev->scan_msg)
1865 return -EAGAIN;
1867 res = ieee80211_scan_results(rdev, info, extra, data->length);
1868 data->length = 0;
1869 if (res >= 0) {
1870 data->length = res;
1871 res = 0;
1874 return res;
1876 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1877 #endif